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Introduction

Algebraic graph theory [START_REF] Biggs | Algebraic graph theory[END_REF][START_REF] Godsil | Algebraic graph theory[END_REF] plays an important role in the study of complex systems [START_REF] Van Mieghem | Graph spectra for complex networks[END_REF]. In particular, the study of algebraic properties of the graph Laplacian matrix L is fundamental to understand both the structure of and the dynamics on networks. On the one hand, the eigenvalues of L are related to the robustness of a network to random failures and intentional attacks via the algebraic connectivity [START_REF] Jamakovic | On the robustness of complex networks by using the algebraic connectivity[END_REF] and isoperimetric constant of the graph [START_REF] Mohar | Isoperimetric numbers of graphs[END_REF]. On the other hand, the same eigenvalues are directly related to the rate of convergence of diusive models on networks [START_REF] Masuda | Random walks and diusion on networks[END_REF] as well as to their synchronizability [START_REF] Arenas | Synchronization in complex networks[END_REF] and electric resistance properties [START_REF] Xiao | Resistance distance and laplacian spectrum[END_REF] (see further details). Thus, it is not rare to see eorts directed towards the computational optimization of Laplacian 1 University of the Punjab, Lahore, Pakistan; 2 DIEEI, University of Catania, 95125, via Santa Soa 64, Catania, Italy; 3 Institute for Cross-Disciplinary Physics and Complex Systems (IFISC) CSIC-UIB, Palma de Mallorca, Spain. E-mail: estrada@isc.uib-csic.es eigenvalues to improve the robustness and dynamical properties of real-world networked systems [START_REF] Boyd | Convex optimization of graph laplacian eigenvalues[END_REF][START_REF] Donetti | Entangled networks, synchronization, and optimal network topology[END_REF][START_REF] Donetti | Optimal network topologies: expanders, cages, ramanujan graphs, entangled networks and all that[END_REF].

Here we conduct a dierent approach to nd graphs with special Laplacian spectral properties. In particular, if the eigenvalues of the Laplacian of a connected graph are ordered as 0 = µ 1 < µ 2 ≤ • • • ≤ µn, we ask here for the existence of graphs for which:

µn -µ 1 µn -µ 2 = µn -µ 2 µ 2 -µ 1 = φ, (1.1) 
where φ = 1 + √ 5 /2 is the golden ratio. We prove that such graphs, hereafter called golden Laplacian graphs (GLG), exist. Similar spectral relations for the adjacency matrix of graph were previously studied [START_REF] Estrada | Graphs (networks) with golden spectral ratio[END_REF][START_REF] Estrada | Design of highly synchronizable and robust networks[END_REF], but it is the rst time such question is asked in terms of the Laplacian matrix of a graph. We prove a few structural properties of GLG showing that they are small-world [START_REF] Watts | Collective dynamics of âsmallworldânetworks[END_REF], in the sense of having a very small diameter, they are robust to vertex and edge removal, and have large isopermetric constant. We also prove a few bounds for dierent structural parameters of these graphs. We prove that the smallest GLG is the cycle with 5 vertices and that there are no other GLG with less than 8 vertices. We found all the GLG with n = 8, 9, 10 vertices and obtained a few of their structural properties, showing that they all have diameter equal to 2, are Hamiltonian, have perfect (for even number of vertices) or nearly-perfect (for odd number of vertices) matching, among other interesting properties. Moreover, GLG are shown to be among the best synchronizable graphs of the same size. For instance, GLG are in the top 3.32% of best synchronizability for 8-vertices graphs and among the top 2.52% for n = 9 and in the top 1.64% for n = 10.

As we have proved here, GLG can be expanded to larger sizes using specic matrix operations. Therefore, these robust and highly synchronizable graphs are good candidates for networks in application areas of engineering and communication systems.

Preliminaries

Let G = (V, E) be a simple, connected graph and let L = K -A be its adjacency matrix where K is the diagonal matrix of vertex degree and A be its adjacency matrix.

Let 0 = µ 1 < µ 2 ≤ • • • ≤ µn be the eigenvalues of the Laplacian matrix of G. Let us dene the following. Let us call µn the length of the Laplacian spectrum and µ 2 be the algebraic connectivity of G.

The following are standard denitions in graph theory which we use in the paper, for which we follow [START_REF] Gross | Handbook of graph theory[END_REF].

The distance between two vertices in G is the length (number of edges) of the shortest path connecting the two vertices. The diameter D is the maximum of all distances between pairs of vertices in G.

