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Abstract

Automated decision systems are increasingly used to make consequential deci-
sions on people’s lives. Due to the sensitivity of the manipulated data as well
as the resulting decisions, several ethical concerns need to be addressed for the
appropriate use of such technologies, in particular, fairness and privacy. Unlike
previous work which focused on centralized differential privacy (DP) or on local
DP (LDP) for a single sensitive attribute, in this paper, we examine the impact of
LDP in the presence of several sensitive attributes (i.e., multi-dimensional data)
on fairness. Detailed empirical analysis on synthetic and benchmark datasets
revealed very relevant observations. In particular, (1) multi-dimensional LDP is
an efficient approach to reduce disparity, (2) the multi-dimensional approach of
LDP (independent vs combined) matters only at low privacy guarantees (high
ϵ), and (3) the outcome Y distribution has an important effect on which group is
more sensitive to the obfuscation. Last, we summarize our findings in the form of
recommendations to guide practitioners in adopting effective privacy-preserving
practices while maintaining fairness and utility in ML applications.
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1 Introduction

Data collected about individuals is regularly used to make decisions that impact those
same individuals. For example, census statistics have important implications for all
aspects of daily life, including the allocation of political power, the distribution of
federal funds, and research in economics and social sciences. In banking industries,
machine learning (ML) models leverage data to proactively monitor customer behav-
ior, reduce the likelihood of false positives, and prevent fraud. In these settings, there
is a tension between the need for accurate systems, in which individuals receive what
they deserve, and the need to protect individuals from improper disclosure of their
sensitive information. Differential privacy (DP) [23] is now widely recognized as the
gold standard for providing formal guarantees on the privacy level achieved by an
algorithm. However, central DP can only be used on the assumption of a trustworthy
server. Local DP (LDP) [32] is a variant that achieves privacy guarantees for each
user locally with no assumptions on third-party servers. In other words, LDP ensures
that each user’s data is locally obfuscated first on the client-side and then sent to the
server-side, thus protecting data from privacy leaks on both the client-side and the
server-side. Many Big tech companies have deployed LDP-based algorithms to use in
their industrial products (e.g., Google Chrome [24] and Apple iOS [4]).

On the other hand, algorithmic fairness aims to ensure that induced models do not
discriminate against groups or individuals based on their protected1 attributes (e.g.,
race, gender, age, etc.). Several fairness notions have been formally defined and pro-
posed in the literature in order to assess/quantify discrimination [36]. These fairness
notions fall into two main categories namely, group and individual notions. Group fair-
ness notions aim to ensure that sub-populations have similar decisions while individual
fairness notions aim to ensure that similar individuals are treated equally [2, 35, 38, 39].

Striking a balance between privacy and fairness while maintaining utility is crucial.
However, privacy-preserving algorithms in particular, DP, may tend to disparately
affect members of minority groups, implying that privacy and fairness are fundamen-
tally at odds [9, 13, 25, 27, 28]. This tension between fairness and DP is attracting
more and more attention, however, a clear understanding of the reasons for this ten-
sion is still not well explored. In another line of research, DP and fairness were viewed
as aligned objectives. For instance, Dwork et al. [22] proved that individual fairness is
a generalization of DP and provided some constraints under which a DP mechanism
ensures individual fairness as well. Alternatively, DP and fairness have been integrated
as dual objectives in a learning model. For instance, Xu et al. [45] proposed two algo-
rithms to achieve both DP and fairness in logistic regression by combining functional
mechanism and decision boundary fairness.

In this paper, we investigate the impact of training a model with obfuscated data
under LDP guarantees, employing the well-known k-ary Randomized Response (k-
RR) [31] mechanism. The choice of k-RR is motivated by its optimality for distribution
estimation under several information theoretic utility functions [31] and also it’s design
simplicity since k-RR does not require any particular encoding. Specifically, since
the output space is equal to the input space, k-RR provides optimal computational

1In this paper, we use the term protected to designate sensitive attributes from a fairness perspective
and the term sensitive to designate sensitive attributes from a privacy perspective.
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and communication costs for users. Moreover, on the server side, no decoding step
is needed. It also means that the server is free to use any post-processing coding
techniques (e.g., one-hot encoding, mean encoding, binary encoding) to improve the
usefulness of the ML model.

k-RR has traditionally been mainly employed in the one-dimensional scenario in
LDP and fairness literature [14, 40], where only one attribute is randomized. However,
relying solely on LDP for a single sensitive attribute might be insufficient. This limi-
tation stems from potential correlations that could allow attackers to reconstruct the
privatized sensitive attribute. Hence, we specifically address scenarios involving multi-
ple sensitive attributes, providing a more realistic representation of data collections in
real-world contexts. Nevertheless, applying k-RR to multi-dimensional sensitive data
presents greater challenges [20, 33]. For example, the naive approach of obfuscating
each sensitive attribute independently results in the loss of any dependencies between
sensitive attributes. This method has been recently employed to evaluate the impact
of LDP on fairness [7]. In our study, in addition to this independent setting, we also
explore a combined setting that merges all sensitive attributes into a single attribute.
Indeed, combined k-RR has not been extensively studied, and its impact on fairness
remains unclear, a gap in understanding that we aim to address.

