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We prove central and local limit theorems for random walks on the Poincaré hyperbolic space of dimension n ě 2. To this end we use the ball model and describe the walk therein through the Möbius addition and multiplication. This also allows to derive a corresponding law of large numbers.

Introduction

Let H n (n ě 2q denote the real hyperbolic space of dimension n ě 2. This is the complete and simply connected Riemannian manifold with constant negative sectional curvature equal to -1.

We will be interested in establishing limit theorems (central, local, law of large numbers) for a corresponding underlying random walk. In the case n " 2, 3, the central limit theorem was first obtained for the models of the Poincaré-Lobachevski ball and plane in the seminal paper by Karpelevich et al. [START_REF] Karpelevich | Limit theorems for the compositions of distributions in the Lobachevsky plane and space[END_REF]. It was shown therein that the suitably renormalized sum converges in law to the normal law, corresponding to the fundamental solution of the heat equation involving the Laplace-Beltrami operator, at a certain time that could be seen as a variance in this setting. We can as well refer to the monograph of Terras [START_REF] Terras | Harmonic Analysis on Symmetric Spaces[END_REF], Section 3.2 for additional details.

In [START_REF] Karpelevich | Limit theorems for the compositions of distributions in the Lobachevsky plane and space[END_REF] the Möbius addition already appeared in order to provide a non-Euclidean analogue of the sum of random variables. In a more general setting, the connection with Harmonic analysis on the underlying appropriate structure, like e.g. Lie groups, provided a natural way to define a corresponding random walk and to investigate the associated limit theorems. Indeed, the harmonic analysis somehow provides natural extensions of the characteristic functions, variances. We again refer to [START_REF] Terras | Harmonic Analysis on Symmetric Spaces[END_REF] and [START_REF] Terras | Harmonic Analysis on Symmetric Spaces[END_REF] for results in that direction.

The above results concentrate on the behavior of a renormalized sum. Concerning a more functional approach we can mention the works by Pinsky (see [START_REF] Pinsky | Lectures on Random Evolution[END_REF] and [START_REF] Pinsky | Isotropic Transport Process on a Riemannian Manifold[END_REF]) which established how the so-called isotropic transport process 1 actually converges in law, when suitably normalized, to the Brownian motion on the manifold when the Ricci curvature is bounded from below. The case of a Poincaré plane when the geodesic ball is also discretized, thus leading to a space-time discrete approximation, is discussed in Gruet [START_REF] Gruet | Hyperbolic random walks[END_REF].

We will here focus on the central limit theorem, the local limit (we will as well establish as a by-product of our analysis a law of large numbers) for any dimension n of the hyperbolic space. Whereas local limit theorems were previously established for some nilpotent groups, see e.g. Breuillard [Bre05] for the Heisenberg group, this seems to be, to the best of our knowledge, new in the current setting. To this end we will rely on the Poincaré ball model and use related harmonic analysis tools.

The paper is organized as follows. We describe the random walk and the related convergence results in Section 2. We provide in Section 3 the main tools from harmonic analysis needed to perform the analysis. Eventually, Section 4 is dedicated to the proof of the main results.

Main Results

2.1. Setting. Let H n (n ě 2q denote the real hyperbolic space of dimension n ě 2. This is the complete and simply connected Riemannian manifold with constant negative sectional curvature equal to -1. We will consider throughout the document the Poincaré ball model for the hyperbolic space H n (n ě 2q. Namely, we introduce: B n :" tx P R n : }x} ă 1u, where } ¨} stands for the Euclidean norm, which we endow with the metric

ds 2 " 4 `dx 2 1 `¨¨¨dx 2 n p1 ´}x} 2 q 2
and the corresponding Riemannian volume

(2.1) µ B n pdxq " 2 n p1 ´}x} 2 q ´ndx.

We recall that the hyperbolic distance to the origin writes for z P B n :

η " 2 atanhp}z}q " log ´1 `}z}

1 ´}z} ¯.,
where we use the notation η for coherence with [START_REF] Karpelevich | Limit theorems for the compositions of distributions in the Lobachevsky plane and space[END_REF].

Hence, for z P B n , z " rΘ " tanhp η 2 qΘ, Θ P S d´1 .

The coordinates pr, Θq P r0, 1q ˆSd´1 are the usual polar coordinates and pη, Θq P r0, `8q ˆSd´1 the geodesic ones. In the geodesic coordinates, we have:

(2.2) µ B n pdxq " sinhpηq n´1 dηΛpdΘq,

where Λ stands for the Lebesgue measure of the sphere S n´1 .

To define a random walk on B n we will introduce the Möbius addition px, yq P B n ˆBn Þ Ñ B n which writes in Euclidean coordinates:

(2.3)

x ' y :" p1 `2xx, yy `}y} 2 qx `p1 ´}x} 2 qy 1 `2xx, yy `}x} 2 }y} 2 , where x¨, ¨y stand for the usual Euclidean scalar product on R n . We will also use the left inverse, i.e. for all x P B n , (2.3) directly gives that ax :" ´x satisfies ax ' x " 0. We refer to [START_REF] Ahlfors | Möbius transformations in several dimensions[END_REF] for a thorough presentation of related operations and properties (see also Section 3 below). Let us also mention that the operation (2.3) can also be written through the formalism of Clifford algebras, which then allows to extend the expression of the Möbius transform/addition in the complex plane to the current setting (see e.g. [START_REF] Ferreira | Harmonic analysis on the Möbius gyrogroup[END_REF]).

We also introduce the Möbius multiplication, i.e. for all γ P R, z P B n , (2.4) γ b z :" tanhpγ atanhp}z}qq z }z} , and refer to [START_REF] Barabanov | Binary operations in the unit ball: A differential geometry approach[END_REF] for a thorough discussion about this operation and other operations on the unit ball connected with differential geometry.

2.2. The random walk and associated convergence results. Let Z be a B n -valued random variable defined on some probability space pΩ, A, Pq. We will further assume that:

[R] Z has radial density f Z P C 8 0 pB n q w.r.t. the Riemannian volume. Let now pZ j q jě1 be a sequence of i.i.d random variables which have the same law as Z. Define then for N P N,

SN :" ' N j"1 1 N b Z j , S N :" ' N j"1 1 ? N b Z j . (2.5)
Then the following results hold:

Theorem 2.1 (Law of large numbers). Under [R], SN P ÝÑ N 0.
It will be shown in Section 4 that S N has a density f S N , which can be expressed as the non Euclidean convolution of the densities of the pZ j q jPrr1,N ss . We quantify below the asymptotic behavior of that density.2 Theorem 2.2 (Central limit theorem). Under [R], it holds that for measurable sets A in B n , ż

B n I A pxqf S N pxqµ B n pdxq ÝÑ N ż B n I A pxqΨpt, xqµ B n pdxq, with t :" 1 n ş `8 0 η2 µ Z,R
pdηq, , where µ Z,R stands for the measure induced by the law of Z in geodesic coordinates. Also, Ψpt, ¨q stands for the hyperbolic heat kernel in the model B n for H n . Namely it denotes the fundamental solution of the equation

1 2 ∆ B n Ψpt, xq " B t Ψpt, xq, Ψp0, ¨q " δp¨q.
The specific expression of Ψpt, ¨q will be given in Section 3.2 below. It plays the same role in the current setting as the normal density in the classical Euclidean central limit theorem.

We are furthermore able to specify the previous result giving a convergence rate.

Theorem 2.3 (Local limit theorem). Under [R], there exists C :" Cpn, µ Z q s.t. for all x P B n and N large enough

(2.6) |f S N pxq ´Ψpt, xq| ď C N .
From now on we will denote by C a generic constant, that may change from line to line and depends on n and the law µ Z , i.e. C " Cpn, µ Z q.

Remark 2.1 (About the radial densities). The radial assumption in [R] is somehow standard in this setting, see [START_REF] Karpelevich | Limit theorems for the compositions of distributions in the Lobachevsky plane and space[END_REF] or Section 3.2.7 in [START_REF] Terras | Harmonic Analysis on Symmetric Spaces[END_REF]. It allows to focus on the asymptotic behavior of the radius to the origin for S N . This isotropy makes the analysis essentially scalar. In particular, the rotation invariance of the underlying law yields that the law of the sum does not depend on the order of the summands. It is indeed shown in [START_REF] Ferreira | Möbius gyrogroups: a Clifford algebra approach[END_REF] that the gyrogroup pB n , 'q is gyro-commutative, i.e. defining for a, b, c P B n the gyration as gyrra, bsc " apa ' bq ' pa ' pb ' cqq then a ' b " gyrra, bspb ' aq. Since the gyration gyr induces a rotation, for i.i.d. random variables pZ j q jě1 with rotationally invariant laws , SN plawq " ' N j"1

1 N b Z ppjq (resp. S N plawq " ' N j"1 1 ? N b Z ppjq )
, where p is any permutation of p1, ¨¨¨, N q. Remark 2.2 (About the local theorem). The convergence rate in Theorem 2.3 is due to the fact that, since we are dealing with radial densities the first moment is already zero. On the other hand one could expect that on the r.h.s. of (2.6) there should as well be an exponential decay term of the form expp´cd 2 pxq{tq, d 2 pxq " 2atanhp}x}q standing for the hyperbolic distance of x to the origin. This would indeed correspond to the Aronson type bound for the hyperbolic heat kernel, see e.g. Molchanov [START_REF] Molchanov | Diffusion processes and Riemannian geometry[END_REF] and would extend the full local limit theorem of Batthacharya and Rao [START_REF] Bhattacharya | Normal approximations and asymptotic expansions[END_REF] to the current setting. One can expect this result to hold but it would require a much more involved analysis than the one in the current work.