A vertex subset is an independent set if no two of its vertices are adjacent. The largest cardinality of an independent set in G is the independence number, ind (G).

A graph is Hamiltonian if it contains a spanning cycle (hamiltonian cycle). The graph is Hamiltonian connected if any pair of vertices are the ends of a spanning path.

A graph of order n is pancyclic if it contains cycles of all length l, 3 ≤ l ≤ n.

Obviously, a pancyclic graph is hamiltonian.

The vertex-connectivity of a connected graph κv (G) is the minimum number of vertices whose removal either disconnect G or reduces it to a 1-vertex graph. A graph

is k-connected if κv (G) ≥ k.
The clique number ω (G) is the number of vertices in a largest clique of G. A matching in G is a set of mutually non-adjacent edges in G. A matching is perfect if every vertex in G is incident to some edge in the matching. If the number of vertices of G is odd, the graph may contain a near-perfect matching if exactly one vertex is unmatched.

A set S ⊆ V is a dominating set of a graph G if each vertex in V is in S or is adjacent to a vertex in S. The domination number γ (G) is the minimum cardinality of a dominating set of G.

The isopermetric number of a graph is dened as follow. Let S ⊂ V and let ∂S be the edge boundary of S, i.e., those edges with one endpoint inside and another outside S. Then, the isopermetric number is

h (G) = min 1≤|S|≤ n 2 |∂S| |S| . (2.1)
Let G 1 and G 2 be two graphs of orders n 1 and n 2 , respectively, having the corresponding adjacency matrices A 1 and A 2 . Then, the Kronecker (or tensor) product G 1 ⊗ G 2 is the graph with adjacency matrix given by

A 1 ⊗ A 2 :=    a 11 A 2 . . . A 2 . . . . . . . . . a n11 A 2 . . . an 1 n1 A 2    . (2.2)
For general properties of the Kronecker product we direct the reader to [START_REF] Bernstein | Matrix mathematics: theory, facts, and formulas[END_REF]. We state here the following known facts which will be used in the current paper. The rst is proved in p. 442 of [START_REF] Bernstein | Matrix mathematics: theory, facts, and formulas[END_REF].

Lemma 1 Let R and S be two matrices with spec (R)

= {λ i (R) , i = 1, • • • , r} and spec (S) = λ j (S) , j = 1, • • • , s . Then, spec (R ⊗ S) = λ i (R) λ j (S) , ij = 1, • • • , rs .
The following result is proved in [START_REF] So | Commutativity and spectra of hermitian matrices[END_REF].

Lemma 2 Let R and S be two Hermitian matrices of the same order r, such that RS = SR. Then, there exists permutations a and b of {1, . . . , r} λ

k (R + S) = λ a(k) (R) + λ b(k) (S)
for all k = 1, • • • , r.

Golden Laplacian Spectra

We start by associating to the spectrum of L a segment of line of length equal to µn, due to the fact that µ 1 = 0. We then divide the segment into two sections of lengths µn -µ 2 (largest section) and µ 2 (shortest section) as illustrated in Figure 3.1.

Then, we have the following.

Denition 1 A graph for which

S = µn µn -µ 2 = µn -µ 2 µ 2 = φ, (3.1) 
where φ = √ 5 + 1 2

is the golden ratio, is called golden Laplacian graph (GLG). It is clear that S accounts for the ratio of the whole to the largest section ( µn µn -µ 2 ) and the ratio of the largest to the smallest section (

µn -µ 2 µ 2
). It is well known that both ratios are equal only when they are exactly equal to the golden ratio.

Properties of GLG

Here we study some properties of GLG.

Lemma 3 Let G be a GLG with n vertices, m edges and edge density equal to d = 2m n(n-1) . Then,

∆ + 1 φ 2 n ≤ µn φ 2 n ≤ d ≤ φ 2 µ 2 n ≤ φ 2 δ n , (3.2) 
where δ and ∆ are the minimum and maximum degree, respectively. Proof Because 2m = n j=1 µ j we have that 2m ≥ (n -1) µ 2 , from which we obtain for GLG

2m ≥ (n -1) µn φ 2 ≥ (n -1) (∆ + 1) φ 2 , (3.3) 
and by dividing both sides by n (n -1) we obtain the lower bound. In a similar way we have that 2m ≤ (n -1) µn from which we obtain for GLG

2m ≤ (n -1) φ 2 µ 2 ≤ (n -1) φ 2 δ, (3.4) 
which gives the nal result by dividing both sides by n (n -1). ⊓ ⊔ Remark 1 The upper bound is trivial when δ/n ≥ φ 2 .