More specifically, the contributions of this paper are threefold. First, we study the
impact of LDP on fairness and utility by observing the behaviour of sub-populations
separately. This allows for a more complete understanding of how the fairness metrics
behave under different LDP guarantees. Second, we compare both independent and
combined settings for obfuscating multi-dimensional sensitive attributes under LDP
guarantees. Third, we study how the target distribution has an impact on the privacy-
fairness-utility trade-off. The key findings of our empirical analysis are:
1. Generally, obfuscating data with LDP contributes generally to reduce disparity.
2. Obfuscating several sensitive attributes (multi-dimensional) reduces disparity

more efficiently than obfuscating a single attribute (one-dimensional).
3. The multi-dimensional approaches of LDP (independent vs combined) differ in

their impact on fairness only at low privacy guarantees.
4. LDP obfuscation has, typically, disproporationate impact on only one protected

group, and this depends heavily on the outcome Y distribution.
Finally, to bridge the gap with practical applications, we frame the

observations as concrete recommendations to practitioners considering
both ethical concerns of privacy and fairness in ML applications.

2 Related Work

Fairness and (L)DP. To satisfy both privacy and fairness in ML, the literature has
proposed several differentially private and fair ML models (e.g., see [26, 30, 43, 45] and
references within). However, the current state-of-the-art in the intersection field of DP
and fairness is multifaceted [27]. One perspective aligns DP and fairness in an indi-
vidual fairness context (e.g., [22]), while the other considers them as opposing forces
(e.g., [9, 25, 28]), considering group fairness. Regarding group fairness notions (our
primary focus), the most popular work [9] explored the effects of training DP deep
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learning models, revealing accuracy discrepancies between privileged and unprivileged
groups. However, recent studies have begun to observe a negligible [18] or bounded [37]
impact of DP deep learning models on group fairness. Regarding the local DP setting,
some works [14, 40] proposed to obfuscate only one sensitive attribute under ϵ-LDP
guarantees. With the increasing prevalence of collecting multiple sensitive attributes
across various industries, relying solely on LDP for a single sensitive attribute may
prove insufficient as correlations can still allow attackers to reconstruct the priva-
tized sensitive attribute. For this reason, we consider the case of multiple sensitive
attributes, reflecting real-world data collections more accurately. In this context, a
recent work [7] has investigated the impact of collecting multi-dimensional under LDP
on fairness. However, while [7] has only considered the independent setting for ran-
domizing the users multi-dimensional data, for a more comprehensive examination, we
have considered both independent and combined settings (discussed in the following).
Another main difference is that we analyze the impact of LDP on fairness by varying
the Y distribution (e.g., see Section 5.3).

LDP and multi-dimensional data. Unlike the centralized DP setting, where
the server collects users’ original data, LDP empowers users to obfuscate their data
before transmitting it to the server. While much of the existing literature on LDP
has focused on the frequency estimation of one-dimensional data (e.g., [4, 24, 31]),
real-world scenarios often involve servers seeking insights into multiple attributes of a
population, i.e., multi-dimensional data. In this context, the typical process involves
local perturbation of user data, followed by statistical estimation and synthetic data
generation. The first phase takes place on the user side, while subsequent phases occur
at the aggregator/server side. This paper diverges from this typical process in two key
aspects. First, it exclusively examines the first phase, studying various approaches for
perturbing user multi-dimensional data. Second, it investigates the setup of training
an ML model based on the randomized data, as in [7, 14, 40]. Crucially, the objective
is to analyze the impact of different data perturbation approaches on the fairness of
the learned model. In the LDP literature for multi-dimensional data, prior works have
adopted either an independent [33, 42], sampling-based [5, 17], or combined [34] (i.e.,
joint) perturbation of sensitive attributes. In the former, the randomization mechanism
is independently applied to each sensitive attribute, leading to the loss of potentially
significant dependencies among attributes and resulting in poor statistical utility.
Alternatively, the latter setting, namely combined, treats the Cartesian product of
the set of sensitive attributes as a single attribute [20, 33, 34], representing a natural
approach to sensitive data perturbation. Our goal is then to study the impact of both
the independent and combined approaches of user multi-dimensional data perturba-
tion on the fairness of the obtained model. Notice that the sampling-based approach
is not comparable since each user only sends information about one attribute.