The Poincaré ball: Fourier inversion and heat kernel

To prove our results, as for any (local) limit theorem see e.g. [START_REF] Bhattacharya | Normal approximations and asymptotic expansions[END_REF] in the Euclidean case, we aim at comparing the characteristic functions of the underlying normal law and the one of the corresponding approximating walk.

In the current non-Euclidean setting, the characteristic function will be expressed in terms of the Fourier-Helgason transform, see [START_REF] Helgason | Groups and geometric analysis[END_REF].

3.1. The Fourier-Helgason transform and its inverse. In the following for a generic radial function f : B n Ñ R we will write with a slight abuse of notation f pzq " f prq, r " }z} P r0, 1q. For a radial function f P C 8 0 pB n , Rq, and λ P R, its Fourier-Helgason transform is given by the expression

(3.1) f pλq " ż B n f pxqϕ λ pxqµ B n pdxq " Ω n´1 ż `8 0 psinh ηq n´1 f ptanhp η 2 qqϕ λ ptanhp η 2 qqdη,
where Ω n´1 " 2π n 2

Γp n 2 q denotes the area of the unit sphere S n´1 and the radial functions ϕ λ are eigen-functions of the Laplace-Betrami operator in B n expressed in radial coordinates. Namely, for a generic smooth enough φ : B n Ñ R,

∆ B n φpzq " ´1 ´}z} 2 2 ¯2 n ÿ j"1 B 2 zj φpzq `pn ´2q 1 ´}z} 2 2 n ÿ j"1 z j B zj φpzq.
When φ is radial, this operator rewrites as ∆ B n φprq " B 2 r φprq `pn ´1q cothprqB r φprq, and the function ϕ λ in (3.1) solves the differential equation:

(3.2) # ∆ B n ϕ λ prq `pλ 2 `ρ2 qϕ λ prq " 0, ρ " n´1 2 , ϕ λ p0q " 1.
This equation is solved using the functions e λ,ω pxq " p1 ´}x} 2 q 1 2 pn´1`iλq }x ´ω} n´1`iλ , (3.3) which are eigenfunctions of ∆ B n associated with the eigenvalue ´pλ 2 `ρ2 q and therefore. Those functions actually play in the current context a similar role to the complex exponential exppix ¨yq in the usual Fourier analysis on the Euclidean space R n .

We then define the corresponding elementary spherical function ϕ λ setting for all x P B n ,

ϕ λ pxq " 1 Ω n´1 ż S n´1
e λ,ω pxqΛpdωq, (3.4) where Λ stands for the Lebesgue measure on the unit sphere S n´1 . It is then clear that ϕ λ is also an eigenfunction of ∆ B n with eigenvalue ´pλ 2 `ρ2 q and that ϕ λ p0q " 1. Hence, the above ϕ λ indeed solves (3.2).

Note that its expression also writes in geodesic polar coordinates (see e.g. [START_REF] Anker | An introduction to Dunkl theory and its analytic aspects[END_REF]):

ϕ λ ptanhp η 2 qq " Cn sinhpηq 2´n ż η 0 dspcoshpηq ´coshpsqq n´3 2 cospλsq, Cn " 2 n´1 2 Γ `n 2 ?πΓ `n´1 2 ˘. (3.5)
For computational purposes we also make the following link with the Legendre special function, see Gradstein and Ryzhik [START_REF] Gradshteyn | Table of integrals, series and products[END_REF], p. 1016, formula 8.715(1),

P 1´n 2 ´1 2 `iλ pcoshpηqq " c 2 π sinhpηq 1´n 2 Γpρq ż η 0 dspcoshpηq ´coshpsqq n´3 2 cospλsq, ϕ λ ptanhp η 2 qq " 2 ρ´1 2 Γpρ `1 2 q sinhpηq 1 2 ´ρP 1 2 ´ρ ´1 2 `iλ pcoshpηqq. (3.6)
The inversion formula associated with (3.1), for a radial function f P C 8 0 pB n , Rq, reads for all }z} " r P r0, 1q,

(3.7) f pzq " f prq " C n ż `8 0 dλ|cpλq| ´2 f pλqϕ λ prq,
where cpλq is the generalized Harish-Chandra function: andC n " 1 2 n´3 πΩn´1 . Formulas (3.1) and (3.7) can be derived from Liu and Peng [START_REF] Liu | Generalized Helgason-Fourier transforms associated to variants of the Laplace-Beltrami operators on the unit ball in R n[END_REF] (taking therein ϑ " 2 ´n) or Ferreira [START_REF] Ferreira | Harmonic analysis on the Möbius gyrogroup[END_REF] (taking therein σ " 2 ´n, t " 1).

(3.8) cpλq " 2 3´n´iλ Γp n 2 qΓpiλq Γ `n´1`iλ 2 ˘Γ `1`iλ 2 ˘,
3.2. The heat kernel on B n . The heat kernel will provide the limit law which is somehow the analogue in the current non-Euclidean setting of the normal law. The normal density of parameter t ą 0 in B n is defined as the solution to 1 2 ∆ B n Ψpt, xq " B t Ψpt, xq, Ψp0, ¨q " δp¨q.

In the literature the usual heat equation considered is ∆ B n ψpt, xq " B t ψpt, xq, ψp0, ¨q " δp¨q.

It can actually be solved through the Fourier-Helgason transform (assuming the solution is radial). Namely, from (3.1), one derives that for all λ P R:

(3.9) ψpt, λq " expp´pλ 2 `ρ2 qtq, ρ " n ´1 2 .

Observe that the expression in (3.9) in particular coincides when n " 2, 3 with the one obtained in [START_REF] Karpelevich | Limit theorems for the compositions of distributions in the Lobachevsky plane and space[END_REF].

With the terminology of this work the expression in (3.9) corresponds to the so-called characteristic functions of the first kind. In order to match the Euclidean probabilistic set-up we will consider the characteristic functions of the second kind, (3.10) ψ2 pt, λq :" ψpt, λq ψpt, 0q " expp´λ 2 tq, so that in particular ψ2 pt, 0q " 1. By inversion it follows that for m P N:

(3.11) ψpt, xq " ψpt, atanhp η 2 qq " $ ' & ' % expp´m 2 t 2 q p2πq m ? 2πt ´´1 sinh η B η ¯m exp ´´η 2 2t ¯, n " 2m `1, expp´p m´1 2 q 2 t 2 q p2πq m ? πt ş `8 η ds ? coshpsq´coshpηq p´B s q ´´1 sinh s B s ¯m´1 exp ´´s 2 2t ¯, n " 2m.
Namely, the heat kernel on H n is expressed in term of the hyperbolic distance to the origin. We can refer to [START_REF] Anker | An introduction to Dunkl theory and its analytic aspects[END_REF] for the derivation of (3.11) through the Abel transform and its inverse or to [START_REF] Grigor'yan | The heat kernel on hyperbolic space[END_REF] in which the authors derive the heat kernel through the fundamental solution of the wave equation.

From the previous definitions it is clear that for Ψ as in Theorem 2.2, Ψpt, xq " ψp t 2 , xq.

3.3. Some additional tools from harmonic analysis on B n . To establish our main theorems we will need some additional tools. Namely, we need to define the convolution on B n . To this end, following Ahlfors [START_REF] Ahlfors | Möbius transformations in several dimensions[END_REF] we define for fixed a P B n the translation operator,

T a : x P B n Þ Ñ T a pxq " ´a ' x P B n .
The previous mapping is bijective, it is easily checked that T ´1 a " T ´a, and has the next important properties.

Proposition 3.1 (Some properties of T a , cf. [Ahl81], pp. 18-30). For a fixed a and x P B n it holds that:

1.

1 ´}T a pxq} 2 " p1 ´}a} 2 qp1 ´}x} 2 q 1 ´2xx, ay `}x} 2 }a} 2 . 2. detpD x T a pxqq " ˜1 ´}a} 2 1 ´2xx, ay `}x} 2 }a} 2 ¸n, ~Dx T a pxq~" 1 ´}a} 2 1 ´2xx, ay `}x} 2 }a} 2 ,
where ~¨~denotes the spectral norm. 3. T a preserves the Riemann measure. Namely,

~Dx T a pxq1 ´}T a pxq} 2 " 1 1 ´}x} 2 .

