
HAL Id: hal-04329790
https://hal.science/hal-04329790

Preprint submitted on 7 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Score-Aware Policy-Gradient Methods and Performance
Guarantees using Local Lyapunov Conditions

Céline Comte, Matthieu Jonckheere, Jaron Sanders, Albert Senen-Cerda

To cite this version:
Céline Comte, Matthieu Jonckheere, Jaron Sanders, Albert Senen-Cerda. Score-Aware Policy-
Gradient Methods and Performance Guarantees using Local Lyapunov Conditions: Applications to
Product-Form Stochastic Networks and Queueing Systems. 2023. �hal-04329790�

https://hal.science/hal-04329790
https://hal.archives-ouvertes.fr

Score-Aware Policy-Gradient Methods and Performance

Guarantees using Local Lyapunov Conditions

Applications to Product-Form Stochastic Networks and Queueing Systems

Céline Comte1, Matthieu Jonckheere1, Jaron Sanders2, and Albert Senen-Cerda1,2

1CNRS, LAAS, and IRIT, Toulouse, France
2Eindhoven University of Technology, Eindhoven, The Netherlands

December 7, 2023

Abstract

Stochastic networks and queueing systems often lead to Markov decision processes (MDPs) with large
state and action spaces as well as nonconvex objective functions, which hinders the convergence of many
reinforcement learning (RL) algorithms. Policy-gradient methods, a class of RL algorithms that directly
optimize the policy via stochastic gradient ascent on the objective function, perform well on MDPs with
large state and action spaces, but they sometimes experience slow convergence due to the high variance
of the gradient estimator. In this paper, we show that some of these difficulties can be circumvented by
exploiting the structure of the underlying MDP. We first introduce a new family of gradient estimators
called score-aware gradient estimators (SAGEs). When the stationary distribution of the MDP belongs
to an exponential family parametrized by the policy parameters, SAGEs allow us to estimate the policy
gradient without relying on value-function estimation, contrary to classical policy-gradient methods like
actor-critic. To demonstrate their applicability, we examine two common control problems arising in
stochastic networks and queueing systems whose stationary distributions have a product-form, a special
case of exponential families. As a second contribution, we show that, under appropriate assumptions, the
policy under a SAGE-based policy-gradient method has a large probability of converging to an optimal
policy, provided that it starts sufficiently close to it, even with a nonconvex objective function and mul-
tiple maximizers. Our key assumptions are that, locally around a maximizer, a nondegeneracy property
of the Hessian of the objective function holds and a Lyapunov function exists. We believe that the
proof technique is of independent interest and can be adapted to other gradient-based methods. Finally,
we conduct a numerical comparison between a SAGE-based policy-gradient method and an actor-critic
algorithm. The results demonstrate that the SAGE-based method finds close-to-optimal policies more
rapidly, highlighting its superior performance over the traditional actor-critic method.

Keywords: reinforcement learning, policy-gradient method, exponential families, product-form station-
ary distribution, stochastic approximation.

CCS Concepts: • Computing methodologies → Reinforcement learning; Markov decision processes; •
Mathematics of computing → Queueing theory.

1 Introduction

Stochastic networks and queueing systems exhibit dynamic and uncertain behavior, and their control requires
algorithms capable of adapting to changing conditions and optimizing performance under uncertainty, making
reinforcement learning (RL) a natural choice [26]. Our focus is on applying RL, particularly policy-gradient
methods, to address the challenges posed by these systems. As networks expand in size and intricacy, the RL

1

agent must grapple with much larger state and action spaces, leading to computational hurdles due to the
combinatorial explosion of actions choices, and making exploration and evaluation of policies computationally
intensive [26].

Policy-gradient methods [31, Chapter 13] are learning algorithms that directly optimize policy parameters
through stochastic gradient ascent (SGA), without necessarily relying on value-function estimation. They
have gained attention and popularity due to their ability to handle large state and action spaces (see discus-
sions in [8, 18]), which is advantageous in the scenarios we consider, where exploration is crucial. However,
these methods have limitations that can prove severe. High variance in gradient estimates can make learning
unstable and slow, often requiring techniques like baseline subtraction and advantage estimation, which are
not always fully effective [8]. Moreover, convergence problems arise, especially in nonconvex or infinite state
space scenarios, typical of high-dimensional applications like stochastic network optimization [18].

We aim to address these limitations by leveraging crucial properties of the underlying Markov decision
process (MDP). Focusing on maximizing the average reward rate in infinite horizon, we consider policy
parametrizations such that there is a known relationship between the policy on the one hand and the MDP’s
stationary distribution on the other hand. In practice, this translates to assuming that the stationary
distribution forms an exponential family explicitly depending on the policy parameters. In the context of
stochastic networks and queueing systems, this typically means that the Markov chains associated to fixed
policies have a product-form stationary distribution. This structural assumption holds in various relevant
scenarios, including Jackson and Whittle networks [28, Chapter 1], BCMP networks [4], and more recent
models arising in datacenter scheduling and online matching [15]. Exponential families are also prevalent in
machine learning and statistical physics [24], in line with the maximum-entropy principle [33].

In this paper, we define score-aware gradient estimators (SAGEs), that exploit the aforementioned struc-
tural assumption to estimate the policy gradient without relying on value functions. We analyze theoretically
the convergence of a SAGE-based policy-gradient method under local assumptions and show that it con-
verges. Moreover, we numerically test the performance of this algorithm in two examples, and we observe
both faster convergence and lower variance compared to an actor-critic algorithm. Our results suggest
that exploiting model-specific information is a promising approach to improve RL algorithms for stochastic
networks and queueing systems. Sections 1.1 and 1.2 below describe our contributions in more details.

1.1 Score-Aware Gradient Estimators (SAGEs)

We introduce SAGEs for MDPs following the exponential-family assumption in Section 4. These estimators
leverage the structure of the stationary distribution, with the goal of reducing variance and favoring stable
learning. Notably, their usage requires neither knowledge nor explicit estimation of model parameters,
ensuring practical applicability. The key step of the derivation exploits information on the form of the score
of exponential families (that is, the gradient of the logarithm of the probability mass function); hence the
name score-aware gradient estimator (SAGE).

We can show the working principle on a toy example: given a function x : Nm → Rn, the exponential
family (in canonical form) with sufficient statistics x is the family of distributions with probability mass
functions p(s|θ) ∝ eθ

⊺x(s) at s ∈ Nm, parametrized by θ ∈ Rn, and it satisfies

d log(p(x|θ))
dθ

= x(s)− ES∼p(· |θ)[x(S)]. (1)

Identities such as (1) yield an exact expression for the gradient of the score, and in a more general form allow
us to bypass the commonly used policy-gradient theorem [31] from model-free RL, which ties the estimation
of the gradient with that of first estimating value- or action-value functions.

After introducing a SAGE-based policy-gradient algorithm, we assess its applicability in Section 6 by
comparing its performance with the actor-critic algorithm on two stochastic network and queueing system
models. The numerical results suggest that, when applicable, SAGEs expedite convergence towards an
optimal policy (compared to actor-critic) by leveraging the structure of the stationary distribution and
reducing the estimate’s dimension. We also observe on an example that the SAGE-based policy-gradient

2

method sometimes converges to a close-to-optimal policy even if some policies are unstable, provided that it
is initialized with a stable policy, while the convergence of actor-critic is not always observed.

1.2 Convergence of SAGE-based policy-gradient methods

We further examine theoretically the convergence properties of the SAGE-based policy-gradient method in
Section 5. We namely consider the setting of policy-gradient RL with average rewards, which boils down to
finding a parameter θ such that the parametric policy π(θ) = π(· | · , θ) maximizes

J(θ) = lim
T→∞

1

T
E
[T∑
t=1

Rt

]
, (2)

where Rt+1 is the reward that is given after being in state St and choosing action At with probability
π(At|St, θ). As is common in episodic RL, we consider epochs, that is, time intervals where the parameter is
fixed and a trajectory of the Markov chain is observed. For each epoch m, and under the exponential-family
assumption for the stationary distribution, SAGE yields a gradient estimator Hm from a trajectory of state-
action-reward tuples (St, At, Rt+1) sampled from a policy with Θm as parameter. Convergence analysis of
the SAGE-based policy-gradient method aligns with ascent algorithms like SGA by considering updates at
the end of epoch m with step-size αm > 0,

Θm+1 = Θm + αmHm. (3)

Convergence analyses for policy-gradient RL and SGA are quite standard; see Section 2. Our work
specifically aligns with the framework of [13] that studies local convergence of unbiased stochastic gradient
descent (SGD), that is, when the conditional estimator Hm of ∇J(Θm) on the past F is unbiased, which
is typical in a supervised learning setting. An important part of our work consists in expanding the results
of [13] to the case of Markovian data, leading to biased estimators (i.e., E[Hm|F] ̸= ∇J(Θm)). In our
RL setting, we handle potentially unbounded rewards and unbounded state spaces. Our approach involves
utilizing a softmax parametrization for the policy and employing index sets to address the unbounded nature
of the state space; see (5) in Section 3.2. We also assume an online application of the policy-gradient method,
where restarts are impractical or costly: the last state of the prior epoch is used as the initial state for the
next, distinguishing our work from typical episodic RL setups where an initial state S0 is sampled from a
predetermined distribution.

Our main result in Section 5 demonstrates convergence of iterates in (3) to the setM of maxima, assuming
nondegeneracy of J on M and existence of a local Lyapunov function. If SGA starts within a sufficiently
small neighborhood V of a maximizer θ⋆ ∈ M, with appropriate epoch length and step-sizes, convergence
toM occurs with large probability: for any T > 0 and ϵ > 0,

P[J(θ⋆)− J(ΘT) > ϵ|Θ0 ∈ V] ≤ O
(
ϵ−2T−σ−κ + T 1−σ/2−κ/2 + T−κ/2 +

α2

ℓ

)
, (4)

where the parameters σ ∈ (2/3, 1), κ > 0, α ∈ (0, α0], and ℓ ∈ [ℓ0,∞) depend on the step and batch sizes
and can be tuned to make the bound in (4) arbitrarily small.

Our key assumption relies on the existence of a local Lyapunov function in the neighborhood V . Hence,
we need only to assume stability of policies that are close to the optimum. This sets our work further apart
from others in the RL literature, which typically require existence of a global Lyapunov function and/or
finite state space. In fact, our numerical results in Section 6 show an instance where local stability suffices,
highlighting the benefits of SAGE. The setM of global maxima is also not required to be finite or convex,
thanks to the local nondegeneracy assumption.

For large T , the bound in (4) can be made arbitrarily small by setting the initial step size α and batch
size ℓ small and large, respectively. In (4), the chance that the policy escapes the set V , outside of which
stability cannot be guaranteed, does not vanish when T → ∞; it remains as α2/ℓ. We show that this
term is inherent to the local assumptions. Specifically, for any β > 0 there are functions f such that

3

P[f(θ⋆)− f(ΘT) > ϵ|Θ0 ∈ V] > cα2+β/ℓ for some c > 0. Hence, a lower bound shows that the proof method
cannot be improved without further using the global structure of Hm or J .

For cases where the optimum is reached only as ΘT →∞, as with deterministic policies, we additionally
show that adding a small entropy regularization term to J(θ) allows us to ensure not just that maxima are
bounded but also thatM satisfies the nondegeneracy assumption required to show local convergence.

2 Related works

As we have showcased with the summary of results in Section 1, the work in the present manuscript resides
at the intersection of distinct lines of research and offers a promising venue for improving RL algorithms to
problem-specific cases in stochastic networks and queuing systems. In this section, we review and position
our contributions in relation to other works.

2.1 Gradient estimation, exponential families, and product forms

Operations on high-dimensional probability distributions, such as marginalization and inference, are numer-
ically intractable in general. Exponential families—see Section 4.1 for a definition—are parametric sets of
distributions that lead to more tractable operations and approximations while also capturing well-known
probability distributions, such as probabilistic graphical models [33], popular in machine learning. In the
context of stochastic networks and queueing systems, the stationary distribution of many product-form
systems can be seen as forming an exponential family.

Our first contribution is tightly connected to several works on exponential families, product-form distri-
butions, and probabilistic graphical models. Key parameters in these models are numerically intractable a
priori, but can be expressed as expectations of random vectors that can be sampled by simulation. The most
basic and well-known result, which we will exploit in Section 4.2, rewrites the gradient of the logarithm of
the normalizing constant (a.k.a. the log-partition function) as the expectation of a random vector called the
model’s sufficient statistics. In probabilistic graphical models, this relation has been mainly used to learn a
distribution that best describes a dataset via SGD [33, 19]. In stochastic networks, this relation has been ap-
plied to analyze systems with known parameters, for instance to predict their performance [10, 36, 5, 29, 30],
to characterize their asymptotic behavior in scaling regimes [29, 30], for sensitivity analysis [10, 21], and
occasionally to optimize control parameters via gradient ascent [21, 9, 29].

To the best of our knowledge, an approach similar to ours is found only in [27] (although not in RL).
This work derives a gradient estimator and performs SGA in a class of product-form reversible networks.
However, the procedure requires first estimating the stationary distribution, and convergence is proven only
for convex objective functions.

2.2 Stochastic gradient ascent (SGA) and policy-gradient methods

When a gradient is estimated using samples from a Markov chain, methods from Markov Chain Monte Carlo
(MCMC) are commonly used [22]. In our case, we have moreover bias from being unable to restart the
chain at each epoch. Convergence of biased SGD to approximate stationary points of smooth nonconvex
functions—points θ such that |∇J(θ)| < ϵ for some ϵ > 0—has been addressed in the literature [32, 3, 17, 11].
The asymptotic conditions for local convergence to a stationary point were first investigated in [32], where
conditions for the asymptotic stochastic variance of the gradient estimator and bias were assumed (see
Assumptions 2.1–2.3 in [32]). In [17], a nonasymptotic analysis of biased SGD is shown. Under Lipschitzness
assumptions on the transition probabilities and bounded variance of the gradient estimator Hm, in [17] it
is shown that under appropriate step-sizes, for some m⋆ ≤ T , E[|∇J(Θm∗)|2] = O(log(T)/

√
T), where T

is a time horizon. In [32, 17], these results are applied in an RL context. While these works demonstrate
convergence to stationary points, our contribution lies in proving convergence to a maximum, albeit locally.
This approach is essential for addressing scenarios with only local assumptions and potentially unstable
(nonpositive recurrent) policies.

4

Finally, several recent works build on gradient domination for policy-gradient methods, addressing con-
vexity limitations and ensuring global convergence [12, 2, 35]. Notable differences to our work include our
assumption of a single trajectory versus initiating the Markov chain from a predetermined distribution, as
well as distinct structural assumptions on policy parametrization like natural gradients. We tackle challenges
involving infinite state space and multiple maxima, aspects often overlooked in prior studies. Another unique
aspect of our contribution lies in specialized gradient estimation schemes based on the exponential family
assumption on the stationary distribution.

3 Problem formulation

3.1 Basic notation

The sets of nonnegative integers, positive integers, reals, and nonnegative reals are denoted by N, N+, R,
and R≥0, respectively. For a differentiable function f : θ ∈ Rn 7→ f(θ) ∈ R, ∇f(θ) denotes the gradient of
f taken at θ ∈ Rn, that is, the n-dimensional column vector whose j-th component is the partial derivative
of f with respect to θj , for j ∈ {1, 2, . . . , n}. For a differentiable vector function f : θ ∈ Rn 7→ f(θ) =
(f1(θ), . . . , fd(θ)) ∈ Rd, Df(θ) is the Jacobian matrix of f taken at θ, that is, the d × n matrix whose
i-th row is ∇fi(θ)⊺, for i ∈ {1, 2, . . . , d}. For a twice differentiable function f : Rn → R, Hessθf denotes
the Hessian of f at θ, that is, the matrix of second derivatives. We define the operator norm of a matrix
A ∈ Ra×b as |A|op = supx∈Rb:|x|=1 |Ax|. We use uppercase to denote random variables and vectors, and a
calligraphic font for their sets of outcomes.

