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ABSTRACT

Image segmentation is a common intermediate operation in many image processing applications. On
automated systems it is important to evaluate how well it, or its subsystems are performing without access
to the Ground Truth. In Deep Learning based image segmentation there are very few methods to evaluate the
output quality without using a ground truth. Most of them are based on the uncertainty (variance or standard
deviation) of the prediction and can be applied to Bayesian Neural Networks, but not to Convolutional Neural
Networks. In this research we propose to use the Entropy as a measure of uncertainty applied to the segmented
image predicted by the Neural Network and some indicators based on it. The method is tested in a segmentation
task of labeled skin images. The entropy based indicators are evaluated without knowing the ground truth and
compared with indicators based on the real labels (Jaccard, Dice and Average Symmetrical Surface Distance).
This experimentation showed that they are correlated and some Entropy based indicators can predict quite well
the ground truth based indicators.

Keywords: Image segmentation, Deep Learning, Segmentation quality estimation, Entropy.

INTRODUCTION

Segmentation is, probably, the most important
operation in image processing as it is part of
most image applications. During research and
development, algorithms are validated against an
expected results: the Ground Truth (GT). In real
production applications, when the GT is not available,
it is desired, and sometimes a strong requirement, to
estimate how good the segmentation result is.

Segmentation is an image operation which
partitions it into a number of regions after some
criteria. Pixels1 inside each region share a common
property. Haralick and Shapiro (1985) proposed, in the
80s, that a good image segmentation should obey four
criteria:

1.Regions should be uniform and homogeneous with
respect to some characteristic(s) such as grayscale
intensity or texture;

2.Adjacent regions should have significant
differences with respect to the characteristic on
which they are uniform;

3.Region interiors should be simple and without
many small holes;

4.Boundaries should be simple, not ragged, and be
spatially accurate.

From the Machine Learning point of view,
segmentation can be viewed, at pixel level, as a
classification problem at which a class is assigned to
each pixel depending on its own value and those from
its neighbors.

Since then, many kinds of solutions for
segmentation evaluation have been proposed (Zhang,
1996; Zhang et al., 2008). Most of them are based
on the morphology of regions or evaluating how
different are adjacent ones using, most of the time,
their intensity. All these solutions are not of particular
interest to this research because few of them are related
to Deep Learning (DL) and the few of them based
on entropy employ this concept with a particularly
unusual meaning (Pal and Pal, 1993; Pal and Bhandari,
1993; Zhang et al., 2003; Hao et al., 2009; Rill-
García et al., 2022). They use entropy as a criterion to
evaluate the intensity homogeneity inside each region
(narrow histograms) before checking if the histograms
of adjacent regions are disjoint. In this paper we
use entropy with its usual Information Theory (IT)
meaning: the uncertainty or amount of information
still needed to make the right decision. We mention
their research here just to avoid confusion.

The arrival of DL to process images provided
more efficient segmentation methods, mainly on
textured regions where histograms may overlap. In

1The word "pixel" is used here but all results are valid also for images with three or more dimensions.
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classification problems, the last layer of a neural
network (NN) is usually a Softmax layer2, where
each component corresponds to the probability of
assigning the corresponding class to the pixel. These
probabilities gave birth to the concept of "uncertainty"
attached to the classification results. The interest of
"uncertainty" results from the hypothesis that most
errors happen on regions of data where we are less
certain on what decision to take. Some research work
confirmed this hypothesis (Kampffmeyer et al., 2016;
Kendall et al., 2017). A summary will be presented in
the next section.

The concept of Entropy from IT is, in our opinion,
very interesting with many possible applications. In the
theory part of this paper we will show the meaning
of entropy as a measure of uncertainty per pixel in
image segmentation and its lower and upper bounds.
In the experimental part of this paper we show how
to use it to identify regions in the image where most
errors may be occurring and propose an indicator
of the segmentation quality, like the Jaccard, Dice,
Average Symmetric Surface Distance (ASSD) and
other indexes, but without access to GT.