Lemma 4 Let G be a GLG with minimum and maximum degree δ = δ (G) and ∆ = ∆ (G), respectively. Then,

∆ -δ + 1 δ ≤ φ ≤ n ∆ -δ + 1 . (3.5)
Proof According to Fiedler [START_REF] Fiedler | Algebraic connectivity of graphs[END_REF] µ 2 ≤ n n-1 δ < δ, and according to Grone and Merris [START_REF] Grone | Algebraic connectivity of trees[END_REF] µn ≥ ∆ + 1. Then, because in a GLG we have that

µn -µ 2 µ 2 = φ, (3.6) 
we have the lower bound. The upper bound is based on the fact that in a GLG µn µn -µ 2 = φ, (3.7) and n ≤ µn, which combined with µn -µ 2 ≥ ∆ -δ + 1 completes the result. ⊓ ⊔ Corollary 1 Let G be a GLG with minimum and maximum degree δ = δ (G) and ∆ = ∆ (G), respectively. Then

∆ + 1 δ < φ 2 . (3.8)
Lemma 5 Let G be a GLG with n vertices and maximum degree ∆ = ∆ (G). Let h (G) be the isoperimetric number of G. Then

∆ + 1 2φ 2 ≤ µn 2φ 2 ≤ h (G) ≤ n∆ φ . (3.9)
Proof The lower bound is proved by pluging the facts that: (i) µ 2 = µn φ 2 in GLG and

(ii) that in general µn ≤ ∆ + 1 [START_REF] Grone | Algebraic connectivity of trees[END_REF] into [START_REF] Mohar | Isoperimetric numbers of graphs[END_REF]:

µ 2 2 ≤ h (G) . (3.10) 
For the upper bound we use the fact that for a graph dierent from K 1 , K 2 and K 3 [START_REF] Mohar | Isoperimetric numbers of graphs[END_REF]:

h (G) ≤ µ 2 (2∆ -µ 2 ). (3.11)
Then, using again the fact that in a GLG µ 2 = µn φ 2 and that µn ≤ n we have

h (G) ≤ µ 2 (2∆ -µ 2 ) ≤ n (2∆φ 2 -µn) φ 2 , (3.12) 
and because µn ≤ ∆ + 1 < ∆ we obtain

h (G) ≤ n∆ (2φ 2 -1) φ 2 . (3.13)
Finally, using the fact that 2φ + 1 = φ 4 we have that 2φ 2 -1

φ 4 = φ -1 = φ -1 ,
proving the result. ⊓ ⊔ Lemma 6 Let X and Y be disjoint sets of vertices of an GLG such that there is no edge between X and Y . Then,

|X| |Y | n (n -|X| -|Y |) ≤ 1 5 . (3.14)
Proof It has been proved (see Proposition 4.8.1 in [START_REF] Brouwer | Spectra of graphs[END_REF]) that

|X| |Y | (n -|X|) (n -|Y |) ≤ µn -µ 2 µn + µ 2 2 . (3.15)
Because the graph is GLG we then have

µn -µ 2 µn + µ 2 2 = φ 2 -1 φ 2 + 1 2 = φ φ + 2 2 = 1 5 . (3.16) ⊓ ⊔
Lemma 7 Let X and Y be disjoint sets of vertices of an GLG such that there is no edge between X and Y . Then, 

|X| |Y | n (n -|X| -|Y |) ≤ 1 4 . ( 3 
|X| |Y | n (n -|X| -|Y |) ≤ (µn -µ 2 ) 2 4µnµ 2 . (3.18)
Because the graph is GLG we then have

(µn -µ 2 ) 2 4µnµ 2 = φ 2 4 µ 2 µn = 1 4 . (3.19) 

⊓ ⊔

Lemma 8 Let G be a GLG with n vertices and diameter D. Then,

D ≤ 2 φ 2 + 1 4 ln (n -1) ≤ 2 ⌈ln (n -1)⌉ . (3.20)
Proof Mohar [START_REF] Mohar | Eigenvalues, diameter, and mean distance in graphs[END_REF] has proved that