3.2 Markov decision process (MDP)

We consider a Markov decision process (MDP) with countable state, action, and reward spaces S, A, and
R, respectively, and transition probability kernel P : (s, a, r, s′) ∈ S × A × R × S 7→ P (r, s′|s, a) ∈ [0, 1],
where P (r, s′|s, a) gives the conditional probability that the next reward–state pair is (r, s′) given that the
current state-action pair is (s, a). With a slight abuse of notation, we introduce

P (r|s, a) =
∑
s′∈S

P (r, s′|s, a) and P (s′|s, a) =
∑
r∈R

P (r, s′|s, a), s, s′ ∈ S, a ∈ A, r ∈ R.

All results also generalize to absolutely continuous rewards; an example will appear in Section 6.2.
Following the framework of policy-gradient algorithms [31, Chapter 13], we assume that the agent applies

a random policy π : (s, θ, a) ∈ S × Rn × A → π(a|s, θ) ∈ (0, 1) parametrized by a vector θ ∈ Rn, so that
π(a|s, θ) is the conditional probability that the next action is a given that the current state is s and the
parameter vector θ. We assume that the function θ 7→ π(a|s, θ) is differentiable for each (s, a) ∈ S × A.
The goal of the learning algorithm will be to find a parameter (vector) that maximizes the long-run average
reward rate, as will be defined formally in Section 3.3.

As a concrete example, we will often consider a class of softmax policies that depend on a feature
extraction map h : S → I, where I ⊂ N is a finite set. We define

π(a|s, θ) = eθh(s),a∑
a′∈A eθh(s),a′

, s ∈ S, a ∈ A, (5)

where the parameter vector is θ = (θi,a : (i, a) ∈ I × A) ∈ Rn, with n = |I| × |A|. The map h characterizes
states where actions are taken with the same probabilities, and it may leverage prior known information on
the system dynamics; in queueing systems for instance, we could decide to make similar decisions in large
states which are rarely visited. The special case where I is a singleton yields a static (i.e., state-independent)
random policy.

5

3.3 Stationary analysis and optimality criterion

Given θ ∈ Rn, if the agent applies the fixed policy π(θ) : (s, a) ∈ S × A 7→ π(a|s, θ) at every time step,
the random state-action-reward sequence ((St, At, Rt+1), t ∈ N) obtained by running this policy is a Markov
chain such that P[At = a|St = s] = π(a|s, θ) and P[Rt+1 = r, St+1 = s′|St = s,At = a] = P (r, s′|s, a) for each
s, s′ ∈ S, a ∈ A, and r ∈ R. The dependency of the random variables on the parameter vector is left implicit
to avoid cluttering notation. Leaving aside actions and rewards, the state sequence (St, t ∈ N) also defines
a Markov chain, with transition probability kernel P (θ) : (s, s′) ∈ S × S 7→ P (s′|s, θ) given by

P (s′|s, θ) =
∑
a∈A

π(a|s, θ)P (s′|s, a), s, s′ ∈ S.

In the remainder, we will assume that Assumptions 1 and 2 below are satisfied.

Assumption 1. There exists an open set Ω ⊆ Rn such that, for each θ ∈ Ω, the Markov chain (St, t ∈ N)
with transition probability kernel P (θ) is irreducible and positive recurrent.

Thanks to Assumption 1, for each θ ∈ Ω, the corresponding Markov chain (St, t ∈ N) has a unique
stationary distribution p(·|θ). We say that a triplet (S,A,R) of random variables is a stationary state-
action-reward triplet, and we write (S,A,R) ∼ stat(θ), if (S,A,R) follows the stationary distribution of the
Markov chain ((St, At, Rt+1), t ∈ N), given by

P[S = s,A = a,R = r] = p(s|θ)π(a|s, θ)P (r|s, a), s ∈ S, a ∈ A, r ∈ R. (stat(θ))

Assumption 2. For each θ ∈ Ω, the stationary state-action-reward triplet (S,A,R) ∼ stat(θ) is such that
the random variables |R|, |R∇ log p(S|θ)|, and |R∇ log π(A|S, θ)| have a finite expectation.

By ergodicity [6, Theorem 4.1], the running average reward 1
T

∑T
t=1 Rt tends to J(θ) almost surely as

T → +∞, where J(θ) is called the long-run average reward rate and is given by

J(θ) = E[R] =
∑
s∈S

∑
a∈A

∑
r∈R

p(s|θ)π(a|s, θ)P (r|s, a)r, θ ∈ Ω. (6)

Our end goal, further developed in Section 3.4, is to find a learning algorithm that maximizes the objective
function J . For now, we only observe that the objective function J : θ ∈ Ω 7→ J(θ) is differentiable thanks
to Assumption 2, and that its gradient is given by

∇J(θ) =
∑
s∈S

∑
a∈A

∑
r∈R

p(s|θ)π(a|s, θ)P (r|s, a)r(∇ log p(s|θ) +∇ log π(a|s, θ)), θ ∈ Ω. (7)

In general, computing ∇J(θ) using (7) is challenging: (i) computing ∇ log p(s|θ) is in itself challenging
because p(s|θ) depends in a complex way on the unknown transition kernel P (r, s′|s, a) and the parameter θ
via the policy π(θ), and (ii) enumerating and thus summing over the state space S is often practically
infeasible (for instance, when the state space S is infinite and/or high-dimensional). Our first contribution,
in Section 4, is precisely a new family of estimators for the gradient (7).

3.4 Learning algorithm

In Section 3.3, we defined the objective function J by considering trajectories where the agent applied a policy
π(θ) parametrized by a constant parameter θ. Going back to a learning setting, we now consider a state-
action-reward sequence ((St, At, Rt+1), t ∈ N) and a parameter sequence (Θm,m ∈ N) obtained by updating
the parameter periodically according to (3), where Hm is provided by a family of learning algorithms, called
policy gradient. Policy-gradient algorithms update the parameter Θm by a gradient-ascent step in the local
direction that maximizes J in expectation. The pseudocode of a generic policy-gradient algorithm, shown
in Algorithm 1, is parametrized by a sequence 0 ≜ t0 < t1 < t2 < . . . of observation times and a sequence

6

α0, α1, α2, . . . > 0 of step sizes. For each m ∈ N, let Dm denote batch m, obtained by running policy π(Θm)
at epoch m, given by

Dm = ((St, At, Rt+1), t ∈ {tm, . . . , tm+1 − 1}). (8)

For some initialization Θ0, Algorithm 1 calls a procedure Gradient that computes an estimate Hm of
∇J(Θm) from Dm, and updates the parameter according to (3).

Algorithm 1 Generic policy-gradient algorithm. Examples of procedures Gradient, based on different
estimators for the gradient ∇J , are given in Algorithms 2 and 3. All variables of Algorithm 1 are accessible
within the Gradient procedure.

1: Parameters: • Observation times 0 ≜ t0 < t1 < t2 < . . .
• Step size sequence α0, α1, α2, . . . > 0

2: Initialization: Policy parameter Θ0 ∈ Ω and initial state S0 ∈ S
3: Main loop:
4: for m = 0, 1, 2, . . . do
5: for t = tm, . . . , tm+1 − 1 do
6: Sample At ∼ π(·|St,Θm)
7: Take action At and observe Rt+1, St+1

8: end for
9: Update Θm+1 ← Θm + αmGradient(m)

10: end for

As discussed at the end of Section 3.3, finding an estimator Hm for ∇J(Θm) directly from (6) is difficult
in general. A common way to obtain Hm follows from the policy-gradient theorem [31, Chapter 13], which
instead writes the gradient ∇J(θ) using the action-value function q:

∇J(θ) = E[q(S,A)∇ log π(A|S, θ)],

where (S,A,R) ∼ stat(θ), for each θ ∈ Ω. Consistently, in a model-free setting, policy-gradient methods
like the actor-critic algorithm recalled in Appendix A estimate ∇J(Θm) by first estimating a value function.
However, this approach can suffer from high-variance of the estimator, which slows down convergence, as
described in Section 1. Some of these problems can be circumvented by exploiting the problem structure, as
we will see in the next section.

4 Score-aware gradient estimator (SAGE)

We now define the key structural assumption in our paper. Namely, that we have information on the impact
of the policy parameter θ on the stationary distribution p. In Section 4.2, we will use this assumption to
build a new family of estimators for the gradient ∇J that do not involve the state-value function, contrary
to actor-critic. In Section 4.3, we will further explain how to use this insight to design a SAGE-based
policy-gradient method.

4.1 Product-form and exponential family

As announced in the introduction, our end goal is to design a gradient estimator capable of exploiting
information on the stationary distribution p(·|θ) of the MDP when such information is available. Assump-
tion 3 below formalizes this idea by assuming that the stationary distribution forms an exponential family
parametrized by the policy parameter θ.

7

Assumption 3 (Stationary distribution). There exist a scalar function Φ : S → R>0, an integer d ∈ N+,
a differentiable vector function ρ : Ω → Rd

>0, and a vector function x : S → Rd such that the following two
equivalent equations are satisfied:

p(s|θ) = 1

Z(θ)
Φ(s)

d∏
i=1

ρi(θ)
xi(s), s ∈ S, θ ∈ Ω, (9–PF)

log p(s|θ) = log Φ(s) + log ρ(θ)⊺x(s)− logZ(θ), s ∈ S, θ ∈ Ω, (9–EF)

where the partition function Z : Ω→ R>0 follows by normalization:

Z(θ) =
∑
s∈S

Φ(s)

n∏
i=1

ρi(θ)
xi(s) =

∑
s∈S

elog Φ(s)+log ρ(θ)⊺x(s), θ ∈ Ω. (10)

We will call Φ the balance function, ρ the load function, and x the sufficient statistics.

(9–PF) is the product-form variant of the stationary distribution, classical in queueing theory. (9–EF) is
the exponential-family description of the distribution. This latter representation is more classical in machine
learning [33] and will simplify our derivations. Let us briefly discuss the implications of this assumption as
well as examples where this assumption is satisfied.

Assumption 3 implies that the stationary distribution p depends on the policy parameter θ only via
the load function ρ. Yet, this assumption may not seem very restrictive a priori. Assuming for instance
that the state space S is finite, with S = {s1, s2, . . . , sN}, we can write the stationary distribution in the
form (9) with d = N , ρi(θ) = log p(si|θ), xi(s) = 1[s = si], and Φ(s) = Z(θ) = 1, for each θ ∈ Rn, s ∈ S,
and i ∈ {1, 2, . . . , N}. However, writing the stationary distribution in this form is not helpful, in the sense
that in general the function ρ will be prohibitively intricate. As we will see in Section 4.2, what will prove
important in Assumption 3 is that the load function ρ is simple enough so that we can evaluate its Jacobian
matrix function D log ρ numerically.

There is much literature on stochastic networks and queueing systems with a stationary distribution of the
form (9–PF). Most works focus on performance evaluation, that is, evaluating J(θ) for some parameter θ ∈ Ω,
assuming that the MDP’s transition probability kernel is known. In this context, the product-form (9–PF)
arises in Jackson and Whittle networks [28, Chapter 1], BCMP networks [4], as well as more recent models
arising in datacenter scheduling and online matching [15]1. Building on this literature, in Section 6, we
will consider policy parametrizations for control problems that also lead to a stationary distribution of the
form (9).

In the next section, we exploit Assumption 3 to construct a gradient estimator that requires knowing the
functions D log ρ and x but not the functions ρ, Φ, and Z.

4.2 Score-aware gradient estimator (SAGE)

As our first contribution, Theorem 1 below gives simple expressions for ∇ log p(s|θ) and ∇J(θ) under As-
sumptions 1 to 3. Gradient estimators that will be formed using (12) will be called score-aware gradient
estimators (SAGEs), to emphasize that the estimators rely on the simple expression (11) for the score
∇ log p(s|θ). Particular cases of this result have been obtained in [10, 9, 21] for specific stochastic networks;
our proof is shorter and more general thanks to the exponential form (9–EF).

Theorem 1. Suppose that Assumptions 1 to 3 hold. For each θ ∈ Ω, we have

∇ log p(s|θ) = D log ρ(θ)⊺(x(s)− E[x(S)]), (11)

∇J(θ) = D log ρ(θ)⊺Cov[R, x(S)] + E[R∇ log π(A|S, θ)], (12)

1Although the distributions recalled in [15, Theorems 3.9, 3.10, 3.13] do not seem to fit the framework of (9) a priori because
the number of factors in the product can be arbitrarily large, these distributions can be rewritten in the form (9) by using an
expanded state descriptor, as in [1, Equation (4), Corollary 2, and Theorem 6] and [23, Equation (7) and Proposition 3.1].

8

where (S,A,R) ∼ stat(θ), Cov[R, x(S)] = (Cov[R, x1(S)], . . . ,Cov[R, xd(S)])
⊺, E[x(S)] = (E[x1(S)], . . . ,E[xd(S)])

⊺,
and the gradient and Jacobian operators ∇ and D are taken with respect to θ.

Proof. Applying the gradient operator to the logarithm of (10) and simplifying yields

∇ logZ(θ) = D log ρ(θ)⊺E[x(S)]. (13)

This equation is well-known and was already discussed in Section 2.1. Equation (11) follows by applying
the gradient operator to (9–EF) and injecting (13). Equation (12) follows by injecting (11) into (7) and
simplifying.

Assuming that the functions D log ρ and x are known in closed-form, Theorem 1 allows us to construct
an estimator of ∇J(θ) from a state-action-reward sequence ((St, At, Rt+1), t ∈ {0, 1, . . . , T}) obtained by
applying policy π(θ) at every time step as follows:

H = D log ρ(θ)⊺C + E, (14)

where C and E are estimators of Cov[R, x(S)] and E[R∇ log π(A|S, θ)], respectively, obtained for instance
by taking the sample mean and sample covariance. An estimator of the form (14) will be called a score-aware
gradient estimator (SAGE). Such an estimator will typically be biased if the initial state S0 is not stationary.
This will be important in the proof of the convergence result in Section 5.

The advantage of using a SAGE is twofold. First, the challenging task of estimating ∇J(θ) is reduced to
the simpler task of estimating the d-dimensional covariance Cov[R, x(S)] and the n-dimensional expectation
E[R∇ log π(A|S, θ)], for which we can leverage literature on estimators. Second, as we will see in Section 6,
in the context of product-form systems, SAGEs can “by-design” exploit information on the structure of the
policy and stationary distribution. Actor-critic exploits this information only partially due to its dependency
on the state-value function.

4.3 SAGE-based policy-gradient algorithm

Algorithm 2 introduces a SAGE-based policy-gradient method based on Theorem 1. For each m ∈ N, the
procedure Gradient(m) is called in the gradient-update step (Line 9) of Algorithm 1, at the end of epoch m,
and returns an estimate of ∇J(Θm). To simplify the signature of procedures in Algorithm 2, we assume
that variables N , M , |X|, |R|, |C|, and |E| are global, and that all variables from Algorithm 1 are accessible
within Algorithm 2, in particular batch Dm as defined in (8).