RELATED WORK

DL brought much more reliable solutions to many
problems, including segmentation of images with
textured regions. We are mainly interested in two
DL NN paradigms: Convolutional Neural Networks
(CNN) and Bayesian Neural Networks (BNN). Most
research with the theme "Uncertainty" comes from
BNNs domain. In BNNs the weights usually found
in CNNs are replaced by distributions. Furthermore,
the epistemic uncertainty3 can be deduced from these
distributions.

Uncertainty in DL was deeply developed in Gal
(2016) PhD Thesis and by Kendall and Gal (2017)
for BNNs and extended to CNNs. "Uncertainty", in
this research shall be understood as the complement
of "confidence" and is usually expressed by the
"variance" (or standard deviation) of some result.

Gal (2016) and Gal and Ghahramani (2016) have
shown that inserting a random dropout just before
every weight layer in CNNs, during both training and
prediction, is equivalent to the probabilistic Gaussian
process in BNNs. Monte Carlo Sampling (or Monte

Carlo Dropout) is done by repeating predictions a
number of times for each data object to evaluate
the variance on output probabilities and produce an
uncertainty map. This method is simple but requires
that prediction be repeated a number of times. When
superposing the distribution of each class, the less the
class softmax distributions overlap, the more certain
are the predictions.

Kampffmeyer et al. (2016) applied Monte Carlo
sampling (10 samples) on CNNs to evaluate the
standard deviation over the softmax outputs of samples
during prediction. Their research confirms the link
between uncertainty and segmentation accuracy.

Hendrycks and Gimpel (2017)4 have found that
"simple statistics derived from softmax distributions
provide a surprisingly effective way to determine
whether an example is misclassified or from a different
distribution from the training data". They explored
the idea that smaller values of the maximum of
Softmax vector indicate higher error probability. They
experimented with classification tasks in various
domains, all of them having Softmax as the final layer
of the NN. None of them were image segmentation.
Roughly speaking, to validate the idea they partitioned
samples into two sets, correctly and wrongly classified,
based on a threshold set on maximum value of Softmax
for each sample. Although they extensively tested
the idea they did not explore the theory behind it
nor its limitations. Also, we have not found any
research indicating how their heuristics are related to
uncertainty. Their paper deserves particular attention
as, according to SemanticScholar5, it was cited more
than 2000 times. In the next section we will show that
this idea can be understood under the light of IT: how
it is related to Shannon Entropy (Shannon, 1948) and
its limitations.

Using BNNs, DeVries and Taylor (2018a)
proposed "Learned Confidence Estimates", a method
where the network produces two separate outputs:
prediction probabilities and the confidence estimates.
In another research paper, DeVries and Taylor (2018b)
evaluated their method against four other methods,
including the max of Softmax from Hendrycks and
Gimpel (2017) and Entropy of Softmax applied to
Monte Carlo Dropout. In their setup they had two
separated NNs: one to produce prediction probabilities
and uncertainty estimation (as a score related to it)
from input images and the other to estimate the

2The Softmax (Bridle, 1989), also known as normalized exponential, converts a vector of real numbers (logits) into a probability
distribution. This function can be seen as a generalization of the logistic sigmoid function (Bishop, 2007, p. 198). The elements of the
output vector are in the range (0,1) and sum to 1.

3The epistemic uncertainty is the uncertainty of the model while the aleatoric uncertainty is the one from the input data: noise, out of
focus, ...

4This article, retrieved from arxiv.org, was accepted as a poster at ICLR 2017.
5See: https://api.semanticscholar.org/CorpusID:13046179
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segmentation quality indicator (Jaccard index6) from
the first network results. The predicted Jaccard index
was then compared against the true Jaccard index
obtained from GT. Finally they showed that from the
five methods used to predict Jaccard index, the max
of Softmax (Hendrycks and Gimpel, 2017) and Monte
Carlo Dropout presented very similar results, slightly
better than their method. Particularly all confidence
(based on variance) methods perform worse than those
using direct statistics of the Softmax.

In a recent preprint paper Galil et al. (2022) have
found that the entropy of the Softmax is slightly better
than using just its maximum as a score of uncertainty.

