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DEFORMING A FINSLER METRIC ON THE TWO-TORUS TO A FLAT

FINSLER METRIC WITH CONJUGATE GEODESIC FLOWS

ELIE NAKHLE AND STÉPHANE SABOURAU

Abstract. We show that the space of (reversible) Finsler metrics on the two-torus whose
geodesic flow is conjugate to the geodesic flow of a flat Finsler metric is path-connected with
respect to the uniform convergence topology.

1. Introduction

The goal of this article is to study the space of Finsler two-tori whose geodesic flow is
(smoothly) conjugate to the geodesic flow of a flat Finsler two-torus. (By definition, all Finsler
metrics are reversible and quadratically convex; see Definition 2.1). In particular, we will de-
termine the topology of this space up to homotopy with respect to the uniform convergence
topology; see Corollary 1.2.

This problem can be seen as the counterpart of a famous question about Zoll metrics (i.e.,
metrics all of whose geodesics are simple closed curves of the same length) asking whether the
space of Zoll metrics, say in the two-sphere, is path-connected; see [9, Question 200]. (Though
this question is wide open, it has a positive answer for Zoll Finsler metrics on the projective
plane; see [38].) Since the geodesic flow of a Zoll metric on the two-sphere is conjugate to that
of the canonical metric, see [10, §4F] or [1], this question amounts to asking whether the space
of metrics whose geodesic flow is conjugate to that of the round two-sphere is path-connected.
Clearly, the two-torus does not admit any Zoll metric, but the latter formulation of the problem
makes sense if one replaces the round two-sphere with a flat two-torus.

Complete Finsler manifolds without conjugate points have for characteristic property that
any pair of points in their universal cover can be joined by a unique geodesic; see Definition 2.2.
There are strong ties between Finsler metrics whose geodesic flow is conjugate to the geodesic
flow of a flat Finsler two-torus and metrics without conjugate points. Indeed, every Finsler
metric F on the two-torus whose geodesic flow is conjugate to that of a flat Finsler metric F�
has no conjugate points; see [17] or Lemma 11.3. For a Riemannian metric F , this implies that
F is flat by Hopf’s theorem [31] (see [13] for a generalization to any dimension), in which case,
the metrics F and F� coincide. The problem is therefore interesting only for non-Riemannian
Finsler metrics. It is an open question whether the geodesic flow of every Finsler two-torus
without conjugate points is conjugate to that of some flat Finsler metric; see [18], [12]. The
issue is related to the regularity of the so-called Heber foliation (a continuous foliation of T ∗T2 by
Lipschitz, Lagrangian, flow-invariant graphs given by the covectors of the same norm generating
geodesics with the same asymptotic direction); see Section 2. Actually, it can be proved that
two Finsler two-tori without conjugate points having the same marked length spectrum and
smooth Heber foliations have conjugate geodesic flows; see Section 11.5. To further illustrate
our poor understanding of Finsler metrics without conjugate points, let us also mention that
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2 E. NAKHLE AND S. SABOURAU

it is still an open question whether a geodesic with irrational direction on a Finsler two-torus
without conjugate points is dense; see [12].

Before stating our main result, it should be noted that Finsler two-tori without conjugate
points are incredibly flexible: given any point on a Finsler surface, there exists a neighborhood
of this point which isometrically embeds into a Finsler two-torus without conjugate points;
see [14]. In particular, modulo isometries and rescaling, Finsler two-tori without conjugate
points form a infinite-dimensional space. Similarly, the space of Finsler two-tori with geodesic
flow conjugate to that of a flat Finsler metric (modulo isometries) has infinite dimension; see
the appendix in [38] for instance.

Our main theorem is the following.

Theorem 1.1. Let M = (T2, F ) be a Finsler two-torus whose geodesic flow is conjugate to
the geodesic flow of a flat Finsler two-torus M� = (T2, F�). Then there exists a canonical
deformation (Ft)t≥0 of Finsler metrics on T2 with F0 = F such that

(1) the geodesic flow of Ft is conjugate to the geodesic flow of F�;
(2) the metric Ft converges to F� for the uniform convergence topology, up to isometry, as

t goes to infinity.

In this theorem, we consider the uniform convergence of metric spaces, where a sequence (dn)
of metrics on a given set X converges to a metric d on X if dn → d uniformly on X ×X as n
goes to infinity. We refer to the topology it induces on the space of metrics on X as the uniform
convergence topology.

The following result is a consequence of the main theorem.

Corollary 1.2. The space of Finsler metrics on the two-torus, modulo isometries, whose geo-
desic flow is conjugate to that of a flat Finsler metric strongly deformation retracts to the space
of flat Finsler metrics, modulo isometries (which is contractible).

In addition, the strong deformation retraction is induced by the deformation of the geodesic
foliation by the curve shortening flow on the Euclidean plane.

Our results are of the same flavor as those of [38], where it is proved that the space of
Zoll Finsler metrics on the projective plane RP2 whose geodesic length is equal to π strongly
deformation retracts to the canonical round metric. In this case too, the deformation retraction
is induced by the curve shortening flow on the canonical round projective plane.

In the proof of the main theorem, we will also establish the following result regarding the
deformation of the geodesic flows of a two-torus without conjugate points.

Theorem 1.3. Let M = (T2, F ) be a Finsler two-torus without conjugate points. Denote by
ρ : R×U0R2 → U0R2 the action induced by the geodesic flow on the unit tangent bundle UM̄ '
U0R2 of M̄ . Then, there exists a deformation

ρt : R× U0R2 → U0R2

of smooth, free, proper, Z2-equivariant actions that starts at ρ0 = ρ and converges to the action
ρ∞ : R × U0R2 → U0R2 induced by the geodesic flow on the unit tangent bundle U0R2 of the
Euclidean plane. Here, the convergence is in the compact-open Ck-topology for any given k ≥ 0.

Furthermore, for every t ∈ [0,∞], every ρt-orbit projects to an embedding of R into R2 under
the canonical projection U0R2 → R2.

By construction, the deformation ρt : R × U0R2 → U0R2 in Theorem 1.3 is induced by
the deformation of the geodesics of M̄ under the Euclidean curve shortening flow. Since the
Euclidean curve shortening flow preserves the asymptotic directions of these geodesics, we deduce
the following result regarding the deformation of the Heber foliation.
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Corollary 1.4. Let M = (T2, F ) be a Finsler two-torus without conjugate points. Then, the
Heber foliation of T ∗M̄ is deformed into the canonical Heber foliation of T ∗R2 (induced by
straight lines) under the deformation ρt : R× U0R2 → U0R2, via the Legendre transform.

The proof strategy of our main theorem relies on the approach developed in [38] to study the
space of Zoll Finsler metrics on the projective plane. We will work on the universal cover M̄ of
Finsler two-tori M without conjugate points, where all geodesics are minimizing (but not closed),
and carry out Z2-equivariant constructions. The reason to work on the universal cover is because
the space of (oriented) geodesics on M̄ is a manifold, diffeormorphic to S1 × R, which is not
the case on the torus. Moreover, the space of geodesics of M̄ carries a natural smooth measure
induced by the canonical symplectic form on the cotangent bundle T ∗M̄ of M̄ . Now, the idea is
to make use of the one-to-one correspondence between Finsler metrics without conjugate points
and their space of geodesics endowed with their natural smooth measure through Crofton’s for-
mula. This correspondence, due to Álvarez Paiva and Berck [5], allows us to construct Finsler
metrics with prescribed geodesics on the plane. More specifically, we deform the geodesics of M̄
into straight lines, preserving their asymptotic directions and their intersection properties, by
applying the Euclidean curve shortening flow. This deformation of the geodesics of M̄ along
with the deformation of the natural measure on their moduli space induces a canonical deforma-
tion (F̄t) of the initial Finsler metric F̄ on M̄ . By studying the continuity of the curve shortening
flow at the limit, we show that this deformation process preserves the natural measure on the
space of deformed geodesics when the geodesic flow of the Finsler metric F is conjugate to that
of a flat Finsler metric F�. This ensures that the Finsler metric deformation (F̄t) converges
to F̄�. By construction, the Finsler metrics (F̄t) of the deformation have no conjugate points.
Finally, to show that these metrics have conjugate geodesic flows (modulo Z2-equivariance), it
suffices to observe that they have the same length spectrum and that their Heber foliations are
smooth; see Section 12. Although our approach follows the strategy developed in [38], several
serious difficulties need to be faced to carry it out due to numerous regularity and compactness
issues, including convergence problems, lack of averaging procedures, wildness of group actions,
etc. Consequently, the proof relies on a wide range of techniques in dynamical systems, integral
geometry and partial differential equations.

Acknowledgment. The authors thank Roman Karasev for several comments, which helped
improve the exposition.

2. Asymptotic directions, Busemann functions and the Heber foliation

In this section, we introduce the asymptotic direction of a minimizing geodesic, define Buse-
mann functions and present some general results regarding the Heber foliation of Finsler two-tori
without conjugate points.

Definition 2.1. A (reversible) Finsler metric on a manifold M is a continuous function F :
TM → [0,∞) on the tangent bundle TM of M satisfying the following properties (here, Fx :=
F|TxM for short):

(1) Smoothness: F is smooth outside the zero section;
(2) Homogeneity: Fx(tv) = |t|Fx(v) for every v ∈ TxM and t ∈ R;
(3) Quadratic convexity: for every x ∈M , the square of the function Fx has positive definite

second derivatives on TxM \ {0}, that is, for every p ∈ TxM \ {0}, and u, v ∈ TxM , the
symmetric bilinear form

gp(u, v) =
1

2

∂2

∂s∂t
F 2
x (p+ tu+ sv)|t=s=0
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is an inner product.

The F -length of a smooth curve γ : [a, b]→M is defined by

lengthF (γ) =

∫ b

a
F (γ′(t)) dt

and the distance dF (p, q) between two points p, q ∈ M is the infimum F -length of the curves
joining p and q.

Consider the Legendre transform

L : TM → T ∗M (2.1)

of the Lagrangian 1
2F

2 between the tangent and cotangent bundles of M ; see [10]. Since F is
quadratically convex, the Legendre transform L is a diffeomorphism between TM\{0} and T ∗M\
{0}. By the homogeneity of F , it preserves the norm on each fiber of the bundle vectors TM
and T ∗M . In addition, it induces a diffeomorphism between the unit tangent and cotangent
bundles UM and U∗M of M . Geometrically, this diffeomorphism is defined as follows: For every
vector v ∈ UxM , the image L(v) is the unique co-vector of U∗xM such that L(v)(v) = 1.

The quadratically convex condition (as opposed to a mere convex condition) also allows us to
define the geodesic and cogeodesic flows on UM and U∗M ; see [10]. Note that both flows are
conjugate by the Legendre transform.

The tautological one-form on T ∗M is defined by

αξ(X) = ξ(dpξ(X)) (2.2)

for every ξ ∈ T ∗M and X ∈ TξT ∗M , where p : T ∗M →M is the canonical projection. Similarly,
the canonical symplectic form on T ∗M is defined as

ω = dα. (2.3)

Note that neither α nor ω depend on the Finsler metric on M . Still, by the Liouville theorem,
see [10, Remark 2.12], both the one-form α and the symplectic form ω are invariant under the
cogeodesic flow of M .

Finsler metrics without conjugate points can be defined as follows.

Definition 2.2. A complete Finsler manifold M has no conjugate points if the exponential map
of its universal Finsler cover M̄ is a diffeomorphism at every point, that is, if expx : TxM̄ → M̄
is a diffeomorphism for every x ∈ M̄ . In this case, any pair of points in M̄ can be joined by a
unique geodesic.

We will also need the following definition about Finsler geodesics.

Definition 2.3. Let M be a complete Finsler manifold with universal Finsler cover M̄ . A
geodesic of M̄ is minimizing if it minimizes the length between any pair of its points. (Such
geodesics are also referred to as A-geodesics.)

Before giving a characterization of Finsler tori without conjugate points in terms of integrable
cogeodesic flow, we need to introduce the following definitions.

Definition 2.4. A Lipschitz graph of T ∗M , where M is a manifold, is a Lipschitz section of
the canonical projection T ∗M → M . In particular, it is a Lipschitz submanifold of T ∗M .
By Rademacher’s theorem, a Lipschitz submanifold of T ∗M admits a tangent subspace almost
everywhere with respect to the Lebesgue measure on the submanifold.

A Lipschitz graph of T ∗M is Lagrangian if its (almost everywhere defined) tangent subspaces
are Lagrangian with respect to the canonical symplectic form ω on T ∗M ; see (2.3).

A subset of T ∗M is flow-invariant if it is invariant under the cogeodesic flow of M , where M
is a complete Finsler manifold.
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The following result has been established in [34] in the context of Tonelli Hamiltonians and
generalized in higher dimension in [4]. See also [7], [11], [30], [33] and [39].

Theorem 2.5. Let M = (T2, F ) be a Finsler two-torus. Then the torus M has no conjugate
points if and only if there exists a continuous foliation of T ∗M by Lipschitz, Lagrangian, flow-
invariant graphs.

In the rest of this section, we will present a construction of the continuous foliation of T ∗M by
Lipschitz, Lagrangian, flow-invariant graphs given by Theorem 2.5 when M is a Finsler two-torus
without conjugate points. This torus foliation is referred to as the Heber foliation of T ∗M .

The notion of asymptotic direction of a Finsler geodesic will play a key role regarding geodesic
foliations of Finsler two-tori without conjugate points.

Definition 2.6. The asymptotic direction of a curve γ : R → R2 going to infinity (i.e.,
‖γ(t)‖ → +∞ as t→ +∞) is defined as

θ(γ) = lim
t→+∞

γ(t)

‖γ(t)‖
∈ S1 (2.4)

where ‖·‖ represents the Euclidean norm of R2 (if the limit exists). The asymptotic direction of
a curve in T2 is defined as the asymptotic direction of any of its lifts.