The subroutines Covariance and Expectation compute biased covariance and mean estimates for
Cov[R, x(S)] and E[R∇ log π(A|S, θ)], where (S,A,R) ∼ stat(Θm), consistently with Theorem 1. If the
memory factor ν is zero, these procedures return the usual sample mean and covariance estimates taken over
the last batch Dm, and bias only comes from the fact that the system is not stationary. If ν is positive,
estimates from previous batches are also taken into account, so that the bias is increased in exchange for a
(hopefully) lower variance. In this case, the updates on Lines 10–12 and 16 calculate iteratively the weighted
sample mean and covariance over the whole history, where observations from epoch m−m have weight νm,
for each m ∈ {0, 1, . . . ,m}. When m is large, the mean returned by Expectation is also approximately
equal to the sample mean over batches Dm−M through Dm, where M is a truncated geometric random
variable, independent of all other random variables, such that P[M = m] ∝ νm for each m ∈ {0, 1, . . . ,m};
on average, we take into account approximately the last c(E[M] + 1) = c

1−ν observations for the estimator.
Recall that our initial goal was to exploit information on the stationary distribution, when such in-

formation is available. Consistently, compared to actor-critic (Appendix A), the SAGE-based method of
Algorithm 2 requires as input the Jacobian matrix function D log ρ and the sufficient statistics x. In re-
turn, the SAGEs-based method relies on a lower-dimensional estimator, which leads to good convergence
properties, as we will see in Sections 5 and 6.

9

Algorithm 2 SAGE-updated policy-gradient method, to be called on Line 9 of Algorithm 1.

1: Input: • Positive and differentiable policy parametrization (s, θ, a) 7→ π(a|s, θ)
• Jacobian matrix function θ 7→ D log ρ(θ)
• Feature function s 7→ x(s)

2: Parameters: Memory factor ν ∈ [0, 1]

3: Initialization: Global variables N,M, |X|, |R|, |C|, |E| ← 0

4: procedure Gradient(m)
5: Update N ← νN + (tm+1 − tm)
6: Update M ← ν2M + (tm+1 − tm)
7: return D log ρ(Θm)Covariance(m) +Expectation(m)
8: end procedure

9: procedure Covariance(m)

10: Update |X| ← ν|X|+
∑tm+1−1

t=tm
x(St)

11: Update |R| ← ν|R|+
∑tm+1−1

t=tm
Rt+1

12: Update |C| ← ν|C|+
∑tm+1−1

t=tm
(x(St)− |X|/N)(Rt+1 − |R|/N)

13: return N |C|/(N2 −M) if N2 > M else |C|/N
14: end procedure

15: procedure Expectation(m)

16: Update |E| ← ν|E|+
∑tm+1−1

t=tm
Rt+1∇ log π(At|St,Θm)

17: return |E|/N
18: end procedure

5 A local convergence result

Our goal in this section is to study the limiting behavior of Algorithm 2. To do so, we will consider this
algorithm as an SGA algorithm that uses biased gradient estimates. The gradient estimates are biased
because they arise from the MCMC estimations of the subroutines Covariance and Expectation in
Algorithm 2. Throughout the proof, we will consider the special case for simplicity that (i) the memory
factor ν is equal to 0 and (ii) the reward is a deterministic function r : S×A → R. Under these assumptions,
for each m ∈ N, Algorithm 2 follows the gradient ascent step (3), with

Hm = D log ρ(Θm)⊺Cm + Em, where

Xm =

∑tm+1−1
t=tm

x(St)

tm+1 − tm
, Rm =

∑tm+1−1
t=tm

Rt+1

tm+1 − tm
,

Cm =

∑tm+1−1
t=tm−1

(
x(St)−Xm

)(
Rt+1 −Rm

)
tm+1 − tm − 1

,

Em =

∑tm+1−1
t=tm

Rt+1∇ log π(At|St,Θm)

tm+1 − tm
,

(15)

Since ν = 0, Xm, Rm, and Cm are functions of Dm, while Hm and Em are functions of Dm and Θm. We
will additionally apply decreasing step sizes and increasing batch sizes of the form

αm =
α

(m+ 1)σ
and tm+1 = tm + ℓm

σ
2 +κ for each m ∈ N, (16)

for some parameters α ∈ (0,∞), ℓ ∈ (1,∞), σ ∈ (2/3, 1), and κ ∈ [0,∞).
Our goal—to study the limiting algorithmic behavior of Algorithm 2—is equivalent to studying the

limiting algorithmic behavior of the stochastic recursion (3). In particular, we will show local convergence

10

of the iterates of (3) and (15) to the following set of global maximizers:

M = {θ ∈ Ω : J(θ) = J⋆}, where J⋆ = sup
θ∈Ω

J(θ). (17)

We will assumeM to be nonempty, that is,M ≠ ∅. The assumptions that we consider (Assumption 7 below)
allow us to assume thatM is only locally a manifold. Consequently, J can be nonconvex with noncompact
level-subsets, and J is even allowed not to exist outside the local neighborhood. While these assumptions
allow for general objective functions, the convergence will be guaranteed only close to the set of maximaM.

5.1 Assumptions pertaining to algorithmic convergence

We use the Markov chain of state-action pairs. Let Y = S × A and chain {Yi}i≥0 generated by the pairs
{(Si, Ai)}i≥0, where Ai is generated according to policy π(· |Si, θ). For a given θ ∈ Ω, the one-step transition
probability and the stationary distribution of this Markov chain are

P ((s′, a′)|(s, a), θ) = π(a′|s′, θ)P (s′|s, a), (18)

p̃(y|θ) = p(s|θ)π(a|s, θ) for y = (s, a) ∈ Y. (19)

The following are assumed:

Assumption 4. There exists a function L : S × A → [1,∞) such that, for any θ⋆ ∈ M, there exist a
neighborhood U of θ⋆ in Ω and four constants λ ∈ (0, 1), C > 0, b ∈ R+, and v ≥ 16 such that, for each
θ ∈ U , the policy π(· | · , θ) is such that∑

(s′,a′)∈S×A

P ((s′, a′)|(s, a), θ)(L(s′, a′))v ≤ λ(L(s, a))v + b, for each (s, a) ∈ S ×A,

and, for each ℓ ∈ N+ and (s, a), (s′, a′) ∈ S ×A,∣∣P ℓ((s′, a′)|(s, a), θ)− p̃((s′, a′)|θ)
∣∣ ≤ CλℓL(s, a),

where P ℓ(θ) is the ℓ-step transition probability kernel of the Markov chain with transition probability kernel
(18) .

Assumption 5. There exists a constant C > 0 such that |D log ρ(θ)|op < C for each θ ∈ Ω.

Assumption 6. Let L be the Lyapunov function and U be the local neighborhood of Assumption 4. There
exists a constant C > 0 such that for any θ ∈ U , (s, a) ∈ S ×A,

|x(s)| < CL(s, a), |r(s, a)| < CL(s, a), |r(s, a)∇ log π(a|s, θ)| < CL(s, a). (20)

Assumption 7. There exist an integer n ∈ {0, 1, . . . , n− 1} and an open subset U ⊆ Ω such that (i)M∩U
is a nonempty n-dimensional C2-submanifold of Rn, and (ii) the Hessian of J at θ⋆ has rank n− n, for each
θ⋆ ∈M∩ U .

These assumptions have the following interpretation. Assumption 4 formalizes that the Markov chain is
stable for policies close to the maximum. Remarkably, it does not assume that the chain is geometrically
ergodic for all policies, only for those close to an optimal policy. This stability is guaranteed by a local
Lyapunov function L uniformly over some neighborhood close to a maximizer. Assumptions 5 and 6 together
guarantee that the estimator Hm concentrates around ∇J(Θm) at an appropriate rate. Assumption 5 is easy
to verify in our examples since ρ is usually positive and bounded. Assumption 6 guarantees that the reward r
and sufficient statistics x do not grow fast enough to perturb the stability of the MDP. For example, if the
Lyapunov function L grows exponentially with the state S, which is typically the case in most applications
in queueing, Assumption 6 just guarantees that both the reward function r and the sufficient statistics x do

11

not grow at a faster rate. We remark that, in a setting with a bounded reward function r and a bounded
map x or a finite state space, Assumption 6 becomes trivial.

Assumption 7 is a geometric condition: it guarantees that locally around the set of maxima M, in
directions perpendicular toM, J behaves approximately in a convex manner. Concretely, this means that
HessθJ has strictly negative eigenvalues in the directions normal to M—also referred to as the Hessian
being nondegenerate. Thus, there is one-to-one correspondence between local directions around θ ∈M that
decrease J and directions that do not belong to the tangent space ofM. Strictly concave functions satisfy
that n = 0 and Assumption 7 is thus automatically satisfied in such cases. IfM∩ U = {θ⋆} is a singleton,
Assumption 7 reduces to assuming that Hessθ⋆J is negative definite. Assumption 7 in a general setting can
be difficult to verify, but by adding a regularization term, it can be guaranteed to hold in a broad sense (see
Section 5.4).

5.2 Local convergence results

This is our main convergence result for the case that the set of maxima is not necessarily bounded.

Theorem 2 (Noncompact case). Suppose that Assumptions 1 to 7 hold. For every maximizer θ⋆ ∈M∩U ,
there exist constants c > 0 and α0 > 0 such that, for each α ∈ (0, α0], there exists a nonempty neighborhood
V of θ⋆ and ℓ0 ≥ 1 such that, for each ℓ ∈ [ℓ0,∞), σ ∈ (2/3, 1), κ ∈ [0,∞) with σ+κ > 1, we have, for each
m ∈ N+,

P[J(Θm) < J⋆ − ϵ|Θ0 ∈ V] ≤ c
(
ϵ−2m−σ−κ +

m1−σ−κ

ℓ
+

α2

ℓ
+ αm−κ/2 +

αm1−(σ+κ)/2

√
ℓ

)
, (21)

where (Θm,m ∈ N) is a random sequence initialized with P[Θ0 ∈ V] > 0 and built by recursively applying
the gradient ascent step (3) with the gradient update (15) and the step and batch sizes (16) parameterized by
these values of α, ℓ, σ, and κ.

In Theorem 2, by setting the parameters α, ℓ, σ, and κ in (16) appropriately, we can make the probability
of Θm being ϵ-suboptimal arbitrarily small. Specifically, the step and batch sizes for each epoch allow us
to control the variance of the estimators in (15). This shows that the SAGE-based policy-gradient method
converges with large probability. The bound can be understood as follows. The term in (21) on the bound
depending on ϵ characterizes the convergence rate assuming that all iterates up to time m remain in V . The
remaining terms in (21) estimate the probability that the iterates escape the set V , which can be made small
by tuning parameters that diminish the variance of the estimator Hm, such as setting κ or ℓ large—the batch
size becomes larger.

Theorem 2 extends the result of [13, Thm. 25] to a Markovian setting with inability to restart. In our
case, the bias can be controlled by using a longer batch size with exponent at least σ/2. Furthermore, we
also use the Lyapunov function to keep track of the state of the MDP as we update the parameter in V and
ensure stability. The proof sketch of Theorem 2 is in Section 5.5. In Appendix D, we also consider the case
thatM∩U is compact, which can be used to improve Theorem 2. As a side remark, observe that Theorem 2
holds for any estimator H̃m of the gradient J(Θm) provided that this estimator satisfies Lemma 1 stated in
Section 5.5 below.

5.3 Lower bound

As noted in Theorem 2, the rate in (21) includes the probability that the iterates escape V , outside of which
convergence cannot be guaranteed. Indeed, there is a term O(α2/ℓ) that characterizes the probability that
the iterates escape the basin of attraction. For general settings, this term cannot be avoided, even in the
unbiased case. In fact, the proposition below shows that for any β > 0 there are cases where there is a
positive lower bound depending on α2+β/ℓ. In Proposition 1 below, we consider an SGA setting with i.i.d.
data, where the target is to maximize a function f using estimators Hm for the gradient ∇f(Θm) at epoch
m. In a non-RL setting, we usually have Hm = Hm(Θm, Zm), where Zm is a collection of i.i.d. random

12

variables and Fm denotes the sigma algebra of the random variables Θ0, . . . ,Θm as well as Z0, . . . , Zm−1. For
our result, we assume the iterates Θm satisfy (3), and ηm = Hm −∇f(Θm) satisfies the following unbiased
conditional concentration bounds for some C > 0:

E[ηm|Fm] = 0 and E[|ηm|2|Fm]| ≤ C

tm+1 − tm
. (22)

Proposition 1 below shows that Theorem 2 is almost sharp and characterizes the limitations of making local
assumptions only. As we will see in Section 6.2, however, there are examples where only local convergence
can be expected. The proof of Proposition 1 can be found in Appendix E.

Proposition 1. For any β > 0, there are functions f ∈ C∞(Rn) with a maximum f⋆ = f(θ⋆) satisfying
Assumption 7, such that if the iterates Θm satisfy (3) and the gradient estimator Hm = ∇f(Θm) + ηm
satisfies (22), there exists a constant c > 0 depending on f and independent of m such that for any ϵ ∈ (0, 1),
1 > α > 0, δ > 0, ℓ ≥ 1 and any σ ≥ 0, κ ≥ 0, in (16) we have that

P[f(Θm) < f⋆ − ϵ|Θ0 ∈ V] ≥ c
α2+β

ℓ
. (23)

5.4 Local convergence with entropy regularization

A well-known phenomenon that can occur when using the softmax policy (5) is that, if the optimal policy is
deterministic, the iterates converge to this optimal policy only when Θm →∞. Problems where this occurs
will thus not satisfy Assumption 7: the set of maxima will be empty. This phenomenon is illustrated in the
example of Section 6.2. One prevalent method to mitigate the occurrence of maxima at the boundary involves
incorporating a regularization term, often linked to relative entropy KL[π̃ ∥ π] of the policy π compared to
a given π̃, defined below in (24).

Let π̃ be a policy of the same type as those defined in (5) and let ζ be a distribution on S such that
ζ(h−1(i)) > 0 for any i ∈ I, where h is the index map defined for the class of policies that we use in (5). We
define the regularization term as

Rπ̃(θ) = ES∼ζ [KL[π̃(· |S) ∥ π(· |S, θ)]] =
∑
s∈S

ζ(s)EA∼π̃(· |s)

[
log

(
π̃(A|s)
π(A|s, θ)

)]
. (24)

For some b > 0 we define
Jπ̃(θ) = J(θ)− bRπ̃(θ). (25)

We can show that adding (24) to J(θ) defined in (6) not only prevents maxima from being at the boundary,
but also allows us to avoid using Assumption 7 altogether. The next proposition is proved in Appendix F.

Proposition 2. Assume that we use the softmax policy from (5) and let J(θ) be defined as in (6). Then for
almost every policy π̃ in the class of (5) with respect to its Lebesgue measure,

1. the function Jπ̃(θ) in (25) satisfies Assumption 7 and the set of maximizers is bounded, and

2. Theorem 2 for Jπ̃(θ) holds without Assumption 7.

5.5 Proof outline for Theorem 2

We extend the local approach presented in [13, §5], that deals with convergence of SGD where the samples
used to estimate the gradient are i.i.d. We consider instead an RL setting where data is Markovian and thus
presents a bias. Fortunately, we can overcome its presence by adding an increasing batch size while tracking
the states of the Markov chain via the local Lyapunov function from Assumption 4, which guarantees a
stable MPD trajectory as long as the parameter is in a neighborhood close to the maximum.