Nair et al. (2020) compared, in a two class problem
with Monte Carlo Dropout setup, the variance of
the Softmax vector, the Predictive Entropy and the
Mutual Information. The Predictive entropy is defined
as the entropy of the mean of Softmax vectors and
the Mutual Information is defined as the difference
between the Predictive Entropy and the mean entropy
of Softmax vectors. The interesting point of this
research is establishing the difference in how these
values are interpreted: while the variances and mutual
information evaluate the confidence in the predicted
value (the model’s uncertainty), the Predicted Entropy
evaluates the uncertainty of the prediction, supposing
that the predicted value is correct.

Sometimes, the words "confidence" (or "lack
of") or "confidence interval" and "uncertainty" are
employed interchangeably. Rigorously, although both
are related to the quality of results, they do not
represent the same point of view.

Finally, we have found few results encouraging the
use of entropy as a measure of uncertainty or quality
of results in DL applications. But, effectively, from the
IT point of view, Entropy can be seen as a measure
of uncertainty or information still needed to make a
decision.

ENTROPY AND UNCERTAINTY

IT is about quantifying information: the amount of
information contained in, e.g., a file or the information
still needed to make some decision without ambiguity.
The latter is how entropy is understood, under IT, as a
measure of uncertainty.

The entropy of a discrete random variable X is
defined as (Shannon, 1948; Cover and Thomas, 2006):

H(X) =− ∑
x∈X

px log2(px) (1)

where X is the finite set of possible outcomes and px
is the probability of having x as the outcome. H(X)
takes values in the interval [0, log2(|X |)], where |X |
is the cardinality of X . The minimum value happens
when one of the possible outcomes has probability 1
and all other 0 and the maximum when all outcomes
are equally probable (1/|X |).

The final layer in a NN for image segmentation
is usually a Softmax layer, with one component per
class. For each pixel, Softmax values sum to one.
A class is the label assigned to each region in the
segmented image. The same label may be assigned to
different unconnected regions having some common
characteristics.

In the prediction image, we assign to each pixel the
class ŷ corresponding to the maximum value (σmax) of
the Softmax vector (σ ), where c is a class in the set of
classes C .

σmax = max
c∈C

σ(c) (2)

ŷ = argmax
c∈C

σ(c) (3)

We can notice that the minimum value of σmax is 1/|C |.
This happens when all classes are equal in probability.
So, σmax ∈ [1/|C |,1)

The prediction entropy can be written as:

h =− ∑
c∈C

σ(c) log2(σ(c)) (4)

and broken down into:

h =−σmax log2(σmax)− ∑
c∈C \{ŷ}

σ(c) log2(σ(c)) (5)

The first term in the right hand side corresponds to
the contribution of the predicted class to the prediction
entropy and is referred to as residual entropy. It
is the value taken into account by Hendrycks and
Gimpel (2017) in their heuristics, which neglects the
second term. Now, we can evaluate what could be the
result without neglecting the residual entropy and the
difference.

The value of the residual entropy (hresidual)
depends on how the residual probability (1−σmax) is
distributed over the remaining classes. We can easily
find its upper and lower bounds.

6The Jaccard index (Jaccard, 1912), also called Intersection over Union or IoU, has been generalized to be used as a multiclass indicator
(Ruzicka or MeanIOU indexes) or even as a loss function with real values in the interval [0,1]. Most generalizations, even different from
the original indicator, are frequently still called just Jaccard.
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The upper bound is attained when the residual
probability is evenly distributed over the remaining
classes:

max(hresidual) =−(1−σmax) log2

(
1−σmax

|C |−1

)
(6)

On the other hand, the lower bound is attained
when the residual probability is concentrated on
a minimum number of classes, knowing that the
maximum value is σmax. If N f is the number of classes
which can be fulfilled and σr is the remainder, we can
write:

N f =
⌊1−σmax

σmax

⌋
(7)

σr = (1−σmax)−N f σmax (8)
min(hResidual) =−N f .σmax log2 (σmax)−σr log2(σr)

(9)

Classes
0 1 2 3 Entropy Comments

1 1.000 0.000 0.000 0.000 0.000 Minimum

2 0.400 0.400 0.200 0.000 1.519 Low bound
3 0.400 0.300 0.200 0.100 1.846
4 0.400 0.200 0.200 0.200 1.922 Up bound

5 0.250 0.250 0.250 0.250 2.000 Maximum

Table 1: A numeric toy example showing how the
distribution of Softmax values impacts prediction
entropy in a four class problem. Class 0 is the winning
class, as an example. Rows 2 to 4 correspond to the
situation where σmax is fixed to 0.4. Notice that the
predicted class is not unique in rows 2 and 5.