T a pxq " ´DxTapxq

~DxTapxq~T x paq. In particular, for a radial function f :

B n Ñ R, it holds that f pT a pxqq " f pT x paqq.
The translation operator allows to define in a quite natural way the convolution. Namely, for f, g P C 8 0 pB n , Rq, we set:

(3.12) @x P B n , f ˚gpxq "

ż B n f p´y ' xqgpyqµ B n pdyq " ż B n f pT y pxqqgpyqµ B n pdyq.
This definition enlarges the one in [START_REF] Karpelevich | Limit theorems for the compositions of distributions in the Lobachevsky plane and space[END_REF] to the current multi-dimensional setting. We now state some very useful properties of the convolution in order to prove limit theorems Proposition 3.2 (Some properties of the convolution). Let f, g P C 8 0 pB n , Rq and be radial functions. The following properties hold: -Commutativity: for the definition in (3.12) it holds that f ˚gpxq " g ˚f pxq.

-Stability of the radial property through convolution : f ˚g is a radial function.

-Fourier-Helgason transform of the convolution: it holds with the definition in (3.1) that for all λ P R,

z f ˚gpλq " f pλqĝpλq.
Proof. Since f is radial, we have from point 4 of Proposition 3.1 that f pT y pxqq " f pT x pyqq. Setting z " T x pyq " ´x ' y ðñ x ' z " T ´xpzq " y and using point 3 of Proposition 3.1, we derive:

f ˚gpxq " ż B n f pT y pxqqgpyq dy p1 ´}y} 2 q n " ż B n f pzqgpT ´xpzqq dz p1 ´}z} 2 q n " x'z"´rp´xq'p´zqs ż B n f pzqgpT x p´zqq dz p1 ´}z} 2 q n " z"´z ż B n f pzqgpT x pzqq dz p1 ´}z} 2 q n " ż B n f pzqgpT z pxqq dz p1 ´}z} 2 q n " g ˚f pxq,
where we also used that f, g are radial (and therefore even), for the equality in the second and third lines. This proves the first point.

Let us now turn to the second point. It suffices to prove that for any orthogonal matrix A P Opnq and x P B n , it actually holds that f ˚gpAxq " f pxq.

Observe first from (2.3) that for all a, b P B n ApA T a ' bq " a ' Ab.

(3.13) Indeed,

ApA T a ' bq "A p1 `2xA T a, by `}b} 2 qA T a `p1 ´}A T a} 2 qb 1 `2xA T a, by `}A T a} 2 }b} 2 " p1 `2xa, Aby `}Ab} 2 qa `p1 ´}a} 2 qAb 1 `2xa, Aby `}a} 2 }Ab} 2 "a ' Ab. Write now, f ˚gpAxq " ż B n f pyqgp´y ' Axqµ B n pdyq " (3.13) ż B n f pyqgpApA T p´yq ' xqqµ B n pdyq " ż B n f pyqgp´pA T yq ' xqqµ B n pdyq " ż B n f pyqgpT A T y pxqqµ B n pdyq " ż B n f pyqgpT x pA T yqqµ B n pdyq " ż B n f pAyqgpT x pyqqµ B n pdyq " ż B n f pyqgpT y pxqqµ B n pdyq " f ˚gpxq,
where we used that f, g are radial and property 3 of Proposition 3.1. This proves the second point.

Let us eventually prove the property concerning the Fourier-Helgason transform of the convolution. From (3.1) write for all λ P R:

z f ˚gpλq " ż B n ´żB n f pT y pxqqgpyqµ B n pdyq ¯ϕ´λ pxqµ B n pdxq " ż B n gpyq ˜żB n f pT y pxqqϕ ´λpxqµ B n pdxq ¸µB n pdyq " ż B n gpyq ˜żB n f pzqϕ ´λpT ´y pzqqµ B n pdzq ¸µB n pdyq.
Going back to the definition (3.4) and (3.3) we derive:

ϕ ´λpT ´y pzqq " 1 Ω n´1 ż S n´1
e ´λ,ω pT ´y pzqqΛpdωq.

Now, it holds from Lemma 4.3 in [LP09] that

e ´λ,ω pT ´y pzqq " e ´λ,ω p´yqe ´λ,T´ypωq pzq.

We point out that for ω P S n´1 it indeed holds from Property 1. of Proposition 3.1 that T ´y pωq P S n´1 . Thus,

z f ˚gpλq " ż B n gpyq ˜żB n f pzq 1 Ω n´1 ż S n´1 e ´λ,ω p´yqe ´λ,T´ypωq pzqΛpdωqµ B n pdzq ¸µB n pdyq " 1 Ω n´1 ż S n´1 ż B n gpyqe ´λ,ω p´yq ˆżB n f pzqe ´λ,T´ypωq pzqµ B n pdzq ˙µB n pdyqΛpdωq. (3.14)
We now recall that for possibly non-radial functions, h P C 8 0 pB n q the general Fourier-Helgason transform has two arguments (the polar coordinates of the phase variable) and writes for λ P R, ζ P S n´1 : ĥpλ, ζq "

ż B n hpxqe ´λ,ζ pxqµ B n pdxq.
When h is radial we derive passing to polar coordinates that ĥpλ, ζq " ĥpλq so that i.e. the Fourier transform does not depend on the considered point on the sphere S n´1 . Taking h " f , we therefore deduce from (3.14) that

Ω n´1 ĥpλq " ż B n hpxq ż S n´1
z f ˚gpλq " 1 Ω n´1 ż S n´1 ż B n
gpyqe ´λ,ω p´yq f pλqµ B n pdyqΛpdωq " ĝpλq f pλq, which gives the third point and concludes the proof of the proposition.

3.4. Non Euclidean mean, variance ans scaling. We define, coherently with the Euclidean case, the mean and variance associated with a B n -valued random variable Z defined on some probability space pΩ, F, Pq satisfying assumption [R].

The analogue of the characteristic function (of the second kind with the terminology of [START_REF] Karpelevich | Limit theorems for the compositions of distributions in the Lobachevsky plane and space[END_REF]) writes:

(3.15) @λ P R, Φ Z pλq " fZ pλq fZ p0q .

Again the normalization guarantees that Φ Z p0q " 1 as in the Euclidean case. We also emphasize that, since we assumed the density to be radial, it follows from (3.1) and (3.5) that for all m " 2j `1, j P N,

(3.16) B m λ Φ Z pλq| λ"0 " 0.
In other terms, the odd moments of the random variable are 0.

From the above definition we then define the analogue of the variance as

(3.17) V Z " ´B2 λ Φ Z pλq| λ"0 .
Proposition 3.3 (Variance of the sum). Let Z 1 and Z 2 be two B n -valued independent random variables with radial densities f Z1 , f Z2 P C 8 0 pB n , Rq w.r.t. the Riemannian volume (2.1) of B n . It then holds that

V Z1'Z2 " V Z1 `VZ2 .
Proof. It is clear from (3.12) and Proposition 3.2 that Z 1 ' Z 2 has a radial density f Z1'Z2 w.r.t. µ B n and that

f Z1'Z2 " f Z1 ˚fZ2 , fZ1'Z2 " fZ1 fZ2 .
Hence, from (3.16)-(3.17),

V Z1'Z2 " ´B2 λ ´f Z1 pλq ¯|λ"0 fZ2 p0q ´2´B λ fZ1 pλqB λ fZ2 pλq ¯|λ"0 ´f Z1 p0qB 2 λ ´f Z2 pλq ¯|λ"0 fZ1 p0q fZ2 p0q " ´B2 λ ´f Z1 pλq ¯λ"0 fZ1 p0q ´B2 λ ´f Z2 pλq ¯λ"0 fZ2 p0q " V Z1 `VZ2 .
In order to make a connection with the usual normalizing rate in the CLT, in [START_REF] Karpelevich | Limit theorems for the compositions of distributions in the Lobachevsky plane and space[END_REF] the authors introduce the following invariance property on the radial measures. Let Z be a B n -valued random variable with density f Z P C 8 0 pB n q and denote again by µ Z,R the induced measure in geodesic coordinates. For a parameter ε ą 0, the authors consider scaled variables Z ε (associated with Z) for which they assume that the corresponding measure µ Zε,R in radial geodesic coordinates satisfies for all τ ą 0:

µ Zε,R ´!η P R `: η ď τ ε )¯" µ Z,R ´!η P R `: η ď τ )¯. (3.18)
Proposition 3.4 (Scaled Variables). In order to fulfill property (3.18), the density f Zε must be chosen such that, in geodesic polar coordinates:

(3.19) @η P p0, `8q, f Zε ptanhp η 2 qq " 1 ε f Z ptanhp η 2ε qq ´sinhp η ε q sinhpηq ¯n´1 .
Observe in particular that if supppf Z q P Bp0, Rq then supppf Zε q P Bp0, Rεq. Furthermore, for a bounded measurable function g (not necessarily radial):

ErgpZ ε qs " E " g ´tanhpεatanhp}Z}qq Z }Z} ¯ı. (3.20)
Importantly, from the definition of the Möbius multiplication in (2.4), it holds that the property (3.18) holds if and only if:

Z ε plawq " ε b Z.
Proof. Since we assumed Z to have a smooth compacted support density in B n , the above identity (3.19) gives that this is also the case for Z ε . Denoting the corresponding density w.r.t. µ B n by f Zε , we write:

µ Zε,R ´!η P R `: η ď τ ε )¯" ż τ ε 0 µ Zε,R pdηq " Ω n´1 ż τ ε 0 f Zε ptanhp η 2 qqpsinh ηq n´1 dη " η" η ε Ω n´1 ż τ 0 f Zε ptanhp εη 2 qqpsinhpεηqq n´1 εdη " Ω n´1 ż τ 0 " εf Zε ptanhp εη 2 qq ´sinhpεηq sinhpηq ¯n´1 ı sinhpηq n´1 dη.
The scaling identity (3.18) then holds if and only if

" εf Zε ptanhp εη 2 qq ´sinhpεηq sinhpηq ¯n´1 ı " f Z ptanhp η 2 qq ðñ f Zε ptanhp η 2 qq " 1 ε f Z ptanhp η 2ε qq ´sinhp η ε q sinhpηq ¯n´1 .
Importantly, since supppf Z q Ă Bp0, Rq for some R P p0, 1q it then holds that supppf Zε q P p0, tanhpεatanhpRqqq.