D ≤ 2 ∆ + µ 2 4µ 2 ln (n -1) , (3.21) 
Then, because µn ≥ ∆ we have

D ≤ 2 µn + µ 2 4µ 2 ln (n -1) (3.22)
from which the result follows for GLG where

µn µ 2 = φ 2 . ⊓ ⊔ Lemma 9
Let G be a GLG with n vertices and diameter D = D (G) . Then,

D ≤ 1 + cosh -1 (n -1) cosh -1 (2φ -1) . (3.23)
Proof Chung et al. [START_REF] Chung | An upper bound on the diameter of a graph from eigenvalues associated with its laplacian[END_REF] have proved that

D ≤ 1 +       cosh -1 (n -1) cosh -1 µn + µ 2 µn -µ 2       . (3.24)
Then, in a GLG: µn ± µ 2 = φ 2 µ 2 ± µ 2 , from which the result is straighforward using the properties of φ. ⊓ ⊔ Remark 2 Notice that any GLG with n ≤ 9 necessarily has diameter smaller or equal than 2. As a complete graph cannot be a GLG, this means that GLG with n ≤ 9 have diameter equal to 2.

Lemma 10 Let G be GLG of size n with independence number ind (G) . Then, if G has minimum and maximum degree given by δ and ∆, respectively,

ind (G) ≤ nδ φ 2 µ 2 = φnδ µn ≤ φnδ ∆ + 1 . (3.25)
Proof Here we use a result of Lu et al. [START_REF] Lu | Laplacian spectral bounds for clique and independence numbers of graphs[END_REF] who proved that ⊓ ⊔

ind (G) ≤ n (µn -δ) µn , (3.26) 
and by using the properties of GLG we get the result. Lemma 11 Let G be GLG of size n and with matching number α (G) . Then

α (G) ≥ n -1 φ 2 . ( 3.27) 
Proof Here we use a result of Gu and Liu [START_REF] Gu | A tight lower bound on the matching number of graphs via laplacian eigenvalues[END_REF] who proved that

α (G) ≥ min µ 2 µn (n -1) , 1 2 (n -1) . (3.28)
Because in a GLG

µ 2 µn = 1 φ 2 < 1 2
we get the result.

⊓ ⊔

Discovering GLG

We start this section by proving a result about some classes of graphs that contain no GLG.

Lemma 12 Among the following classes of graphs there are no GLG: 1. Trees; 2. Cycles with n ̸ = 5 vertices; 3. Complete graphs; 4.

Hypercubes Q k of any dimension k = 1, 2, • • • .
Proof Let us rst prove that no tree is a GLG. Fiedler proved that µ 2 ≤ n n-1 δ and µn ≥ ∆ + 1, where ∆ = ∆ (G) is the maximum degree of G. Because the graph G is GLG we have

µ 2 = µn φ 2 ≥ ∆ + 1 φ 2 . (4.1)
Because ∆ ≥ 2 we have that µ 2 ≥ 3

φ 2 , which means that n n-1 δ ≥ µ 2 ≥ 3 φ 2 .
For n ≥ 8 we have that n n-1 < 3 φ 2 , which means that δ ≥ 2. Because we have proved that the only graph with less than 8 vertices which is GLG is C 5 for which δ (G) ≥ 2, we have proved the result for all GLG. Then, no GLG is a tree.

The algebraic connectivity of a cycle graph is (see for instance [START_REF] De Abreu | Old and new results on algebraic connectivity of graphs[END_REF])

µ 2 (Cn) = 2 1 -cos 2π n . (4.2)
We have that µ 2 (Cn) ≥ 3 φ 2 if and only if n ≤ 5. Therefore, there is no cycle graph Cn which is GLG for n ̸ = 5.

The nonzero Laplacian eigenvalues of the complete graph Kn are n with multiplicity n -1 (see for instance [START_REF] De Abreu | Old and new results on algebraic connectivity of graphs[END_REF]), so that no Kn is a GLG.

A hypercube of dimension k has spectral radius of L equal to 2k and algebraic connectivity equal to 2 [START_REF] Chen | Spectral properties of hypercubes with applications[END_REF], which exclude the possibility of being GLG.

⊓ ⊔

Now, we proceed to nd some examples of GLG. We start by detecting the smallest GLG.

Proposition 1 Let C 5 be the cycle with 5 vertices (pentagon). Then, C 5 is the smallest GLG.