3 Preliminaries and Notation

Variables are denoted by capital letters and small letters denote specific values of
variables (e.g., A = a, Y = y). Bold capital and small letters denote a set of variables
and a set of values, respectively. In particular, V denotes the set of all variables in
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the data except the outcome. A predictor Ŷ of an outcome Y is a function of V
(Ŷ = h(V)). The set of attributes2 V is composed of non-sensitive (X) and sensitive
(A) attributes (V = (X,A)). A sensitive attribute reveals private information about
an individual and hence should be obfuscated. A protected attribute A is an attribute
that can be used for discrimination. For example, when deciding to grant a loan to an
individual, the protected attribute A could be someone’s race or gender. In this paper,
we assume that there is only one protected attribute (no intersectionality [35]) and
the protected attribute is always sensitive (A ∈ A). Note that X could include proxies
to A such as zip code which could infer race. Without loss of generality, assume that
Ŷ and Y are binary random variables where Y = 1 (e.g., granting a loan) designates
a positive outcome and Y = 0 (e.g., denying a loan) designates a negative outcome.
In some scenarios, the outcome Y is derived from a score s (e.g., risk score to default
on a loan) and a threshold set by domain experts is used to define the cut-off point
between the positive outcome and the negative outcome. For the example of granting
a loan, an applicant who has a score s > threshold is assigned a positive outcome
(Y = 1) while an applicant with a score s <= threshold is assigned a negative outcome
(Y = 0). Thus, varying this threshold causes a variation in the class distribution and
potentially leads to different predictions. For the remainder of this paper, we assume
that we have access to a dataset D of n i.i.d samples such that D = (xi,ai, yi)

n
i=1.

Let L be a randomization3 algorithm for sensitive attributes. We denote a randomized
version of D as Dz = (xi, zi, yi)

n
i=1 where zi = L(ai).

3.1 Problem Statement

The focus of this work is to shed light on the impact of training a classifier using
locally differential private data on fairness assessment. Figure 1 depicts the framework
used in this work. To assess fairness, a prediction problem is defined. An example of
a prediction problem might be granting loans to individuals or admitting applicants
to a college program. As a randomized mechanism L is applied to the sensitive part
of the original data, the predictor ŶZ incurs some error. The difference between ŶZ

and ŶA (predictions of the model trained on the original data) quantifies the impact
of LDP on Fairness results. As shown in Figure 1, the classification model called
MA is first trained using the original data DAtrain

. We refer to such a model as a
baseline model. We then train the same model with the same hyper-parameters using
an obfuscated version of the training set DZtrain

. We call this LDP model MZ . Note
that the classification models MA and MZ are both tested on the original testing
samples (DAtest

).

3.2 Local Differential Privacy

This work assumes that the centralized server in charge of aggregating data from
individual users is not guaranteed trustworthy. Consequently, we consider the local
DP [32] setting, where users obfuscate their data before sending it to the server to
train the classification model.

2In the rest of the paper we use attribute and variable interchangeably.
3The terms randomization and obfuscation are used interchangeably.
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Fig. 1: Our framework for fairness assessment when learning over LDP-based data.

Definition 1 (ϵ-Local Differential Privacy). An algorithm L with domain and range
equal to the domain ofA (dom(L) = range(L) = dom(A)) satisfies ϵ-local-differential-
privacy (ϵ-LDP), where ϵ > 0, if:

max
a,a′,z∈dom(A)

P(L(a) = z)

P(L(a′) = z)
≤ eϵ

Notice that Definition 1 uses sets of values (a,a′, and z) instead of single values
(a, a′, and z) so that it holds when randomizing one dimensional data (one single
sensitive attribute) or multi-dimensional data (several sensitive attributes). The same
holds for the ϵ-LDP mechanism defined below.
Definition 2. k-Ary Randomized Response (k-RR) Let A = {A1, A2, . . .}
be a set of sensitive attributes with a domain dom(A) = {a1, . . . ,ak} of size k
(k = |dom(A)|). Given a value a ∈ dom(A), k-RR(a) outputs the true value a with
probability p, and any other value a′ ∈ dom(A) \ {a}, otherwise. More formally:

∀z ∈ dom(A) : P(z = a) =

{
p = eϵ

eϵ+k−1 if z = a,

q = 1
eϵ+k−1 if z ̸= a.

(1)

where z is the obfuscated version of a sent to the server.
It is easy to see that k-RR mechanism satisfies ϵ-LDP as p

q = eϵ [31]. As men-
tioned in Section 1, we choose k-RR as the LDP mechanism to apply because it does
not use any specific user-side encoding, resulting in low computational and commu-
nication costs on the user side. Moreover, on the server side, k-RR does not require
any special decoding and has proven optimal for many theoretical information losses
in distribution estimation.