Let us specify what is the transform of the initial random variable Z which has density f Zε . For a bounded measurable function g and from (2.1)-(2.2) write:

ErgpZ ε qs " ż B n gpzqf Zε pzqµ B n pdzq " ż S d´1 ΛpdΘq ż `8 0 gptanhp η 2 qΘqf Zε ptanhp η 2 qq sinhpηq n´1 dη " ż S d´1 ΛpdΘq ż `8 0 gptanhp η 2 qΘq 1 ε f Z ptanhp η 2ε qq ´sinhp η ε q sinhpηq ¯n´1 sinhpηq n´1 dη " η" η ε ż S d´1 ΛpdΘq ż `8 0 gptanhp εη 2 qΘqf Z ptanhp η 2 qq sinhpηq n´1 dη " ż S d´1 ΛpdΘq ż `8 0 g ´tanhp ε2atanhptanhp η 2 qq 2 qΘ ¯fZ ptanhp η 2 qq sinhpηq n´1 dη " ż B n g ´tanhpεatanhp}z}qq z }z} ¯fZ pzqµ B n pdzq " E " g ´tanhpεatanhp}Z}qq Z }Z} ¯ı.
Hence, to verify the condition (3.18) we have to take Z ε plawq " tanhpεatanhp}Z}q Z }Z} q" ε b Z ‰ εZ, that would somehow be the natural scaling in the Euclidean setting. (3.21)

V Zε ď Cε 2 .
In particular, choosing ε " 1 ? N , the above control can be specified to derive that with the notation of (2.5):

(3.22) V S N " V ' N j"1 1 ? N bZ j ÝÑ N t :" 1 n ż `8 0 η2 µ Z,R pdηq,
which is precisely the asymptotic variance appearing in Theorems 2.2 and 2.3. Furthermore, there exists C ě 1 s.t.

(3.23)

|V S N ´t| ď C N , and 
(3.24) V SN " V ' N j"1 1 N bZ j ÝÑ N 0,
which is also coherent with the statement of Theorem 2.1.

Proof. For Z ε , we again derive from (3.17), (3.5) that

V Zε " ´B2 λ fZε pλq fZε p0q ˇˇλ "0 " ´B2 λ Ω n´1 fZε p0q ż `8 0 f Zε ptanhp η 2 qqpϕ λ ptanhp η 2 qqq sinhpηq n´1 dη ˇˇλ "0 " ´B2 λ Ω n´1 fZε p0q ż `8 0 f Z ptanhp η 2 qqϕ λ ptanhp εη 2 qq sinhpηq n´1 dη ˇˇλ "0 " 1 fZε p0q ż `8 0 ´C n sinhpηq 2´n ż η 0 dspcoshpηq ´coshpsqq n´3 2 s 2 cospλsq ¯ˇˇη "εη µ Z,R pdηq ˇˇλ "0 (3.25) " 1 fZε p0q ż `8 0 ´C n sinhpηq 2´n ż η 0 dspcoshpηq ´coshpsqq n´3 2 s 2 ¯ˇˇη "εη µ Z,R pdηq ď 1 fZε p0q ż `8 0 ´C n η2 sinhpηq 2´n ż η 0 dspcoshpηq ´coshpsqq n´3 2 ¯ˇˇη "εη µ Z,R pdηq ď ε 2 fZε p0q ż `8 0 η2 ϕ 0 ptanhpε η 2 qqµ Z,R pdηq ď C ε 2 f Zε p0q ż 8 0 φ0 ptanhpε η 2 qqµ Z,R pdηq ď Cε 2 ,
using that µ Z,R has compact support in R `for the last but one inequality and recalling that ş 8 0 φ0 ptanhpε η 2 qqµ Z,R pdηq " fZε p0q for the last one.

In particular, considering now S N " ' n j"1 1 ?

N b Z i where the pZ i q iě1 are independent with the same law as Z, there exists C ě 1 s.t. for all N ě 1,

V S N " V ' N j"1 1 ? N bZ i " N V 1 ? N bZ ď C.
Let us now establish (3.22). To this end we must precisely expand the inner integral in (3.25). To this end we introduce the quantity:

I ε pηq :" sinhpεηq 2´n ż εη 0 dspcoshpεηq ´coshpsqq n´3 2 s 2 "pεηq 3 sinhpεηq 2´n ż 1 0 ds `2 sinhp εη 2 p1 `sqq sinhp εη 2 p1 ´sqq ˘n´3 2 s2
"pεηq 3 pεη `pεηq 3 `opε 

ˆż 1 0 dss 2 `p1 `sqp1 ´sq ˘n´3 2 `p1 `p εη 2 q 2 p1 `sq 2 `opε 2 qqp1 `p εη 2 p1 ´sqq 2 `opε 2 qq ˘n´3 2 .
It therefore follows that there exists a constant c :" cpn, f Z q, s.t. for all η P p0, 2atanhpRqq

|I ε pηqpεηq ´2 ´cn | ď cε 2 , c :" cpn, f Z q.
Observe now that, similarly to the previous computations:

fZε p0q " Cn ż `8 0 J ε pηqµ Z,R pdηq, (3.26) J ε pηq " sinhpεηq 2´n ż εη 0 dspcoshpεηq ´coshpsqq n´3 2 "p1 `pεηq 2 `opε 2 qq 2´n 2 3´n 2 ˆż 1 0 ds `p1 `sqp1 ´sq ˘n´3 2 `p1 `p εη 2 q 2 p1 `sq 2 `opε 2 qqp1 `p εη 2 p1 ´sqq 2 `opε 2 qq ˘n´3 2 .
We now rewrite from (3.25) and (3.26),

V Zε " ş `8 0 Cn I ε pηqµ Z,R pdηq ş `8 0 Cn J ε pηqµ Z,R pdηq " ş 1 0 dss 2 `p1 `sqp1 ´sq ˘n´3 2 ş 1 0 ds `p1 `sqp1 ´sq ˘n´3 2 ε 2 ş `8 0 η2 p1 `Oppεηq 2 qqµ Z,R pdηq ş `8 0 p1 `Oppεηq 2 qqµ Z,R pdηq " ş 1 0 dss 2 `1 ´s 2 ˘n´3 2 ş 1 0 ds `1 ´s 2 ˘n´3 2 ε 2 ´ż `8 0 η2 µ Z,R pdηq `Opε 2 q ¯.
Setting for m P N, Ipmq :" ş π 0 sinpθq m dθ and changing variables setting s " cospθq, it is easily seen that:

ş 1 0 dss 2 `1 ´s 2 ˘n´3 2 ş 1 0 ds `1 ´s 2 ˘n´3 2 " ş π 0 cos 2 pθq sinpθq n´2 dθ ş π 0 sinpθq n´2 dθ " Ipn ´2q ´Ipnq Ipn ´2q " 1 ´Ipnq Ipn ´2q " 1 ´n ´1 n " 1 n ,
where the last but one inequality follows from a direct integration by part. We have thus established that:

V Zε " ε 2 n ´ż `8 0 η2 µ Z,R pdηq `Opε 2 q ¯.
In particular, for ε " 1 ? N this precisely gives

|V ' N j"1 1 ? N bZ j ´t| ď C N ,
which is precisely (3.23) and readily gives as well (3.22). . Equation (3.24) is derived similarly using the corresponding specific scaling.

Proof of the main results

For a given N P N, let us consider the variables SN and S N defined in (2.5). From (3.12) and Proposition 3.2 we derive that they both possess a (radial) density, f SN and f S N respectively, and:

f SN " f 1 N bZ 1 ˚¨¨¨˚f 1 N bZ N , f S N " f 1 ? N bZ 1 ˚¨¨¨˚f 1 ? N bZ N . (4.1)
We will denote by

(4.2) µ εbZ,R pdηq " Ω n´1 f εbZ ptanhp η 2 qqpsinh ηq n´1 dη, η ě 0, ε P t 1 ? N , 1 N u,
the radial density of ε b Z in geodesic polar coordinates. This corresponds for ε " 1

?