13

Structure of the proof

The proof of Theorems 2 consists of several parts. To show a bound on the probability that Θm is ϵ-
suboptimal, we consider the event Bm that all previous iterates Θ0, . . . ,Θm belong to a local neighborhood
V , and the complementary event Bm. We bound these separately. Firstly, on the event Bm, we show in
Lemma 2 that the iterates converge to M and we obtain a bound on the ϵ-suboptimal probability for this
case. Secondly, the probability of the complement Bm is separated into the probability of two events, namely,
that for an iterate Θm such that Θm+1 /∈ V , the distance of Θm+1 to M is larger than δ, and less than δ,
respectively. Intuitively, these events group the cases when Θm+1 escapes V in ‘normal directions’ toM and
in ‘tangent directions’ toM, respectively. We can bound the former by using concentration inequalities, but
for the latter we need a maximal excursion bound (Lemma 3 below). Combining all bounds results in an
upper bound on P[Bm] (Lemma 4). The local properties of J are then be used to finish the proof. Crucially,
we use throughout the proof that the local Lyapunov function guarantees stability of the Markov chain and
the gradient estimator within V , as well as keeps track of the initial state for each epoch.

Preliminary step: Definition of the local neighborhood and bound strategy

For θ⋆ ∈ M ∩ U , we define a neighborhood Vr,δ(θ
⋆) of θ⋆ where the algorithm will operate. Let B̄r(θ) :=

{θ ∈ Ω : |θ − θ⋆| ≤ r} denote a closed ball around θ⋆ with radius r and dist(θ, L) = supθ′∈L |θ − θ′| for
an open set L. Let U be the neighborhood of θ⋆ described in Assumptions 4 and 7. We define a tubular
neighborhood of θ⋆ as follows

Vr,δ(θ
⋆) :=

{
θ ∈ Ω ∩ U : dist(θ,M ∩ U) = dist(θ, B̄r(θ

⋆) ∩M ∩ U) < δ
}
. (26)

Crucially, Assumption 7 implies that there exists δ0, r0 > such that for any δ ∈ (0, δ0] and r ∈ (0, r0] an
equivalent definition of the set is then

Vr,δ(θ
⋆) =

{
y + v : y ∈

(
B̄r(θ

⋆) ∩M∩ U
)
and v ∈

(
Ty(M∩ U)

)⊥
with |v| < δ, p(y + v) = y

}
. (27)

Here, p is the unique local projection ontoM∩U , and Ty(M∩U)⊥ denotes the cotangent space ofM∩U
at y. For further details on this geometric statement, we refer to [13, Prop. 13] or [20, Thm. 6.24].

In the following, we let U denote the intersection of the neighborhoods from Assumptions 4 and 7, and
L the Lyapunov function from Assumption 4. For any m ∈ N+ define the event and filtration

Bm :=

m⋂
l=1

{
Θl ∈ Vr,δ(θ

⋆)
}
, (28)

Fm := σ
(
D1 ∪ . . . ∪ Dm−1 ∪

{
Θ0, . . . ,Θm

})
. (29)

Due to the local properties of J , the statement of Theorem 2 can be shown by bounding P[dist(Θm,
M∩ U) ≤ ϵ|B0]. By separating into the event Bm and its complement, we can show that

P[dist(Θm,M∩ U) ≤ ϵ|B0] ≤ P[dist(Θm,M∩ U)1[Bm−1] ≥ ϵ] + P[Bm−1]. (30)

The remaining steps of the proof consist of bounding both terms in the right-hand side of (30).

Step 1: The variance of the gradient estimator decreases, in spite of the bias

For each m ∈ N+, let
ηm := Hm −∇J(Θm), (31)

denote the difference between the gradient estimator Hm in (15) and the true gradient ∇J(Θm). Lemma 1
below implies that the difference in (31) is, ultimately, small. From Assumption 4, since the state-action
chain {Yt}t>0 has a Lyapunov function L, so does the chain {St}t>0 with

Lv(s) =
∑
a∈A
L(s, a)vπ(a|s, θ), (32)

14

where v ≥ 16 is the exponent from Assumption 4. We can define L4(s) similarly. The following lemma
bounds the variance of ηm on the event Bm, which can be controlled with the local Lyapunov function. The
proof of Lemma 1 is deferred to Appendix C.3.

Lemma 1. Suppose that Assumptions 1—7 hold. There exists a constant C > 0 that depends on θ⋆, U , and
J such that for every m ∈ N+,

|E[ηm1[Bm]|Fm]| ≤ C

tm+1 − tm
L4(Stm)1/2, (33)

E[1[Bm]|ηm|l|Fm] ≤ C

(tm+1 − tm)p/2
L4(Stm)l/2, for every l ∈ {1, 2}. (34)

In Lemma 1, we specifically use the definition of SAGE and Assumptions 5 and 6. We remark, however,
that any other estimator H̃m of ∇J satisfying (33) and (34) from Lemma 1 would yield similar guarantees.

Step 2: Convergence on the event Bm−1.

We turn to the first term on the right-hand side of (30) and examine, on the event Bm−1, if the iterates
converge. Using a similar proof strategy as that of [13, Proposition 20] for the unbiased non-Markovian case,
we prove in Lemma 2 that the variance of the distance to the set of minima with the appropriate step and
batch sizes decreases. The proof of Lemma 2 is in Appendix C.4.

Lemma 2. Suppose that Assumptions 1—7 hold. There then exist r0, α0, ℓ0 > 0 and c > 0 such that for
any r ∈ (0, r0], α ∈ (0, α0] and ℓ ∈ [ℓ0,∞) there also exists δ0 > 0 such that for any δ ∈ (0, δ0] and m ∈ N+,

E
[
(dist(Θm,M∩ U) ∧ δ)21[Bm−1]

]
≤ cm−σ−κ. (35)

Compared to the unbiased case in [13], Lemma 2 needs to use a larger batch size to deal with the
bias of Lemma 1. A key result required is that on the event Bm−1, the Lyapunov function is bounded in
expectation. With Lemma 2 together with Markov’s inequality a bound of order ϵ−2m−σ−κ for the first
term in (30) follows.

Step 3: Capture.

We next focus on P[Bm]. Since

P[Bm] ≥ P[Bm−1]− P[Θm /∈ Vr,δ(θ
⋆),Bm−1], (36)

we can use a recursive argument to obtain a lower bound, if we can bound first the probability

P[Θm /∈ Vr,δ(θ
⋆),Bm−1] = P[dist(Θm,M∩ U) > δ,Bm−1]

+ P[dist(Θm,M∩ U) ≤ δ,Θm /∈ Vr,δ(θ
⋆),Bm−1]. (37)

The first term in (37) represents the event that the iterand Θm escapes the set Vr,δ(θ
⋆) in directions ‘normal’

toM, while the second term represents the escape in directions ‘tangent’ toM—intuition derived from the
fact that, in that latter event, we still have dist(Θm,M∩ U) ≤ δ.

The first term in (37) can be bounded by using the local geometric properties around minima in the set
U and associating the escape probability with the probability that on the event Bm−1 escape can only occur
if |ηm| is large enough. The probability of this last event happening can then be controlled with the variance
estimates from Lemma 1.

After a recursive argument, we have to consider the second term in (37) for all l ≤ m. Fortunately, this
term can be bounded by first looking at the maximal excursion event for the iterates {Θl}ml=1. The proof can
be found in Appendix C.5. Here, the Lyapunov function again plays a crucial role to control the variance of
the gradient estimator on the events Bl for l ≤ m, compared to an unbiased and non-Markovian case.

15

Lemma 3. Suppose that Assumptions 1—7 hold. Then there exist r0, α0, ℓ0 > 0, and c > 0 such that for
any r ∈ (0, r0], α ∈ (0, α0] and ℓ ∈ [ℓ0,∞), there exist δ0 > 0 such that for any δ ∈ (0, δ0] and m ≥ 1,

E
[
max

1≤l≤m

∣∣Θl −Θ0

∣∣1[Bl−1]
]
< cα

(
m1−3σ/2−κ/2 +

√
1

ℓ
m1−5σ/8−κ/2

)
. (38)

Finally, with the previous steps we obtain a bound on P[Bm] in Lemma 4 below2. The proof of Lemma 4
can be found in Appendix C.6.

Lemma 4. Suppose that Assumptions 1—7 hold and σ + κ > 1. There exist r0, α0, such that for any r ∈
(0, r0], α ∈ (0, α0], there also exists a constant c > 0, δ0 > 0 such that for any δ ∈ (0, δ0], if Θ0 ∈ Vr/2,δ(θ

⋆),
there exists ℓ0 > 0 such that for any ℓ ∈ [ℓ0,∞) and m ∈ N+,

P[Bm] ≥ exp
(
−cα2

δ2ℓ

)
− c

δ4ℓ
m1−σ−κ − cα

(m1−3σ/2−κ/2 + ℓ−1/2m1−5σ/8−κ/2)

(r/2− 2δ)+
. (39)

Step 4: Combining the bounds in (30).

The proof of Theorem 2 follows the same steps as are used to prove [13, Theorem 25] by substituting
the modified bounds that we have obtained from Lemmas 2 and 4 in (30). The details can be found in
Appendix C.2.

6 Examples and numerical results

In Section 5, we have shown convergence of a SAGE-based policy-gradient method under the assumptions of
Section 5.1. In this section, we numerically assess its performance in two classical examples from stochastic
networks and queuing systems that have a product-form stationary distribution: a load-balancing system in
Section 6.1 and an M/M/1 queue with admission control in Section 6.2. Both examples satisfy Assumptions 1
to 3, but some of their instances might go beyond the setting of Section 5. In particular, we assume for
simplicity constant step and batch sizes, although in Section 6.1 we will briefly discuss the impact of variable
step and batch sizes as described in (16). See also the discussions around Assumption 7 in Appendix B.

Simulation setup. Simulations are initialized with an empty system and run for 106 time steps. Unless
specified otherwise, we use constant gradient step sizes αm = 10−3 for each m ∈ N and an initial parameter
Θ0 with all-zero components; SAGE is run with batch size 1 and memory factor ν = 1/(1+ 1

100) (which means,
from the intuition of Section 4.3, that we take into account approximately the last 100 observations); the
actor-critic algorithm (Appendix A) has a tabular function V initialized with all-zero values and expanded
as needed, and step sizes αv = αR = 10−2. Plots are obtained by running 10 independent simulations.
We will be interested in the ϵ-convergence time, defined as the smallest time T ∈ {0, 1, . . . , 106} such that
J⋆−J(Θt) < ϵ(J⋆−J(Θ0)) for each t ∈ {T, T +1, . . . , 106} (with T = 106 if this condition is never satisfied).

6.1 Load-balancing system

Consider a system with n servers. Customer arrivals form a Poisson process with rate λ > 0, and a
new customer is admitted if and only if there are fewer than c ∈ N+ customers in the system. Each
server i ∈ {1, 2, . . . , n} processes customers in its queue according to a nonidling nonanticipating policy,
such as first-come-first-served or processor-sharing, and the service time of each customer at server i is
exponentially distributed with rate µi > 0, independently of all other random variables. The agent’s goal is to

2In (38), if the Lyapunov function has only smaller moments than order ν, then condition on κ ≥ 0 will become stricter. In
particular, κ tunes the batch size required to sample from the tails of the stationary distribution and may be required to be
positive depending the moments of the Lyapunov function. The terms σ and κ can be tuned to control the bias coming from
variance and nonstationarity, and finite batch size, respectively.

16

distribute load across servers to maximize the admission probability. For each t ∈ N, St = (St,1, St,2, . . . , St,n)
denotes the vector containing the number of customers at each server right before the arrival of the (t+1)-th
customer, and At ∈ {1, 2, . . . , n} is the server to which this customer is assigned. (This decision is void if
St,1 + . . . + St,n = c, as the customer is rejected anyway.) We have S = {s ∈ Nn : s1 + s2 + . . . + sn ≤ c}
and A = {1, 2, . . . , n}. The agent obtains a reward equal to 1 if the customer is accepted and 0 otherwise,
that is, Rt+1 = 1[St,1 + . . .+ St,n ≤ c− 1].

Policy parametrization and product-form. We consider the following static policy parametrization,
with parameter vector θ ∈ Rn: irrespective of the system state s ∈ S, an incoming customer is assigned to
server i with probability

π(i|s, θ) = πi(θ) =
eθi∑n
j=1 e

θj
, i ∈ {1, 2, . . . , n}. (40)

Assumptions 1 to 3 are satisfied with n = d, Ω = Rn, Φ(s) = 1 for each s ∈ S, xi(s) = si for each
i ∈ {1, 2, . . . , n} and s ∈ S, and ρi(θ) =

λ
µi
πi(θ) for each i ∈ {1, 2, . . . , n} and θ ∈ Rn. We have ∇ log ρi =

∇ log πi for each i ∈ {1, 2, . . . , d}. Observe that, even under a static policy such as (40) and with a finite
state space, the function J is nonconvex in general (including with the numerical values below) and can
become challenging to optimize if c and n are large. We have demonstrated that the assumptions outlined
in Section 5 are satisfied, except for Assumption 7. However, it can be expected that this assumption holds
for almost any parameter. See Appendix B.1 for more details.

Numerical results: Compare SAGE and actor-critic. We consider this problem with parameters
n = 4, λ = 0.7, µ1 = 0.4, µ2 = 0.3, µ3 = 0.2, µ4 = 0.1, and c = 10.Using Appendix B.1, we can verify

103 104 105 106

AC – 10%

AC – 20%

AC – 50%

SAGE – 10%

SAGE – 20%

SAGE – 50%

3 · 105 4· 5· 6· 7· 8· 9· 106

AC – 1%

AC – 2%

AC – 5%

SAGE – 1%

SAGE – 2%

SAGE – 5%

(a) Box plots of convergence times.

102 103 104 105 106
0

0.1

0.2

0.3

0.4

0.5

(b) Assignment probabilities under SAGE.

102 103 104 105 106
0

0.1

0.2

0.3

0.4

0.5

(c) Assignment probabilities under actor-critic.

Figure 1: Performance of SAGE and actor-critic in the load-balancing system. The x-axis is time in loga-
rithmic scale. Figure 1a shows the ϵ-convergence times, for ϵ ∈ {50%, 20%, 10%, 5%, 2%, 1%}. In Figures 1b
and 1c, the dashed lines show the optimal assignment probabilities, the solid lines the assignment probabili-
ties under the corresponding algorithm, averaged over 10 independent simulations, and the semitransparent
areas the standard deviation; the indices of servers are increasing from top to bottom.

17

numerically that the admission probability is maximized by θ⋆ ∈ R4 so that π(θ⋆) ≃ (0.466, 0.3048, 0.1724,
0.0568), yielding admission probability J(θ⋆) ≃ 0.907. The initial policy π(Θ0) is uniform.

Figure 1a shows the empirical distribution of the ϵ-convergence time for ϵ ∈ {50%, 20%, 10%, 5%, 2%,
1%}. Figures 1b and 1c show the sample trajectories of the assignment probabilities πi(Θt) under SAGE
and actor-critic, for t ∈ {102, . . . , 106} and i ∈ {1, 2, 3, 4}. In this example, SAGE converges about 10 times
faster than actor-critic, despite both algorithms applying the same gradient step sizes. We believe this is due
to the fact that SAGE can “by-design” exploit information on the stationary distribution, which actor-critic
cannot. More precisely, referring back to Theorem 1, D log ρ(θ), Cov[R, x(S)], and E[R∇ log π(A|S, θ)] have
dimensions n × n, n, and n, respectively, where n = 4 is the number of servers; in contrast, the number of
values to be estimated by actor-critic is equal to the number of states in the system, which is of order cn,
with here c = 10 and n = 4.