The asymptotic direction of a curve of R2 or T2 is rational if it is proportional to a vector
with rational coefficients and irrational otherwise.

The following result about the existence of asymptotic directions for minimizing geodesics in
the universal cover of a Finsler two-torus is due to Hedlund [30] in the Riemannian case; see [7],
[11], [33], [39] for further generalizations encompassing the Finsler case.

Theorem 2.7. Let M = (T2, F ) be a Finsler two-torus with universal Finsler cover M̄ =
(R2, F̄ ). Then, there exists w > 0 such that for every minimizing geodesic γ : R → M̄ , the
asymptotic direction θ(γ) of γ is well-defined (that is, the limit in (2.4) exists) and the geodesic γ
lies in a strip bounded by two parallel lines in R2 of width at most w. Furthermore, θ(γ̄) = −θ(γ),
where γ̄ : R → M̄ is the minimizing geodesic obtained by reversing the orientation, that is,
γ̄(t) = γ(−t).

Conversely, for every θ0 ∈ S1, there exists a minimizing geodesic γ : R→ M̄ such that
θ(γ) = θ0 and θ(γ̄) = −θ0. Moreover, for every x ∈ M̄ and every θ0 ∈ S1, there exists a
minimizing geodesic ray based at x with asymptotic direction θ0.

We will also need the following definition of Busemann functions; see [24], [20], [29], [19]
and [27] for further details.

Definition 2.8. Let M = (T2, F ) be a Finsler two-torus without conjugate points. Denote
by M̄ = (R2, F̄ ) the universal Finsler cover of M . The Busemann function based at the ori-
gin o ∈ R2 and pointing in the direction of θ is defined as

Bθ(x) = lim
t→+∞

dM̄ (x, cθ(t))− t

where cθ is the arc length parametrized geodesic ray arising from o with asymptotic direction θ.
This limit is well-defined since the function t 7→ dM̄ (x, cθ(t))− t is monotone nonincreasing and
bounded from below by the triangle inequality.

The collection of Busemann functions Bθ with θ ∈ S1 gives rise to the Busemann map

B : S1 × M̄ → R
(θ, x) 7→ Bθ(x).
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Let us recall some regularity properties of Busemann functions for Finsler tori without con-
jugate points; see [24], [20], [29], [19].

Proposition 2.9. Let M = (T2, F ) be a Finsler two-torus without conjugate points. Denote
by M̄ = (R2, F̄ ) its universal Finsler cover. Then

(1) The Busemann map B : S1 × M̄ → R is continuous.
(2) Every Busemann function Bθ : M̄ → R is C1,1 (i.e., Bθ is C1 and its differential dBθ is

locally Lipschitz on M).
(3) The differential dBθ : TM̄ → R is Z2-invariant and has unit norm at every point of M̄

(i.e., ‖dxBθ‖ = 1 for every x ∈ M̄).
(4) Via the Legendre transform L : TM̄ → T ∗M̄ , see (2.1), the differential −dBθ at x ∈ M̄

corresponds to the unit tangent vector at x generating a geodesic ray with asymptotic
direction θ.

We can now describe the Heber foliation of a Finsler two-torus without conjugate points.

Definition 2.10. Let M = (T2, F ) be a Finsler two-torus without conjugate points. The unit
tangent bundle UM̄ of the universal cover M̄ of M identifies with R2 × S1 as follows

UM̄ → R2 × S1

(x, v) 7→ (x, θ)
(2.5)

where θ is the asymptotic direction of the geodesic γv of M̄ induced by v. By Proposition 2.9.(4),
this map is a homeomorphism whose inverse map given by

v = −L−1(dBθ(x)). (2.6)

By definition, the Heber homeomorphism is the inverse map of (2.5).
By Z2-invariance of the differential of the Busemann functions, see Proposition 2.9.(3), the

map

M̄ → T ∗M̄

x 7→ % dBθ(x)

passes to the quotient under the Z2-action on M̄ and T ∗M̄ , and induces a map

M → T ∗M (2.7)

for θ ∈ S1 and % ∈ R+.
The Heber foliation associated to M is a foliation of T ∗M whose leaves are the images of

the maps (2.7). Note that the leaves (2.7) of the Heber foliation are Lipschitz graphs of T ∗M ;
see Proposition 2.9.(2). The Heber foliation is said to be smooth if the Heber homeomorphism
R2 × S1 → UM̄ is a smooth diffeomorphism.

The main properties of the Heber foliation are given by the following proposition; see [34],
[4], [7], [11], [30], [33] and [39].

Proposition 2.11. Let M = (T2, F ) be a Finsler two-torus without conjugate points. Then its
Heber foliation is a continuous foliation of T ∗M by Lipschitz, Lagrangian, flow-invariant graphs.
Each of these graphs, except for the zero section, can be described as the space of covectors of
the same norm generating a geodesic of M with the same asymptotic direction in S1.

Moreover, the geodesics of M do not have self-intersection and can be classified according to
their asymptotic direction as follows:

(1) the geodesics of M with a given rational asymptotic direction are closed of the same
length and smoothly foliate M ;
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(2) the geodesics of M with a given irrational asymptotic direction are non-closed and foli-
ate M .

Remark 2.12. It is an open question whether the Heber foliation associated to a Finsler two-
torus M without conjugate points is always smooth. Observe however that the closed geodesics
of M homotopic to a simple closed curve define a smooth geodesic foliation of M (and have the
same length); see the case (1) of Proposition 2.11 (or [4, Section 1.2]). The situation is unclear
in the case (2): the foliation of M by geodesics with a given irrational asymptotic direction may
not be smooth.

3. Standard identification of Finsler two-tori without conjugate points

In this technical section, we present a “standard” identification of Finsler two-tori without
conjugate points, where the horizontal and vertical closed curves are geodesics.

Proposition 3.1. Every Finsler two-torus M = (T2, F ) without conjugate points can be iden-
tified to S1 × S1 so that the horizontal and vertical curves S1 × {t} and {s} × S1 are geodesics
with s, t ∈ S1.

In this case, any nonvertical geodesic in the universal cover R2 of T2 is the graph of a mono-
tonic smooth function u : R→ R over its horizontal axis.

Proof. Two closed geodesics of an orientable closed Finsler surface of minimal length in their
homotopy classes have a minimal number of intersection points among homotopic loops; see [25].

Let α and β be two simple closed geodesics of M parameterized proportionally by arclength
intersecting once. We know that the closed geodesics homotopic to α have the same length and
form a smooth geodesic foliation αt of M ; see Proposition 2.11. Observe that the geodesics αt
transversely intersect the geodesic β at a single point. Thus, we can choose the parameter t in the
geodesic foliation (αt) so that αt is the unique closed geodesic homotopic to α with αt(0) = β(t).
Similarly, there exists a smooth geodesic foliation βs of M so that βs is the unique closed geodesic
homotopic to β (of the same length) with βs(0) = α(s). Note that both αt and βs have minimal
length in their homotopy classes and smoothly depend on t and s. It follows from the observation
at the beginning of the proof that the closed geodesics αt and βs intersect once.

Since (αt) and (βs) are two transverse foliation of T2 whose leaves intersect once, the map

φ : S1 × S1 → T2

(s, t) 7→ αt ∩ βs
is a bijection. Let us show that φ is a diffeomorphism. Since both αt and βs smoothly depend
on t and s, the map φ is smooth. The curves φ(·, t) = αt define a geodesic variation. Since the

Finsler metric on M has no conjugate points, the Jacobi vector field ∂φ
∂t it generates along the

closed geodesic αt does not vanish; see [8, §5.4]. Thus, ∂φ
∂t is a nonvanishing vector field parallel

to β′s. Similarly, ∂φ
∂s is a nonvanishing vector field parallel to α′t.

Since α′t and β′s are noncolinear, the same goes for ∂φ
∂s and ∂φ

∂t . It follows that the bijective

map φ : S1 × S1 → T2 is a local diffeomorphism. With this identification, the horizontal and
vertical curves S1 × {t} and {s} × S1 coincide with the closed geodesics αt and βs.

By the description of geodesics on a two-torus given by Theorem 2.7, every nonvertical geo-
desic γ on the universal cover of a Finsler two-torus T2 without conjugate points has a nonvertical
direction. Thus, the geodesic γ transversely intersects the vertical geodesic lines of R2 at least
once and so exactly once. Therefore, the geodesic γ is the graph of a smooth function u : R→ R
over the horizontal axis of R2. Similarly, the geodesic γ intersects every horizontal line exactly
once unless it has a horizontal direction in which case it coincides with a horizontal line. It
follows that the function u : R→ R is monotonic. �
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4. Convergence of the curve shortening flow

We introduce the curve shortening flow in the Euclidean plane and show the existence of
a limit when applied to the graph of a function representing a (minimizing) geodesic on the
universal cover of a Finsler two-torus without conjugate points.

Definition 4.1. Consider the curve shortening flow for (planar) graphs given by the following
quasilinear parabolic equation

ut =
uxx

1 + u2
x

(4.1)

with a C∞ initial condition u(., 0) = u0. Here, the function u : R × [0,+∞) → R takes (x, t)
to u(x, t). By [22] (see also [15]), for every C∞ initial condition u0, the curve shortening flow (4.1)
has a unique solution defined for every t ∈ [0,+∞). Note that this flow extends to curves of the
square flat two-torus T2 = R2/Z2 whose lifts γ to the universal cover R2 are smooth graphs.

The curve shortening flow for curves in R2 is defined using the following equation

∂γ

∂t
= κ ν (4.2)

where γ(., t) is a family of curves in R2 with curvature κ and unit normal vector ν.
It is known that for an initial curve γ(., 0) which is the graph of a function u0, the evolution

equations (4.1) and (4.2) are equivalent: the evolution curve γ(., t) is given by the graph of u(., t);
see [22] or [15] for instance.

For a smooth, complete, properly embedded curve γ0 = γ(., 0) dividing the plane into two
regions of infinite area (which is the case when the initial condition γ0 is the graph of a smooth
function u0), the curve shortening flow (4.2) has a unique solution; see [15]. As previously, this
flow extends to curves of the flat two-torus T2 = R2/Z2 whose lifts to the universal cover R2

satisfy the previous existence and uniqueness condition.

The curve shortening flow satisfies the following crucial property; see [15].

Theorem 4.2. Two disjoint smooth, complete, properly embedded curves γ1 and γ2 dividing the
plane into two regions of infinite area remain disjoint and embedded through the curve shortening
flow.

The following result applies to all geodesics in the universal cover of a Finsler two-torus
without conjugate points.

Proposition 4.3. The asymptotic direction of a minimizing geodesic in the universal cover M̄ =
(R2, F̄ ) of a Finsler two-torus M = (T2, F ) is preserved under the curve shortening flow.

Proof. Every minimizing geodesic γ in M̄ ' R2 lies in an open strip S bounded by two straight
lines of R2 with the same asymptotic direction as γ; see Theorem 2.7. Since these two lines
are fixed under the curve shortening flow of R2 and disjoint curves remain disjoint, see Theo-
rem 4.2, the curve γ evolves within the strip S under the curve shortening flow, keeping the
same asymptotic direction. �

In general, the curve shortening flow of a smooth function u0 : R → R does not necessarily
converge; see [21]. Conditions under which such a convergence occurs can be found in [35] and
[40]. In our case, we show the following result.

Theorem 4.4. Let M = (T2, F ) be a Finsler two-torus without conjugate points. Denote
by M̄ = (R2, F̄ ) its universal Finsler cover. Let u0 : R→ R be a smooth function whose graph G0

is a (minimizing) Finsler geodesic of M̄ . Then, the solution u(., t) of the curve shortening
flow (4.1) with initial condition u0 converges to an affine function u∞ (with the same asymptotic
direction as u0). Here, the convergence is in the Ck-topology for any given k ≥ 0.
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We will consider two cases in the proof of Theorem 4.4: first, the rational case where the
asymptotic direction of the minimizing geodesic represented by the graph of u0 is rational (proved
at the end of this section, even for metrics with conjugate points), then the irrational case
(proved in the next section). In the latter case, we will actually need a stronger result, namely
Theorem 5.1, giving a uniform convergence of the curve shortening flow for geodesics whose
asymptotic direction lies in a small enough neighborhood of a fixed irrational direction.

Remark 4.5. We emphasize that the geometric nature of the curves and functions considered
in Theorem 4.4 is crucial. Indeed, the conclusion fails for general functions as exemplified by
the grim reaper curve y = − log cosx, which is a translating soliton of the curve shortening flow;
see [28] for a classification of self-similar solutions to the curve shortening flow in the plane.

We will first prove Theorem 4.4 in the rational case, without assuming thatM has no conjugate
points (as long as the geodesic represented by G0 is minimizing).

Let us start with a first lemma about the growth of u0, which will also be used in Section 7.

Lemma 4.6. The graph G0 of u0 has linear growth. More precisely, there exists CM > 0 (which
does not depend on u0) such that |u′0| ≤ CM .

Proof. Let a = min[−1,1] u0 and b = max[−1,1] u0. Choose L > 0 such that every vertical open

interval of Euclidean length L in R2 has a translate by an element of the lattice Z2 which
intersects the rectangle [−1, 1]× [a−1, b+1] along a segment {x}× [a−1, b+1] with x ∈ [−1

2 ,
1
2 ],

and in particular, transversally intersects the part of the graph G0 over [−1
2 ,

1
2 ]. For example,

we can take L = b− a+ 4.
By cocompactness of the Finsler metric on R2 (due to its Z2-periodicity), for every ε > 0,

there exists δ > 0 such that every pair of δ-close tangent vectors to R2 generate ε-close length L
geodesic rays.