N to what in [KTS59] is denoted by μN,1 . 4.1. Proof of the Theorem 2.1: Law of large numbers.

4.1.1. Proof of the main estimate. It suffices to establish the pointwise convergence of the characteristic function of SN as defined in (3.15) towards the constant 1. From (4.1) and Proposition 3.2, we have for all λ P R:

Φ SN pλq " f SN pλq f SN p0q " ˜f 1 N bZ pλq f 1 N bZ p0q ¸N " exp ˜N log ˜f 1 N bZ pλq f 1 N bZ p0q
¸¸" exppN logpΦ 1 N bZ pλqqq. We insist that the last equality is a definition and purely notational. Theorem 4.7 in [START_REF] Sturm | Probability measures on metric spaces of nonpositive curvature[END_REF] establishes that the walk asymptotically converges towards the mean in law and probability (weak law of large numbers). The convergence is strong provided Z n is bounded. The mean is intended here as the barycenter of the underlying law µ Z . If Z P L 2 pΩ, N q it corresponds to the unique minimizer of the mapping z Þ Ñ Erd 2 pz, Xqs, where d denotes here the distance between two points on N . We refer to Section 4 of [START_REF] Sturm | Probability measures on metric spaces of nonpositive curvature[END_REF] for additional details.

f p2q 1 N bZ pδλq f 1 N bZ p0q ˇˇď 1 2 V 1 N bZ ď (3.21) C N 2 ,
Let us first describe in the current specific case of H n how the previous construction can be related to the Möbius addition and multiplication. We will actually prove that (4.5)

Sn " xp

1 n q " Sn´1 ' 1 n b pa Sn´1 ' Z n q,
where for a P B n , aa is the left inverse, i.e. aa ' a " 0. Actually, it can be observed from (2.3) that aa " ´a.

To prove (4.5) we will use the following result whose proof can be found in Section 4.1 of [START_REF] Barabanov | Binary operations in the unit ball: A differential geometry approach[END_REF]. xp0q " a and xp1q " a ' b corresponds to the initial velocity 9 xp0q " p1 ´}a} 2 q atanhp}b}q }b} b. Furthermore, for t P r0, 1s it holds that xptq " a ' t b b.

To establish (4.5), which relates the geodesic walk Sn in [START_REF] Sturm | Probability measures on metric spaces of nonpositive curvature[END_REF] to the Möbius addition and multiplication, it then suffices to apply Proposition 4.1 with a " Sn´1 and b " a Sn´1 ' Z n3 , for which one indeed derives xp1q " Z n and to eventually take t " 1 n . The corresponding limit mean in the previous sense is clearly 0 (center of the ball). Now, if the Möbius multiplication were distributive w.r.t. the Möbius addition, i.e.

(D) 1 n b ´a Sn´1 ' Z n ¯" 1 n b a Sn´1 ' 1 n b Z n " ´1 n b Sn´1 ' 1 n b Z n ,
we would then obtain from (4.5), using as well that for x P B n , λ, µ P R, λ b x ' µ b x " pλ `µq b x (see [START_REF] Barabanov | Binary operations in the unit ball: A differential geometry approach[END_REF]):

Sn " p1 ´1 n q b Sn´1 ' 1 n b Z n .
A direct induction would then give Sn " ' n j"1 1 n b Z j and the geodesic random walk would then correspond to the one we considered.

However, in order to have the distributivity property (D) for the Möbius multiplication, it is necessary and sufficient (within the setting of gyrogroups) see e.g. [START_REF] Kim | Distributivity on the gyrovector spaces[END_REF], that gyrrx, ysz :" ´px ' yq ' px ' py ' zqq " z, i.e the gyration operator must be the identity. This property clearly fails in the current setting due to the non associativity of the Möbius addition.

Hence, the walks in [START_REF] Sturm | Probability measures on metric spaces of nonpositive curvature[END_REF] and the ones considered here are different objects (even though they converge to the same limit for the corresponding law of large numbers).

Proof of Theorem 2.2.

Proof. From (3.7) it suffices to establish the convergence of the characteristic function that we normalize as in (3.15). From (4.1) and Proposition 3.2, write for all λ P R:

Φ S N pλq " fS N pλq fS N p0q " ¨f 1 ? N bZ pλq f 1 ? N bZ p0q 'N " exp ¨N log ¨f 1 ? N bZ pλq f 1 ? N bZ p0q '' " exppN logpΦ 1 ? N bZ pλqqq. (4.6)
From (3.16), (3.17) we derive that

Φ 1 ? N bZ pλq " 1 ´λ2 2 V 1 ? N bZ `λ4 6 
ż 1 0 dδp1 ´δq 3 f p4q 1 ? N bZ pδλq f 1 ? N bZ p0q ": 1 ´λ2 2 V 1 ? N bZ `λ4 6 R N , (4.7)
3 to obtain the appropriate b one has to solve Sn ' b " Z n , which according to Proposition 3 in [START_REF] Ferreira | Möbius gyrogroups: a Clifford algebra approach[END_REF] admits the unique solution given by the indicated b.

where f p4q 1 ? N bZ stands for the fourth derivative of the Fourier-Helgason transform. The point is now, somehow as in a usual limit theorem to control the remainder. We have:

ˇˇˇˇˇˇf p4q 1 ? N bZ pδλq f 1 ? N bZ p0q ˇˇˇˇˇˇď ş `8 0 ˇˇB 4 ν ϕ ν ptanhp η 2 qq ν"δλ ˇˇµ 1 ? N bZ,R pdηq ş `8 0 ϕ 0 ptanhp η 2 qqµ 1 ? N bZ,R pdηq " ş τ 0 ˇˇB 4 ν ϕ ν ptanhp η 2 qq ν"δλ ˇˇµ 1 ? N bZ,R pdηq ş `8 0 ϕ 0 ptanhp η 2 qqµ 1 ? N bZ,R pdηq `ş`8 τ ˇˇB 4 ν ϕ ν ptanhp η 2 qq ν"δλ ˇˇµ 1 ? N bZ,R pdηq ş `8 0 ϕ 0 ptanhp η 2 qqµ 1 ? N
bZ,R pdηq ": I 1 pτ q `I2 pτ q, (4.8) for some τ ą 0 to be specified. Observing from (3.5) that, for η P r0, τ s, (4.9)

ˇˇB 4 ν ϕ ν ptanhp η 2 qq ν"δλ ˇˇď ´τ 2 B 2 ν ϕ ν ptanhp η 2 qq ν"0 ,
write:

I 1 pτ q " V 1 ? N bZ ş τ 0 ˇˇB 4 ν ϕ ν ptanhp η 2 qq ν"δλ ˇˇµ 1 ? N bZ,R pdηq ´ş8 0 B 2 ν ϕ ν ptanhp η 2 qq ν"0 µ 1 ? N bZ,R pdηq ď V 1 ? N bZ τ 2 .
Similarly to (4.9) we derive that for η P rτ, `8q:

ˇˇB 4 ν ϕ ν ptanhp η 2 qq ν"δλ ˇˇď ´η2 B 2 ν ϕ ν ptanhp η 2 qq ν"0 .
From the definition of µ 1 ? N bZ,R introduced in (4.2) and Proposition 3.4 we derivea tail control of the Fourier-Helgason transform. Namely, for any τ ą 0 it holds that (4.10)

ż 8 τ η 2 B 2 ν ϕ ν ptanhp η 2 qq| ν"0 µ 1 ? N bZ,R pdηq ÝÑ N 0.
We then get from (4.10):

I 2 pτ q ď V 1 ? N bZ ş 8 τ η 2 B 2 ν ϕ ν ptanhp η 2 qq ν"0 µ 1 ? N bZ,R pdηq ş 8 0 B 2 ν ϕ ν ptanhp η 2 qq ν"0 µ 1 ? N bZ,R pdηq ": V 1 ? N bZ R N pτ q, R N pτ q ÝÑ N 0, τ ą 0.
Plugging the above controls for I 1 pτ q, I 2 pτ q into (4.8) we derive that the remainder term R N in (4.7) enjoys the upper-bound:

R N ď V 1 ? N bZ 4
pτ 2 `RN pτ qq.

Expanding then the logarithm in (4.6), we thus get:

Φ S N pλq " exp ˆ´λ 2 2 V 1 ? N bZ N `λ4 6 N R N `op1q " exp ˜´λ 2 2 t `λ4 6 t R N V 1 ? N bZ `op1q ¸.
Taking τ small enough and then N large enough we deduce that:

Φ S N pλq ÝÑ N expp´λ 2 2
tq " Ψpt, λq, using (3.10), i.e. we recognize that the limit is the characteristic function of the second kind of the normal law on B n . The statement then follows from the inversion formula (3.7) and domination arguments.