Numerical results: Impact of the step and batch sizes and memory factor. Figure 2 shows the
same results as Figure 1b, except that we use step and batch sizes that are consistent with the convergence
result of Section 5, as described in the legend of Figure 2. Compared to Figure 1b, the variance decreases
with time at the cost of a slower convergence.

Figure 2: The counterpart of Figure 1b when apply-
ing SAGE with the step and batchsizes from (16):
memory factor ν = 0, step sizes αm = 1/(m+ 1)σ,
and batch sizes tm+1 − tm = 100(m + 1)

σ
2 , with

σ = 2
3 + 1

10 .

102 103 104 105 106
0

0.1

0.2

0.3

0.4

0.5

6.2 Admission control in an M/M/1 queue

Consider a single-server queue where customers arrive according to a Poisson process with rate λ > 0 and
service times are independent and exponentially distributed with rate µ > 0. When a customer arrives,
the agent makes the decision to either admit or reject it. In the former case, the customer is added to the
queue; in the latter case, it is permanently lost. The agent receives a one-time reward γ for each accepted
customer and incurs a holding cost η per customer per time unit, for some γ, η > 0. Customers are scheduled
according to an arbitrary nonidling nonanticipating policy. The problem is cast to the framework of Section 3
as follows. For each t ∈ N, let St denote the number of customers in the system right before the arrival of
the (t + 1)-th customer and At the decision of admitting or rejecting this customer. We have S = N and
A = {admit, reject}. Let (Στ , τ ∈ R≥0) denote the continuous-time process that describes the evolution of
the number of customers over time and (Tt, t ∈ N) the sequence of customer arrival times, so that S0 = Σ0

and St = limσ↑Tt
Στ for each t ∈ N+. Rewards are given by

Rt+1 = rdisc(St, At) +

∫ Tt+1

Tt

rcont(Στ)dτ,

where rdisc(s, a) = γ1[a = admit] represents the one-time admission reward and rcont(s) = −ηs the holding
cost incurred continuously over time. We use this commonly used reward in this example but we remark
that arbitrary reward functions are also possible.

Policy parametrization and product-form. Consider the following random policy with threshold k ∈ N
and parameter3 θ = (θ0, θ1, . . . , θk) ∈ Rk+1. An incoming customer finding s customers in the system is

3In this example, vectors and matrices are indexed starting at 0 (instead of 1) for notational convenience.

18

accepted with probability π(admit|s, θ) = πmin(s,k)(θ) and rejected with probability π(reject|s, θ) = 1 −
πmin(s,k)(θ), where

πi(θ) =
1

1 + e−θi
, i ∈ {0, 1, . . . , k}. (41)

Taking k = 0 yields a static random policy, while letting k tend to +∞ yields a fully state-dependent random
policy. Assumptions 1 to 3 are satisfied with n = d = k + 1, Ω = {θ ∈ Rk+1 : πk(θ) <

µ
λ}, Φ(s) = 1 for each

s ∈ S, xi(s) = 1{s≥i+1} for each i ∈ {0, 1, . . . , k− 1} and xk(s) = max(s− k, 0), and ρi(θ) =
λ
µπi(θ) for each

i ∈ {0, 1, . . . , k}. It follows that ∇ log ρi = ∇ log πi for each i ∈ {0, 1, . . . , k}. We have not proved that all
assumptions of Section 5 are verified, especially Assumption 7. See Appendix B.2 for more details on these
derivations.

Numerical results with a stable queue. We compare SAGE and actor-critic in a system with pa-
rameters λ = 0.7, µ = 1, γ = 5, η = 1, and a threshold-based policy with k = 3. We have in particular
Ω = Rk+1 since λ < µ. Using Appendix B.2, we can verify that the average reward rate is maximized by
θ⋆0 = θ⋆1 = θ⋆2 = −∞ and θ⋆3 = +∞ (corresponding to the deterministic policy π0(θ

⋆) = π1(θ
⋆) = π2(θ

⋆) = 1
and π3(θ

⋆) = 0). Finite maxima could be ensured by adding a regularization term, as Proposition 2 shows.
The initial policy is given by πi(Θ0) =

1
2 for each i ∈ {0, 1, 2, 3}.

104 105

AC – 10%

AC – 20%

AC – 50%

SAGE – 10%

SAGE – 20%

SAGE – 50%

105 106

AC – 1%

AC – 2%

AC – 5%

SAGE – 1%

SAGE – 2%

SAGE – 5%

(a) Box plots of convergence times.

102 103 104 105 106
0

0.2

0.4

0.6

0.8

1

(b) Admission probabilities under SAGE.

102 103 104 105 106
0

0.2

0.4

0.6

0.8

1

(c) Admission probabilities under actor-critic.

Figure 3: Performance of SAGE and actor-critic in the stable M/M/1 queue with admission control. The
legend is similar to Figure 1, except that in Figures 3b and 3c the solid lines represent assignment probabilities
and are ordered in increasing index from top to bottom.

Figure 3a shows the empirical distribution of the ϵ-convergence time, for ϵ ∈ {50%, 20%, 10%, 5%, 2%,
1%}. Figures 3b and 3c show the sample trajectories of the admission probabilities πi(Θt) under SAGE and
actor-critic, for t ∈ {102, . . . , 106} and i ∈ {0, 1, 2, 3}. We observe on Figure 3a that the 50%-convergence
time of actor-critic is slightly lower than that of SAGE, which we explain by the observation that, according
to Figures 3b and 3c, the admission probability π1 converges slightly faster to π1(θ

⋆) = 1 under actor-critic
than under SAGE. On the contrary, the ϵ-convergence time of SAGE is lower than that of actor-critic for
ϵ ∈ {20%, 10%, 5%, 2%, 1%}. That seems to follow from the fact that, under actor-critic, the admission

19

probability π3 first increases before converging to π3(θ
⋆) = 0, and the probability π2 also oscillates before

converging to π2(θ
⋆) = 1. We conjecture this is partly due to the fact that the policy’s structure (constant

beyond state 3) cannot be exploited when estimating the state-value function, which slows-down convergence.

Numerical results in a possibly-unstable queue. We consider the same parameters as before, except
that λ = 1.4 > 1 = µ. The system is stable under the initial policy, again given by πi(Θ0) = 1

2 for each
i ∈ {0, 1, 2, 3}, but it becomes unstable (in the sense that the underlying Markov chain is transient) if π3(θ)
exceeds µ

λ ≃ 0.714. Again using the calculations of Appendix B.2, we can verify that the average reward
rate is maximized by choosing θ⋆0 = θ⋆1 = +∞ and θ⋆2 = θ⋆3 = −∞ (corresponding to the stable deterministic
policy with π0(θ

⋆) = π1(θ
⋆) = 1 and π2(θ

⋆) = π3(θ
⋆) = 0). This is an example where convergence can only

be guaranteed locally, as not all policies are stable.

102 103 104 105 106
0

0.2

0.4

0.6

0.8

1

(a) Assignment probabilities under SAGE.

102 103 104 105 106
0

0.2

0.4

0.6

0.8

1

(b) Assignment probabilities under actor-critic.

Figure 4: Performance of SAGE and actor-critic in the possibly-unstable M/M/1 queue with admission
control.

Figure 4 is the analog of Figures 3b and 3c for this possibly-unstable case. The main take-away of
Figure 4a is that the SAGE-based algorithm converges to a close-to-optimal policy, and that the convergence
is actually faster than in the stable case. The SAGE-based algorithm learns first the admission probability
π3 in state 3 or above around 103 steps (instead of 105 in Figure 3b), and then the probabilities π0, π1, π2

around 104 steps. We also observe that the admission probability π3 never reaches zero, which is not an
issue since states 3 or above stop being visited once the admission probability π2 has converged to zero. As
suggested by the term O(α2/ℓ) in Theorem 2, the chance of reaching unstable policies can be reduced by
decreasing the variance of the update αmHm. On the contrary, Figure 4b suggests that actor-critic has more
difficulties in coping with instability in this example. Sample trajectories of actor-critic in Appendix B.3
give additional information: convergence towards the optimal policy is observed in 8 out of 10 trajectories,
but in all trajectories we observe a transitory regime where the admission probability π3 fluctuates rapidly.

References

[1] I. Adan, A. Bušić, J. Mairesse, and G. Weiss. Reversibility and further properties of FCFS infinite bi-
partite matching. Mathematics of Operations Research, 43(2):598–621, dec 2017. Publisher: INFORMS.

[2] A. Agarwal, S. M. Kakade, J. D. Lee, and G. Mahajan. On the theory of policy gradient meth-
ods: Optimality, approximation, and distribution shift. The Journal of Machine Learning Research,
22(1):4431–4506, 2021.

[3] Y. F. Atchadé, G. Fort, and E. Moulines. On perturbed proximal gradient algorithms. The Journal of
Machine Learning Research, 18(1):310–342, 2017.

[4] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios. Open, closed, and mixed networks of
queues with different classes of customers. Journal of the ACM, 22(2):248–260, apr 1975.

20

[5] T. Bonald and J. Virtamo. Calculating the flow level performance of balanced fairness in tree networks.
Performance Evaluation, 58(1):1–14, oct 2004.

[6] P. Bremaud. Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues. Texts in Applied
Mathematics. Springer-Verlag, 1999.

[7] J. P. Buzen. Computational algorithms for closed queueing networks with exponential servers. Com-
munications of the ACM, 16(9):527–531, sep 1973.

[8] H. Daneshmand, J. Kohler, A. Lucchi, and T. Hofmann. Escaping saddles with stochastic gradients. In
International Conference on Machine Learning, pages 1155–1164. PMLR, 2018.

[9] E. de Souza e Silva and M. Gerla. Queueing network models for load balancing in distributed systems.
Journal of Parallel and Distributed Computing, 12(1):24–38, may 1991.

[10] E. de Souza e Silva and R. Muntz. Simple relationships among moments of queue lengths in product
form queueing networks. IEEE Transactions on Computers, 37(9):1125–1129, sep 1988.

[11] T. T. Doan, L. M. Nguyen, N. H. Pham, and J. Romberg. Finite-time analysis of stochastic gradient
descent under markov randomness. arXiv preprint arXiv:2003.10973, 2020.

[12] M. Fazel, R. Ge, S. Kakade, and M. Mesbahi. Global convergence of policy gradient methods for the
linear quadratic regulator. In International Conference on Machine Learning, pages 1467–1476. PMLR,
2018.

[13] B. Fehrman, B. Gess, and A. Jentzen. Convergence rates for the stochastic gradient descent method for
non-convex objective functions. Journal of Machine Learning Research, 21:136, 2020.

[14] G. Fort and E. Moulines. Convergence of the monte carlo expectation maximization for curved expo-
nential families. The Annals of Statistics, 31(4):1220–1259, 2003.

[15] K. Gardner and R. Righter. Product forms for FCFS queueing models with arbitrary server-job com-
patibilities: an overview. Queueing Systems, 96(1):3–51, oct 2020.

[16] V. Guillemin and A. Pollack. Differential topology, volume 370. American Mathematical Soc., 2010.

[17] B. Karimi, B. Miasojedow, E. Moulines, and H.-T. Wai. Non-asymptotic analysis of biased stochastic
approximation scheme. In Conference on Learning Theory, pages 1944–1974. PMLR, 2019.

[18] S. Khadka and K. Tumer. Evolution-guided policy gradient in reinforcement learning. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

[19] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. The MIT Press,
Cambridge, MA, 2009.

[20] J. M. Lee and J. M. Lee. Smooth manifolds. Springer, 2012.

[21] Z. Liu and P. Nain. Sensitivity results in open, closed and mixed product form queueing networks.
Performance Evaluation, 13(4):237–251, 1991.

[22] S. Mohamed, M. Rosca, M. Figurnov, and A. Mnih. Monte carlo gradient estimation in machine learning.
The Journal of Machine Learning Research, 21(1):5183–5244, 2020.

[23] P. Moyal, A. Bušić, and J. Mairesse. A product form for the general stochastic matching model. Journal
of Applied Probability, 58(2):449–468, jun 2021. Publisher: Cambridge University Press.

[24] J. Naudts and B. Anthonis. Data set models and exponential families in statistical physics and beyond.
Modern Physics Letters B, 26(10):1250062, 2012.

21

[25] L. I. Nicolaescu et al. An invitation to Morse theory. Springer, 2011.

[26] Y. Qian, J. Wu, R. Wang, F. Zhu, and W. Zhang. Survey on reinforcement learning applications in
communication networks. Journal of Communications and Information Networks, 4(2):30–39, 2019.

[27] J. Sanders, S. C. Borst, and J. S. H. van Leeuwaarden. Online network optimization using product-form
markov processes. IEEE Trans. Automat. Contr., 61(7):1838–1853, 2016.

[28] R. Serfozo. Introduction to Stochastic Networks. Stochastic Modelling and Applied Probability. Springer-
Verlag, 1999.

[29] D. Shah. Message-passing in stochastic processing networks. Surveys in Operations Research and
Management Science, 16(2):83–104, jul 2011.

[30] V. Shah and G. de Veciana. High-performance centralized content delivery infrastructure: Models and
asymptotics. IEEE/ACM Transactions on Networking, 23(5):1674–1687, oct 2015.

[31] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT press, Cambridge, MA,
USA, 2 edition, 2018.

[32] V. B. Tadic and A. Doucet. Asymptotic bias of stochastic gradient search. Annals of Applied Probability,
27(6):3255–3304, 2017.

[33] M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and variational inference.
Found. Trends Mach. Learn., 1(1):1–305, 2018.

[34] R. W.Wolff. Poisson arrivals see time averages. Operations Research, 30(2):223–231, apr 1982. Publisher:
INFORMS.

[35] L. Xiao. On the convergence rates of policy gradient methods. The Journal of Machine Learning
Research, 23(1):12887–12922, 2022.

[36] S. Zachary and I. Ziedins. Loss networks and markov random fields. Journal of Applied Probability,
36(2):403–414, jun 1999. Publisher: Cambridge University Press.

A Actor-critic algorithm

The actor-critic algorithm is first mentioned in Section 3.4 and compared to our SAGE-based policy-gradient
algorithm in Section 6. We focus on the version of the actor-critic algorithm described in [31, Section 13.6] for
the average-reward criterion in infinite horizon. The algorithm relies on the following expression for ∇J(θ),
which is a variant of the policy-gradient theorem [31, Chapter 13]:

∇J(θ) ∝ E[(R− J(θ) + v(S′)− v(S))∇ log π(A|S, θ)],

where (S,A,R, S′) is a quadruplet of random variables such that S ∼ p(· |θ), A|S ∼ π(· |S, θ), and
(R,S′)|(S,A) ∼ P (· , · |S,A) (so that in particular (S,A,R) ∼ stat(θ)), and v is the state-value function.

The pseudocode of the procedure Gradient used in the actor-critic algorithm is given in Algorithm 3.
This procedure is to be implemented within Algorithm 1 with batch sizes equal to one, meaning that
tm+1 = tm + 1 for each m ∈ N. We assume to simplify notation that all variables from Algorithm 1 are
accessible inside Algorithm 3. The variable R updated on Line 6 is a biased estimate of J(Θm), while the
table V updated on Line 7 is a biased estimator of the state-value function under policy π(Θm). Compared
to [31, Section 13.6], the value function is encoded by a table V and there are no eligibility traces. If the
state space S is infinite, the table V is initialized at zero over a subset of S containing the initial state S0

and expanded with zero padding whenever necessary.

22

Algorithm 3 Actor-critic algorithm [31, Section 13.6] to be called on Line 9 of Algorithm 1, with batch
sizes equal to one.