Table 1 shows how the distribution of Softmax
values affects the prediction entropy in a four class toy
problem.

Based on the above, Figure 1 presents the upper
and lower bounds of the prediction entropy and the
contribution of σmax to it against σmax for a problem
with 2, 3 and 8 classes. Some conclusions can be
drawn:

–the contribution of σmax to the entropy has a
maximum at 1/e. So, for problems where the
minimum value allowed for the probability of the
winning class is smaller than 1/e the contribution
of σmax is no longer a monotone function. This
happens when the number of classes is greater than
two.

–when σmax < 1/e its use as a score of uncertainty
is qualitatively correct but quantitatively wrong
because the contribution of σmax to the entropy is
no longer a bijective function;

–in the particular case of two classes, σmax ≥ 0.5
always, so its use as a score of uncertainty is valid.

It is worthwhile to notice that if one sums up the
entropy of all pixels one will get the global uncertainty
of the segmentation distributed over the whole image.
The key point is what is the best way to aggregate
uncertainty evaluated on each pixel into an index
associated to the whole image. This is the subject of
the next section.

EXPERIMENTS
The experiments here are intended to investigate

two points: is there a correlation between entropy
based indexes and GT ones and how the relation
between indexes varies with the segmentation quality
level. Answering these questions is a step to solving
the problem of evaluating the segmentation quality
without having access to the GT.

There are many ways to use entropy as a measure
of uncertainty in image segmentation. The Softmax
output of a NN can be used to generate an uncertainty
map, where the value associated to each pixel is its
entropy. In this section we will present and compare
four entropy based indexes and rank them in order
of correlation. At the same time, we compare results
from these indexes against those from the heuristics
proposed by Hendrycks and Gimpel (2017).

DATASET
We will be using a private dataset of

images coming from microscopy. Images represent
reconstructed skin sections stained with the Fontana-
Masson method. These images are to be segmented
and categorized into three classes: Stratum Corneum
(SC), Living Epidermis (LED) and a third one which is
the union of the tissue corresponding to dermis and the
background. The test data set contains 175 images and
was segmented in a UNet CNN Network trained on a
set of 215 images. The mean dimensions of the images
are 3400x1200 pixels (variable size). An example of
these images is shown in Figure 2. Although we are
not concerned with details of the NN, its results were
chosen from a preliminary version of the project in
order to have more less well segmented images.

(a)

(b)
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Fig. 1: Upper and lower bounds of entropy against the probability of the predicted class and the partial contribution
of σmax to entropy for segmentation with 2 (a), 3 (b) and 8 (c) classes

(c)

(d)

Fig. 2: Example of image of reconstructed epidermis:
Original (a), Entropy map (b), Segmentation after
post-processing (c) and Segmentation GT (d). Colors
legend: Red: SC, Blue: LED, Green: background and
dermis. Size 5477x874 pixels. Lighting and contrast
may change between acquisitions. Processing depends
more on texture than on pixel levels.

IMPLEMENTATION DETAILS
A block diagram of our application is shown

in Figure 3. "Green" blocks are those handling
uncertainty. During initial development we have
found that most errors happen in regions with high
uncertainty touching or intersecting a neighborhood
of interfaces of segmented regions. Regions with high
uncertainty, far from interfaces are not relevant as,
either way, they will be removed at post-processing.
This hypothesis may not be true for every problem.
This hypothesis allows us to select only relevant
regions with high uncertainty. Notice that we do not
care about what the NN does and how: we just
need the Softmax output and, whenever possible the
predicted segmented image with its post-processing
already done.