4.3. Proof of the Local limit Theorem 2.3. The point is now to go further than the convergence in law for the random walk established in Theorem 2.2 and to establish under the previous assumptions a (global) pointwise control for the difference of the densities. From (3.7) the difference writes:

f S N ptanhp η 2 qq ´Ψpt, tanhp η 2 qq "C n ż `8 0 r fS N pλq ´ψpt, λqsϕ λ ptanhp η 2 qq|cpλq| ´2dλ "C n ż `8 0 r N ź j"1 f 1 ? N bZ j pλq ´expp´p ρ 2 `λ2 qt 2 qsϕ λ ptanhp η 2 qq|cpλq| ´2dλ "C n ż `8 0 pI λďD N `IλąD N qrp f 1 ? N bZ pλqq N ´expp´p ρ 2 `λ2 qt 2 qsϕ λ ptanhp η 2 qq|cpλq| ´2dλ ": pB N `TN qpηq, (4.11) 
where D N is a cutting level to be specified which will allow to balance the contribution for the terms B N pηq and T N pηq corresponding respectively to the bulk and tails of the Fourier-Helgasson integral.

-Contribution of the bulk. We first concentrate on the difference of the two Fourier transforms in the bulk, i.e. for λ ď D N . Namely, write:

ˇˇp f 1 ? N bZ pλqq N ´expp´p ρ 2 `λ2 qt 2 q ˇ" expp´p ρ 2 `λ2 qt 2 q ˆˇˇe xp ˆN ln ´f 1 ? N bZ pλq ¯`pλ 2 `ρ2 qt 2 ˙´1 ˇď expp´p ρ 2 `λ2 qt 2 q ˇˇN ln ´f 1 ? N bZ pλq ¯`pλ 2 `ρ2 qt 2 ˇˇexp ´ˇˇN ln ´f 1 ? N bZ pλq ¯`pλ 2 `ρ2 qt 2 
ˇˇ¯, (4.12) using that for all x P C, |e x ´1| ď |x| expp|x|q for the last inequality.

Write now:

ˇˇN ln ´f 1 ? N bZ pλq ¯`pλ 2 `ρ2 qt 2 ˇˇ" ˇˇN ln ´f 1 ? N bZ p0q ´1 ´p1 ´f 1 ? N bZ pλq f 1 ? N bZ p0q q ¯¯`p λ 2 `ρ2 qt 2 ˇď |N ln ´f 1 ? N bZ p0q ¯`ρ 2 2 t| `λ2 2 |t ´N V 1 ? N bZ | `N |pln ´1 ´p1 ´f 1 ? N bZ pλq f 1 ? N bZ p0q q ¯`λ 2 2 V 1 ? N bZ | ď|N ln ´f 1 ? N bZ p0q ¯`ρ 2 2 t| `λ2 2 |t ´VS N | `N ´8 ÿ r"2 r ´1|1 ´f 1 ? N bZ pλq f 1 ? N bZ p0q | r `| ´1 `f 1 ? N bZ pλq f 1 ? N bZ p0q `λ2 2 V 1 ? N bZ ˇˇ" :R N,1 `R2,N `R3,N . (4.13) 
We can write similarly to (4.7), expanding again up to order 4, that

f 1 ? N bZ pλq f 1 ? N bZ p0q " 1 ´λ2 2 V 1 ? N bZ `λ4 6 
ż 1 0 dδp1 ´δq 3 f p4q 1 ? N bZ pδλq f 1 ? N bZ p0q ": 1 ´λ2 2 V 1 ? N bZ `λ4 6 R N . (4.14) From (3.5) it follows that max δPr0,1s |ϕ p4q δλ ptanhp η 2 qq| ď η 2 2 |ϕ p2q 0 ptanhp η 2 qq| and therefore (4.15) |R N | ď Er|Z 1 ? N ,R | 2 ϕ p2q 0 `tanhp Z 1 ? N ,R 2 q f 1 ? N bZ p0q s,
where Z 1 ? N

,R is a random variable with law µ 1 ? N bZ,R introduced in (4.2) corresponding to the geodesic polar coordinates of 1 ? N b Z. It follows that:

Er|Z 1 ? N ,R | 2 |ϕ p2q 0 `tanhp Z 1 ? N ,R 2 q ˘| f 1 ? N bZ p0q s "Ω n´1 ż `8 0 η 2 |ϕ p2q 0 ptanhp η 2 qq| f 1 ? N bZ p0q f 1 ? N bZ ptanhp η 2 qq sinhpηq n´1 dη " (3.19) Ω n´1 ż `8 0 η 2 |ϕ p2q 0 ptanhp η 2 qq| f 1 ? N bZ p0q ? N f Z ptanhp ? N η 2 qq ´sinhp ? N ηq sinhpηq ¯n´1 sinhpηq n´1 dη "Ω n´1 1 f 1 ? N bZ p0q ż `8 0 η2 N |ϕ p2q 0 ptanhp η 2N 1 2 qq|f Z ptanhp η 2 qq sinhpηq n´1 dη ďCΩ n´1 1 f 1 ? N bZ p0q ż `8 0 η4 N 2 |ϕ 0 ptanhp η 2N 1 2 qq|f Z ptanhp η 2 qq sinhpηq n´1 dη ď C N 2 . (4.16)
It therefore holds that there exists C s.t.

(4.17)

|R N | ď C N 2 . Set now, A N :" pV 1 ? N bZ q ´1 4 , B N :" ´N E " |Z 1 ? N ,R | 2 |ϕ p2q 0 `tanhp Z 1 ? N ,R 2 q ˘| f 1 ? N bZ p0q ı¯´1 4 , C N :" |t ´VS N | ´1 2 .
In the previous setting, from (3.21), (

A ´2 N `B´2 N `C´1 N ď CN ´1 2 . 4.16), (3.23), (4.18) 
With these notations, it is clear from the definitions in (4.13) and (4.18) that

(4.19) R 2,N ď λ 2 2 C ´2 N ď C λ 2 N .
On the other hand,

R 3,N ď N ˜|1 ´f 1 ? N bZ pλq f 1 ? N bZ p0q | ÿ r"2 r ´1|1 ´f 1 ? N bZ pλq f 1 ? N bZ p0q | r´1 `λ4 6 E » -Z 2 1 ? N ,R ˇˇϕ p2q 0 `tanhp Z 1 ? N ,R 2 q f 1 ? N bZ p0q ˇˇfi fl ¸": R p1q 3,N `Rp2q 3,N . Assume now that |λ| ď D N " minp A N ? 3 , B N , C N ?
3 q. It readily follows from (4.16) that:

R p2q 3,N ď λ 4 6 B ´4 N ď C λ 4 N .
We also have from (4.14), (4.15) that:

| f 1 ? N bZ pλq f 1 ? N bZ p0q ´1| " λ 2 2 V 1 ? N bZ `λ4 6 R N ď 1 6 `1 6 " 1 3 .
We point out that this is a very coarse estimate which is only given to ensure the convergence of the series appearing for the term R p1q 3,N . Then,

R p1q 3,N ď N |1 ´f 1 ? N bZ pλq f 1 ? N bZ p0q | 2 ÿ r"2 r ´1|1 ´f 1 ? N bZ pλq f 1 ? N bZ p0q | r´2 ď CN pλ 4 V 2 1 ? N bZ `λ8 R 2 N q ÿ rPN p2 `rq ´1p 1 3 q r ď C ´λ4 N A ´8 N `λ4 N 2 ˆλ4 B ´4 N ¯ď λ 4 N ´1,
exploiting (4.18), which gives that N A ´4 N ď C and A ´4 N ď C{N , as well as λ 4 B ´4 N ď 1 for the last inequality. We carefully mention that it is the term involving the variance which is responsible for the above rate.

We 

f 1 ? N bZ p0q ´1 " Ω n´1 ż `8 0 f Z ptanh η 2 q `ϕ0 ptanhp η 2 ?
N qq ´1˘s inhpηq n´1 dη.

Setting now, gpζq " ϕ 0 ptanhp ζ 2 qq, we perform a fourth order Taylor expansion which yields:

f 1 ? N bZ p0q ´1 "Ω n´1 ż `8 0 f Z ptanh η 2 q ´gp1q p0q η N 1 2 `1 2 g p2q p0q η2 N `1 6 g p3q p0q η3 N 3 2 `1 6 ż 1 0 g p4q pγ ηqp1 ´γq 3 dγ η4 N 2 ¯sinhpηq n´1 dη,
where g piq denotes the i th derivative of g. It now remains to compute the derivatives of g. We will actually prove that, the derivatives of odd index are zero at zero and we aim at retrieving for the second order derivative a contribution, which once summed in (4.21) will precisely exactly give the contribution ´ρ2 2 t. To compute the derivative of g let us recall from (3.5) that: Hence,

f 1 ? N bZ p0q ´1 " k n p´ρpρ `1qIpnq `ρ2 Ipn ´2qq 2N ż `8 0 η2 µ Z,R pdηq `Op 1 N 2 q.
Having in mind the explicit expression of t in (3.22), to investigate the difference of the first l.h.s term in (4.21) it remains to specify properly the constants involved (in both the definition of t and the above expression).