1: Input: Positive and differentiable policy parametrization (s, θ, a) 7→ π(a|s, θ)
2: Parameters: Step sizes αR > 0 and αv > 0

3: Initialization: • R← 0
• V [s]← 0 for each s ∈ S

4: procedure Gradient(t)
5: δ ← Rt+1 −R+ V [St+1]− V [St]
6: Update R← R+ αRδ
7: Update V [St]← V [St] + αvδ
8: return δ∇ log π(At|St,Θt)
9: end procedure

B Examples

This appendix provides detailed calculations for the examples of Section 6. We first consider the load-
balancing example of Section 6.1, and then we move to the M/M/1 queue with admission control of Sec-
tion 6.2. For simplicity, we decided to focus on systems where decisions are made upon arrivals of customers
(jobs, items, etc.), so that the arrival times of customers are natural discretization times. Incoming customers
arrive according to Poisson processes so that, by the PASTA property [34], the stochastic processes obtained
by observing the system state either at arrival times or continuously over time have the same stationary
distribution.

B.1 Load-balancing system

We first consider the load-balancing example of Section 6.1. Recall that customers arrive according to a
Poisson process with rate λ > 0, there are n servers at which service times are distributed exponentially
with rates µ1, µ2, . . ., µn, respectively, and the system can contain at most c customers, for some c ∈ N+.
The agent’s goal is to choose a static random policy that maximizes the admission probability. We first
verify that the system satisfies Assumptions 1 to 3, then we provide an algorithm to evaluate the objective
function when the parameters are known; this is used in particular for performance comparison with the
optimal policy in the numerical results. Lastly, we discuss the assumptions of Section 5. Throughout this
section, we assume that we apply the policy π(θ) defined by (40) for some parameter θ ∈ Rn.

Product-form stationary distribution. That Assumption 1 is satisfied follows from the facts that the
rates and probabilities λ, µ1, µ2, . . ., µn π1(θ), π2(θ), . . ., πn(θ) are positive, and that the state space S is
finite. Assumption 2 is satisfied because the state space is finite. This system can be modeled either as a
loss Jackson network with n queues (one queue for each server in the load-balancing system) or as a closed
Jackson network with n+1 queues (one queue for each server in the system, plus another signaling available
positions in the system, with service rate λ). Either way, we can verify (for instance by writing the balance
equations) that the stationary distribution of the continuous-time Markov chain that describes the evolution
of the system state is given by:

p(s|θ) = 1

Z(θ)

n∏
i=1

(
λ

µi
πi(θ)

)si

, s = (s1, s2, . . . , sn) ∈ S, (42)

where Z(θ) follows by normalization. This is exactly (9–PF) from Assumption 3, with n = d, Ω = Rn,
Φ(s) = 1 for each s ∈ S, xi(s) = si for each i ∈ {1, 2, . . . , n} and s ∈ S, and ρi(θ) = λ

µi
πi(θ) for each

i ∈ {1, 2, . . . , n}. The function ρ defined in this way is differentiable. Assumption 3 is therefore satisfied, as
the distribution of the system seen at arrival times is also (42) according to the PASTA property. Besides the

23

sufficient statistics x, the inputs of Algorithm 2 are ∇ log π(a|s, θ) = 1a−π(θ), where 1a is the n-dimensional
vector with one in component a and zero elsewhere, and π(θ) is the policy seen as a (column) vector, and
D log ρ(θ) = Id− 1π(θ)⊺, where Id is the n-dimensional identity matrix, 1 is the n-dimensional vector with
all-one components, and π(θ)⊺ is the (row) vector obtained by transposing π(θ). This latter equation can
be used to verify Assumption 5.

Objective function. When all system parameters are known, the normalizing constant Z(θ) and admis-
sion probability J(θ) can be calculated efficiently using a variant of Buzen’s algorithm [7] for loss networks.
Let us first define the array G = (Gc,n)c∈{0,1,...,c},n∈{1,2,...,n} by

Gc,n =
∑
s∈Nn:
|s|≤c

n∏
i=1

ρi(θ)
si , c ∈ {0, 1, . . . , c}, n ∈ {1, 2, . . . , n}.

The dependency of G on θ is left implicit to alleviate notation. The normalizing constant and admission
probability are given by Z(θ) = Gc,n and J(θ) = Gc−1,n/Gc,n, respectively. Defining the array G allows
us to calculate these metrics more efficiently than by direct calculation, as we have G0,n = 1 for each
n ∈ {1, 2, . . . , n}, and

Gc,1 = 1 + ρi(θ)Gc−1,1, c ∈ {1, 2, . . . , c},
Gc,n = Gc,n−1 + ρi(θ)Gc−1,n, c ∈ {1, 2, . . . , c}, n ∈ {2, 3, . . . n}.

Assumptions of Section 5. Assumptions 4, 5, and 6 are automatically satisfied because the state space
is finite (with |S| = c). Verifying Assumption 7 is challenging since it requires computing Hessθ⋆J at the
maximizer θ⋆, which depends in an implicit manner on the parameters of the system such as the arrival rate
λ, service rates µ1, µ2, . . . , µn, and policy π(θ⋆). However, the nondegeneracy property of the Hessian for
smooth functions is a property that is commonly stable in the following sense: if a function satisfies this
property, then it will still be satisfied after any small-enough smooth perturbation. In particular, smooth
functions with isolated nondegenerate critical points—also known as Morse functions—are dense and form
an open subset in the space of smooth functions; see [25, Section 1.2]. Thus, unless the example is adversarial
or presents symmetries, we can expect Assumption 7 to hold.

B.2 M/M/1 queue with admission control

We now consider the example of Section 6.2. Recall that customers arrive according to a Poisson process
with rate λ > 0 and service times are exponentially distributed with rate µ > 0. The reward rate is equal
to the difference between an admission reward proportional to the admission probability and a holding cost
proportional to the mean queue size. As in Appendix B.1, we first verify that Assumptions 1 to 3 are satisfied,
then we give a closed-form expression for the objective function, and lastly we discuss the assumptions of
Section 5. We consider a random threshold-based policy of the form (41) for some parameter θ ∈ Ω, where
Ω = {θ ∈ Rk+1 : πk(θ) <

µ
λ}.

Product-form stationary distribution. The evolution of the number of customers in the queue defines
a birth-and-death process with birth rate λπmin(s,k)(θ) and death rate µ1[s ≥ 1] in state s, for each s ∈
{0, 1, 2, . . .}. This birth-and-death process is irreducible because these rates are positive, and it is positive
recurrent because λπk(θ) < µ by definition of Ω. This verifies Assumption 1. The stationary distribution is
given by

p(s) =
1

Z(θ)

s−1∏
q=0

λ

µ
π(admit|q, θ) = 1

Z(θ)

[
k−1∏
i=0

(
λ

µ
πi(θ)

)1[s≥i+1]
](

λ

µ
πk(θ)

)max(s−k,0)

, s ∈ N, (43)

24

where the second equality follows by injecting (41), and the value of Z(θ) follows by normalization. We
recognize (9–PF) from Assumption 3, with n = d = k+1, Φ(s) = 1 for each s ∈ S, xi(s) = 1{s≥i+1} for each

i ∈ {0, 1, . . . , k − 1} and xk(s) = max(s− k, 0) for each s ∈ S, and ρi(θ) =
λ
µπi(θ) for each i ∈ {0, 1, . . . , k}.

The function ρ defined in this way is differentiable. Assumption 3 is therefore satisfied, as the distribution of
the system seen at arrival times is also (43) according to the PASTA property. For each a ∈ {admit, reject}
and s ∈ N, ∇ log π(a|s, θ) is the (k + 1)-dimensional column vector with value 1[a = admit] − πi(θ) in
component i = min(s, k) and zero elsewhere, and D log ρ(θ) is the (k + 1)-dimensional diagonal matrix
with diagonal coefficient 1 − πi(θ) in position i, for each i ∈ {0, 1, . . . , k}. This can be used to verify that
Assumption 5 is satisfied.

Objective function. The objective function is given by J(θ) = γP[A = admit]− η
λE[S], where

P[A = admit] =

k−1∑
i=0

p(i|θ)πi(θ) +
(
1−

k−1∑
i=0

p(i|θ)
)
πk(θ),

E[S] =
k−1∑
i=0

ip(i|θ) + p(k|θ)
1− ρk(θ)

(
k +

ρk(θ)

1− ρk(θ)

)
,

Z(θ) =

k−1∑
s=0

(s−1∏
i=0

ρi(θ)
)
+

(k−1∏
i=0

ρi(θ)
) 1

1− ρk(θ)
,

with the convention that empty sums are equal to zero and empty products are equal to one. All calculations
remain valid in the limit as πi(θ) → 1 for some i ∈ {0, 1, . . . , k} (corresponding to θi → +∞). In the limit
as πi(θ) → 0 for some i ∈ {0, 1, . . . , k}, we can study the restriction of the birth-and-death process to the
state space {0, 1, . . . , c}, where c = min{i ∈ {0, 1, . . . , k} : πi(θ) = 0}.

Assumptions of Section 5. For any closed set U ⊂ Ω, it can be shown that there exists a Lyapunov
function L uniformly over θ ∈ U such that L(s, a) = exp(cs) for some c > 0, depending on U and the
model parameters. Hence, Assumptions 4, 5 and 6 are satisfied. In general, Assumption 7 does not hold
for this example because maxima occur only as |θ| → ∞. As suggested by Proposition 2, by adding a small
regularization term, we can guarantee Assumption 7 while simultaneously ensuring that the maximizer is
bounded. In practice, using a regularization term can additionally present some benefits such as avoiding
vanishing gradients and saddle points.

B.3 Example trajectories of the actor-critic algorithm in the M/M/1 unstable
queue

In the second set of experiments of Section 6.2, SAGE and actor-critic are applied to optimize the admission
probability in an M/M/1 queue with parameters λ = 1.6, µ = 1, γ = 1, and η = 5. With our parameteri-
zations of the policies in (41) with k = 3, the policy is stable if and only if π3(θ) <

µ
λ ≃ 0.714, so that in

particular the initial policy π(Θ0) = (12 ,
1
2 ,

1
2 ,

1
2) is stable. As observed in Figure 4b, the actor-critic algo-

rithm seems to exhibit poor convergence properties in this example. Figure 5 supplements this observation
by plotting four sample trajectories based on which the mean and standard deviations in Figure 4b were
computed. The first three plots show trajectories where actor-critic seems to eventually converge to the
optimal, while the last plot shows one of the two trajectories where convergence to the optimal policy is not
observed. In either case, we observe a first transitory period where the admission probability in state 3 or
above varies very rapidly before eventually stabilizing around either 0 (its optimal value) or 1.

25

102 103 104 105 106
0

0.2

0.4

0.6

0.8

1

102 103 104 105 106
0

0.2

0.4

0.6

0.8

1

102 103 104 105 106
0

0.2

0.4

0.6

0.8

1

102 103 104 105 106
0

0.2

0.4

0.6

0.8

1

Figure 5: Example assignment probabilities under actor-critic.

C Proof of Theorem 2

C.1 Preliminaries

We are going to use concentration inequalities for Markov chains. Such results are common in the literature
(for example, see [17]), and will be required to get a concentration bound of the plug-in estimators from (15).

Denote by Bϵ(θ) the open ball of radius ϵ centered at θ ∈ Ω ⊆ Rn and Y = S × A. Given a function
q : Y → R and the Lyapunov function L : Y → [1,∞) from Assumption 4, define

|q|L = sup
y∈Y

|q(y)|
L(y)

. (44)

Given a signed measure ν, we also define the seminorm

|ν|L = sup
|q|L≤1

|ν[q]| = sup
|q|L≤1

∣∣∣∫ q(y)ν(dy)
∣∣∣. (45)

Equations (44) to (45) imply that
|ν[q]| ≤ |ν|L|q|L. (46)

Note that we defined | · |L for a unidimensional function. Given instead m functions qi : Y → R, for
the higher-dimensional function q : Y → Rm that satisfies for all y ∈ Y, q(y) = (q1(y), . . . , ql(y)), we define

|q|L =
√∑l

i=1 |qi|2L.
The following lemma yields the concentration inequalities required:

Lemma 5. Let {Yn}n≥1 be a geometrically ergodic Markov chain with invariant distribution p and transition
matrix P (· , ·). Let the Lyapunov function be L : Y → R. From geometric ergodicity, there exists C > 0 and
λ ∈ (0, 1) such that for any y ∈ Y,

|Pm(· |y)− p(·)|L ≤ Cλm. (47)

Let F = σ(Y1) be the σ-algebra of Y1. Let q : Y → Rm be a measurable function such that |q|L <∞. For a
finite trajectory Y1, . . . , YM of the Markov chain, we define the empirical estimator for p[q] as

p̂M [q] =
1

M

M∑
i=1

q(Yi). (48)

26

With these assumptions, there exists C ′ depending on C and λ such that∣∣∣E[p[q]− p̂M [q]
∣∣F]∣∣∣ ≤ C ′|q|L

M
L(Y1), (49)

and for l ∈ {1, 2, 4},

E
[
|p[q]− p̂M [q]|l

∣∣F] ≤ C ′|q|lL
M l/2

Ll(Y1). (50)

Proof. We refer to [14, Prop. 12] for a proof of (50). What remains is to prove (49).
Observe that for y ∈ Y, P (y) = P (· |y) is a distribution over Y. Conditional on F , there exists C > 0

such that ∣∣∣E[1

M

M∑
i=1

q(Yi)− p[q]
∣∣∣F]∣∣∣ ≤ 1

M

M∑
i=1

∣∣P i(Y1)[q]− p[q]
∣∣ = 1

M

M∑
i=1

∣∣(P i(Y1)− p
)
[q]

∣∣
≤ 1

M

M∑
i=1

∣∣P i(· |Y1)− p(·)
∣∣
L|q|LL(Y1) ≤

|q|L
M

M∑
i=1

CλiL(Y1)

≤ C|q|L
M(1− λ)

L(Y1). (51)

This concludes the proof.

In epoch m, the Markov chain {St}t∈[tm,tm+1] with control parameter Θm has a Lyapunov function Lv.
Intuitively, as a consequence of Assumption 4, we can show that the process does not drift to infinity on the
event Bm (despite the changing control parameter Θm).

Specifically, for m > 0, let {St}i∈[tm,tm+1] be the Markov chain trajectory with transition probabilities
P (Θm), where Θm is given by the updates in (3) and (15) and initial state S0 ∈ S. Recall that Bm is defined
in (28). We can then prove the following:

Lemma 6. Suppose Assumption 4 holds. There exists D <∞ such that for m > 0, E
[
Lv(Stm+1

)1[Bm]
]
< D.

Proof. We will give an inductive argument. A similar argument can be found in [3].
First, observe that for m = 0, S0 is fixed. There thus exists a D such that Lv(S0) < D.
Next, assume that E[Lv(Stm)1[Bm−1]] < D. On the event Bm, Assumption 4 holds since Θ1, . . . ,Θm−1,Θm ∈

Vr,δ(θ
⋆) ⊂ U . Thus, on the event Bm, and when additionally conditioning on Stm+1−1 and Θm, the following

holds true:

E
[
Lv(Stm+1

)1[Bm]
]
≤ E

[
E[Lv(Stm+1

)1[Bm]|Stm+1−1]
]

= E
[
1[Bm]PΘm

Lv(Stm+1−1)
]

(52)

≤ E
[
1[Bm][λLv(Stm+1−1) + b]

]
.

The last step followed from Assumption 4.
Observe finally that the bound in (52) can be iterated by conditioning on Stm+1−2; so on and so forth.