By contradiction, suppose that |u′0| becomes arbitrarily large, that is, some tangent vector
to the graph G0 becomes δ-close to a vertical vector. Since the vertical lines of R2 are Finsler
geodesics, this implies that the geodesic G0 becomes ε-close to some vertical segment of Euclidean
length L. By our choice of L and for ε small enough, this implies that a translate of G0

by a (nontrivial) element of Z2 intersects the rectangle [−1, 1] × [a, b] along an arc joining
[−1, 1]× {a} and [−1, 1]× {b} and in particular, transversally intersects G0. Thus, the geodesic
of M corresponding to the projection of G0 to the torus has a transverse selfintersection. Hence
a contradiction with Proposition 2.11. �

The following result showing that the curve shortening flow flattens out the graph of u0 is
a direct consequence of the upper bound on the curvature obtained in [21, Proposition 4.4]
combined with Lemma 4.6.

Lemma 4.7. The curvature of the graph Gt of u(., t) converges to zero in the Ck-topology as
t goes to infinity (uniformly with respect to u0). More precisely, there exists ck = ck(M) > 0
(which does not depend on u0) such that

‖κt‖2Ck ≤
ck
tk+1

for every t > 0, where κt is the curvature of Gt.

Proof. A uniform upper bound on the second fundamental form of entire (hypersurface) graphs
in Rn moving by the mean curvature flow can be found in [21, Proposition 4.4]. In the case of
the graph Gt, this bound can be written

‖κt‖2Ck ≤
ck
tk+1
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where ck = ck(M) is a constant depending only on k and the constant CM given by Lemma 4.6.
�

Our second result is about the width of the graph Gt defined as follows.

Definition 4.8. By Theorem 2.7, the graph G0 lies in a strip of R2 bounded by two parallel
straight lines and so does the graph Gt. The minimal Euclidean distance between two such lines
is called the width of Gt.

By the properties of the curve shortening flow, see Theorem 4.2, the width of Gt is nonin-
creasing. Moreover, we have

Lemma 4.9. Suppose that the asymptotic direction of the geodesic represented by G0 is rational.
Then, the width of Gt tends to zero as t goes to infinity.

Proof. By contradiction, assume that there exists w0 > 0 such that for every t ≥ 0, the graph Gt
is of width greater than w0.

Since the asymptotic direction θ0 of G0 is rational, then the projection γ0 of G0 to the torus T2

closes up. The cover of T2 corresponding to the subgroup generated by the homotopy class of γ0

is a flat cylinder C = S1 × R containing γ0. The projection γt of Gt to C lies in the minimal
annulus S1×I of C containing γ0. Since the curvature of γt uniformly converges to zero as t goes
to infinity, see Lemma 4.7, the closed curve γt of bounded length becomes arbitrarily C1-close
to a circle of C, for t large enough. Thus, the width of γt, and so of Gt, tends to zero as t goes
to infinity. �

Combining the zero convergence results of the curvature of Gt and of its width when the
asymptotic direction of G0 is rational, see Lemma 4.7 and Lemma 4.9, we immediately deduce
Theorem 4.4 in the rational case. To prove the theorem in the remaining irrational case, it is
enough to show that the conclusion of Lemma 4.9 still holds when the asymptotic direction of G0

is irrational. This is done in the next section where a stronger result is proved; see Theorem 5.1.

5. Convergence of the width at irrational directions

We show that the width of a geodesic in the universal cover of a Finsler two-torus without
conjugate points converges to zero under the curve shortening flow for geodesics whose asymp-
totic direction lies in a small enough neighborhood of a fixed irrational direction. We deduce
that the straight lines obtained at the limit vary continuously at irrational directions.

Theorem 5.1. Let M = (T2, F ) be a Finsler two-torus without conjugate points. Denote
by M̄ = (R2, F̄ ) its universal Finsler cover. Let θ be an irrational direction. For every ε > 0,
there exists t0 > 0 such that for every geodesic γ of M̄ with asymptotic direction close enough
to θ and every t ≥ t0, the width of γt satisfies width(γt) < ε.

Remark 5.2. The point of Theorem 5.1 is that t0 does not depend on γ as long as its asymp-
totic direction remains close enough to the irrational direction θ. Of course, Theorem 5.1 also
applies when the asymptotic direction of the geodesic γ is irrational, which gives an analogue
of Lemma 4.9 in the irrational case and allows us to derive Theorem 4.4 in this case too. We
will need this stronger version of Theorem 4.4 to establish the continuity of the Euclidean curve
shortening flow at the limit for Finsler geodesics with irrational asymptotic directions.

We decompose the proof of the proposition into several lemmas.

Definition 5.3. The vertical distance between two subsets A,B ⊂ R2 is defined as

sup
V

inf{d(x, y) | x ∈ A ∩ V, y ∈ B ∩ V }



DEFORMING FINSLER TWO-TORI 11

where V runs over all vertical lines of R2 intersecting A and B, and d represents the Euclidean
distance in R2.

The following lemma is a quantitative version of the fact that an irrational geodesic in the
square flat torus is dense.

Lemma 5.4. Let θ be an irrational direction. For every ε ∈ (0, 1), there exists L = L(θ, ε) > 0
such that every segment c of R2 of direction close enough to θ which projects onto an interval
of the x-axis of length at least L passes below a point x+ of Z2 and above a point x− of Z2, both
at vertical distance less than ε from the segment c.

Proof. Let ε ∈ (0, 1). Fix a point x̄ ∈ Z2. Let x̄+ and x̄− be the points of R2 at vertical distance ε
from x̄, with x̄+ above x̄ and x̄− below x. Let m̄+ and m̄− be the midpoints of [x̄, x̄+] and [x̄, x̄−].
Denote by π(m̄+) and π(m̄−) the projections of m̄+ and m̄− to T2, where π : R2 → T2 is the
covering projection. Suppose that the segment c is directed along the irrational direction θ. If
the segment c is long enough (depending on θ and ε), its projection to T2 passes at (vertical)
distance less than ε

2 from any point, and in particular from π(m̄+) and π(m̄−). Thus, the

segment c passes at vertical distance less than ε
2 from some Z2-translates m+ and m− of m̄+

and m̄− (i.e., some lifts of π(m̄+) and π(m̄−)). Define x+ and x− as the corresponding Z2-
translates of x̄+ and x̄−. By construction, the segment c passes below x+ and above x− at
vertical distance less than ε from them. The same holds for a segment c of direction close
enough to θ. �

Denote by (~ı,~) the canonical basis of R2. The following lemma is a quantitative version of
the fact that the curve shortening flow straighten curves.

Lemma 5.5. Assume that the horizontal and vertical curves of M are geodesic. For every
ε ∈ (0, 1) and every L > 0, there exists t0 = t0(ε, L) > 0 such that for every t ≥ t0 and every
geodesic γ of M̄ whose asymptotic direction forms an angle lying between −π

4 and π
4 with the

horizontal direction, the following holds: every arc of γt over an interval I of length L of the
x-axis is at vertical distance at most ε from a segment of R2 over the same interval I.

Proof. By Theorem 2.7, the geodesic γ lies in a strip S of width w with the same asymptotic
direction, where w does not depend on γ (only on the Finsler metric on M). Since the vertical
curves of M̄ are geodesic, the tangent vector γ′ is uniformly bounded away from a vertical
direction, that is, |〈γ′,~〉| ≤ C ‖γ′‖ for some constant C ∈ (0, 1) not depending on the geodesic γ.
Otherwise, the geodesic γ would be close to a vertical geodesic and would leave the strip S whose
vertical width is bounded.

By Lemma 4.7, there exists c0 > 0 not depending on γ such that the curvature κ(γt) of γt
satisfies

|κ(γt)| ≤
c0√
t
.

Thus, for t large enough, the curve γt is almost straight. Hence the desired result. �

We can now proceed to the proof of Theorem 5.1.

Proof of Theorem 5.1. By Proposition 3.1, we can assume that the horizontal and vertical curves
of T2 are geodesics. Switching the roles of the x- and y-axis, and the orientation of γ if necessary,
we can further assume that the angle between the asymptotic direction of γ and the horizontal
vector ~ı lies between −π

4 and π
4 . Recall that the curve γt lies in a (closed) Euclidean strip St =

S(γt) of R2 bounded by two straight lines ∆+ = ∆+(γt) and ∆− = ∆−(γt) with the same
asymptotic direction as γ, with ∆+ above ∆− in R2; see Theorem 2.7.

Let us show that if the asymptotic direction of γ is close enough to θ (more precisely, if the
asymptotic direction of γ is in the neighborhood of θ given by Lemma 5.4), then the width of St
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is less than 14ε for t ≥ t0. Take a point p+ = p+(γt) of γt at vertical distance at most ε from ∆+

(below ∆+) and denote by p̄+ its projection to the x-axis. Let I be the interval of the x-axis
centered at p̄+ of length L, where L is given in Lemma 5.4. Consider the arc α+ of γt over I.
By Lemma 5.5, this arc α+ is at vertical distance at most ε from a segment c of R2. Thus,
the segment c lies below the line ∆+ + ε~ above ∆+ at vertical distance ε from ∆+ and passes
through a point at vertical distance at most ε from p+. Therefore, the segment c lies at vertical
distance at most 6ε from ∆+ + ε~. We deduce that the arc α+ of γt lies below ∆+ at vertical
distance at most 6ε from ∆+. See Figure 1.

γt

p+

c

∆+

∆+ + ε
−→
j

∆+ − 6ε
−→
j

α+

x−

Figure 1. Relative positions of the curves α+, c and ∆+

Apply Lemma 5.4 to the segment lying in ∆+−6ε~ above the interval I of length L, assuming
the asymptotic direction of ∆+ is close enough to the irrational direction θ. This yields a
point x− of Z2 below ∆+− 6ε~ at vertical distance at most ε from it and so at vertical distance
at most 7ε from ∆+. It follows that the geodesic arc α+ of γt passes above the point x− of Z2

at vertical distance at most 7ε from ∆+. Similarly, the curve γt passes below a point x+ of Z2

at vertical distance at most 7ε from ∆−.
Let T be the translation of R2 by the integral vector x− − x+ ∈ Z2. Note that T is an

isometry both for the Euclidean metric and the Finsler metric. By construction, the point x−
lies below γt and above T (γt), and is at vertical distance at most 7ε from ∆+ and T (∆−). The
geodesics γ and T (γ) have the same asymptotic direction and do not intersect. The same holds
for their images γt and T (γt) under the curve shortening flow; see Section 4. In addition, T (γt)
is proved to be below γt and T (∆−) is below ∆−, hence T (∆−) bounds γt from below. It follows
that the curve γt lies in the strip of width at most 14ε bounded by ∆+ on top and by T (∆−) at
the bottom. Thus, width(γt) ≤ 14ε. �

By Theorem 4.4 and Proposition 4.3, a geodesic in the universal cover of a Finsler two-torus
converges to an (oriented) straight line of R2 with the same asymptotic direction. An oriented
straight line ∆ of R2 is determined by its asymptotic direction θ(∆) and its signed distance p(∆)
to the origin in R2; see Section 9 for a more detailed description. The following result which is
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a consequence of the previous proposition, is about the regularity of the signed distance at the
limit when the geodesic varies.

Proposition 5.6. Let M = (T2, F ) be a Finsler two-torus without conjugate points. Denote
by M̄ = (R2, F̄ ) its universal Finsler cover. Then the function

p∞ : UM̄ → R
v 7→ p(γ∞v )

is continuous at vectors v generating a geodesic γv with irrational asymptotic direction.

Proof. Fix a vector v0 generating a geodesic γv0 with irrational asymptotic direction. Let ε > 0.
By Theorem 5.1, we can choose t0 > 0 such that for every geodesic γv of M̄ with v ∈ UM̄ close
enough to v0, the curve γt0v lies in a (closed) Euclidean strip of width less than ε. Since its
limit γ∞v lies in the same strip, the Hausdorff distance between γt0v and γ∞v in R2 is less than ε.

For v ∈ UM̄ close enough to v0, the curve γt0v is at Hausdorff distance less than ε from γt0v0
on

any given compact subset of R2. It follows that for v ∈ UM̄ close enough to v0, the Hausdorff
distance between the limit straight lines γ∞v and γ∞v0

on any given compact subset of R2 is less
than 3ε. Thus,

|p(γ∞v )− p(γ∞v0
)| ≤ |p(γ∞v )− p(γt0v )|+ |p(γt0v )− p(γt0v0

)|+ |p(γt0v0
)− p(γ∞v0

)| < 3ε.

Hence, the function p∞ : UM̄ → R is continuous at v0. �

It is unclear whether the function p∞ : UM̄ → R is continuous at vectors generating geodesics
pointing in rational directions. The following example illustrates possible issues. Note however
that these issues may not occur for geodesics in the universal cover of a Finsler torus without
conjugate points.

Example 5.7. We can construct a smooth family of graphs asymptotic to the lines y = mx
converging to the horizontal line y = 1 in the smooth topology on compact sets, as m goes to
zero. Such a family converges to a non-continuous family of lines under the curve shortening
flow, namely the family formed of the lines y = mx for m > 0 and y = 1 for m = 0. See Figure 2.

Figure 2. Non-continuity of the limit under the curve shortening flow
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6. Analytic expression of the limit under the curve shortening flow

In this section, we derive the following analytic expression of the limit under the curve short-
ening flow of a function whose graph represents a (minimizing) geodesic in the universal cover
of a Finsler two-torus without conjugate points; see Theorem 4.4.