From [START_REF] Gradshteyn | Table of integrals, series and products[END_REF], formula 3.631 (8), p. 386, it holds that for ν P C, pνq ą 0,

ż π 0 sinpθq ν´1 dθ " π 2 ν´1 νBp ν`1 2 , ν`1 2 q ,
where Bp¨, ¨q denotes the β-function. Therefore taking respectively ν " n `1 and ν " n ´1, recalling as well that Bpx, yq " ΓpxqΓpyq Γpx`yq , one derives

Ipnq " πΓpn `2q 2 n pn `1qΓp n`2 2 q 2 " πn! 2 n Γp n`2 2 q 2 , Ipn ´2q " πpn ´2q! 2 n´2 Γp n 2 q 2 . Recalling from (3.9) that ρ " n´1 2 , this in turn gives:

´kn ρpρ `1qIpnq " ´Γp n 2 q ? πΓp n´1 2 q n ´1 2 n `1 2 πn! 2 n `n 2 ˘2 Γp n 2 q 2 " ´n2 ´1 2 n n 2 Γp n´1 2 qΓp n 2 q ? πn! " ´n2 ´1 4Γpn ´1q n! n 2 " ´pn 2 ´1q 4 n ´1 n "
´ρ2 pn `1q n using the Legendre duplication formula for the third equality. We also similarly derive,

k n ρ 2 Ipn ´2q " Γp n 2 q ? πΓp n´1 2 q ´n ´1 2 ¯2 πpn ´2q! 2 n´2 Γp n 2 q 2 " pn ´2q! Γpn ´1q ´n ´1 2 ¯2 " ρ 2 .
We have thus established:

1 ´f 1 ? N bZ p0q " ρ 2 n 1 2N ż `8 0 η2 µ Z,R pdηq `Op 1 N 2 q,
which eventually gives in (4.21)

R 1,N " ´ρ2 2 1 n ż `8 0 η2 µ Z,R pdηq `Op 1 N q `ρ2 2 t.
This eventually gives from the very definition of t (see e.g. (3.22)):

R 1,N " Op 1 N q. (4.22) Therefore, plugging (4.22), (4.20), (4.19) into (4.13) and (4.12) we thus derive, choosing D N " N 1 4 so that in particular λ 4 {N ď 1:

|B N pηq| ďC ż 0ăλďD N expp´p ρ 2 `λ2 qt 2 q 1 N `1 `λ4 ˘exp ´1 N `1 `λ4 ˘¯|ϕ λ ptanhp η 2 qq||cpλq| ´2dλ ď C t 2 N ż 0ăλďD N expp´p ρ 2 `λ2 qt 4 q|ϕ λ ptanhp η 2 qq||cpλq| ´2dλ ď C t 2 N ż R `expp´p ρ 2 `λ2 qt 4 q|ϕ λ ptanhp η 2 qq||cpλq| ´2dλ. (4.23)
From (3.5) and the definition of the Harish-Chandra function in (3.8), see e.g. Remark 2.7 in [START_REF] Anker | An introduction to Dunkl theory and its analytic aspects[END_REF] for its asymptotic behavior, we get (4.24)

|ϕ λ ptanhp η 2 qq| ď ϕ 0 ptanhp η 2 qq ď C, |cpλq| ´2 ď Cpλ 2 I λďC `λn´1 I λąC q,
from which we eventually derive:

|B N pηq| ď C t 2 N ´1 t 1 2 ^1 t n 2 ¯. (4.25)
-Contribution of the tails, general case. For λ ą N 1{4 , we write:

T N pηq ď ˇˇż `8 N 1{4 ´N ź j"1 f 1 ? N bZ j pλq ¯ϕλ ptanhp η 2 qq|cpλq| ´2dλ ˇˇ`ˇˇż `8 N 1{4 expp´p ρ 2 `λ2 qt 2 qϕ λ ptanhp η 2 qq|cpλq| ´2dλ ˇ" :pT 1 N `T 2 N qpηq. (4.26)
Let us first consider the term T 2 N which can be handled globally. We get again from (4.24) (similarly to (4.25)):

T 2 N pηq ď expp´N 1 2 t 4 q ż `8 0 expp´p ρ 2 `λ2 qt 4 q|ϕ λ ptanhp η 2 qq||cpλq| ´2dλ ď C t 2 N ´1 t 1 2 ^1 t n 2 ¯, (4.27)
which gives an upper bound similar to the one obtained for the bulk in (4.25).

Let us now turn to T 1 N pηq, and split as follows:

T 1 N pηq ď ˇˇż c0N 1 2 N 1 4 ´f 1 ? N bZ pλq ¯N ϕ λ ptanhp η 2 qq|cpλq| ´2dλ ˇż 8 c0N 1 2 ´f 1 ? N bZ pλq ¯N ϕ λ ptanhp η 2 qq|cpλq| ´2dλ ˇˇ": pT 11 N `T 12 N qpηq, (4.28)
for some small enough constant c 0 to be specified.

Let us now recall that from Lemma 2.1 of [START_REF] Liu | Boundary regularity for the Dirichlet problem for the invariant Laplacians ∆ on the unit real ball[END_REF], for x P B n and λ P C

ż S n´1 σpdζq |x ´ζ| 2λ " 2 F 1 pλ, λ ´n 2 `1, n 2 , }x} 2 q,
where 2 F 1 stands for the hypergeometric function and σ " Λ{Ω n´1 for the normalized surface measure on S n´1 (i.e. σpS n´1 q " 1). We now recall, see e.g. formula 15.1.1. in [START_REF] Gradshteyn | Table of integrals, series and products[END_REF], that for a, b, c, z, where c is not a negative integer and |z| ă 1, (4.29) 2 F 1 pa, b, c, zq " `8 ÿ q"0 paq q pbq q pcq q z q q! , denoting for d P ta, b, cu, pd q q " # 1, q " 0, ś q´1 j"0 pd `jq, q ‰ 0.

The series gives an analytic function if |z| ă 1 and can be continued on the complex plane (cut on r1, `8qq. From (3.3), (3.4), we thus get:

ϕ λ pxq " p1 ´}x} 2 q ρ`i λ 2 ż S n´1 σpdζq }x ´ζ} 2pρ`i λ 2 q " p1 ´}x} 2 q ρ`i λ 2 2 F 1 pρ `i λ 2 , 1 2 `i λ 2 , n 2 
, }x} 2 q.

Recalling the Pfaffian identity (see e.g. (2.15) in [START_REF] Liu | Generalized Helgason-Fourier transforms associated to variants of the Laplace-Beltrami operators on the unit ball in R n[END_REF])

2 F 1 pa, b, c, zq " p1 ´zq ´a2 F 1 pa, c ´b, c, z z ´1 q, we get for z " }x} 2 " tanhp η 2 q 2 , a " ρ `i λ 2 , b " 1 2 `i λ 2 , c " n 2 , ϕ λ ptanhp η 2 qq " 2 F 1 pρ `i λ 2 , ρ ´i λ 2 , n 2 , ´sinh 2 p η 2 qq.
We therefore get from (4.29):

ϕ λ ptanhp η 2 qq "1 `8 ÿ q"1 ś q´1 j"0 `pρ `i λ 2 `jqpρ ´i λ 2 `jq śq´1 j"0 p n 2 `jq p´1q q psinhp η 2 qq 2q q! "1 `8 ÿ q"1 ś q´1 j"0 `pρ `jq 2 `λ2 4 q śq j"1 pm `jq p´1q q psinhp η 2 qq 2q q! , m " ρ ´1 2 " n 2 ´1, "1 `8 ÿ q"1 ś q´1 j"0 `p2 ρ`j λ q 2 `1q 4q ś q j"1 pm `jq p´1q q pλ sinhp η 2 qq 2q q! "1 `8 ÿ q"1 p´1q q pλ sinhp η 2 qq 2q « 1 `´n´1 λ ¯2ff ˆ¨¨¨ˆ«1 `´n`2q´3 λ ¯2ff 4 q q!pm `1qpm `2q ¨¨¨pm `qq (4.30) "1 `8 ÿ q"1 p´1q q pλ sinhp η 2 qq 2q « 1 `´2m`1 λ ¯2ff ˆ¨¨¨ˆ«1 `´2m`2q´1 λ ¯2ff
4 q q!pm `1qpm `2q ¨¨¨pm `qq .

We emphasize that the representation (4.30) will be actually used to investigate the behavior of the quantity ´f 1 ? N bZ pλq ¯N in (4.28) for the term T 11 N pηq. From (3.1), (3.19), and since on the considered integration interval λ P rN 1 4 , c 0 N 1 2 s, this actually means that we will consider (4.30) for a small spatial argument. Namely,

f 1 ? N bZ pλq " Ω n´1 ż 8 0 ϕ λ ptanhp η 2 ? N qqf ptanhp η 2 qq sinhpηq n´1 dη " ż 8 0 ϕ λ `tanhp η 2 ? N q ˘µZ,R pdηq. (4.31)
Let us turn to the estimation of the r.h.s. in (4.30). We will actually establish that, for sufficiently large q: (4.32)

« 1 `´2m`1 λ ¯2ff ˆ¨¨¨ˆ«1 `´2m`2q´1 λ ¯2ff 4 q q!pm `1qpm `2q ¨¨¨pm `qq " m! « 1 `´2m`1 λ ¯2ff ˆ¨¨¨ˆ«1 `´2m`2q´1 λ ¯2ff
4 q q!pm `qq! ď Cpmq4 ´q .