3.3 Fairness

The common taxonomy of fairness metrics classifies them into group and individual
metrics [2, 10, 35, 36, 38, 44]. In this paper, we focus on statistical group fairness
metrics. These metrics are used to assess the impact of LDP on fairness.
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• Statistical disparity[22] is one of the most commonly applied fairness metrics.
It requires the prediction to be statistically independent of the sensitive attribute
(Ŷ ⊥ A). In other words, the predicted acceptance rates for both privileged (A = 1)
and unprivileged (A = 0) groups should be equal. A classifier Ŷ satisfies statistical
parity if:

P(Ŷ = 1 | A = 1)− P(Ŷ = 1 | A = 0). (2)
• Equal opportunity disparity [29] requires true positive rate equality4 among
groups:

P(Ŷ = 1 | Y = 1, A = 1)− P(Ŷ = 1 | Y = 1, A = 0). (3)
• Predictive equality disparity [16] requires only the false positive rates5 to be
equal in both groups:

P(Ŷ = 1 | Y = 0, A = 1)− P(Ŷ = 1 | Y = 0, A = 0). (4)

• Overall accuracy disparity [11] is satisfied when overall accuracy for both groups
is the same:

P(Ŷ = Y |A = 1)− P(Ŷ = Y |A = 0) (5)
• Predictive rate disparity [15] requires only the positive predictive value6 to be
equal in both groups and is achieved when:

P(Y = 1 | Ŷ = 1, A = 1)− P(Y = 1 | Ŷ = 1, A = 0) (6)

4 Combined vs independent k-RR

As noted above, Definitions 1 and 2 hold for the one-dimensional as well as multi-
dimensional data. That is, in addition to obfuscating a single sensitive attribute, we
also consider the obfuscation of multiple sensitive attributes (Section 5 presents all
the k-RR settings we consider in this study). More specifically, we assume there are
d sensitive attributes A1, A2, . . . , Ad, where the domain of each Ai is a discrete set
of finite size ki = |dom(Ai)|. We consider two methods to apply k-RR on multi-
dimensional data [20, 33]:
Independent k-RR (k-RR-Ind). This is a naive approach that applies k-RR inde-

pendently on each attribute. More precisely, k-RR-Ind splits the privacy
budget ϵ among the d sensitive attributes, and reports each attribute Ai

using ki-RR parameterized with ϵi-LDP, where
∑d

i ϵi = ϵ. The state-of-the-art
approach [5, 8, 33, 42] divides ϵ evenly among the attributes, i.e., a uniform
solution in which each attribute is reported under ϵ

d -LDP. In this study, we apply
the k-based solution [7]. This approach consists of splitting ϵ among sensitive
attributes based on their domain size. More specifically, each sensitive attribute
Ai ∈ A is obfuscated with ϵi = ϵ·ki∑ds

i=1 ki
where ki is the domain size of the

attribute Ai (ki = |dom(Ai)|) and ds is the number of attributes in A (ds = |A|).

4True positive rate = TP
TP+FN

5False positive rate = FP
FP+TN

6Positive predictive value = TP
TP+FP
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Combined k-RR (k-RR-Comb). This mechanism considers the Cartesian product
A1 × A2 × . . .× Ad as a single attribute and sanitizes it using k-RR parameter-
ized with ϵ-LDP, where k = k1 · k2 · . . . · kd.

Independent LDP on multi-dimensional data has been studied relatively well in the
literature [5, 33, 42]. Moreover its impact on fairness was the topic of a recent paper
[7]. Combined LDP, on the other hand, was not studied extensively. In particular, its
impact on fairness is still unclear.

5 Empirical Results and Analysis

To study the impact of k-RR on fairness, two synthetic datasets and two real-world
fairness benchmark datasets, namely: Adult and Compas are used. For each of these
datasets, the fairness metrics presented in Section 3.3 are applied.
Environment: All the experiments are implemented in Python 3. We use Random
Forest model [12] for classification with its default hyper-parameters and we use the
ten-fold cross-validation technique, both from Scikit-learn [41]. For k-RR mechanism,
we use the implementation in Multi-Freq-LDPy [6]. The codes and datasets for all the
experiments are available in the repository [1].
Stability: Since LDP protocols, k-fold cross-validation, and ML algorithms are
randomized, we report average results over 20 runs.
Datasets: A summary of all datasets used in this study is provided in Table 1.

Table 1: Metadata of the datasets used in the experiments.

Dataset n A A Y Threshold

(protected att.) (sensitive att.)