Proposition 6.1. Let M = (T2, F ) be a Finsler two-torus without conjugate points. Denote
by M̄ = (R2, F̄ ) its universal Finsler cover. Let u : R→ R be a smooth function whose graph G
in R2 is a (minimizing) Finsler geodesic of M̄ with the same asymptotic direction as the line
y = ax. Then, the limit u∞ of u under the curve shortening flow (4.1) satisfies

u∞(0) = lim
R→+∞

1

2R

∫ R

−R
u(x)− ax dx

and, more generally,

u∞(x0) = lim
R→+∞

1

2R

∫ R

−R
u(x+ x0)− ax dx (6.1)

for every x0 ∈ R. In particular, the limits exist.
Actually, the convergence in (6.1) is uniform, that is,

lim
R→+∞

sup
x0∈R

1

2R

∣∣∣∣∫ R

−R
u(x+ x0)− ax− u∞(x0) dx

∣∣∣∣ = 0.

Proof. Assume that a = 0. By Theorem 4.4, the solution of the curve shortening flow (4.1) with
initial condition u converges to a constant function u∞ = u∞(0). Now, recall that the solution of
the curve shortening flow equation (4.1) converges uniformly to the solution of the heat equation
with the same initial condition; see [35, Theorem 1.4]. Thus, the solution of the heat equation
with initial condition u uniformly converges to the same constant function u∞ = u∞(0). Since
the initial condition u is bounded, see Lemma 4.9, it follows from the expression of the limit of
the solution of the heat equation, see [36, 37], that

u∞(0) = lim
R→+∞

1

2R

∫ R

−R
u(x) dx.

See also [35, §3]. By a change of variable, we obtain (6.1). Actually, since the solution of the heat
equation with the initial condition u uniformly converges, the convergence in (6.1) is uniform.

In the general case (i.e., when a is not necessarily zero), we apply the same argument to v(x) =
u(x)− ax. �

Remark 6.2. By Theorem 4.4, the limit function u∞ is an affine function of the form u∞(x) =
ax+ b. It follows from Proposition 6.1 that

a = u∞(1)− u∞(0) = lim
R→+∞

1

2R

∫ R

−R
u(x+ 1)− u(x) dx (6.2)

and

b = u∞(0) = lim
R→+∞

1

2R

∫ R

−R
u(x)− ax dx. (6.3)

Thus, the limit affine function u∞ : R→ R is given by the limits of some linear integrals of u.

Remark 6.3. As for Theorem 4.4, the conclusion of Proposition 6.1 still holds in the rational
case when M has conjugate points (as long as the geodesic represented by G is minimizing).
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7. Curve shortening flow and unit bundle diffeomorphism

We show that the deformation of the geodesic foliation of a Finsler two-torus without con-
jugate points under the curve shortening flow induces a family of diffeomorphisms on the unit
tangent bundle of the torus. This gives rise to a deformation of the Heber foliation on the
cotangent bundle.

Let M = (T2, F ) be a Finsler two-torus without conjugate points, where T2 = R2/Z2. De-
note by M̄ = (R2, F̄ ) the universal Finsler cover of M . The isometric action of Z2 by deck
transformations on M̄ induces a natural action on UM̄ and TM̄ .

Definition 7.1. Consider the map

Ψt : UM̄ → TR2 \ {0}
defined as

Ψt(v) = (γtv)
′(0)

for every v ∈ UM̄ and t ∈ [0,∞), where (γtv) is the Euclidean curve shortening flow of the
Finsler geodesic γv induced by v; see Definition 4.1. Note that Ψ0 is the identity map on UM̄ .
Since Z2 acts by isometries both on M̄ and R2, the map Ψt is Z2-equivariant.

Consider also the map

Ψt : UM̄ → U0R2

to the unit tangent bundle U0R2 of the Euclidean plane R2 defined as

Ψt(v) = π[Ψt(v)] = π[(γtv)
′(0)]

where π : TM̄ \ {0} → U0R2 is the radial projection onto the unit circle of each tangent plane
of the Euclidean plane R2 = M̄ . The map Ψt is also Z2-equivariant and its quotient map is a
π1-isomorphism since it is the radial projection of the identity map for t = 0.

The following result is derived from an analysis of the (parabolic) partial differential equation
satisfied by the curve shortening flow. This is the analogue of Proposition 4.4 in [38] for the
family of diffeomorphisms of the unit tangent bundle of the round projective plane obtained by
applying the curve shortening flow to the geodesics of a Zoll Finsler metric.

Theorem 7.2. Let M = (T2, F ) be a Finsler torus without conjugate points. For every t ∈
[0,+∞), the map Ψt : UM̄ → U0R2 is a diffeomorphism.

Its quotient map, still denoted by Ψt : UM → U0T2, is also a diffeomorphism.

Proof. First, let us show that the map Ψt : UM̄ → TR2 is an immersion.
For t = 0, this is true since, by construction, for every v ∈ UM̄ ,

Ψ0(v) = γ′v(0) = v.

Assume t > 0. Let v0 ∈ UM̄ and ζ ∈ Tv0UM̄ . Let v = v(λ) be a smooth vector variation
in UM̄ with v(0) = v0 and v′(0) = ζ. We want to show that for every t > 0, the differential

dΨt(v0) : Tv0UM̄ → TΨt(v0)TR
2

of Ψt at v0 is injective. That is, if the derivative dΨt(v0)(ζ) of Ψt(v(λ)) vanishes at λ = 0, then
the vector ζ = v′(0) is zero.

By Proposition 3.1, we can assume that the horizontal and vertical lines of M̄ are geodesics.
Switching the horizontal and vertical lines if necessary, we can assume that the vector v0 is
nonvertical and therefore each geodesic γλ = γv(λ) of M̄ is represented in M̄ = R2 as the graph
of some smooth function u0(., λ) for λ close enough to zero. The map (x, y) 7→ (x, y − u0(x, 0))
is a diffeomorphism of R2 taking vertical lines to vertical lines and the geodesic γ0 to the x-axis.
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In this new coordinate system, every curve γtλ with λ close enough to zero obtained by applying
the curve shortening flow to γλ, see (4.2), is represented as the graph

{(x, u(x, t, λ)) | x ∈ R}

of a smooth function u(., t, λ) with u(., 0, 0) = 0. More specifically,

γtλ(s) = (x(s, t, λ), u(x(s, t, λ), t, λ))

where s is the arclength-parameter of γtλ for the Finsler metric F̄ (with an orientation compatible
with x). Note that the partial derivative xs does not vanish (and is positive). Observe also that
ux(., 0, 0) = uxx(., 0, 0) = 0.

In the new coordinate system, the equation of the curve shortening flow is no longer given by
(4.1). It satisfies a new equation which has been derived in [3, Eq. (3.2)] and [26, Appendix].
More precisely, the function

u : R× [0,∞)× (−ε, ε)→ R
satisfies the following (parabolic) partial differential equation of the curve shortening flow

ut = F(x, u, ux, uxx) (7.1)

where F is a smooth function defined on R4 with

Fq(x, u, p, q) > 0

which can be expressed in terms of the coefficients of the Euclidean metric in the new coor-
dinate system (where γ0 coincides with the x-axis). Here, the subscripts refer to the partial
differentiations. Note that we do not need an explicit form of F .

The tangent vector Ψt(v(λ)) = (γtλ)′(0) ∈ U0R2 is given by

Ψt(v(λ)) = (x, u, xs, xs ux) (7.2)

where x∗ = x∗(0, t, λ) and u∗ = u∗(x(0, t, λ), t, λ). Taking the derivative of (7.2) with respect
to λ, we obtain for λ = 0

dΨt(v0)(ζ) = (xλ, xλ ux + uλ, xsλ, xsλ ux + xs xλ uxx + xs uxλ) (7.3)

where x∗ = x∗(0, t, 0) and u∗ = u∗(x(0, t, 0), t, 0).

Suppose that dΨτ (v0)(ζ) = 0. Recall that xs does not vanish. In this case, the functions xλ,
uλ, xsλ and uxλ vanish at s = 0, t = τ , λ = 0. In particular, the function v = uλ has a multiple
zero at (x(0, τ, 0), τ, 0), i.e., both v and vx vanish at this point.

Using the fact that v has a multiple zero and that the Finsler metric has no conjugate points,
our goal is to show that ζ = 0.

The following result shows that v vanishes when λ = 0.

Lemma 7.3. For every x ∈ R and t ≥ 0, we have

v(x, t, 0) = 0.

Proof. Let us derive the evolution equation of v. Differentiating the relation (7.1) with respect
to λ leads to the following parabolic partial differential equation

vt = a(x, t, λ) vxx + b(x, t, λ) vx + c(x, t, λ) v (7.4)

where a = Fq(x, u, ux, uxx), b = Fp(x, u, ux, uxx) and c = Fu(x, u, ux, uxx).
By Lemma 4.7 (still for λ = 0), the function u has linear growth with respect to x ∈ R and

all the partial derivatives of u (and so a, a−1, b and all their partial derivatives) are uniformly
bounded with respect to x ∈ R and t ≥ 0.
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It follows from [2, Theorem B] that the function v(., t, 0) has at least two zeros for t < τ (the
number of zeros does not increase under the flow and v(., τ, 0) has a double zero). In particular,
v(., 0, 0) vanishes at least twice.

Consider the geodesic variation

γλ(s) = (x(s, 0, λ), u(x(s, 0, λ), 0, λ)).

Taking the derivative with respect to λ and using that ux(., 0, 0) = 0, we obtain for λ = 0 the
Jacobi field

J = (x, u, xλ, v)

where x∗ = x∗(s, 0, 0), u = u(x(s, 0, 0), 0, 0) and v = uλ = uλ(x(s, 0, 0), 0, 0). Since s 7→ x(s, 0, 0)
is a diffeomorphism and v(., 0, 0) vanishes twice, the Jacobi field J is parallel to the horizontal
axis γ0, at two points s1 and s2. That is, J(si) = αi γ

′
0(si) with αi ∈ R, for i = 1, 2.

Consider the decomposition

J =

(
s2 − s
s2 − s1

α1 +
s1 − s
s1 − s2

α2

)
γ′ + J⊥.

By construction, J⊥ is a Jacobi field along γ0 which vanishes twice, namely at s1 and s2. Since
the Finsler metric has no conjugate points, the Jacobi field J⊥ is trivial. Thus, J is parallel to γ′0
and v(., 0, 0) is constant equal to zero. Now, since v satisfies the parabolic partial differential
equation (7.4), we deduce from the initial condition v(., 0, 0) = 0 that v(., ., 0) is zero. �

We can now derive the desired result.

Lemma 7.4. We have ζ = 0.

Proof. By Lemma 7.3, the function v(., ., 0) and its derivative vx(., ., 0) are zero. In particular,
uλ(., 0, 0) and uxλ(., 0, 0) are zero. Besides, we also have ux(., 0, 0) = uxx(., 0, 0) = 0. It follows
from the relation dΨ0(v0)(ζ) = ζ and the expression (7.3) that

ζ = dΨ0(v0)(ζ) = (xλ, 0, xsλ, 0)

where x∗ = x∗(0, 0, 0). By our choice of coordinate, the geodesic γ0 agrees with the x-axis and
its tangent vector v0 is horizontal. Now, since ζ ∈ Tv0UR2 is tangent at v0 to the unit tangent
bundle of R2 with the Finsler metric, the vector (xsλ, 0) of R2 formed of the last two coordinates
of ζ in R4 is not colinear to v0 unless it is trivial. Since both vectors are horizontal, it follows
that xs(0, 0, 0) = 0.

To show that xλ also vanishes at (0, 0, 0), we consider a smooth variation of horizontal vec-
tors v(λ) with v(0) = v0 and v′(0) = ζ (recall that both v0 and ζ are horizontal). Since v(λ) is
tangent to the geodesic γ0, the induced geodesic variation γλ is given by a change of variable

γλ(s) = γ0(s+ s̄(λ))

where s̄ : R→ R is a smooth function with s̄(0) = 0 so that

γ′λ(0) = γ′0(s̄(λ)) = v(λ). (7.5)

Following the curve shortening flow, this implies that

γtλ(s) = γt0(s+ s̄(λ)) = γ0(s+ s̄(λ)).

In particular,

Ψt(v(λ)) = (γtλ)′(0) = γ′0(s̄(λ)).

Taking the derivative of this expression with respect to λ, we obtain for λ = 0

dΨt(v0)(ζ) = s̄′(0)
∂

∂s
(γ′0)|s=0.
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Observe that the vector ∂
∂s(γ

′
0)|s=0 of TΨt(v0)TR

2 is nonzero since the vector γ′0(0) formed of its

first two coordinates is nonzero.
Now, by assumption, dΨτ (v0)(ζ) = 0. This implies that s̄′(0) = 0. Differentiating the

equation (7.5) with respect to λ and plugging in λ = 0, we derive that ζ = v′(0) is zero. �

It follows from Lemma 7.4 that the map Ψt : UM̄ → TR2 \ {0} is an immersion.

Let us show that this immersion is transverse to the rays R∗+u = {su | s > 0}, where the
vector u runs over UR2. By contradiction, assume that there exist v ∈ UM̄ and a nonzero vector
ζ ∈ TvUM̄ such that the unit tangent vector u pointing to Ψτ (v) and the vector dΨτ (v)(ζ) are
colinear in the tangent space TΨτ (v)TR

2 to TR2 \ {0} at Ψτ (v). In the previous coordinate

system, see (7.2) and (7.3), the unit tangent vector u is proportional to

u ∼ (0, 0, 1, ux)

where ux = ux(x(0, τ, 0), τ, 0), while

dΨτ (v)(ζ) = (xλ, xλ ux + uλ, xsλ, xsλ ux + xs xλ uxx + xs uxλ)

where x∗ = x∗(0, τ, 0) and u∗ = u∗(x(0, τ, 0), τ, 0). Since these two vectors are colinear, the
functions xλ, uλ and the determinant∣∣∣∣ 1 xsλ

ux xsλ ux + xs xλ uxx + xs uxλ

∣∣∣∣ = xs (xλ uxx + uxλ)

vanish at (s, t, λ) = (0, τ, 0). So does the function uxλ (recall that xs does not vanish). Thus,
both v and vx vanish at (0, τ, 0), where v = uλ. That is, the function v has a multiple zero
at (0, τ, 0). By Lemmas 7.3 and 7.4, this implies that ζ = 0, which is absurd. Therefore, the
map Ψt : UM̄ → TR2 \ {0} is transverse to the rays of TR2 \ {0}.