Proof The Laplacian eigenvalues of a cycle graph Cn are (probably belongs to folklore but it can be found in [START_REF] Fiedler | Algebraic connectivity of graphs[END_REF]):

µ k (Cn) = 2 -2 cos 2kπ n . (4.3) Therefore, µn (C 5 ) µ 2 (C 5 ) = 1 -cos 4π 5 1 -cos 2π 5 = 3 + √ 5 2 = φ 2 . (4.4)
The fact that the graph C 5 is the smallest GLG can be checked computationally by nding the eigenratio of all connected graphs with n ≤ 5 vertices. ⊓ ⊔

The following three results are proved by computational verication.

Lemma 13 There are no GLG with n = 6, 7 vertices, and there are exactly 15 graphs with n = 8 vertices which are GLG (see Figure 4.1). Hamiltonian, pancyclic, have a perfect matching, are regular and planar, respectively.

In Table 1 we indicate some of the properties of these GLG with 8 vertices.

Lemma 14 There are exactly 5 GLG with n = 9 vertices, which are the ones illustrated in Fig. 4.2.

In Table 2 we indicate some of the properties of these GLG with 9 vertices. Lemma 15 There are exactly 102 GLG with n = 10 vertices. 1 Remark 3 The 15 GLG with 8 vertices, the 5 GLG with 9 vertices and the 102 GLG with 10 vertices have the following general properties:

1. µn = 5 + √ 5 and µ 2 = 5 -√ 5; 2. are Hamiltonian. Notice that all GLG with n ≤ 10 are pancyclic, except the one whose adjacency matrix is given by A (C 5 ) ⊗ J 2 , where ⊗ is the Kronecker prod- uct and J 2 is the all-ones matrix of order 2 (see next section for details of this operation);

3. have perfect matching (n even) or a nearly-perfect matching (n odd). This is evident from the fact that all these GLG have a Hamiltonian cycle, which implies the existence of a perfect matching;

4. have diameter 2; 1 The adjacency matrix (Matlab format) and a Table with the properties of GLG with 10 vertices can be requested to the main author via email.

5. have clique number 3 ≤ ω ≤ 4; 6. have κv = κe = δ except for the graph whose adjacency matrix is given by (A (C 5 ) + I 5 ) ⊗ J 2 -I 10 (see next section for details of this operation); 7. have minimum degree δ ≥ 3; 8. have domination number 2 (n ≤ 9) or 2 ≤ γ ≤ 3 (n = 10). Notice that if δ ≥ 3, then according to Reed [START_REF] Reed | Paths, stars and the number three[END_REF] γ ≥ 3n 8

, which is the bound observed for n ≤ 10);

9. have independence number 2 ≤ ind ≤ 4. Notice that ind ≥ n l + 1 [START_REF] Griggs | Independence and the havel-hakimi residue[END_REF][START_REF] Turán | On the theory of graphs[END_REF], where l is the average shortest path distance in G. Then, if 2 = D ≥ l as observed for these GLG, ind ≥ n

3

. Now we state a result which corresponds to the construction of GLG of innite size.

Lemma 16 Let Kp,q be a complete bipartite graph with p > q. Then, if p = F r+1 and q = Fr, or p = L r+1 and q = Lr where Fr and Lr are the rth Fibonacci and Lucas numbers, respectively, we have that Kp,q is GLG when r → ∞.

Proof It is known that µn (Kp,q) = p + q and µ 2 (Kp,q) = q. Then, when p = F r+1 and q = Fr, or p = L r+1 and q = Lr we have

Q K Fr+1,Fr = F r+1 Fr + 1, (4.5) or Q K Lr+1,Lr = L r+1 Lr + 1. (4.6) 
Because [START_REF] Vajda | Fibonacci and Lucas numbers, and the golden section: theory and applications[END_REF] lim r→∞

F r+1 Fr = lim r→∞ L r+1 Lr = φ, (4.7) 
we have that lim

r→∞ Q K Fr+1,Fr = lim r→∞ Q K Lr+1,Lr = φ 2 as required for GLG.
⊓ ⊔

Expanding the family of GLG

Once we have some GLG like the ones we have found in the previous section we are interested in constructing new ones on the basis of them. For this we mainly use the Kronecker product of the adjacency matrix of a GLG and all-ones matrices. Let Jr and Ir be the all-ones and identity matrix of order r, respectively.

Denition 2 Let G be a graph with adjacency and Laplacian matrices A and L, respectively. Let G be the graph whose adjacency matrix à is constructed as:

à := A ⊗ Jr, (5.1)
where ⊗ is the Kronecker product. Let the eigenvalues of L be denoted by 0 = µ 1 < µ 2 ≤ • • • ≤ µn. Then, we have the following result.