Fig. 4: Typical histogram of the entropy map. The
small mode just beyond 0.6 (1/log2(3)) corresponds
to maximum uncertainty interfaces neighborhood:
Softmax taking values around [0.5,0.5,0].

In the upper part of the block diagram, we create
the entropy map from the Softmax results. To get
values in the interval [0,1], entropy is divided by
log2(|C |), where C is the set of classes. An hysteresis
threshold (Canny, 1986) is applied to the entropy
map to find regions with high uncertainty. Threshold
levels are easlily defined. A typical histogram of an
entropy map contains a mode at around 1/log2(|C |) as
shown in Figure 4. This value corresponds (but not
only) to points where the uncertainty is maximal at
interfaces: commonly any permutations of the Softmax
configuration [0.5,0.5,0, . . . ,0]. In our case, we found
that 0.55 and 0.45 as the high and low thresholds
are good choices. This corresponds to approximately
0.9 and 0.7 times the critical histogram value in a
three class problem. The final block, a morphological
opening (Serra, 1982), is needed to remove very thin

5
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Fig. 3: Block diagram of an application detecting regions with high uncertainty in a segmented image.

regions, mainly around interfaces, which are of no
interest.

In the lower part of the diagram, the first block
creates the segmented image from σmax (as defined
in a previous section) of each pixel and does some
post-processing (regularization of interfaces, filling
holes, etc). A morphological gradient is applied to
the segmented image to find the interfaces, which
are dilated by some number of pixels to define the
neighborhood. The size of the dilation structuring
element does not impact significantly results if
chosen in the interval [5,15] pixels. Results presented
hereafter are for a neighborhood of ten pixels.

Finally, the intersection and reconstruction allow
to select only regions intersecting or touching the
neighborhood of interfaces. The two parameters - size
of opening and size of neighborhood - depend on
the spatial characteristics of the images and the two
threshold values depend on the number of classes and,
roughly, the global quality of segmentation.

EVALUATION
For each image in the test set we collected: the

sum of the areas of regions with high uncertainty
(SAR), the sum of the entropy inside these regions
(SER), the area of the biggest region (ABR), the mean
entropy in the whole segmented image (MEI) and
the mean of the maximum Softmax values7 in the
whole segmented image (MSI). Reference indexes are
evaluated thanks to the availability of GTs. We use two
overlap based methods - (Jaccard (Jaccard, 1912) and
Dice-Sorensen (Dice, 1945)) - and a boundary distance
based one (ASSD (Yeghiazaryan and Voiculescu,
2018)). Coucou.

Firstly we verify the statistical correlation
between indexes derived from GT (Jaccard, Dice and
ASSD) against entropy derived indexes. Pearson and
Spearman (Spearman, 1904) methods were used in
correlation. Pearson verifies how well one variable
can linearly fit the other one. Spearman method uses
the rank of the values instead of the values: the
goal is to verify the monotonicity of the relation.
Moreover, the Spearman method is less sensitive to
outliers and accepts non-linear relations. When trying
to substitute one variable by another one, it is may be
more interesting to verify the Spearman correlation.
We choose the Spearman method instead of Kendall’s
(Kendall, 1938), another widely used rank correlation
method, because Spearman and Pearson evaluation
is exactly the same, allowing to easily compare both
results.

In the second part of the experiments the set of
samples are partitioned into Good and Bad subsets
based on some threshold set in GT based indexes
(Jaccard, Dice and ASSD). The Area Under Curve
(AUC) of the Receiver Operating Characteristic (ROC)
(Fawcett, 2006) is used to verify how well each entropy
derived index predict the correct subset of images
based on a GT derived index. An AUC with value
”1” means that the entropy derived index can predict
perfectly the GT derived one. This is done for various
levels of threshold on GT based index and entropy
based index. While the correlation coefficient allows
to verify the compatibility of indexes over the entire
range of values partitioning the samples set over allows
to verify the indexes compatibility at different levels of
segmentation quality.