After tm+1 − tm iterations, one obtains

E
[
Lv(Stm+1)1[Bm]

]
≤ λE

[
Lv(Stm)1[Bm]

]
+

b

1− λ
. (53)

Noting that 1[Bm] ≤ 1[Bm−1], the claim follows by induction if we choose D large enough such that λD +
b/(1− λ) < D.

27

C.2 Proof of Theorem 2

To prove Theorem 2, we more–or–less follow the arguments of [13, Thm. 25]. Modifications are however
required because we consider a Markovian setting instead. Specifically, we rely on the bounds in Lemmas 2
to 4 instead of the bounds in [13, Prop. 20, Prop. 21, Prop. 24], respectively.

Let us begin by bounding
P[J⋆ − J(Θm) > ϵ|B0]. (54)

Here, B0 = {Θ0 ∈ Vr,δ(θ
⋆)}—recall (28). Theorem 2 assumes that we initialize in a set V which we will

specify later but satisfies V ⊂ Vr,δ(θ
⋆). Since we can initialize Θ0 with positive probability in V , we have

that P[B0] ≥ P[Θ0 ∈ V] > 1/c > 0 for some c > 0. Thus, we will focus on finding an upper bound of

P[J⋆ − J(Θm) > ϵ|B0] ≤ cP[{J⋆ − J(Θm) > ϵ} ∩ B0]. (55)

Denote the orthogonal projection of Θm ontoM∩ U by Θ̃m = p(Θm). We can relate the objective gap
J⋆ − J(Θm) to the distance Dm := dist(Θm,M∩ U) as follows. Since J is twice continuously differentiable
with maximum J⋆ attained atM∩U , the function J(θ) with θ ∈ Vr,δ(θ

⋆) is locally Lipschitz with constant
lr,δ(Θ

⋆) > 0. On the event Bm, we have Θm ∈ Vr,δ(θ
⋆) and therefore we have the inequality

J⋆ − J(Θm) = J(Θ̃m)− J(Θm) ≤ lr,δ(θ
⋆)
∣∣Θ̃m −Θm

∣∣ = lr,δ(θ
⋆)Dm. (56)

Consequently, we have the bound

P[{J⋆ − J(Θm) > ϵ} ∩ Bm] ≤ P
[{

Dm ≥
ϵ

lr,δ(θ⋆)

}
∩ Bm

]
(57)

If we define ϵ′ = ϵ/lr,δ(θ
⋆), the right-hand side of (57) can also be written as

P[{Dm ≥ ϵ′} ∩ Bm] = E[1[Dm ≥ ϵ′]1[Bm]]

= E[1[Dm1[Bm] ≥ ϵ′]] = P[Dm1[Bm] ≥ ϵ′] (58)

by the positivity of Dm.
Next, we use (i) the law of total probability noting that Bm ⊂ B0, (ii) the bound (57) and the inequality

P[A ∩B] ≤ P[A] for any two events A,B, and finally, (iii) the equality (58). We obtain

P[{J⋆ − J(Θm) > ϵ} ∩ B0]
(i)

≤ P[{J⋆ − J(Θm)) > ϵ} ∩ Bm] + P[{J⋆ − J(Θm)) > ϵ} ∩ Bm]

(ii)

≤ P[{Dm ≥ ϵ′} ∩ Bm] + P[Bm]

(iii)

≤ P[Dm1[Bm] ≥ ϵ′] + P[Bm]

≤ P[Dm1[Bm−1] ≥ ϵ′] + P[Bm] = Term I + Term II. (59)

Term I can be bounded by using Markov’s inequality and Lemma 2. This shows that

Term I ≤ cϵ′−2m−σ−κ. (60)

Term II can be bounded by Lemma 4. Specifically, one finds that there exists a constant c > 0 such that,
if Θ0 ∈ Vr/2,δ(Θ

⋆),

Term II ≤ 1− exp
(
−cα2

δ2ℓ

)
+ cδ−2ℓ−1m1−σ−κ + cα

(m1−3/2σ−κ/2 + ℓ−1/2m1−5σ/8−κ/2)

(r/2− 2δ)+
. (61)

Note next that for any α ∈ (0, α0] and c > 0 there exists δ0 such that for any δ ∈ (0, δ0] there exists ℓ0
such that if ℓ ∈ [ℓ0,∞) there exists a constant c′ > 0 such that we have the inequality 1− exp (−cα2/δ2ℓ) ≤
c′α2/δ2ℓ. We can substitute this bound in (62) to yield

Term II ≤ c′
α2

δ2ℓ
+ idem. (62)

28

Bounding (59) by the sum of (60) and (62), and substituting the bound in (55) reveals that there exists
a constant c′′ > 0 such that if Θ0 ∈ Vr/2,δ(θ

⋆) then

P[J⋆ − J(Θm) > ϵ|B0] ≤ c′′(ϵ′)−2m−σ−κ + c′′α2δ−2ℓ−1 + c′′δ−2ℓ−1m1−σ−κ

+ c′′α
(m1−3/2σ−κ/2 + ℓ−1/2m1−5σ/8−κ/2)

(r/2− 2δ)+
. (63)

Note that the exponents of m in (63) satisfy that since σ ∈ (2/3, 1), 1 − 3/2σ − κ/2 ≤ −κ/2 as well as
1 − 5σ/8 − κ/2 < 1 − σ/2 − κ/2. Finally, let the initialization set be V = Vr/2,δ(θ

⋆). Note that since
{Θ0 ∈ V } ⊂ B0 there exists a constant c′′′ > 0 such that

P[J⋆ − J(Θm) > ϵ|Θ0 ∈ V] ≤ c′′′P[J⋆ − J(Θm) > ϵ|B0]. (64)

Substituting the upper bound (63) in (64) concludes the proof. □

C.3 Proof of Lemma 1

For simplicity, we will denote tm+1− tm = Tm, Xt = x(St) throughout this proof. We also temporarily omit
the summation indices for the epoch. We note that the policies defined in (5) satisfy that for (s, a) ∈ S ×A,

(
∇ log π(a|s, θ)

)
i,a′ =

{
1[a = a′]− π(a′|s, θ) if i = h(s),

0 otherwise.

In particular, there exists c1 > 0 such that for any (s, a) ∈ S × A, |∇ log π(a|s, θ)| < c1. The proof below,
however, can also be extended to other policy classes.

C.3.1 Proof of (33)

Observe that if the event Bm holds, that then the definitions in (15) also imply that

ηm = ∇J(Θm)−Hm = ∇J(Θm)− (D log ρ(Θm)⊺Cm + Em)

= ∇J(Θm)− (D log ρ(Θm)⊺
1

Tm+1

tm+1−1∑
t=tm

(
Xt −Xm

)
r(St, At) +

1

Tm

tm+1−1∑
t=tm

r(St, At)∇ log π(At|St,Θm)

= D log ρ(Θm)⊺
(
Cov[R,S]− 1

Tm

tm+1−1∑
t=tm

(
Xt −Xm

)
r(St, At)

)

+
(
E[R∇ log π(A|S,Θm)]− 1

Tm

tm+1−1∑
t=tm

r(St, At)∇ log π(At|St,Θm)
)

− 1

Tm+1

Tm∑
i=1

g(ν̂m[q], X
(i)
m+1)

= D log ρ(Θm)⊺η̃m + ζ̃m. (65)

We will deal with the terms η̃m in and ζ̃m in (65) one–by–one.

Dealing with the 1st term, η̃m. Define

A = E[(X − E[X])R]− 1

Tm

∑
t

(Xt − E[X])r(St, At),

B =
1

Tm

(∑
t

r(St, At)
)
(E[X]− X̄m), (66)

29

and observe that

η̃m = A+B. (67)

We look first at A in (66). Recall that {Yt}t>0 = {(St, At)}t>0 is the chain of state-action pairs (see
Section 5.1). Define the function g : S ×A → Rn as

g(y) = g((s, a)) =
(
x(s)− E[x(s)]

)
r(y). (68)

Then, we can rewrite

A = E[g(Y)]− 1

Tm

∑
t

g(Yt). (69)

We are now almost in position to apply Lemma 5 to A. Observe next that the law of total expectation
implies that

E[ηm1[Bm]|Fm] =
∑
a∈A

E[ηm1[Bm]|Fm, Atm = a]π(a|Sm,Θm), (70)

Without loss of generality, it therefore suffices to consider the case that we have one action Atm = a ∈ A.
For the first term we have that there exists a constant c2 > 0 such that∣∣E[A1[Bm]|Fm, Atm = a]

∣∣ =∣∣∣E[E[g(Y)]− 1

Tm

∑
t

g(Yt)1[Bm]|Y0 = (Stm , Atm)
]∣∣∣

(Lemma 5)
=

c2|g|L
Tm

L((Stm , a)), (71)

where we can use that |g|L <∞ due to Assumption 6.
For the term B in (66). We can add and subtract again the following terms and obtain

B =
1

Tm

(∑
t

r(St, At)
)
(E[X]− X̄m)− E[R](E[X]− X̄m)

+ E[R](E[X]− X̄m)

= C +D, (72)

where

C = (E[X]− X̄m)
(1

Tm

∑
t

r(St, At)− E[R]
)
,

D = E[R](E[X]− X̄m). (73)

For the term D in (73) we can readily use the concentration of Lemma 5 to obtain

E
[
E[R](E[X]− X̄m)1[Bm]|Fm, Atm = a

]
≤ E[R]

|x(S)|L
Tm

L(Stm , a), (74)

where we have |x(S)|L <∞ from Assumption 6 and E[R] < J⋆.
For the term C, we use Cauchy–Schwartz together with Lemma 1. In particular, we have∣∣∣E[(E[X]− X̄m)

(1

Tm

∑
t

r(St, At)− E[R]
)
1[Bm]

∣∣Fm, Atm = a
]∣∣∣≤

∣∣E[|E[X]− X̄m|21[Bm]
∣∣Fm, Atm = a

]∣∣1/2×∣∣∣E[∣∣ 1

Tm

∑
t

r(St, At)− E[R]
∣∣21[Bm]

∣∣∣Fm, Atm = a
]∣∣∣1/2 (75)

30

For both terms we can repeat the same argument to that in (70) together with Lemma 5 to show that

∣∣E[|E[X]− X̄m|21[Bm]
∣∣Fm, Atm = a

]∣∣1/2 ≤ c3
|X|1/2L

T
1/2
m

L(Stm , a)

∣∣∣E[∣∣ 1

Tm

∑
t

r(St, At)− E[R]
∣∣21[Bm]

∣∣∣Fm, Atm = a
]∣∣∣1/2 ≤ c4

|R|1/2L

T
1/2
m

L(Stm , a) (76)

Therefore multiplying both bounds in (76) and using Assumption 6 to bound the L-norms, we obtain that
there exists c5 > 0 such that

|E[C|Fm, Atm = a]| ≤ c5
Tm
L(Stm , a)2. (77)

Adding the bounds (71), (77), and (74) together we have now

|E[η̃m1[Bm]|Fm, Atm = a]| ≤ c6
Tm
L2(Stm , a). (78)

Finally, averaging this bound over all actions in (70), we obtain

|E[η̃m1[Bm]|Fm]| ≤ c7
Tm

(∑
a

L(Stm , a)2π(a|Stm ,Θm)
)
≤ c7

Tm
L4(Stm)1/2. (79)

Now we use Assumption 5. We can write

|E[∇ log(Θm)η̃m1[Bm]|Fm]| = |∇ log(Θm)E[η̃m1[Bm]|Fm]|
≤ C|E[η̃m1[Bm]|Fm]|

≤ c8
Tm
L(Stm) (80)

Dealing with the 2nd term, ζ̃m. Define a function of Y = (S,A) as

g(Y) = r(Y)∇ log π(A|S, θ), (81)

so that

ζm = E[g(Y)]− 1

Tm

∑
t

g(Yt). (82)

By combining the argument of (70) with the fact that |g(Y)|L <∞ by Assumption 6, we find that

|E[ζ̃m1[Bm]|Fm]| ≤ c9
Tm
L(Stm) (83)

Adding (79) and (83) together with their largest exponents yields

|E[ηm1[Bm]|Fm]| ≤ c10
Tm

∑
a

L(Stm , a)2π(a|Stm)

≤ c10
Tm

(∑
a

L(Stm , a)4π(a|Stm)
)1/2

≤ c10
Tm
L4(Stm)1/2. (84)

This concludes the proof of (33). □

31

C.3.2 Proof of (34)

Note that by using the fact that for a vector-valued random variable Z we have that E[|Z|2] ≥ E[|Z|]2, the
case for p = 1 follows from the case p = 2.

We focus on the case p = 2. By using the identity (a+ b) ≤ 2a2 + b2, we estimate

E[|D log ρ(Θm)⊺η̃m + ζ̃m|21[Bm]|Fm]

≤ 2(E[|D log ρ(Θm)⊺η̃m|21[Bm]|Fm] + E[|ζ̃m|21[Bm]|Fm])

(5)

≤ 2c21E[|η̃m|21[Bm]|Fm] + 2E[|ζ̃m|21[Bm]|Fm] (85)

say. We again use the law of total expectation with the action set in (70) and condition on the action
Am = a.

For the term involving ζ̃m in (85) we can again use the definition of g in (81). We bound

E[|ζ̃m|21[Bm]|Fm, Atm = a] = E
[
|E[g(Y)− 1

Tm

∑
t

g(Y)|2|Y0 = (Stm , a)
]

(Lemma 5)

≤ c2
Tm
L(Stm , a)2. (86)

For the term involving η̃m in (85), we use the same definition for the terms A,C and D from (71), (77)
and (74) as in the proof of (33). We have the bound

E[|η̃m|21[Bm]|Fm, Atm = a] ≤ 3(E[|A|21[Bm]|Fm, Atm = a] + E[|C|21[Bm]|Fm, Atm = a]

+ E[|D|21[Bm]|Fm, Atm = a]) (87)

For the terms pertaining to A and D in (87) the same argument as those used for ζ̃m in (81) and (86) can
be used to show that

E[|A|21[Bm]|Fm, Atm = a] ≤ c3
Tm
L(Stm , a)2

E[|D|21[Bm]|Fm, Atm = a] ≤ c4
Tm
L(Stm , a)2. (88)

The only remaining term to bound in (87) is C. We use again Cauchy–Schwartz’s inequality

E
[∣∣∣(E[X]− X̄m)

(1

Tm

∑
t

r(St, At)− E[R]
)
1[Bm]

∣∣∣4∣∣∣Fm, Atm = a
]
≤

∣∣E[|E[X]− X̄m|21[Bm]
∣∣Fm, Atm = a

]∣∣1/2×∣∣∣E[∣∣ 1

Tm

∑
t

r(St, At)− E[R]
∣∣41[Bm]

∣∣∣Fm, Atm = a
]∣∣∣1/2m (89)

and by Lemma 5 the following hold

∣∣E[|E[X]− X̄m|41[Bm]
∣∣Fm, Atm = a

]∣∣1/2 ≤ c5
|X|1/2L
Tm

L(Stm , a)2∣∣∣E[∣∣ 1

Tm

∑
t

r(St, At)− E[R]
∣∣41[Bm]

∣∣∣Fm, Atm = a
]∣∣∣1/2 ≤ c6

|R|1/2L
Tm

L(Stm , a)2. (90)

The bound for C thus becomes

E[|C|2|Fm, Atm = a] ≤ c7
T 2
m

L(Stm , a)4. (91)

32

Upper bounding all terms by the largest exponents and adding over the different actions, we finally obtain