Synthetic 100K A - A Y τQ1 = .44

- C τQ2 = .52

- M τQ3 = .6

Compas 5915 race - race risk score7 τQ1 = 1

- gender τQ2 = 3

- age τQ3 = 5

Adult 32561 gender - gender income τQ1 = 10K

- age τQ2 = 27K

- race τQ3 = 50K

- marital-status

- native-country

- Synthetic Dataset: The causal model used to generate the synthetic dataset is
depicted in Figure 2. A, C, and M are discrete variables8, while Y is a continuous
variable that is a function of all the other variables such that: Y = h(A,C,M).
To study the impact of k-RR on fairness while varying the class distribution,

7Unlike the synthetic and the Adult datasets, whose outcome is continuous, the outcome of the Compas
dataset is discrete (score ∈ [0, 1]). Thus, we use scores 1, 3, and 5 as thresholds for the Y distribution to
be skewed to 0, balanced and skewed to 1, respectively.

8C and A follow Binomial distributions while M follows Multinomial distribution.
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three thresholds are set for the outcome variable Y binarisation, resulting in three
synthetic datasets differing solely by the distribution of Y . The thresholds and
the resulting Y distribution for all datasets are shown in Table 1. Three scenarios
are considered depending on the dataset, namely, Y distribution skewed to 1,
balanced Y distribution, and Y distribution skewed to 0.

- Benchmark Datasets:
- Compas: The Compas dataset includes data about defendants from

Broward County, Florida, during 2013 and 2014 who were subject to Compas
screening. Various information related to the defendants (e.g., race, gender, arrest
date, etc.,) were gathered by ProPublica [3] and the goal is to predict the two-
year violent recidivism. Only black and white defendants assigned Compas risk
scores within 30 days of their arrest are kept for analysis leading to 5915 indi-
viduals in total. We consider race as the protected attribute. Five attributes are
used in this study namely: race, sex, age, priors and risk score. We use the Com-
pas risk score as the outcome. The risk score consists of rating of 1 − 10 where
the higher the score, the more likely the defendant is to re-offend. Following the
same reasoning as the other datasets, we transform the risk score into a binary
variable by choosing different thresholds to study the impact of outcome distribu-
tion on the privacy-fairness trade-off. Three thresholds are used, leading to three
different outcome distributions: skewed to 1, almost balanced, and skewed to 0.

- Adult : The Adult dataset[19] consists of 32, 561 samples and the goal is
to predict the income of individuals based on several personal attributes such
as gender, age, race, marital status, education, and occupation. The attributes
considered in this work are age, gender, native country, education level, marital
status, number of working hours per week, and income. We use the income of an
individual as the outcome. Similarly to the other datasets, different thresholds
are used to separate the positive outcome (high income) from the negative out-
come (low income). Three thresholds are used in total, leading to three versions
of the Adult dataset with skewed income distribution to 1 (threshold = 10K),
balanced income distribution (threshold = 26K), and skewed income distribution
to 0 (threshold = 50K9).

Applied settings: Four settings (Table 2) are used to assess the impact of LDP on
fairness. We vary the privacy level in the range of ϵ = {16, 8, 5, 3, 2, 1, 0.5, 0.1}.

- noLDP (Baseline): the model is trained using the original data (without privacy).
- sLDP : the model is trained using an obfuscated version of the data where only
the protected attribute A is obfuscated using k-RR.

- combLDP : the model is trained using an obfuscated version of the data where a
set of sensitive attributes A, including the protected attribute A is obfuscated
using k-RR-Comb (Section 4).

- indLDP : the model is trained using an obfuscated version of the data where the
same set of sensitive attributes A is obfuscated using k-RR-Ind (Section 3.2). The
privacy splitting solution used in the experiments is the k-based solution (3.2).

9The 50K threshold is used in the well-known Adult dataset mostly used in the literature [21].
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C

A Y

M

(a) Causal Graph

C ∼ B(0.35),

A ∼

{
B(0.55) if C = 0,

B(0.75) if C = 1,

M ∼

{
M(0.35, 0.4, 0.25) if A = 0,

M(0.5, 0.4, 0.1) if A = 1,

Y = αA+ βM + γC + Uy, Uy ∼ N (0, 1)

(b) Structural equations

Fig. 2: Causal Model of the Synthetic Dataset.

Table 2: Settings applied in this
study.