7In fact, from (Hendrycks and Gimpel, 2017) heuristics, pixel uncertainty is estimated by (1−σmax)
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RESULTS
Figure 5 plots the Jaccard index against the SAR

with the experimental conditions described above8. As
it will be shown in the following, SAR is, globally,
the index with the highest correlation with GT derived
indexes. We can visually identify a group of points
suggesting a linear relation between the two variables.
Even if the concept of "good segmentation" is quite
subjective, we can arbitrarily set a threshold of 0.9 on
the Jaccard index and a threshold of 0.4 million pixels
on the SAR, as a support to qualitatively interpret these
results. This is plotted on Figure 5 and defines four
regions on the graphics, from left to right and from top
to bottom: true bad (TB), false bad (FB) (Jaccard says
segmentation is correct but not SAR), false good (FG)
(Jaccard says segmentation is wrong but not SAR) and
true good (TG), indicating how well the SAR predicts
Jaccard index. FGs and FBs are samples for which
SAR fails to predict the right value range of Jaccard
index.

(a) (b)

(c) (d)

(e) (f)

Fig. 6: Outliers (a) and (b), False bad (c) and (d)
and False good (e) and (f), after SAR and Jaccard
indexes. Predicted interfaces are indicated by red lines
and uncertainty regions by blue lines.

The two topmost FBs (Figure 6 (a) and (b))
correspond to outliers with lighting problems resulting
in a really bad segmentation. The other two FBs
(Figure 6 (c) and (d)) were correctly segmented, after
Jaccard, but with large regions with high uncertainty
around the interfaces. In a real world application, even
if the segmentation of these FB images was done quite
well according to the Jaccard index, the operator must
be warned about them and the SAR index allows it.
About FGs (Figure 6 (e) and (f)), both images are
wrongly segmented according to the Jaccard index,
with regions with high uncertainty but too far from the

predicted interfaces which are far from the GT ones.
Increasing the neighborhood parameter will not solve
the issue and will increase FBs count.

With outliers
Index SAR SER ABG MEI MSI

Jaccard -0.3850 -0.3805 -0.2565 -0.3287 0.3011
Dice -0.3808 -0.3770 -0.2535 -0.3157 0.2903

ASSD 0.3865 0.3793 0.2751 0.3131 -0.2888
Without outliers

Index SAR SER ABG MEI MSI
Jaccard -0.7338 -0.7361 -0.5689 -0.4252 0.4656

Dice -0.7379 -0.7409 -0.5781 -0.4137 0.4559
ASSD 0.7552 0.7544 0.6403 0.4137 -0.4618

(a) Pearson
Index SAR SER ABR MEI MSI

Jaccard -0.6854 -0.6834 -0.6528 -0.4230 0.4388
Dice -0.6850 -0.6830 -0.6522 -0.4229 0.4387

ASSD 0.8229 0.8221 0.7829 0.5392 -0.5530

(b) Spearman

Table 2: Pearson (a) and Spearman (b) correlation
coefficients between entropy based indexes and GT
based ones. Because the Pearson correlation is too
sensitive to outliers, results are presented with and
without them.

Table 2 shows the correlation between entropy
based indexes against Jaccard, Dice and ASSD
indexes evaluated when the GT is available. Pearson
correlation is shown with and without the two outliers.
SAR and SER are, in both correlation methods, the
winners. It is true that when comparing just MEI
against MSI, the latter is the winner by a small margin,
but both have correlation coefficients much smaller
than SAR and SER. Finally, we notice that Pearson
correlation is greater than Spearman. This indicates
that the relationship between GT based indexes and
entropy based ones is better represented by a linear
function than by a monotonic one.

The next step is to evaluate how well entropy based
indexes can predict GT based ones. As explained in
Section 4.2, the test set is partitioned in Good and Bad
based on a threshold set in the GT index, for each
couple of indexes from GT and entropy based ones.
AUC is used to verify how well each entropy based
index can predict GT one. Results are presented in
Figure 7 and clearly show that the prediction quality
is not the same over the entire range of the GT based
indexes, mainly when the segmentation quality is high.
The particular meaning of AUC must be recalled to
interpret this result: the AUC is the probability that
if we take a couple of samples, one of each class,
their ranking is the right one. This is equivalent to the
Wilcoxon test of ranks (Hanley and McNeil, 1982).