Theorem 1 The spectrum of the Laplacian matrix L of G is given by spec L = spec (L ⊗ Jr) -spec (K ⊗ (Jr -rIr)) .

(5.2)

Denition 3 Let G be a graph with adjacency and Laplacian matrices A and L, respectively. Let Jr and Ir be the all-ones and identity matrix of order r, respectively.

Let Ĝ be the graph whose adjacency matrix  is constructed as:

 := A Jr = (A + In) ⊗ Jr -Irn, (5.8)
where ⊗ is the Kronecker product. Let the eigenvalues of L be denoted by 0 = µ 1 < µ 2 ≤ • • • ≤ µn. Then, we have the following result.

Theorem 3 Let G be a GLG with adjacency matrix A. Then the graph Ĝ whose adjacency matrix is obtained as

 := A Jr, is GLG. Proof The Laplacian matrix of Ĝ is L = rK ⊗ Ir -(A + In) ⊗ Jr + r (In ⊗ Ir) , (5.9) 
where In is the identity matrix of the same dimension as A. Then, by suming and substracting K ⊗ Jr we have

L = r (K + In) ⊗ Ir + K ⊗ Jr -A ⊗ Jr -K ⊗ Jr -In ⊗ Jr = (K + In) ⊗ Ir + L ⊗ Jr -(K + In) ⊗ Jr = L ⊗ Jr -(K + In) ⊗ (Jr -rIr) .
(5.10) Let R = L ⊗ Jr and S = (K + In) ⊗ (Jr -rIr), we have

RS = (L ⊗ Jr) ((K + In) ⊗ (Jr -rIr)) = L (K + In) ⊗ (Jr (Jr -rIr)) = L (K + In) ⊗ (rJr -rJr) = 0n, (5.11) 
and

SR = ((K + In) ⊗ (Jr -rIr)) (L ⊗ Jr) = (K + In) L ⊗ (Jr -rIr) Jr = (K + In) L ⊗ (rJr -rJr) = 0n, (5.12) 
where 0n is the zero matrix of order n. Therefore, RS = SR = 0 and so we have that spec L = spec (R -S) = spec (R) -spec (S).

The eigenvalues of R are R = L⊗Jr are µ i (L) λ i (Jr) and those of S are λ i (K + In) λ i (Jr -rIr). Because the eigenvalues 0 = μ1 < μ2 ≤ • • • ≤ μn of L are the dierence of those of R and S, we have μn = max {λn (R) , λn (S)} .

(5.13)

The largest eigenvalue of R is λn (R) = rµn (L) and that of S is λn (Q) = (∆ + 1) r, where ∆ is the maximum degree of G. Then, because µn (L) ≥ ∆ + 1 we have that μn = rµn (L).

Similarly, we have that μ2 = min {λ 1 (R) , λ 1 (S)} , (5.14) We have that λ 1 (R) = rµ 2 (L) and λ 1 (S) = (δ + 1) r. Therefore, because µ 2 (L) ≤ δ we have that μ2 = rµ 2 (L) and if µn (L) /µ 2 (L) = φ+1, also μn (L) /μ 2 (L) = φ+1, which proves the result.

⊓ ⊔

6 Synchronization of GLG GLG also have interesting synchronization properties. To illustrate them, we consider a set of dynamical oscillators coupled via a GLG. Each oscillator i, with i = 1, . . . , n, is characterized by a state vector x i (t) ∈ R s , where s is the size of the state vector, whose dynamics is described by the following equation:

ẋi = f (x i ) -σ n j=1 L ij h(x j ), (6.1) 
where f : R s → R s is the uncoupled dynamics of the dynamical oscillator, h : R s → R s is the coupling function, and σ the coupling strength. We say that system (6.1) is synchronized if all oscillators asymptotically converge to the same trajectory, namely lim t→+∞ ∥x i (t) -x j (t)∥ = 0 for any pair of oscillators i and j. In a generic system of coupled oscillators, the linear analysis of stability of synchronization, carried out with the master stability function approach, shows that there are two types of systems that can synchronize [START_REF] Boccaletti | Complex networks: Structure and dynamics[END_REF][START_REF] Pecora | Master stability functions for synchronized coupled systems[END_REF]. The rst, called class II systems, has unbounded synchronized region specied by σµ 2 > ν 1 > 0, where the constant ν 1 only depends on the node dynamics and coupling function, namely f and h. The second, called class III systems, has a bounded synchronized region specied by σµ 2 , . . . , σµn ∈ (ν 1 , ν 2 ) ⊂ (0, ∞), where the constants ν 1 and ν 2 only depend on the node dynamics and coupling function. Notice that class II systems can always be synchronized, provided that the coupling strength is large enough. On the contrary, class III system can be synchronized only if µn/µ 2 < ν 2 /ν 1 . The ratio Q = µn/µ 2 is known in the eld as the graph eigenratio. Remark 4 The eigenratio of a GLG is: Q = µn µ 2 = φ + 1 = φ 2 . The smaller values of Q favors the synchronizability of the graph. The smallest value of Q = 1 is attained for the complete graph Kn, which displays the best possible synchronizability for graphs with n vertices, but which is also the densest one. For graphs with n = 8 the mean eigenratio is: Q ≈ 6.24±3.26. However, the graphs for which Q = φ 2 are among the top 3.32% of 8-vertices graphs with the smallest Q, and consequently in the corresponding top percentage of best synchronizable graphs (see Figure 6.1). This percentage is 2.52% for n = 9 and 1.64% for n = 10.

Let us now discuss some results on synchronization in GLG. If we know that a graph is GLG, then we also know its region of synchronization. In fact, for class II systems we have the following. Proposition 3 Consider a class III system of dynamical oscillators as in Eqs. (6.1) coupled via a GLG. Then, a necessary condition for synchronization in the graph is that

φ 2 < ν 2 ν 1 (6.4)
and

ν 1 µ 2 < σ < ν 2 φ 2 µ 2 , (6.5) or φ 2 ν 1 µn < σ < ν 2 µn . (6.6) If µ 2 = k 5-√ 5 2 , k = 1, 2 . . ., then 2ν 1 k(5 - √ 5) < σ < 2ν 2 k(5 + √ 5)
. 3. Quite remarkably, the table includes many relevant examples of paradigmatic chaotic circuits, such as the Lorenz system [START_REF] Lorenz | Deterministic nonperiodic ow[END_REF], the Rössler equation [START_REF] Rössler | An equation for continuous chaos[END_REF], the Chua's circuit [START_REF] Matsumoto | The double scroll[END_REF], and the Chen system [START_REF] Chen | Yet another chaotic attractor[END_REF].

System

Eqs. Coupling 

(x) =    -bx -a + b, x > 1 -ax, |x| < 1 -bx -a + b, x < -1
with a = -1.27 and b = -0.68. The notation i → j indicates that the i-th variable of one oscillator is coupled to the dynamics of the j-th variable of the other oscillator (linear, diusive coupling is always assumed, here). Data on the values of ν 1 and ν 2 are taken from Ref. [START_REF] Huang | Generic behavior of master-stability functions in coupled nonlinear dynamical systems[END_REF].

Finally, let us discuss a numerical example illustrating synchronization in a system of n = 10 Rössler oscillators coupled via GLG. The system is described by the following equations: ẋi = -y i -z i -σ n j=1 L ij x j ẏi = x i + 0.2y i żi = 0.2 + (x i -9)z i (6.8) with i = 1, . . . , n. 

Conclusion and future outloock

By representing the eigenvalues of the Laplacian matrix of a graph as a line segment we have asked a general mathematical question about the ratios between the length of the spectrum µn -µ 1 and its spread µn -µ 2 and between the last one and µ 2 -µ 1 . We have discovered here that graphs for which these two ratios are identical, and consequently equal to the golden ratio, exist. We have found all the graphs having this property, proposed here to be called golden Laplacian graphs (GLG), with at most 10 vertices.

We have proved here analytically upper and lower bounds for several algebraic and graph-theoretic properties of GLG, have enumerated several properties of the GLG discovered here and have proved the existence of methods to expand GLG to larger sizes. However, there are many open and intriguing questions emerging from this work.

We enumerate some of them below to encourage the reader to investigate them:

Question 1 Which structural characteristic(s) dierentiate GLG from the rest of graphs?

Question 2 Do all GLG have diameter equal to 2?

Question 3 Are all GLG Hamiltonian? Which are the condition(s) for them to be pancyclic? If they are not Hamiltonian, do they still have a perfect matching (n even) or a nearly-perfect matching (n odd)?