Settings applied k-RR applied to

noLDP no privacy

sLDP A

combLDP A using k-RR-Comb

indLDP A using k-RR-Ind

5.1 Impact of LDP on fairness

This set of experiments aims to study the effect of obfuscating data through LDP on
the fairness of the model trained using that data. The experimental protocol consists
of obfuscating data using either sLDP (not multi-dimensional) or combLDP (multi-
dimensional) while decreasing the privacy budget ϵ toward more privacy requirements
(small ϵ). Fairness is measured using the various group metrics of Section 3.3, and the
experiment is repeated for all three datasets (Synthetic, Compas, and Adult). Figure 3
shows the obtained results. To better understand how LDP impacts fairness, the plots
show the separate values for both groups: the privileged group (A = 1) in red dots
and the unprivileged group (A = 0) in blue dots. Disparity between groups is then the
difference between the two values (dots). In addition, for a better understanding of
the trade-off, disparity in the baseline case (no obfuscation (noLDP)) is shown using
a gray shaded area. The following can be observed from the empirical results.

• [Obs1] More privacy leads to less disparity. For both sLDP and combLDP, the
disparity decreases when imposing stronger privacy requirements (smaller ϵ). For
example, in Figure 3b, statistical disparity (first row) decreases from 0.23 to 0.15
(for sLDP) and 0 (for combLDP). The same decreasing pattern can be observed
for equal opportunity disparity (second row) and predictive equality disparity
(third row). For overall accuracy disparity and predict rate disparity, however,
disparity either stays unaffected (Figure 3c) or increases (Figures 3a and 3b).
These two fairness notions compare both groups’ accuracy and precision (e.g.,
Y = Ŷ for accuracy). Hence, the behavior is expected since imposing strong
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privacy guarantees typically leads to a decrease in the accuracy and precision of
the classifier for one or both protected groups. But the drop is greater for one
group than for the other. This is further detailed when studying the impact of
the outcome distribution on the privacy-fairness-utility trade-off (Section 5.3).
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(a) Synthetic data
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(b) Compas
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P[Y = 1|A = 1]
P[Y = 1|A = 0]

combLDP
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D P[Y = 1|Y = 1, A = 1]

P[Y = 1|Y = 1, A = 0]
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D P[Y = 1|Y = 0, A = 1]

P[Y = 1|Y = 0, A = 0]
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(c) Adult

Fig. 3: Impact of LDP on disparity (y-axis) by varying the privacy level ϵ (x-axis).
sLDP consists in obfuscating a single attribute (protected). combLDP consists in
obfuscating all sensitive attributes. The gray shaded area represents the disparity
results using the baseline model (noLDP).
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• [Obs2] Multi-dimensional LDP reduces disparity more efficiently than one-
dimensional LDP. Both sLDP and combLDP lead to a decrease in disparity
(previous observation). However, with combLDP, the reduction can be observed
with weaker privacy guarantees (higher ϵ). In other words, the more attributes
are obfuscated, the less privacy level ϵ is needed to improve fairness. For instance,
in Figure 3a, the disparity disappears at ϵ = 0.1 for sLDP, but at ϵ = 2 for
combLDP. This can be explained by the fact that obfuscating the protected
attribute A (equivalent to removing that attribute from the training set when
the privacy guarantees are strong enough) is insufficient to improve fairness due
to proxies correlated with that attribute. Thus, by additionally obfuscating all
attributes correlated with the protected attribute, weaker privacy guarantees are
required to reduce the disparity between groups and, therefore, improve fairness.

• [Obs3] LDP has disproportionate impact on groups. In most of the plots, one
can observe that k-RR does not have an impact (or has a minor impact) on one
group but a high impact on the other group. For instance, in the first three rows
of Figure 3a, the change in disparity is due to a significant change related to only
the unprivileged group (blue dots). In other words, considering groups separately,
k-RR impacts the fairness/utility of these groups differently.

5.2 k-RR-Ind vs k-RR-Comb

The impact of LDP on the fairness level of the obtained model depends on the multi-
dimensional k-RR variant (Section 4) used for obfuscation. The following experiment
is performed to compare the effects of k-RR-Ind and k-RR-Comb on the disparity
between the privileged and unprivileged groups. Benchmark datasets (Synthetic, Com-
pas, and Adult) are obfuscated using k-RR-Ind and k-RR-Comb while decreasing the
privacy budget ϵ toward more strict privacy guarantees (very small ϵ). The obfuscated
data is then used to train a predictor and the disparity of the model is then assessed
using the fairness metrics of Section 3.3. Figure 4 shows the result of the experiments.

• [Obs4] For large ϵ, the efficiency to reduce disparity depends on the sensitive
attributes inter-dependencies. Compas and Adult experiments illustrate the two
different behaviors. In Compas experiment (Figure 4b), at ϵ = 4, equal oppor-
tunity disparity (EOD) for indLDP is −0.09 but −0.27 for combLDP. Recall,
from Table 1, that in Compas dataset, three attributes are considered sensitive
(race, gender, and age) with relatively low inter-dependencies between them. This
explains why k-RR-Ind is more efficient in reducing disparity than k-RR-Comb
for large ϵ values. In the Adult experiment result (Figure 4c), k-RR-Comb is
slightly more efficient than indLDP in reducing disparity. For instance, at ϵ = 8,
EOD is at 0.43 for indLDP but at 0.38 for combLDP. This can be explained by
the relatively high inter-dependencies of the five sensitive attributes (Table 1)
considered in the Adult dataset.