This implies that the map Ψt : UM̄ → U0R2 defined from Ψt by taking the radial projection
π : TR2 \ {0} → U0R2 is a local diffeomorphism. Since the map Ψt is Z2-equivariant and the
action of Z2 on UM̄ is cocompact, it follows that the map Ψt is a proper local diffeomorphism.
Therefore, it is a covering map. Now, the quotient map of Ψt is a π1-isomorphism as observed
at the end of Definition 7.1. Hence, the covering Ψt : UM̄ → U0R2 is a diffeomorphism and so
is its quotient map. �

Remark 7.5. Using the natural identifications U0T2 ' UM (by radial projection on each tan-
gent plane) and U∗M ' UM (by the Legendre transform), Theorem 7.2 yields a family of dif-
feomorphisms U∗M → U∗M which, by homogeneity, extend to diffeomorphisms T ∗M → T ∗M .
We still denote by Ψt : T ∗M → T ∗M this family of diffeomorphisms. Since the asymptotic di-
rections of the geodesics of M are preserved under the curve shortening flow, see Proposition 4.3,
each diffeomorphism Ψt : T ∗M → T ∗M sends the Heber foliation of T ∗M to a continuous folia-
tion of T ∗M by Lipschitz Lagrangian graphs. Furthermore, if the Heber foliation is smooth, so
is the image foliation.

8. Geodesic flow deformation

Using the curve shortening flow and the family of diffeomorphisms of the previous section, we
construct a deformation of the geodesic flow of a Finsler two-torus without conjugate points to
the geodesic flow of the square flat two-torus.

Let M = (T2, F ) be a Finsler two-torus. Denote by M̄ = (R2, F̄ ) the universal Finsler cover
of M . Identify UM̄ ' U0R2 by radial projection on each tangent plane. With this identification,
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the geodesic flow of the (quadratically convex) Finsler metric F̄ on M̄ induces a smooth free
proper Z2-equivariant R-action on U0R2 by conjugation. This action is denoted by

ρ : R× U0R2 → U0R2

and is defined as
ρ(s, v) = γ′v(s)

for every s ∈ R and v ∈ U0R2, where γv is the arclength parametrized F̄ -geodesic induced
by v. In this expression, the vector v ∈ U0R2 is identified with a vector of UM̄ and the
vector γ′v(s) ∈ UM̄ is identified with a vector of U0R2 by radial projection. By construction,
the orbits of the action ρ of R on U0R2 project down to geodesics of M̄ .

The following result yields a deformation of the action

ρ : R× U0R2 → U0R2

induced by the geodesic flow of M̄ into the corresponding action induced by the geodesic flow
of the Euclidean plane R2.

Theorem 8.1. Let M = (T2, F ) be a Finsler two-torus without conjugate points and M̄ =
(R2, F̄ ) be its universal Finsler cover. Then there exists a smooth free proper Z2-equivariant
R-action

ρt : R× U0R2 → U0R2

induced by the curve shortening flow, which starts at ρ0 = ρ, varies smoothly with respect
to t ∈ [0,∞), s ∈ R and v ∈ U0R2, and converges to the action ρ∞ : R × U0R2 → U0R2

of the geodesic flow of the Euclidean plane R2. Here, the convergence is in the compact-open
Ck-topology for any given k ≥ 0.

Furthermore, for every t ∈ [0,∞], every ρt-orbit projects to an embedding of R into R2 under
the canonical projection U0R2 → R2.

Proof. First, let us modify the ρ-action without changing its orbits through a Euclidean arclength
reparametrization. For every Finsler geodesic γ : R→ M̄ , let γ̂ be the orientation-preserving
arclength reparametrization of γ with the same initial point, i.e., γ̂(0) = γ(0), with respect to
the Euclidean metric on R2. Denote by σ : R→ R the corresponding change of parameter with

γ̂(s) = γ(σ(s)).

For every t ∈ [0, 1], define γt : R→ R2 as

γt(s) = γ(t σ(s) + (1− t) s)
for every s ∈ R. Clearly, the curve γt is a proper, regular, orientation-preserving reparametriza-
tion of γ with the same initial point as γ. By construction, the isotopy (γt) connects γ0 = γ
to γ1 = γ̂. Note that the isotopy (γt) smoothly depends on γ (where the curve space on the
plane is endowed with the metrizable compact-open Ck-topology).

This reparametrization allows us to define an R-action deformation of ρ

ρt : R× U0R2 → U0R2

with ρ0 = ρ such that
ρt(s, v) = (γv)

′
t(s)

for every s ∈ R and v ∈ U0R2. Note that the ρt-orbits remain the same for every t ∈ [0, 1] and
that

ρ1(s, v) = (γ̂v)
′(s).

Next, we extend the deformation (ρt) of the geodesic flow to t ≥ 1 using the isotopy of
diffeomorphisms Ψt : UM̄ → U0R2 given by Theorem 7.2. For every v ∈ U0R2, consider the
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unique curve γtu tangent to v at s = 0 and pointing in the same direction as v. That is,
u = Ψ−1

t (v) with the identification UM̄ ' U0R2. Reparametrize this curve proportionally to

its Euclidean arclength into γ̂tu preserving both its initial point and its orientation. Define the
R-action

ρt : R× U0R2 → U0R2

such that ρt+1(s, v) is the vector of U0R2 tangent to γ̂tu at the point of parameter s for every
t ≥ 0. That is,

ρt+1(s, v) =
(
γ̂t

Ψ−1
t (v)

)′
(s)

for every t ≥ 0, s ∈ R and v ∈ U0R2. Since Ψt : U0R2 ' UM̄ → U0R2 is a diffeomorphism,
see Theorem 7.2, the map ρt(s, .) is also a diffeomorphism of U0R2. Clearly, the R-action ρt
on U0R2 is smooth, free and proper. Since Z2 acts by isometries both on M̄ and R2, the R-action
ρt : R× U0R2 → U0R2 is Z2-equivariant. It also satisfies the symmetry property

ρt(s,−v) = −ρt(−s, v)

for every t ∈ [0,∞), s ∈ R and v ∈ U0R2. It follows from Lemma 4.7 that for every ε > 0

and every t ≥ 0 large enough, the Ck-norm of the curvature of the curves γ̂tu in the Euclidean
plane R2 is at most ε for every u ∈ U0R2. Hence, these curves are uniformly close to segments
in any given compact set of R2 as t goes to infinity. By construction, this implies that the action
ρt is Ck-close to the action ρ∞ induced by the geodesic flow of the Euclidean plane R2 on any
compact set for t large enough. Moreover, every ρt-orbit is transverse to the fibers of U0R2 → R2

and projects to an embedding of R into R2 by the canonical projection U0R2 → R2. �

Remark 8.2. The Heber foliation of T ∗M̄ is deformed into the canonical Heber foliation of T ∗R2

(i.e., the foliation induced by straight lines via the Legendre transform) under the curve short-
ening flow of the Euclidean plane R2.

9. Crofton’s formula for Finsler metrics without conjugate points

We review a general Crofton formula for Finsler metrics without conjugate points on surfaces.

Let M = (T2, F ) be a Finsler two-torus without conjugate points. Denote by M̄ = (R2, F̄ )
the universal Finsler cover of M , where the Finsler metric F̄ is the lift of F . We will identify TM̄
with T ∗M̄ , and UM̄ with U∗M̄ via the Legendre transform; see (2.1). Using these identifications,
the action ρF̄ of R on TM̄ (resp. UM̄) given by the geodesic flow of F̄ induces an action on T ∗M̄
(resp. U∗M̄) by conjugation by the Legendre transform, namely the cogeodesic flow of F̄ . Both
R-actions will be denoted by ρF̄ . Note that the R-orbits of ρF̄ on U∗M̄ are transverse to the
contact structure given by the kernel of the tautological one-form α defined in (2.2).

Recall that the quotient manifold theorem, see [32, Theorem 7.10], asserts that if G is a
Lie group acting smoothly, freely and properly1 on a smooth manifold N , then the quotient
space N/G is a topological manifold with a unique smooth structure such that the quotient map
N → N/G is a smooth submersion (actually, a locally trivial fibration by Ehresmann’s fibration
theorem [23]). This result applies to the R-action ρF̄ of the cogeodesic flow of F̄ on U∗M̄ .
Indeed, since M̄ is simply connected and the Finsler metric F̄ on M̄ has no conjugate points,
the cogeodesic flow action on U∗M̄ is free and proper. Denote by

ΓF̄ = U∗M̄/ρF̄

1A Lie group G acts properly on a manifold N if for every compact set K ⊂ N , the subset {g ∈ G| g.K∩K 6= ∅}
is compact.
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the quotient manifold and by
qF̄ : U∗M̄ → ΓF̄

the quotient fibration. The quotient manifold ΓF̄ represents the space of unparametrized oriented
geodesics of the Finsler metric F̄ without conjugate points. It identifies with S1 × R, that is,

ΓF̄ ' S1 × R.
Indeed, recall that every geodesic of M̄ has an asymptotic direction and that the geodesics of M̄
with a given asymptotic direction foliate M̄ ; see Section 2. Conversely, every direction is the
asymptotic direction of a geodesic of M̄ ; see Section 2. Thus, every oriented unparametrized
geodesic of M̄ is determined by its asymptotic direction and its signed Euclidean distance to the
origin of R2 where the sign is positive if the orientation of the geodesic matches the orientation
of the Euclidean circle centered at the origin tangent to it, and negative otherwise. This yields
the desired one-to-one correspondence between ΓF̄ and S1 × R.

The isometric action of Z2 on M̄ by deck transformations induces a natural action on ΓF̄ .
Note that the action of Z2 on ΓF̄ is neither free, nor continuous.

By construction, the fibration qF̄ : U∗M̄ → ΓF̄ is Z2-equivariant. It takes a unit cotangent
vector ξ ∈ U∗M̄ to the unparametrized oriented F̄ -geodesic of M̄ it generates. Thus, for every
γ ∈ ΓF̄ , the projection p(q−1

F̄
(γ)), where p : T ∗M̄ → M̄ is the canonical projection, represents

the unparametrized geodesic of F̄ on M̄ given by γ. We will sometimes identify γ and p(q−1
F̄

(γ)).

Consider the double fibration

U∗M̄
p

||

qF̄

##

i // T ∗M̄

M̄ ΓF̄

where i : U∗M̄ ↪→ T ∗M̄ is the canonical injection. Note that the product map p× qF̄ : U∗M̄ →
M̄×ΓF̄ is an embedding. Since the canonical symplectic form ω is invariant under the cogeodesic
flow, see (2.3), then there exists a unique Z2-invariant symplectic area form ΩF̄ on ΓF̄ such that

q∗F̄ ΩF̄ = i∗ω. (9.1)

We will need the following result about the Crofton formula on Finsler surfaces established
in [5, Theorem 5.2].

Theorem 9.1. The length of every smooth curve c on M̄ with the Finsler metric F̄ satisfies
the following equation

lengthF̄ (c) =
1

4

∫
γ∈ΓF̄

#(γ ∩ c) |ΩF̄ | (9.2)

where |ΩF̄ | is the smooth positive Z2-invariant area density on ΓF̄ induced by ΩF̄ .

Remark 9.2. The Crofton formula (9.2) shows that the Finsler metric F̄ is uniquely determined
by the fibration qF̄ (and the symplectic area form ΩF̄ on ΓF̄ derived from qF̄ ).

Remark 9.3. We will denote by λF̄ the smooth positive Z2-invariant measure on ΓF̄ corre-
sponding to the area density |ΩF̄ |.

We derive the following corollary.

Corollary 9.4. Let c be a closed geodesic of M and 〈c〉 be the subgroup of π1(T2) = Z2 generated
by the homotopy class of c. Then

lengthF (c) =
1

4
λF̄ (ΓF̄ /〈c〉).
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In this relation, we still denote by λF̄ the push-forward under the quotient map ΓF̄ → ΓF̄ /〈c〉 of
the restriction of λF̄ to a Borel fundamental domain.

Proof. Let c̄ be a lift of c in M̄ (of the same length). Every generic geodesic γ ∈ ΓF̄ intersects
the geodesic arc c̄ at most once. Moreover, for every generic geodesic γ ∈ ΓF̄ , there is a unique
〈c〉-translate of γ intersecting the geodesic arc c̄. Thus, by Theorem 9.1, we obtain

lengthF (c) =
1

4

∫
γ∈ΓF̄

#(γ ∩ c̄) dλF̄ =
1

4
λF̄ (ΓF̄ /〈c〉).

�

This leads us to the following definition.

Definition 9.5. A smooth positive Z2-invariant measure λ on Γ = ΓF̄ satisfies the F -closing
condition if

λ(Γ/α) = λF̄ (ΓF̄ /α)

for every α ∈ Z2.

Remark 9.6. The closing condition is stable under convex combinations: if we have two mea-
sures λ1 and λ2 on Γ satisfying the F -closing condition, then any convex combination of λ1 and
λ2 will also satisfy the F -closing condition.