Question 4 Are there GLG with clique number larger than 4? Which condition should the clique number obey in GLG?
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 31 Fig. 3.1: Representation of the spectrum of the Laplacian matrix of a graph like a segment of line.
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 42 Fig. 4.2: Illustration of the 5 GLG on 9 vertices. # m δ ∆ D ind κv κe ω γ H P M r p a 19 4 5 2 3 4 4 3 2 Y Y Y N N b 21 4 5 2 3 4 4 4 2 Y Y Y N N c 20 4 5 2 3 4 4 3 2 Y Y Y N N d 20 4 5 2 3 4 4 4 2 Y Y Y N N e 19 4 5 2 3 4 4 3 2 Y Y Y N N
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 61255 Fig. 6.1: Histogram of the values of the eigenratio Q of the 11,117 connected graphs with 8 vertices. The graphs with Q equal to the square of the golden ratio are marked as a vertical broken line.
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 675 Proof The proof directly follow from the property that for any GLG µn µ2 = φ 2 , and µ 2 = k 5- √ . ⊓ ⊔ As discussed above, not all class III systems are synchronizable. Here we illustrate a fascinating result, showing how many well-known chaotic circuits are in fact synchronizable when coupled via any GLG. A few examples are listed in Table

  [y -x + f (x)] ẏ = x -y + z ż = -14.87y ẋ = y + 3x 2 -x 3 -z + 3.2 ẏ = 1 -5x 2 -y ż = 0.006[-z + 4(x + 1.

3 ⟩Fig. 6 . 2 :

 362 Fig. 6.2: Synchronization error E vs. coupling coecient σ for two networks of n = 10 coupled Rössler oscillators, as in Eqs. (6.8). Both GLG (shown in the insets of panel (a) and (b)) display the same region of stability for synchronization as for both of them k = 2. Red asterisks mark the prediction of the thresholds for synchronization based on the master stability function approach, as in Eq. (6.7) with k = 2.

Table 1 :

 1 Properties

of the GLG with n = 8 vertices. The denition of the terms are given in Preliminaries. Additionally, the terms H, P, M, r, p ask whether the graphs are

Table 2 :

 2 

Properties of the GLG with n = 9 vertices. The denition of the terms are given in Preliminaries. Additionally, the terms H, P, M, r, p ask whether the graphs are Hamiltonian, pancyclic, have a nearly perfect matching, are regular and planar, respectively.

Table 3 :

 3 List of a series of class III systems, along with their equations, coupling type, and parameters ν 1 , ν 2 and ν 2 /ν 1 for which ν 2 /ν 1 < φ 2 . All these graphs are synchronizable when coupled via any GLG. For the Chua's circuit, f
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Proof First, let us write, L = K -Ã, where K = rK ⊗ Ir. Then,

(5.3)

Let us now designate P := L ⊗ Jr and Q := K ⊗ (rIr -Jr). Then, we can see that

= LK ⊗ (Jr (rIr -Jr))

and

Notice that J 2 r = rJr. Therefore, P Q = QP = 0. Consequently, because P and Q commute, we have that spec L = spec (P -Q) = spec (P ) -spec (Q), which proves the result. ⊓ ⊔ Theorem 2 Let G be a GLG with adjacency matrix A. Then the graph G whose adjacency matrix is obtained as à := A ⊗ Jr, is GLG.

Proof Let µ i (L (G)) and λ i (Jr) be the nonzero eigenvalues of L and of Jr, respectively. Then, it is known that the nonzero eigenvalues of P = L ⊗ Jr are µ i (L) λ i (Jr). Similarly, the nonzero eigenvalues of Q := K ⊗ rIr -Jr are λ i (K) λ i (rIr -Jr). Let λ 1 (P ) ≤ λ 2 (P )

Because the eigenvalues 0 = μ1 < μ2 ≤ • • • ≤ μn of L are the dierence of those of P and Q, we have μn = max {λn (P ) , λn (Q)} .

(

The largest eigenvalue of P is λn (P ) = rµn (L) and that of Q is λn (Q) = ∆r, where ∆ is the maximum degree of G. Then, because µn (L) ≥ ∆ + 1 we have that μn = rµn (L).

Similarly, we have that μ2 = min {λ 1 (P ) , λ 1 (Q)} , (5.7)

We have that λ 1 (P ) = rµ 2 (L) and λ 1 (Q) = δr. Therefore, because µ 2 (L) ≤ δ we have that μ2 = rµ 2 (L) and if µn (L) /µ 2 (L) = φ + 1, also μn (L) /μ 2 (L) = φ + 1, which proves the result.

⊓ ⊔