• [Obs5] For small ϵ, combLDP and k-RR-Ind have a similar impact on dispar-
ity. In all plots of Figure 4, for strict privacy guarantees (small ϵ), the disparity
between protected groups converges to the same value whether the obfuscation
was performed with indLDP or indLDP. In other words, by enforcing more
privacy, both settings of k-RR improved fairness to the same extent.
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Fig. 4: Impact of combLDP and indLDP on disparity (y-axis) by varying the privacy
level ϵ (x-axis) and obfuscating a set of sensitive attributes.

5.3 The effect of changing the outcome distribution

To assess disparity using the group fairness metrics (Section 3.3), the outcome variable
Y is required to be binary. However, typically, the trained model predicts a continuous
numerical value representing a score as outcome. The score value needs to be thresh-
olded to obtain a binary value. Consequently, the distribution of the outcome variable
Y will depend on the threshold value. To study the effect of the outcome distribu-
tion on the disparity between protected groups while obfuscating data, the following
experiment is performed. Three different distributions are considered for each dataset
(Synthetic, Compas, and Adult). The first distribution is obtained by considering a
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threshold value (τQ1) such that all instances in the three top quantiles have positive
outcome (Y = 1). The threshold (τQ2) of the second distribution is selected such that
the two top quantiles have positive outcome. And the third threshold (τQ3) is selected
such that only the instances in the top quantile have positive outcome. Each of the
obtained datasets is then obfuscated using sLDP, combLDP, and indLDP. Figure 5
show the experimental results for the Adult dataset (Results for Synthetic and Compas
can be found in the appendix (Figures 7 and 8)). As in the experiment of Section 5.1,
to better understand how fairness is impacted by the distribution of the outcome, the
plots track the separate values for each protected group (dots on solid lines for privi-
leged group and dots on dashed lines for unprivileged group). The difference between
the two types of dots corresponds to the disparity. Finally, as previously mentioned,
the grayed area corresponds to the disparity of the baseline model (noLDP).

• [Obs6] When enforcing privacy, which group witnesses more accuracy drop
depends on the outcome distribution. Depending on the threshold for positive out-
come (and hence the outcome distribution), the drop in accuracy10 due to more
tight privacy guarantees (smaller ϵ) is higher for one group than the other. In
particular, the accuracy drops more for the unprivileged group A = 0 when the
Y distribution is either skewed to 1 (τQ1) or balanced (τQ2), which correspond to
the first and second columns in Figure 5. Whereas it drops more for the privileged
group A = 1 when the Y distribution is skewed to 0 (τQ1)

11.
• [Obs7] When enforcing privacy, which group contributes more to reduce the dis-
parity depends on the outcome distribution. Similarly to the above observation,
the outcome distribution has significant impact on how each group (privileged
vs unprivileged) contributes to the disparity reduction while enforcing more pri-
vacy. In particular, the prediction rates per group (e.g. P (Ŷ = 1|A = 1) for SD)
increased more for the unprivileged group A = 0 when the outcome distribution
is skewed to 1 (τQ1 and τQ2) but decreased more for the privileged group A = 1
when the outcome distribution is skewed to 0 (τQ3)

12.
• [Obs8] For a fair baseline model, enforcing privacy amplifies disparity. The out-
come distribution experiment exhibited an interesting behavior illustrated clearly
in the Adult dataset results (Figure 5). In particular, for the PED metric with
outcome distribution at threshold τQ1, the disparity in the baseline predictor is
relatively small. However, training the predictor using obfuscated data resulted
in disparity amplification. A similar behavior is observed for OAD with τQ2.

Based on the above observations, one can conclude the following statements:
Statement 1: If A = a is the privileged group (has a majority of Y = 1) then if Y is
skewed to 1, adding noise affects more the accuracy of the unprivileged group A ̸= a
else (Y is skewed to 0) adding noise affects more the accuracy of A = a.
Statement 2: If A = a is the privileged group (has a majority of Y = 1), then if
Y is skewed to 1, adding noise increases more the predicted rates for the unprivileged

10As this observation is about the accuracy, only the last two fairness metrics are concerned, that is,
OAD and PRD corresponding to the two lower rows of Figure 5.