10. Constructing Finsler metrics with prescribed geodesics

In this section, we go over the geometric construction of Finsler metrics with prescribed
geodesics on a surface given by Álvarez Paiva and Berck in [5] and adapt this construction to
our situation.

Let R2 be the Euclidean plane with the natural action of Z2 by translations. Consider the
double fibration of the bundle S∗R2 of cooriented contact elements on R2

S∗R2 ' U∗0R2

p

xx

q

%%R2 Γ

(10.1)

where p : S∗R2 → R2 is the canonical projection and q : S∗R2 → Γ is a Z2-equivariant fibration
onto an oriented surface Γ endowed with a Z2-action (in our case, Γ = S1 × R). Identify
S∗R2 with the unit cotangent bundle U∗0R2 of the Euclidean metric on R2 using the canonical
identification. We will assume the following:

(1) The fibration q : S∗R2 → Γ is Legendrian (i.e., its fibers are Legendrian curves γ of S∗R2 '
U∗0R2 with respect to the tautological contact structure α, see (2.2), that is, γ∗α = 0).

(2) The product map p× q : S∗R2 → R2 × Γ is an embedding.

By [5, Theorem 3.3], for every area form Ω on Γ, there exists a unique Finsler metric F̄ on R2

satisfying the Crofton formula

lengthF̄ (c) =
1

4

∫
γ∈Γ

#(γ ∩ c) |Ω|

for any piecewise smooth curve c on R2. In this formula, we identify γ ∈ Γ with the curve p(q−1(γ))
of R2.

The Finsler metric F̄ is given by the Gelfand transform

F̄ := p∗(q
∗|Ω|) : TR2 → R (10.2)
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of the area density |Ω|; see [5, Theorem 2.2], which is defined as follows. For every v ∈ TxR2,
take the area density on the fiber p−1(x) = S∗xR2 by contracting q∗|Ω| at each point ξ ∈ S∗xR2

with every vector v̂ ∈ TξS∗R2 such that dp(v̂) = v. By definition, F̄ (x; v) is the integral of this
area density over S∗xR2.

More precisely, for every x ∈ R2, there exists a unique non-vanishing one-form βx on S∗xR2

such that

F̄ (x, v) =

∫
ξ∈S∗xR2

|ξ(v)|βx

for every v ∈ TxR2, where the one-form βx defined by

(q∗Ω)(x,ξ) = p∗ξ ∧ β(x,ξ)

depends smoothly on x; see [5, Lemma 2.3].
Alternatively, the Finsler metric F̄ can be defined from a smooth positive measure λ on Γ by

the same formula

lengthF̄ (c) =
1

4

∫
γ∈Γ

#(γ ∩ c) dλ

using the correspondence between smooth positive measures λ on Γ and area densities |Ω| of
area forms Ω on Γ.

From now on, we will assume that the smooth positive measure λ on Γ is Z2-invariant. In this
case, the Finsler metric F̄ on R2 passes to the quotient and induces a Finsler metric F on T2.
We will sometimes denote this metric by Fλ to emphasize that the construction is induced by
the measure λ on Γ (and the double fibration (10.1)). Similarly, we denote by

Mλ = (T2, Fλ) (10.3)

the two-torus T2 with the Finsler metric Fλ.

In order to apply the previous construction to the fibration induced by a smooth free proper
Z2-equivariant R-action

ρ : R× U0R2 → U0R2

(whose orbits are transverse to the contact structure kerα induced by the tautological one-
form α), we first modify the action to ensure that the corresponding fibration is Legendrian. To
this end, consider the map

T : U0R2 → U0R2

sending every vector v ∈ U0,xR2 to the unique vector w ∈ U0,xR2 such that L(w)(v) = 0 with
(v, w) positively oriented. Here, L is the Legendre transform of the Euclidean metric and the
letter T stands for turn. The map T : U0R2 → U0R2 and its restriction Tx : U0,xR2 → U0,xR2

are diffeomorphisms. Thus, the R-action ρ on U0R2 induces a smooth free proper Z2-equivariant
R-action ρ̄ on U0R2 by conjugation by T defined as

ρ̄(s, u) = T −1(ρ(s, T (u)))

for every s ∈ R and u ∈ U0R2. This action induces a smooth free proper Z2-equivariant R-action
on U∗0R2 ' U0R2 by conjugation by the Legendre transform, which is still denoted by ρ̄.

Consider the Z2-equivariant fibration

qρ̄ : U∗0R2 → Γρ̄

induced by the smooth free proper Z2-equivariant R-action ρ̄ on U∗0R2, where Γρ̄ = U∗0R2/ρ̄.
Since the actions ρ and ρ̄ are conjugate, there is a natural diffeomorphism Γρ̄ ' Γρ.

We shall need the following results about the fibration qρ̄ corresponding to the assumptions (1)
and (2).
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Lemma 10.1. The fibers of qρ̄ : U∗0R2 → Γρ̄ are Legendrian with respect to the contact structure
induced by α on U∗0R2.

Proof. For every γ ∈ Γρ̄, let ξ ∈ q−1
ρ̄ (γ) and X ∈ Tξq−1

ρ̄ (γ). Here, we identify γ ∈ Γρ̄ with the

curve p(q−1
ρ̄ (γ)) of R2. The vector dpξ(X) is tangent to γ at p(ξ). By the definition of qρ̄, the

vectors tangent to γ at p(ξ) lie in the kernel of ξ. Hence, ξ(dpξ(X)) = 0. That is, αξ(X) = 0 as
desired. �

Lemma 10.2. The product map φρ̄ = p× qρ̄ : U∗0R2 → R2 × Γρ̄ is an embedding.

Proof. Let us start by proving that φρ̄ is an immersion. Consider ξ ∈ U∗0R2 and X ∈ Tξq−1
ρ̄ (γ)

such that dφρ̄(ξ)(X) = 0. Thus, the vector X lies in the kernel of the differential of the
fibration qρ̄ at ξ. It follows that X is tangent to the ρ̄-orbit of U∗0R2 at ξ. Since the restriction
of p to each ρ̄-orbit of U∗0R2 is an embedding into R2, the relation dpξ(X) = 0 implies that X = 0.
Thus, dφρ̄ is injective and φρ̄ is an immersion.

Let us prove now that φρ̄ is injective. Let ξ1, ξ2 ∈ U∗0R2 such that φρ̄(ξ1) = φρ̄(ξ2). That is,
p(ξ1) = p(ξ2) and qρ̄(ξ1) = qρ̄(ξ2). Thus, the covectors ξ1 and ξ2 are based at the same point x
of R2. Now, the projections of the ρ̄-orbits to R2 are embeddings of R into R2. Therefore, for
every γ ∈ Γρ̄ such that x ∈ p(q−1

ρ̄ (γ)), there exists a unique ξ ∈ U∗0,xR2 such that qρ̄(ξ) = γ.

Since qρ̄(ξ1) = qρ̄(ξ2), this implies that ξ1 = ξ2.
Since the map φρ̄ is clearly proper, it is an embedding. �

Now, we can apply the construction given by (10.3) to the double fibration

U∗0R2

p

}}

qρ̄

$$
R2 Γρ̄ ' Γρ

induced by the smooth free proper Z2-equivariant R-action

ρ : R× U0R2 → U0R2.

Thus, to any smooth positive Z2-invariant measure λ on Γρ corresponds a Finsler metric Fλ
on T2. Moreover, the geodesics of the lift F̄λ of Fλ on R2 coincide with the projection of the
curves corresponding to the fibers of qρ̄ or qρ. More precisely, the geodesics of F̄λ coincide with
the curves p(q−1

ρ (γ)), where γ runs over Γρ. We will sometimes identify γ with p(q−1
ρ (γ)). Under

this identification, the space of geodesics of F̄λ agrees with Γρ.

Remark 10.3. In practice, we will apply this construction to a double fibration where the
curves p(q−1

ρ (γ)) intersect each other at most once (for instance, when Γ is the space of geodesics

of the universal cover M̄ of a Finsler two-torus M without conjugate points or the space of their
images under the Euclidean curve shortening flow). In this case, the resulting Finsler metric Fλ
has no conjugate points since the geodesics on its universal cover intersect each other at most
once.

11. Conjugate geodesic flows and the curve shortening flow

We show that, at the limit, the curve shortening flow preserves the natural measure on the
space of geodesics of a Finsler metric on the two-torus with geodesic flow conjugate to the
geodesic flow of a flat Finsler metric.
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Let M� = (T2, F�) be a flat Finsler two-torus and M = (T2, F ) be a Finsler two-torus.
Suppose that the geodesic flow of M is conjugate to the geodesic flow of M�. This means that
there exists a smooth diffeomorphism

h : UM� → UM

which intertwines the geodesic flows of M� and M , that is,

ϕt ◦ h = h ◦ ϕ�t
where ϕ�t : UM� → UM� and ϕt : UM → UM are the geodesic flows of M� and M on their unit
tangent bundles.

We will need the following result proved in [17, §IV].

Lemma 11.1. The map on geodesics induced by the conjugacy h : UM� → UM induces an
isomorphism h∗ : π1(M�)→ π1(M).

Proof. First, note that UM� is homeomorphic to S1× S1× S1 and that π1(UM�) is isomorphic
to Z3 with generators a1, a2, a3. One may assume that a1 and a2 come from tangent vector
fields to closed geodesics on M�, while a3 comes from the tangent fiber. In particular, there
is a natural identification between the lattice Z2 spanned by a1 and a2, and π1(M�). This
identification is given by lifting a closed geodesic to its tangent vector field in UM�. Consider
the homomorphism (p ◦ h)∗ : span{a1, a2} ' π1(M�) → π1(M), where p : UM → M is the
canonical projection. This homomorphism is surjective since each element of π1(M) can be
represented by a closed geodesic γ of M and the inverse image of γ by h is a geodesic γ� of M�,
hence it lies in the span of a1 and a2. Now, every surjective homomorphism Z2 → Z2 is an
isomorphism. Hence the result. �

Remark 11.2. The isomorphism h∗ : π1(M�)→ π1(M), where π1(M�) = π1(M) = Z2, extends
to an automorphism A ∈ GL2(Z) of T2. Its inverse A−1 : T2 → T2 is an isometry between
(A−1)∗F� and F� which induces a diffeomorphism hA−1 : U(A−1)∗F�T

2 → UF�T2 between the

unit tangent bundles of (A−1)∗F� and F�. Replacing F� with (A−1)∗F�, and h with h◦hA−1 , we
can assume that the map on geodesics induced by the conjugacy h : UM� → UM agrees with
the identity map between π1(M�) and π1(M).

The following result can be extracted from [17, §IV].

Lemma 11.3. A Finsler two-torus M whose geodesic flow is conjugate to that of a flat Finsler
torus M� has no conjugate points.

Proof. We claim that every closed geodesic γ in M is the shortest in its homotopy class. To see
this, let τ be a closed geodesic homotopic to γ. By Lemma 11.1, the corresponding geodesics γ�
and τ� in M� are homotopic and hence have the same length (since M� is a flat Finsler torus).
Thus, the geodesics γ and τ of M have the same length. Since this applies as well to all iterates
of γ, we see that the lift γ̄ of γ to the universal cover M̄ of M is minimizing and hence has no
conjugate points. Now, observe that since M� is a flat Finsler torus, the closed geodesics of M�
induce a dense subset in UM�. The same holds on M through the conjugacy h : UM� → UM .
We deduce that M has no conjugate points. �

Remark 11.4. It is unknown whether a Finsler torus without conjugate points has a geodesic
flow conjugate to the geodesic flow of a flat Finsler torus.

We will also need the following definition.
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Definition 11.5. The conjugacy h : UM� → UM between the geodesic flows of M� and M
lifts to a Z2-equivariant conjugacy h̄ : UM̄� → UM̄ between the lifted geodesic flows on the
universal covers M̄� and M̄ . The conjugacy h̄ : UM̄� → UM̄ induces a Z2-equivariant smooth
diffeomorphism

h : Γ� → Γ

between the spaces of unparametrized oriented geodesics of M̄� and M̄ .

Now, assume that the conjugacy h : UM� → UM induces the identity map between π1(M�)
and π1(M); see Remark 11.2. In this case, the map h : Γ� → Γ takes an oriented straight line
to a geodesic line of the same asymptotic direction.

Recall that Γ� identifies with the space of oriented straight lines of R2 parametrized by S1×R,
that is, Γ� ' S1 × R. Here, an oriented straight line in R2 is determined by its asymptotic
direction and its signed Euclidean distance to the origin of R2; see Section 9.

Consider the deformation ρt : R×U∗0R2 → U∗0R2 of the cogeodesic flow ρF̄ on U∗M̄ ' U0R2;
see Section 8. Denote by

Γt = U∗R2/ρt
the quotient manifold and by

qt : U∗0R2 → Γt
the quotient fibration; see Section 9. Since the Z2-translations are Euclidean isometries, the
curve shortening flow induces a family of Z2-equivariant diffeomorphisms

ft : Γ→ Γt (11.1)

which, at the limit, gives rise to a Z2-equivariant map

f∞ : Γ→ Γ�;

see Theorem 7.2 and Theorem 8.1. By construction, the map f∞ : Γ→ Γ� takes a geodesic in the
universal cover M̄ of M to a straight line in the plane obtained at the limit by applying the curve
shortening flow; see Theorem 4.4. This map is measurable as a limit of continuous functions, it
is continuous at irrational directions, see Proposition 5.6 and Proposition 11.6 below, but it is
unclear whether it is continuous on Γ; see Example 5.7. In particular, it is unclear whether the
function p∞ : S1 → R in the following proposition is continuous at every direction θ ∈ S1.