To establish the above inequality we first observe that

« 1 `´2m `1 λ ¯2ff ˆ¨¨¨ˆ«1 `´2m `2q ´1 λ ¯2ff
ď exp ˜q ln ´1 `´2m `2q ´1 λ ¯2¯ḑ exp ˜q ln ´q2 p 1 q 2 `Cpmq λ 2 q ¯¸ď exppq lnpr q e s 2 qq " expp´2qq expp2q ln qqq, (4.33) where the last inequality holds for q ě 3 and N large enough (recall λ P rN 1{4 , c 0 N 1{2 s). On the other hand, from Stirling's formula we get: q!pm `qq! " 2πpqpm `qqq 1 2 e q ln q e pm`qq lnpm`qq e ´pm`2qq e 1 12q pθ1q`θ2qq , θ iq P p0, 1q, i P t1, 2u, ą 2πe ´me 2q ln q e ´2q , (4.34) for sufficiently large q. From (4.34) and (4.33), we derive (4.32).

On the other hand, on the considered range for λ, i.e. λ P rN 1 4 , c 0 N 1 2 s we have:

λ sinhp η 2 ? N q ď λ η ? N ď c 0 R ă 1,
choosing c 0 small enough and exploiting that µ Z in (4.31) is compactly supported on r0, Rs. We then derive that on the considered range: η 2 µ Z,R pdηqq " expp´cλ 2 tq, up to a modification of c for this very last inequality. We then eventually get from (4.28), analogously to (4.27), that: N pηq in (4.28). To this end we exploit, see e.g. Lemma 5.1 formula (5.3) in [START_REF] Petrova | Approximation on a hyperboloid in the L 2 metric[END_REF], that (4.37) Dc P p0, 1q, @λ, r P R 2 `, λr ą 1, |ϕ λ ptanhprqq| ă 1 ´c.

T 11 N pηq ď C expp´c p´ρ 2 `N 1 2 qt 2 q ż c0N 1 2 N 1 4 expp´c pρ 2 `λ2 qt 2 q|ϕ λ ptanhp η 2 qq||cpλq| ´2dλ ď C t 2 N ´1 t 1 2 ^1 t

Write then,

T 12 N pηq " ˇˇż We can now use the Plancherel equality, see e.g. Theorem 6.14 in [START_REF] Liu | Boundary regularity for the Dirichlet problem for the invariant Laplacians ∆ on the unit real ball[END_REF] with ϑ " 2 ´n, to derive: ¯`1 ¯.

T 12 N pηq ď Cδ N ´2 ż R 0 f 2 1 ? N bZ ptanhp η 2 qq sinh n´1 pηqdη ď Cδ N ´2 ż R N 1 2 0 N f 2 Z ptanhp N 1 2 η 2
From the above control and (4.27), (4.26) we thus derive:

T N pηq ď C N ´1 t 2 ´1 t 1 2 ^1 t n 2 ¯`1 ¯,
which together with (4.25) and (4.11) completes the proof of the local limit Theorem 2.3. Email address: stephane.menozzi@univ-evry.fr
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  ´λ,ζ pxqΛpdζqµ B n pdxq, from which we derive ĥpλq " ż B n hpxqe ´λ,ζ pxqµ B n pdxq, @ζ P S n´1 ,

  Proposition 3.5 (Variance for the random walks). Let Z satisfy [R]. Set for ε ą 0, Z ε :" ε b Z. It then holds that there exists C ě 1 s.t.

  get similarly to the proof of Proposition 3.5, see e.g. (3.25) replacing therein λ " 0 by δλ, that ˇˇż

Proposition 4. 1 (

 1 Geodesic lines and the Möbius addition). Let a, b in B n . The geodesic line `xptq ˘tPr0,1s s.t.

."k n ρ ż π 0 cospθq sinpθq n´2 dθ " 0, g p2q p0q "k n ρpρ `1q ż π 0 pcoshpηq ´sinhpηq cospθqq ´pρ`2q psinhpηq ´coshpηq cospθqq 2 sinpθq 2ρ´1 dθ| η"0 ´kn ρ ż π 0 "k n ρpρ `1q ż π 0 cospθq 2 sinpθq n´2 dθ ´kn ρ ż π 0

 00000 rewrites, see e.g.[START_REF] Anker | An introduction to Dunkl theory and its analytic aspects[END_REF],gpηq " ϕ 0 ptanhp η 2 qq " k n ż π 0 pcoshpηq ´sinhpηq cospθqq ´ρ sinpθq 2ρ´1 dθ, k n :" ΓFrom the above expression we indeed derive:g p1q p0q " ´kn ρ ż π 0pcoshpηq ´sinhpηq cospθqq ´pρ`1q psinhpηq ´coshpηq cospθqq sinpθq 2ρ´1 dθ| η"0 pcoshpηq ´sinhpηq cospθqq ´pρ`1q pcoshpηq ´sinhpηq cospθqq sinpθq 2ρ´1 dθ| η"0 sinpθq n´2 dθ " ´kn ρpρ `1qIpnq `kn ρ 2 Ipn ´2q, @m P N, Ipmq :"

  Z,R pdηqq, | f 1 ? N bZ pλq| N ď expp´cλ 2 ż B n

  now remains to consider the case λ ą c 0 N 1 2 to handle T 12

NN

  for some parameter b ą 0 to be specified. Let us now write from (4.31): R pdηq ": I `II. (4.38)For the term II in (4.38), observe that for η ą 2b ą 1 and by (4.37), II ď 1 ´c.For the term I observe that 2b ? c0 . Since µ Z,R has a density there is in particular no atom at 0 and therefore, since |ϕ λ b ptanhp η 2 ?N qq| ď C on the considered integration range, we then derive ş 2b qq|µ Z,R pdηq ă c{2 for b small enough. Hence, plugging those controls into (4.38), we get: pλq| 2 |ϕ λ ptanhp η 2 qq||cpλq| ´2dλ.

  Connection with the Sturm geodesic walks. In the article[START_REF] Sturm | Probability measures on metric spaces of nonpositive curvature[END_REF], Sturm proposed a very general construction of geodesic random walks in non positive curvature (NPC) metric spaces and established a corresponding weak and strong law of large number. In particular, the Hyperbolic space H n enters this setting. The construction proposed in[START_REF] Sturm | Probability measures on metric spaces of nonpositive curvature[END_REF] is the following. Let N be a NPC metric space. For fixed n P N ˚, let Sn´1 be given (representing the value of the normalized walk, with the scaling of the law of large numbers, at time n ´1). Let Z n be the n th innovation variable (defined on some probabilistic space pΩ, A, Pq and N valued).

	which plugged into (4.4), (4.3) gives Φ SN pλq Ñ N	1 which yields the stated convergence.
	4.1.2. Consider a a geodesic line `xptq ˘tPr0,1s s.t. xp0q " Sn´1 , xp1q " Z n . The walk is then updated setting
	Sn " xp	1 n	q ": ´1	´1 n	¯S n´1	`Zn .

  Cλ 4 N ´1.

		have thus established that						
	(4.20) R 3,N ď It remains to handle the contribution R 1,N in (4.13). Write:	
		R 1,N " |N ln ´f 1 ? N	bZ p0q	¯`ρ 2 2	t| " |N ln `1 ´p1 ´f 1 ? N	bZ p0qq	˘`ρ 2 2	t|
										8
	(4.21)	" ˇˇ´N p1 ´f 1 ? N	bZ p0qq	`ρ2 2	t ´N p1 ´f 1 ? N	bZ p0qq	ÿ r"2	r ´1p1 ´f 1 ? N	bZ p0qq r´1 ˇˇ.
	Write now from (3.20):							

  (3.19) with ε " N ´1 2 for the second inequality. Hence, recalling that δ ă 1 for the last inequality. We have thus established from the above control and (4.36) that,

										qq	´sinhpN sinhpηq 1 2 ηq	¯2pn´1q	sinh n´1 pηqdη
				ď Cδ N ´2N	1 2	ż R 0	f 2 Z ptanhp	η 2	qq sinhpηq 2pn´1q psinhp	η N	2 1	qq ´pn´1q dη
	using as well T 12 N pηq ď CN	n 2 δ N ´2 ż R 0	f 2 Z ptanhp	η 2	qq sinhpηq 2pn´1q η ´pn´1q dη ď CN	n 2 δ N ´2 " CN	n 2 expppN ´2q lnpδqq
	ď	C N	expp´N 2	| lnpδq|q,			
								T 1 N pηq ď	C N ´1 t 2 ´1 t 1 2 ^1 t n 2
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From now on we will denote by rr¨, ¨ss integer intervals.