11Note that this observation is also confirmed in the Compas dataset (Figure 8) but inverted since the
privileged group in this dataset is the group A = 0. To confirm the inversed behavior, we generated a second
synthetic dataset where the group A = 0 is privileged. The plots can be found in Appendix A.1.

12Again, the behavior is reversed for the Compas dataset (Figure 8) for the same reason as the previous
observation.
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Fig. 5: Impact of Y distribution on the privacy-fairness trade-off. Columns 1, 2, and
3 illustrate the results for the Adult dataset when the Y distribution is skewed to 1,
balanced, and skewed to 0, respectively.

group A ̸= a else (Y is skewed to 0), adding noise decreases more the predicted rates
for group A = a.
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5.4 Recommendations

Based on the observations obtained from the experimental analysis, one can propose
the following recommendations for a practitioner who is considering a mechanism
satisfying privacy and fairness guarantees. That is, a mechanism allowing individual
users to share their data while at the same time protecting their sensitive information
and guaranteeing that the obtained model is fair with respect to sub-populations
and/or individuals.

A. LDP data obfuscation is an efficient mechanism to reduce disparity.

Almost all observations from the experimental analysis confirm the conclusion that
LDP obfuscation reduces disparity (Obs1, Obs2, Obs4, Obs7). The disparity reduc-
tion is often due to one group being more sensitive to the LDP obfuscation rather the
other (Obs2). The only exception is when the predicted model using baseline (not
obfuscated) data is already fair. In that case, LDP may create disparity (Obs8).

B. Obfuscating several sensitive attributes allows to reduce disparity more
efficiently than a single attribute.

If a practioner is interested in producing a fair model but with a minimal privacy
enforcement, it is recommended that she uses multi-dimensional LDP obfuscating as
many sensitive attributes as possible (Obs2).

C. Independent and combined variants of multi-dimensional LDP are
different only with weak privacy guarantees.

The choice of the multi-dimensional approach of LDP (combined vs independent)
matters only at low privacy guarantees (large ϵ) (Obs4). In that case, the practitioner’s
choice should depend on the level of interdependency between sensitive attribute. For
high interdependency, a combined approach is more efficient to reduce disparity. For
low or no interdependency, an independent approach is more efficient. At strict privacy
guarantees (low ϵ), however, both approaches have similar effect on disparity (Obs5).

D. Obfuscating data impacts disproportionally only one group depending
on the outcome distribution.

A practitioner who obfuscates individual data with LDP should expect that only one
group will be significantly affected. And she can guess which group will be more
affected by studying the outcome distribution. More precisely, if the outcome distri-
bution is skewed towards the positive outcome (typically Y = 1), it is the unpriviliged
group who will be more affected. Otherwise (outcome distribution is skewed to the neg-
ative outcome (typically Y = 0), it is the privileged group who will be more affected
(Obs7 and Obs8).

6 Conclusion

This paper investigates how the accuracy and fairness of the decisions made by the
model change under local differential privacy (LDP), in particular, k-ary Random-
ized Response (k-RR) mechanism, given different levels of privacy and different class
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distributions. To broaden the scope of our study, we employed various group fair-
ness metrics and evaluated two settings for obfuscating multi-dimensional sensitive
attributes under LDP, namely, independent and combined, on one synthetic and two
benchmark datasets to substantiate our claims. The experimental analysis revealed
very relevant observations that we framed as concrete recommendations for machine
learning practitioners aiming at guaranteeing both ethical concerns of privacy and
fairness. To the best of our knowledge, this is the first work which studies the effect
of combined multi-dimensional LDP on fairness. In particular, we observed that com-
bined LDP reduces more efficiently the disparity at low privacy guarantees (high ϵ).
As future work, we aim to formalize the privacy-utility-fairness trade-off when learning
over LDP-based data, as well as to propose LDP- and fairness-aware ML models.
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A Appendix

A.1 Results of the Synthetic dataset 2

The synthetic dataset 2 follows the exact same causal model depicted in Figure 2. The
data distribution is the only difference between the Synthetic datasets 1 and 2. More
specifically, synthetic data 2 differed from synthetic data 1 solely by Y distribution.
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Fig. 6: Impact of k-RR on fairness for the Adult datasets generated with three different
thresholds leading to different Y distributions. Synthetic data 2
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A.2 Synthetic and Compas experimental results for Section 5.3
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Fig. 7: Impact of Y distribution on the privacy-fairness trade-off. Columns 1, 2, and
3 illustrate the results for the synthetic dataset when the Y distribution is skewed to
1, balanced, and skewed to 0, respectively.
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Fig. 8: Impact of Y distribution on the privacy-fairness trade-off. Columns 1, 2, and
3 illustrate the results for the Compas dataset when the Y distribution is skewed to
1, balanced, and skewed to 0, respectively.
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