The map f∞ : Γ→ Γ� is bijective and admits a simple expression after reparametrization by
the map h : Γ� → Γ induced by the conjugacy.

Proposition 11.6. There exists a function p∞ : S1 → R continuous at every irrational direction
such that

(f∞ ◦ h)(θ, p) = (θ, p+ p∞(θ))

for every irrational direction θ ∈ S1 and every p ∈ R.

Proof. Let ∆ = (θ, p) ∈ Γ� be a straight line in R2. Its image f∞ ◦ h(∆) is the limit of
the curve h(∆) under the curve shortening flow. Since the map h : Γ� → Γ and the curve
shortening flow preserve the asymptotic direction of a curve, the image f∞ ◦ h(∆) can be rep-
resented by (θ, p′) ∈ Γ�. For ∆0 = (θ, 0), we have f∞ ◦ h(∆0) = (θ, p∞(θ)), where the function
p∞ : S1 → R is continuous at every irrational direction; see Proposition 5.6.

The signed Euclidean distance d±(γ · ∆,∆) between the parallel oriented lines γ · ∆ and γ
depends only on γ and θ, but not on p. Thus,

d±(γ · (f∞ ◦ h(∆)), f∞ ◦ h(∆)) = d±(γ ·∆,∆).

By Z2-equivariance of f∞ ◦ h, we obtain

f∞ ◦ h(γ ·∆0) = γ · (f∞ ◦ h(∆0)) = (θ, p∞(θ) + d±(γ ·∆0,∆0)).
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Observe that

γ ·∆0 = (θ, d±(γ ·∆0,∆0))

under the identification Γ� ' S1 × R.
Now, if θ is irrational, the subset

{γ ·∆0 = (θ, d±(γ ·∆0,∆0)) | γ ∈ Z2}
is dense in {(θ, p) ∈ Γ� | p ∈ R}. By continuity of f∞ ◦ h at irrational directions, it follows that

f∞ ◦ h(θ, p) = (θ, p+ p∞(θ))

for every (θ, p) ∈ Γ� ' S1 × R of irrational direction. �

We deduce the following measure invariance property.

Proposition 11.7. The Z2-equivariant map f∞ ◦h : Γ� → Γ� preserves the measure λ�, that is,

(f∞ ◦ h)∗λ� = λ�.

Proof. It is enough to show that the measures λ� and (f∞ ◦ h)∗λ� agree on the rectangles
[θ1, θ2]× [p1, p2] of Γ� ' S1×R. Since the flat Finsler metric F� is invariant by the translations
of R2, the measure λ� associated to F� is invariant by the action on Γ� induced by these
translations. It follows that the smooth measure λ� on Γ� ' S1 × R can be written as

λ� = K(θ) |dθ ∧ dp|
where K : S1 → R is a smooth function which does not depend on p. By Proposition 11.6, the
map f∞ ◦ h : Γ� → Γ� agrees with the map (θ, p) 7→ (θ, p + p∞(θ)) almost everywhere on Γ�,
where p∞ : S1 → R is continuous at every irrational direction. Thus,

[(f∞ ◦ h)∗λ�]([θ1, θ2]× [p1, p2]) =

∫ θ2

θ1

∫ p2−p∞(θ)

p1−p∞(θ)
K(θ) dp dθ

=

∫ θ2

θ1

∫ p2

p1

K(θ) dp dθ

= λ�([θ1, θ2]× [p1, p2]).

Hence the desired result. �

12. Smooth Heber foliations and conjugate geodesic flows

We show that two Finsler two-tori without conjugate points having the same marked length
spectrum and smooth Heber foliations have the same dynamics, namely their geodesic flows are
conjugate. These arguments will be further developed in [16]. Note that this result has already
been stated (without proof) in the introduction of [19], at least for Riemannian metrics.

We introduce the definition of the stable norm in the special case of a Finsler two-torus and
refer to [27] for a general discussion.

Definition 12.1. Let M = (T2, F ) be a Finsler two-torus. Denote by M̄ = (R2, F̄ ) its universal
Finsler cover. The stable norm of M is a norm on H1(T2;R) defined as follows. For every
γ ∈ H1(T2;Z),

|γ|st = lim
k→+∞

dM̄ (o, γk · o)
k

where o ∈ M̄ is a fixed origin. Note that the limit exists and does not depend on the origin o. The
function |.|st defined by this function extends to a vector-space norm on H1(T2;R), the so-called
stable norm of M , still denoted by |.|st. Alternatively, the stable norm of an integral homology
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class can be defined as the minimal length of a cycle representing this integral homology class;
see [27, Lemma 4.32].

Let M = (T2, F ) be a Finsler two-torus without conjugate points. We will endow H1(T2;R)
with the stable norm |.|st of M . Denote by B ⊆ H1(T2;R) the unit ball of the stable norm of M .
The space S1 of asymptotic directions of M̄ identifies with the boundary ∂B of B. Moreover,
we have the following regularity result obtained in [34, Lemma 5] using Aubry-Mather theory
and weak KAM theory.

Lemma 12.2. The stable norm |.|st of a Finsler two-torus M without conjugate points is C1,
except possibly at 0. In particular, the boundary ∂B of B admits a unique tangent line at every
point.

Proof. Since M has no conjugate points, the cotangent space T ∗M admits a Heber foliation;
see Theorem 2.5. By [34, Lemma 5], the existence of a Heber foliation implies that Mather’s
average action βF : H1(T2;R) → R is C1. We do not need the general definition of βF , simply
that in our case βF = 1

2 |.|
2
st; see [6, Proposition 3.3]. This implies that the stable norm |.|st of M

is C1, except possibly at 0. �

For the rest of this section, we will assume that the Heber foliation is smooth; see Defini-
tion 2.10. Thus, the unit cotangent bundle U∗M̄ of M̄ identifies with R2 × S1 through the
smooth diffeomorphism

U∗M̄ → R2 × S1

(x, ξ) 7→ (x, θ)
(12.1)

where θ is the asymptotic direction of the geodesic induced by ξ; see (2.5). The inverse map of
this diffeomorphism is given by ξ = −dBθ(x); see (2.6).

Consider the Z2-invariant symplectic area form Ω on the space Γ of unparametrized oriented
geodesics on M̄ ; see (9.1). Define Γ → S1 as the quotient of U∗M̄ → R2 × S1 → S1 under
the cogeodesic flow, where the first map U∗M̄ → R2 × S1 is the diffeomorphism (12.1). Let
η be the pullback of the canonical one-form of S1 under the smooth map Γ → S1 taking a
geodesic of M̄ to its asymptotic direction θ. Observe that the one-form η does not vanish on Γ
and is Z2-invariant (by Z2-invariance of Γ → S1). Thus, there exists a Z2-invariant differential
one-form ζ on Γ such that

Ω = η ∧ ζ.
The one-form ζ is not uniquely defined. Indeed, every other Z2-invariant one-form ζ ′ on Γ with
Ω = η ∧ ζ ′ satisfies

ζ ′ = ζ + h η

where h : Γ→ R is a smooth Z2-invariant function on Γ. Still, we can think of ζ as “the quotient
of the two-form Ω by the one-form η”. We will write Ω/η for the class of Z2-invariant differential
one-forms ζ on Γ with Ω = η ∧ ζ. For a curve c of Γ formed of geodesics of M̄ with the same
asymptotic direction, we will write ∫

c
Ω/η :=

∫
c
ζ (12.2)

where ζ is a representative of Ω/η. Observe that the one-form η vanishes along c. Thus, even
though ζ is not uniquely defined, the value of the integral (12.2) does not depend on the one-
form ζ representing Ω/η, which justifies the notation.

The unit cotangent bundle U∗M̄ also identifies with Γ× R = S1 × R× R. Loosely speaking,
a unit covector (x, ξ) ∈ U∗M̄ is represented by the geodesic in Γ (of asymptotic direction θ) it
induces and a parameter s measuring the signed distance to the origin of the geodesic (defined
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as the unique point of the geodesic where the Busemann function Bθ vanishes); see Figure 3.

p

θ

s

Bθ = 0

Bθ = s

Figure 3. (θ, p, s) coordinates

More precisely, this identification is given by

U∗M̄ → S1 × R× R
(x, ξ) 7→ (θ, p, s)

(12.3)

In this expression, θ is the asymptotic direction of the geodesic induced by ξ, s = Bθ(x) and

p =

∫
c
Ω/η

where c is the path of Γ formed of the geodesics of M̄ (with the same asymptotic direction θ)
lying between the geodesic of asymptotic direction θ passing through the origin o ∈ R2 and the
geodesic of asymptotic direction θ passing through x. Since the Heber foliation is assumed to
be smooth, the map (12.3) is also a smooth diffeomorphism.

Under this identification, the symplectic area form Ω on Γ can be written as

Ω = η ∧ dp
(but we won’t need this) and the action of the cogeodesic flow of M̄ on U∗M̄ is given by

ϕt(θ, p, s) = (θ, p, s+ t). (12.4)

Finally, the action of Z2 on U∗M̄ takes the following form. There exist two additive functions
~pθ : Z2 → R and ~sθ : Z2 → R such that for every γ ∈ Z2, we have

γ · (θ, p, s) = (θ, p+ ~pθ(γ), s+ ~sθ(γ)). (12.5)

The functions ~pθ : Z2 → R and ~sθ : Z2 → R can be defined as

~pθ(γ) =

∫ (θ,γ·x)

(θ,x)
Ω/η (12.6)

~sθ(γ) = Bθ(γ · x)−Bθ(x) (12.7)

where the integral is along the path of Γ formed of the geodesics of M̄ (with the same asymptotic
direction θ) lying between the geodesic of asymptotic direction θ passing through x and the
geodesic of asymptotic direction θ passing through γ · x, where x is any point of M̄ .

It remains to show the following.
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Lemma 12.3.

(1) The functions ~pθ and ~sθ given by the formulas (12.6) and (12.7) do not depend on x ∈ M̄ .
(2) The functions ~pθ and ~sθ are additive.
(3) The relation (12.5) for the action of γ ∈ Z2 is satisfied.

Proof. It follows from the Z2-invariance of the one-form ζ representing Ω/η that the formula (12.6)
defining ~pθ does not depend on x ∈ M̄ . Indeed, for every x, x′ ∈ M̄ , we have

~pθ(γ) =

∫ (θ,x′)

(θ,x)
Ω/η +

∫ (θ,γ·x′)

(θ,x′)
Ω/η +

∫ (θ,γ·x)

(θ,γ·x′)
Ω/η

=

∫ (θ,x′)

(θ,x)
Ω/η +

∫ (θ,γ·x′)

(θ,x′)
Ω/η +

∫ (θ,x)

(θ,x′)
Ω/η

=

∫ (θ,γ·x′)

(θ,x′)
Ω/η.

Similarly, it directly follows from [20, Corollary 2.6], using the fact that the (minimal) closed
geodesics in every free homotopy class of M cover the torus, that for every rational direc-
tion θ ∈ S1 and every γ ∈ Z2, the difference Bθ(γ · x) − Bθ(x) does not depend on x ∈ M̄ . By
a continuity argument, see Proposition 2.9, the same holds true for every θ ∈ S1 and γ ∈ Z2.

Since the functions ~pθ and ~sθ do not depend on x ∈ M̄ , this ensures that both functions are
additive and that the relation (12.5) for the action of γ ∈ Z2 is satisfied. �

The additive functions ~pθ : H1(T2;Z) → R and ~sθ : H1(T2;Z) → R extend to linear forms
~pθ : H1(T2;R)→ R and ~sθ : H1(T2;R)→ R.

Lemma 12.4. Let θ ∈ ∂B ' S1.

(1) The linear form ~pθ : H1(T2;R)→ R satisfies

ker ~pθ = R θ.

(2) The linear form ~sθ : H1(T2;R)→ R is of norm 1 (with respect to the stable norm of M)
and satisfies ~sθ(−θ) = 1. In particular, the kernel of ~sθ is parallel to the tangent line
to ∂B at −θ.

Proof. (1) Let θ ∈ ∂B be a rational direction and γ ∈ H1(T2;Z) be an integral vector pointing
in the direction of θ. The geodesic (θ, x) of M̄ of asymptotic direction θ passing through x
coincides with its image (θ, γ · x) under the translation of γ. Thus, ~pθ(γ) = 0. Since θ = γ

|γ|st ,

it follows that ~pθ(θ) = 0. The same relation also holds true if θ is an irrational direction by a
continuity argument. Hence, ker ~pθ = R θ.

(2) As previously, let θ ∈ ∂B be a rational direction and γ ∈ H1(T2;Z) be an integral vector
pointing in the direction of θ. By Proposition 2.11.(1), the displacement function dγ : M̄ → R
of γ ∈ H1(T2;Z), defined as dγ(x) = dM̄ (x, γ ·x), is constant equal to |γ|st. Since the Busemann
function Bθ : M̄ → R is 1-Lipschitz, we obtain

|~sθ(γ)| = |Bθ(γ · x)−Bθ(x)| ≤ dM̄ (x, γ · x) = |γ|st.
Thus, the linear form ~sθ : H1(M ;R)→ R is of norm at most 1.

Furthermore, since γ points in the direction of θ, we have

~sθ(γ) = Bθ(γ · x)−Bθ(x) = −dM̄ (x, γ · x) = −|γ|st.
Since θ = γ

|γ|st , we obtain ~sθ(θ) = −1. The same relation also holds true if θ is an irrational

direction by a continuity argument.
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Therefore, ‖~sθ‖ = 1 and ~sθ(−θ) = 1 for every θ ∈ ∂B. �

This construction allows us to prove the following result.

Theorem 12.5. Let M1 = (T2, F1) and M2 = (T2, F2) be two Finsler two-torus without con-
jugate points whose Heber foliation are smooth. Suppose that the two metrics have the same
marked length spectrum. Then the geodesic flows of M1 and M2 are conjugate.