8Dice and ASSD results are qualitatively the same.
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Fig. 5: Graph of Jaccard threshold against indexes: SAR - Sum of areas of all regions (a), SER - sum of entropy
in all regions (b), ABR - area of biggest region (c), MEI - mean entropy in image (d) and MSI - mean softmax in
image (e). SAR (a) is the best in most cases.

When we change the threshold, up or down, some
samples change their class with respect to GT index
but not about the entropy based index, so this can
decrease the AUC. In other words, the order of ranks
between the indexes is not perfectly verified in small
neighborhoods, while it is in large ranges. This is
expected as while the Spearman correlation is quite
good it is smaller than the Pearson as shown in Table 2.

DISCUSSION
We observed that for all indexes, AUC

decreases when the segmentation quality approaches
"perfection", after GT based index. This is not
surprising because there are too many samples at
this region and indexes based on different concepts
do not reproduce rank order even if placed in
equivalent range of values. This effect was predicted
by Spearman correlation from Table 2, lower than
Pearson correlation, meaning that rank is better
preserved on long range of values than in short ones.
Also, even among GT based indexes the correlation is
not perfect: 0.931 for ASSD against Jaccard or Dice.
This conclusion may surely be applied on the opposite
extreme of indexes range when segmentation becomes
too bad, but more samples having bad segmentation
quality are needed. We can also remark than even
among GT based indexes the correlation is not perfect:
0.931 for ASSD against Jaccard or Dice.

An important point is that entropy derived indexes
evaluated on regions of high uncertainty are more
effective than the entropy alone evaluated over the
entire image. This is because regions with errors
may be too small compared to the whole image and
high local entropy values will be diluted over the
entire surface of the image. This is important mainly
when small regions are to be detected. Other than the
theoretical reason we also have shown that entropy
based indexes applied to image segmentation are more
efficient than the heuristics proposed by Hendrycks
and Gimpel (2017).

FUTURE DIRECTIONS

In the experimental part of this research we have
shown that it can be possible to use some entropy
derived indexes as a replacement of the GT based
indexes when the GT is not available. More research
using other image databases and similar problems with
more classes could be interesting.

Figure 8 shows image crops from the problem we
worked on: an entropy map, the regions with high
uncertainty, the resulting segmented image and the
original image with superposition of regions interfaces
and the boundaries of regions with high uncertainty.
To improve segmentation results, these regions can
be used as feedback in a previous stage to suggest
where to make an additional effort. In a real world
application, a visual indicator of possible problems on
the process workflow is very interesting.

The idea behind Active Learning (Settles (2010))
is that a good predictive model can be built with
a minimum number of samples if the selection of
samples to be learned is done by the model and not
imposed on it. Some entropy derived index could be
used as a criteria to select which samples can be used to
incrementally build the model, as done by, e.g., Moon
et al. (2020).

The entropy is a natural indicator of uncertainty,
not specific to image segmentation. Whenever you
have a NN with a Softmax as the last layer,
so a probability distribution, you can evaluate the
associated entropy and associate it to some uncertainty.
So, it would be interesting to experiment with entropy
based indicators on NN applications other than image
segmentation that have Softmax as one of its layers.

CONCLUSIONS

To be able to evaluate the quality of the results
of an application in the real world without access
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Fig. 7: Prediction of GT based indexes by entropy based ones can be estimated by the AUC for different values
of thresholds set on GT indexes: Jaccard (a), Dice (b) and ASSD (c). To be remarked the quasi superposition of
some results: SAR with SER and SEI with SSI on almost the entire range of values.
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Fig. 8: Entropy map (a) and (e), regions with high uncertainty (b) and (f), segmented image (c) and (g) and the
original image with segmentation interfaces and boundary of regions superimposed on it (d) and (h).

to the expected result is becoming an important
requirement in operational automated applications.
Entropy is a natural measure of uncertainty (or amount
of information) associated to a probability distribution.
We demonstrated, in this research, that some entropy
derived indexes may be good candidates. This is a
flourishing domain and we hope that this research
will motivate other works to make use of the entropy
concept.

We also presented an application framework which
can surely be used as a starting point to be integrated
into real world applications.
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