Proof. Denote by ~pθ,i : H1(T2;R)→ R and ~sθ,i : H1(T2;R)→ R the linear forms corresponding
to the metric Fi defined in (12.6) and (12.7). By Lemma 12.4.(1), the linear forms ~pθ,1 and ~pθ,2
have the same kernel and are therefore proportional. That is,

~pθ,2 = κ(θ) ~pθ,1

for some smooth function κ : S1 → R. Since the metrics F1 and F2 have the same length
spectrum, they also have the same stable norm. It follows from Lemma 12.4.(2) that the linear
forms ~sθ,1 and ~sθ,2 coincide for every direction θ ∈ S1.

Using the identification (12.3), consider the map

U∗M̄1 → U∗M̄2

(θ, p, s) 7→ (θ, κ(θ) p, s) .

By the action of the cogeodesic flow in this coordinate system, see (12.4), this map U∗M̄1 →
U∗M̄2 conjugates the cogeodesic flows on M̄1 and M̄2. Furthermore, the map U∗M̄1 → U∗M̄2

passes to the quotient under the Z2-action on M̄1 and M̄2; see (12.4). Thus, the quotient map
U∗M1 → U∗M2 conjugates the cogeodesic flows of M1 and M2, and therefore the geodesic flows
of M1 and M2 through their Legendre transforms, as required. �

13. Deforming Finsler two-tori

Given a Finsler metric on the two-torus whose geodesic flow is conjugate to that of a flat
Finsler metric, we show how to canonically connect the two metrics through Finsler metrics with
the same dynamics. For this, we make use of the deformation of the geodesic foliation given by
the Euclidean curve shortening flow, see Section 4, the invariance of the natural measure on the
space of geodesics at the limit under this flow, see Section 11, the construction of Finsler metrics
with prescribed geodesics given by the Crofton formula, see Section 10, and the relationship
between conjugate geodesic flows and smooth Heber foliations; see Section 12.

Let us start with the following observation.

Proposition 13.1. Let M1 = (T2, F1) and M2 = (T2, F2) be two Finsler two-torus without
conjugate points whose geodesic flows are conjugate. If the Heber foliation of M1 is smooth then
the Heber foliation of M2 is also smooth.

Proof. Since the geodesic flow of M1 and M2 are conjugate, there exists a smooth Z2-equivariant
diffeomorphism h̄ : UM̄1 → UM̄2 which intertwines the geodesic flows of M̄1 and M̄2. We can
assume that the homomorphism h∗ : π1(M1) → π1(M2) induced by the quotient map is the
identity; see Remark 11.2. This implies that a unit vector generating a geodesic of M̄1 with
asymptotic direction θ is sent under h̄ : UM̄1 → UM̄2 to a unit vector generating a geodesic
of M̄2 with the same asymptotic direction θ. Thus, we have the following diagram

(x1, v1) ∈ UM̄1 (x2, v2) ∈ UM̄2

(x1, θ) ∈ R2 × S1 (x2, θ) ∈ R2 × S1

h1

h̄

h2
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where the two vertical maps h1 and h2 are the inverse Heber homeomorphism of M1 and M2;
see Definition 2.10. By assumption, the first vertical map h1 is a diffeomorphism.

To prove that the Heber foliation of M2 is smooth, we need to show that the second vertical
map h2 : UM̄2 → R2×S1 is also a diffeomorphism. First, observe that the composition UM̄2 →
UM̄1 → R2 × S1 → S1 taking (x2, v2) to θ is smooth. This ensures that the vertical map h2 is
smooth. Now, we only need to show that its inverse h−1

2 is also smooth. Fix (x2, θ) ∈ R2 × S1.
By Proposition 3.1, we can assume that the horizontal and vertical curves of M̄1 are geodesics.
Without loss of generality, we can also assume that the direction θ is not horizontal, otherwise
we switch the horizontal and vertical axis of M̄1 and M̄2. Thus, the horizontal axis of M̄1

transversely intersects every curve of the geodesic foliation with asymptotic direction θ exactly
once. As x runs over the horizontal axis of M̄1, the image under the conjugacy of the geodesic γv
generated by the vector h−1

1 (x, θ) = (x, v) ∈ UM̄1 runs over the geodesic foliation of M̄2 with
asymptotic direction θ (recall that the conjugacy preserves the asymptotic direction). More
precisely, there is a unique vector (x, v) ∈ UM̄1 and a unique real t ∈ R such that the basepoint
of the vector h(γ′v(t)) ∈ UM̄2 agrees with x2. The vector v and the real t vary smoothly
with (x2, θ) and the same goes for (x1, v1) = γ′v(t) ∈ UM̄1 and (x2, v2) = h̄(x1, v1) ∈ UM̄2. As
previously noticed, we have h2(x2, v2) = (x2, θ) or equivalently (x2, v2) = h−1

2 (x2, θ). It follows
that the inverse of the second vertical map h2 : UM̄2 → R2 × S1 in the diagram is also smooth.
Hence, the map h2 : UM̄2 → R2 × S1 is a diffeomorphism. �

We can now prove our main theorem.

Theorem 13.2. Let M = (T2, F ) be a Finsler two-torus whose geodesic flow is conjugate to
the geodesic flow of a flat Finsler two-torus M� = (T2, F�). Then there exists a canonical
deformation (Ft)t≥0 of Finsler metrics on T2 with F0 = F such that

(1) the geodesic flow of Ft is conjugate to the geodesic flow of F�;
(2) the metric Ft converges to F� for the uniform convergence topology, up to isometry, as

t goes to infinity.

Proof. First, observe that since the geodesic flow of M is conjugate to that of the flat Finsler
torus M�, the metric F has no conjugate points by Lemma 11.3 and its Heber foliation is
smooth by Proposition 13.1. Denote by h : UM� → UM the conjugacy between the geodesic
flows of M� and M . By Remark 11.2, we can assume that the conjugacy h : UM� → UM induces
the identity map between π1(M�) and π1(M). In particular, this implies that the metrics F�
and F have the same marked length spectrum. Let h : Γ� → Γ be the Z2-equivariant smooth
diffeomorphism between the spaces of unparametrized oriented geodesics of M̄� and M̄ induced
by h : UM� → UM ; see Definition 11.5. Denote by λ� and λ the smooth positive Z2-invariant
measures on Γ� and Γ induced by F� and F ; see Remark 9.3. The measures

λt = (1− t)λ+ t h∗λ�

with 0 ≤ t ≤ 1 connecting λ to the push-forward h∗λ� of λ� by the Z2-equivariant smooth
diffeomorphism h : Γ� → Γ are smooth positive Z2-invariant measures on Γ. The family (λt)
of measures on Γ induces a family (Ft) of Finsler metrics on T2 joining F0 = F to F1 = Fh∗λ�
with the same geodesic space Γ; see the end of Section 10. Since the metrics F� and F have
the same marked length spectrum, the measures h∗λ� and λ on Γ satisfy the same F -closing
condition; see Definition 9.5 and Corollary 9.4. By stability of the F -closing condition under
convex combinations, see Remark 9.6, the measures λt also satisfy the F -closing condition. It
follows that the Finsler metrics Ft induced by the measures λt have the same marked length
spectrum with the same geodesic space Γ as F ; see the end of Section 10 and Corollary 9.4. By
construction, these metrics have no conjugate points, see Remark 10.3, and their Heber foliations
are smooth (since the metrics Ft and F have the same geodesics and the Heber foliation of F is
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smooth). Applying Theorem 12.5, we obtain that the Finsler metrics Ft have conjugate geodesic
flows.

Now, we need to deform the metric Fh∗λ� into F� through a family of Finsler metrics on T2

with conjugate geodesic flows. Instead of deforming the measure λ induced by F on the geodesic
space Γ as previously, we will deform the geodesics. Consider the family of Z2-equivariant
maps ft : Γ → Γt induced by the curve shortening flow; see (11.1). The Z2-equivariant maps
ft ◦ h : Γ� → Γt are smooth for t ∈ [0,∞) and measurable for t = ∞; see Proposition 11.6.
Thus, the push-forward measures λt = (ft ◦ h)∗λ� on Γt are smooth, positive and Z2-invariant
for every t ∈ [0,∞], even for t = ∞ where (f∞ ◦ h)∗λ� = λ� on Γ∞ = Γ� by Proposition 11.7.
The family (λt) of measures on Γt induces a family (Ft) of Finsler metrics on T2 starting at Fh∗λ0

and ending at F�; see the end of Section 10. Indeed, by the Crofton formula, see Theorem 9.1,
the Finsler metric corresponding to the measure λt = (ft ◦ h)∗λ� on Γt when t = ∞ is the flat
Finsler metric F�. Now, by Z2-invariance of the maps ft : Γ→ Γt for t ∈ [0,∞], we have

λt(Γt/〈α〉) = h∗λ�(Γ/〈α〉) = λ(Γ/〈α〉)
for every α ∈ Z2 (recall that the measures h∗λ� and λ on Γ satisfy the same F -closing condition).
It follows that the Finsler metrics Ft with t ∈ [0,∞] have the same marked length spectrum
by Corollary 9.4. Furthermore, since their geodesic space is given by the deformation Γt of Γ
under the curve shortening flow, the metrics Ft have no conjugate points, see Remark 10.3, and
their Heber foliation is smooth (even for t = ∞); see Remark 7.5. Applying Theorem 12.5 as
previously, we obtain that the Finsler metrics Ft have conjugate geodesic flows for t ∈ [0,∞].

In order to conclude the proof of Theorem 13.2, we need to show the point (2).

Fix a compact convex subset K of R2. Let ΛK = [0,∞]×K ×K be the compact set where
every point (t, x, y) ∈ [0,∞] × K × K identifies with the geodesic arc ct(x, y) of M̄t joining x
to y (with M̄∞ = R2). Note that ct(x, y) lies in a curve of Γt.

Consider the map ϕ : ΛK × Γ� → R+ defined as

ϕ(t, x, y, γ) =
1

4
#(ft ◦ h(γ) ∩ ct(x, y))

for every (t, x, y) ∈ ΛK and γ ∈ Γ�. Observe that ft ◦ h(γ) and ct(x, y) intersect at most once as
long as γ is different from the line whose image ft ◦ h(γ) under the curve shortening flow passes
through x and y. Thus, the map ϕ : ΛK × Γ� → R+ is bounded by 1

4 almost everywhere.

Let w be the maximal width of a geodesic of M̄ ; see Theorem 2.7. The space Γ�(Kw) of lines
in Γ� whose image under h : Γ� → Γ intersects the closed Euclidean (w + 1)-neighborhood Kw

of K ⊆ R2 is compact. By the definition of Γ�(Kw), the image under h : Γ� → Γ of a line
γ ∈ Γ� \ Γ�(Kw) is a geodesic of M̄ at Euclidean distance greater than w + 1 from K. It
follows from the definition of w that this image lies in a closed strip disjoint from K and so are
its images ft ◦ h(γ) and f∞ ◦ h(γ) under the curve shortening flow. By Crofton’s formula, see
Theorem 9.1, we obtain

dF̄t(x, y) =

∫
γ∈Γ�(Kw)

ϕ(t, x, y, γ) dλ� (13.1)

for every (t, x, y) ∈ ΛK .
Let x0, y0 ∈ K. By Theorem 4.4, for almost every γ ∈ Γ�(Kw) (actually, as long as the

line f∞ ◦ h(γ) does not pass through x0 or y0), the map ϕ(., γ) : ΛK → R+ is continuous
at (∞, x0, y0). Indeed, for (x, y) close to (x0, y0) and for t large enough, the arc ct(x, y) is Ck-
close to the segment c∞(x0, y0) = [x0, y0]. Similarly, for t large enough, the curve ft ◦ h(γ) is
close to the line f∞ ◦ h(γ). Thus, if the line f∞ ◦ h(γ) transversely intersects the interior of the
segment [x0, y0], then the curve ft ◦ h(γ) intersects the arc ct(x, y) at a unique point. Similarly,
if the line f∞ ◦ h(γ) does not intersect the segment [x0, y0], then the curve ft ◦ h(γ) does not
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intersect the arc ct(x, y) either. Therefore, the map ϕ(·, γ) : ΛK → R+ is constant (equal to 0
or 1) in a neighborhood of each point (∞, x0, y0), where x0 and y0 do not belong to the line
f∞ ◦ h(γ). It follows from Lebesgue’s dominated convergence theorem that the integral (13.1)
converges to

1

4

∫
γ∈Γ�(Kw)

#(f∞ ◦ h(γ) ∩ [x0, y0]) dλ� =
1

4

∫
γ∈Γ�

#(γ ∩ [x0, y0]) d[(f∞ ◦ h)∗λ�]

= dF̄�(x0, y0)

as (t, x, y)→ (∞, x0, y0), where the last inequality comes from the measure invariance property
of Proposition 11.7 and Crofton’s formula. Hence, the distance dF̄t uniformly converges to dF̄∞
on any compact set as t goes to infinity.

To show that the metric Ft converges to F� for the uniform convergence topology, it is enough
to prove that the diameter of Mt is uniformly bounded. To this end, fix two (transverse) geodesic
foliation F ′� and F ′′� of M� by simple closed geodesics, see Proposition 2.11.(1), and denote by `′

and `′′ their lengths. The corresponding geodesic foliations F ′t and F ′′t of Mt have the same
length (recall that Mt has no conjugate points with the same marked length spectrum as M�).
Observe that any pair of points on Mt can be joined by a path formed of an arc lying a geodesic
of F ′t followed by an arc lying a geodesic of F ′′t . This implies that the diameter of Mt is uniformly
bounded by `′ + `′′. �
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