E[|ηm|21[Bm]|Fm] ≤ c8
Tm

∑
a

L(Stm , a)4π(a|Stm),Θm ≤
c9
Tm
L4(Stm). (92)

That is it. □

C.4 Proof of Lemma 2

We will again use the notation tm+1 − tm = Tm and without loss of generality we will assume that Tm =
ℓmσ/2+κ instead of ⌊ℓmσ/2+κ⌋. This can be assumed since for m ≥ 1 there exist constants cl, cu > 0 such that
clℓm

σ/2+κ ≤ tm+1 − tm ≥ cuℓm
σ/2+κ. The proof of Lemma 2 follows the same steps as in [13, Proposition

20]. However, we have to quickly diverge and adapt the estimates to the case that there the variance of Hm

depends on the states of a Markov chain. From the assumptions, it can be shown that there is a unique
differentiable orthogonal projection map p : Vr,δ(θ

⋆) → M ∩ U from Vr,δ(θ
⋆) ∩ U onto Vr,δ(θ

⋆) ∩M ∩ U .
The distance of Θm to the set of minima can then be upper bounded by the distance to the projection
p : Vr,δ(θ

⋆)→M∩ U of Θm−1 by

dist(Θm,M∩ U)2 ≤ |Θm − p(Θm−1)|2

≤ |Θm−1 − p(Θm−1)− αm−1∇J(Θm−1) + (αm−1∇J(Θm−1)− αm−1Hm−1)|2 (93)

After expanding (93) and taking expectations, however, the effect of bias already appears and we must
diverge from the analysis from [13, (44)] thereafter. In particular, the effect of the bias of Hm−1 needs to be
handled in the terms

E
[
2
〈
Θm−1 − p(Θm−1)− αm−1∇J(Θm−1), αm−1∇J(Θm−1)− αm−1Hm−1

〉
1[Bm−1]

]
, (94)

and

E
[∣∣∣αm−1∇J(Θm−1)− αm−1Hm−1

∣∣∣21[Bm−1]
]
= (αm−1)

2E
[
|ηm−1|21[Bm−1]

]
. (95)

We specifically require bounds of these terms without relying on independence of the iterands.
We focus on (95) first. Recall for m > 0, that Fm is the sigma algebra defined in (29). By using the

tower property of the conditional expectation and conditioning on Fm−1, from Lemma 1 together with the
fact that Tm < cTm−1 for some c > 0, we obtain directly

(95) = (αm−1)
2E

[
E
[
|ηm−1|21[Bm−1]

∣∣Fm−1

]] (Lemma 1)

≤ (αm−1)
2 c1
Tm

E[L4(Stm−1)
21[Bm−1]]. (96)

Let us next bound (94). Note that this term does not vanish due to dependence of the samples conditional
on Fm−1. In our case, however, we have a Markov chain trajectory whose kernel will depend on Θm−1. Let

Zm−1 = Θm−1 − p(Θm−1)− αm−1∇J(Θm−1). (97)

We use the law of total expectation again on (94). Note that Zm−1 and Bm−1 are Fm−1-measurable.

(94) ≤ 2αm−1E
[〈
1[Bm−1]Zm−1,E[ηm−1|Fm−1]

〉]
(i)

≤ 2αm−1E
[
|Zm−1|21[Bm−1]

]1/2
E
[
|E[ηm−11[Bm−1]|Fm−1]|2

]1/2
(ii)

≤ 2αm−1E
[
|Zm−1|21[Bm−1]

]1/2
E
[
1[Bm−1]L4(Stm−1)

2
]1/2 c2

Tm
(98)

where (i) have used Cauchy–Schwartz and (ii) Lemma 1 and the fact that for some c > 0, Tm < cTm−1.

33

The terms in (96) and (98) containing L4(Stm) can be upper bounded as follows. From the definition of
(32) and since v ≥ 16, by a generalized mean inequality and the fact that L(s, a) ≥ 1 for any (s, a) ∈ S ×A
we have

L4(s) ≤ Lv(s)
4/v ≤ Lv(s)

1/4. (99)

Now, by Lemma 6, there exists D > 0 such that for all m ∈ N

E
[
1[Bm−1]L4(Stm−1

)2
]
≤ E

[
1[Bm−2]L4(Stm−1

)2
] (99)

≤ E
[
1[Bm−2]Lv(Stm−1

)
]
≤ D. (100)

For the other term in (98), we can use the same bound used in [13, (41)]: There exists constants y, c > 0
depending on J, θ⋆ and r0 such that on the event Bm−1 we have

|Zm−1|2 ≤
(
1− αm−1y

)2
dist(Θm−1,M∩ U)2

+ c
(
1− αm−1y

)
αm−1dist(Θm−1,M∩ U)3

+ c(αm−1)
2dist(Θm−1,M∩ U)4. (101)

The bound in (101) characterizes the fact that, close to the manifold of maximizers, the projection is differ-
entiable and can be approximated by an orthogonal expansion of J around the manifold of maximizers. The
error terms of this expansion can be bounded depending on the Hessian at p(Θm−1) ∈M∩U , Hessp(Θm−1) J
. We refer to [13, Proposition 17] for a proof of this fact.

We will now use an induction argument to show the claim of the lemma. We will namely assume for the
time being that for m− 1 we have

E
[
(dist(Θm−1,M∩ U) ∧ δ)21[Bm−1]

]
≤ δ2c(α)(m− 1)−σ−κ, (102)

where c(α) > 0 is a function of a to be determined. We want to show (102) for m. To do so we will use
(101) to bound Zm−1. Suppose that there exists a sequence {bl}l>0 ⊂ R+ such that we have

E
[
|Zm−1|21[Bm−1]

]
≤ bm−1. (103)

Using (103) in (98) yields that for some c3 > 0 we have:

(94) ≤ 2(bm−1)
1/2αm−1D

1/2 c3
Tm

. (104)

From the expansion of (93) and combining the bounds of (101) and (104) together we obtain

E
[
dist(Θm,M∩ U)21[Bm−1]

]
≤ bm−1

+ 2(bm−1)
1/2αm−1D

1/2 c3
Tm

+ (αm−1)
2 c4
Tm

D. (105)

We show now that from the induction hypothesis, if (102) holds, then we also have the bound

bm−1 ≤ c(α)δ2m−σ−κ − δ2
αy

2
c(α)(m− 1)−σ−κm−σ. (106)

Indeed, taking expectations in (101) and using the bound (102) yields

bm−1 ≤
(
1− αm−1y

)2
c(α)(m− 1)−σ−κ + c(α)

(
1− αm−1y

)
αm−1δc(α)(m− 1)−σ−κ

+ c(α)(αm−1)
2δ2c(α)(m− 1)−σ−κ. (107)

34

Recall that αm−1 = αm−σ/2−κ. Adding and subtracting c(α)m−σ−κ in (107), we obtain that

bm−1 ≤c(α)m−σ−κ

+ c(α)m−σ(m− 1)−σ−κ

(
mσ − (m− 1)σ+κm−κ − 2αy +

α2y

mσ
+

(
1− αy

mσ

)
αδ + δ2

α2y2

mσ

)
Note now that there exists m0(a) > 0 such that if m ≥ m0(a), we have

mσ − (m− 1)σ+κm−κ − αy +
α2y

mσ
< −αy

2
. (108)

Indeed, note that the latter equation can be satisfied for m ≥ m0(a) since there exists a constant c > 0
depending on σ and κ such that

mσ − (m− 1)σ+κm−κ ≤ m−κ(mσ+κ − (m− 1)σ+κ)

≤ m−κ(σ + κ)max[(m− 1)σ+κ−1,mσ+κ−1]

≤ c5(σ + κ)mσ−1. (109)

In this case we have that

m0(α) =
(2c5(σ + κ)

yα

)1−σ

>
c′

α1−σ
. (110)

Then for m > m0(α), we will have

bm ≤c(α)m−σ−κ + c(α)m−σ(m− 1)−σ−κ

(
−αy

2
+

(
1− αy

mσ

)
αδ + δ2

α2y2

mσ

)
.

Choose δ ∈ (0, δ1(α)], where δ1(α) is a bound that we will choose appropriately, such that for any m ≥ m0(α)
we have (

1− αy

mσ

)
αδ + δ2

α2y2

mσ
≤ αy. (111)

Thus, from (102) we obtain (106). With (106) with an appropriate choice of c(α), we can now show (102)
for m. We will namely choose c(α) as follows

c(α) = max
(c′

α(1−σ)(σ+κ)
,
4C2D + 4yCDαℓ

δ2ℓ2y2

)
, (112)

where recall that δ ∈ (0, δ1(α)] and δ1(α) were chosen so that (111) holds. Let L = ℓ−1. Substituting the
bound of (106) into (105) and recalling that Tm = mκ+σ/2ℓ yields

E
[
(dist(Θm,M∩ U))21[Bm−1]

]
≤ c(α)δ2m−σ−κ − αy

2
c(α)δ2(m− 1)−σ−κm−σ

+ 2(c(α)δ2m−σ−κ − αλ

2
c(α)δ2(m− 1)−σ−κm−σ)1/2αm−σD1/2 c3

Tm
+Dm−2σ α

2c3
Tm

≤ c(α)δ2m−σ−κ +m−σ(2
√

c(α)δc3aD
1/2Lm−σ−3κ/2 + c3Dα2Lm−3σ/2−κ − c(α)δ2αy(m− 1)−σ−κ)

≤ c(α)δ2m−σ−κ +m−σ(m− 1)−σ−κ(2
√
c(α)δc3aD

1/2L+ c3Dα2L− c(α)δ2αy). (113)

By the choice of c(α) in (112), for any κ ≥ 0 we have the following inequality

2
√

c(α)δc5D
1/2L+ c5DaL− c(α)δ2y < 0. (114)

Hence, with this choice of c(α), in (113) the latter term in the right-hand side is negative for any m ≥ 2 and
the induction step follows if m > m0(α). That is, we have for some c > 0 that and when m > m0(α) that

E
[
dist(4Θm,M∩ U)21[Bm−1]

]
≤ cmax

(δ2

a(1−σ)(σ+κ)
,
(1 + αℓ)

ℓ2

)
m−σ−κ. (115)

35

We have left to show that the induction hypothesis holds in (102) for some m. Recall that m > m0(α)
is the only restriction we needed on the starting point for the induction argument to work—δ was already
chosen depending on α in (111). From the choice

m0(α) ≥
c′

α1−σ
, (116)

if m ≤ m0(α), the following slightly changed version of (102) will hold; namely

E
[
(dist(Θm,M∩ U)2 ∧ δ2)1[Bm−1]

]
≤ δ2c(α)m−σ−κ. (117)

Hence, by same arguments conducted with (117) instead of(102), we have shown by induction that (117)
holds for m > 0.

For convenience, we will further show that there exists a constant c6 > 0 such that for all m > 0 we have

E
[
(dist(Θm,M∩ U)2 ∧ δ2)1[Bm−1]

]
≤ c6m

−σ−κ. (118)

Fix c6 > 0. Choose δ0 ≤ δ1(α) depending on α small enough and ℓ0 > 0 large enough such that for δ ∈ (0, δ0]
and ℓ ∈ [ℓ0,∞) we have that

c′δ2

α(1−σ)(σ+κ)
< c6

c(1 + αℓ)

ℓ2
< c6, (119)

With the conditions in (119), the proof of the lemma follows noting that δ2c(α) = δ2c(α, ℓ) < c6.

C.5 Proof of Lemma 3

We will again use the notation that tm+1−tm = Tm and without loss of generality assume that Tm = ℓmσ/2+κ

as in Appendix C.4. The proof of Lemma 3 also mainly follows the steps of [13]. However, we again need to
take care of the terms that the bias and lack of independence generate in the analysis.

The bounding starts noting the inequality

E
[
max

1≤l≤m

∣∣Θl −Θ0

∣∣1[Bl−1]
]
≤

m∑
l=1

E[|Θl −Θl−1|21[Bl−1]]
1/2. (120)

We will show that there exists a constant c > 0 such that for l ∈ [m] we have

E[|Θl+1 −Θl|21[Bl]]1/2 ≤ cα
(
l−3/2σ−κ/2 +

√
1

ℓ
l−5σ/8−κ/2

)
, (121)

where the exponents of σ and κ already differ from the result in [13], and are required to account for the
lack of independence and bias. Following the steps from [13], in the neighborhood Vr,δ(θ

⋆), for each l ≤ m
there is a random variable ϵl : Bl → Rn and there exists a constant c > 0 such that

|ϵl| < cdist(Θl,M∩ U)2 (122)

and such that on the event Bl we have

∇J(Θl) = Hessp(Θl)(Θl − p(Θl)) + ϵl. (123)

Recalling the definition of ηl in (31), we have then the equality

Θl+1 = Θl − αlHessp(Θl)(Θl − p(Θl))− αlϵl + αlηl (124)

36

Define
Θ̃l = Θl − αlHessp(Θl)(Θl − p(Θl)). (125)

We use the triangle inequality with in (124) separating Θl+1−Θl as the summands of Θl+1−Θ̃l and Θ̃l−Θl.
We estimate first |Θl+1 − Θ̃l|2. In our case, after expanding E[|Θl+1 − Θ̃l|21[Bl]], we diverge from [13,

(58)] and we need to bound

α2
lE

[
1[Bl]⟨ϵl, ηl⟩

]
. (126)

Similar to the proof of Lemma 2, we can condition on Fl and using that ϵl and Bl are Fl-measurable together
with the Cauchy–Schwartz inequality, we have

α2
lE

[
1[Bl]

〈
ϵl, ηl

〉]
≤ α2

lE
[〈
1[Bl]ϵl,E

[
ηl1[Bl]|Fl

]〉]
≤ α2

lE
[
1[Bl]|ϵl|2

]1/2
E
[
|E
[
ηl1[Bl]|Fl

]
|2
]1/2

(127)

Since 1[Bm] ≤ 1[Bm−1], we can bound

E
[∣∣E[ηl1[Bl]|Fl]

∣∣2]1/2 (Lemma 1)

≤ E
[
1[Bl]

c21
T 2
l

Lv(Stl)
]1/2 (Lemma 6)

≤ c2
Tl

. (128)

For the remaining term in (127), recall that on the event Bl, since Θl ∈ Vr,δ(θ
⋆), we have that dist(Θl,M∩

U) ≤ δ. Hence, we can bound for any l > 0 that

E
[
1[Bl]|ϵl|2

]1/2 (122)

≤ (αl)
2E[dist(Θl,M∩ U)41[Bl]]1/2

c3
Tl+1

≤ (αl)
2δ2E[dist(Θl,M∩ U)21[Bl]]1/2

c3
Tl+1

≤ (αl)
2δ2E[dist(Θl,M∩ U)21[Bl−1]]

1/2 c3
Tl+1

(Lemma 2)

≤ (αl)
2δ2l−σ/2−κ/2 c4

Tl
. (129)

The estimation of the remaining terms in the expansion of E[|Θl − Θ̃l−1|21[Bl−1]] can be conducted in the
same way as that in [13], to which we refer for the details to the interested reader. Together with the estimate
of (129) that accounts for the biases we have that

E[|Θl − Θ̃l−1|21[Bl]] ≤ c5(αl)
2δ2E

[
dist(Θl,M∩ U)21[Bl]

]
+ 2δE

[
dist(Θl,M∩ U)21[Bl]

]1/2 c6
Tl

+ (αl)
2 c7
Tl

≤ c8(αl)
2
[
δ2l−σ−κ + 2δl−σ/2−κ/2 1

Tl
+

1

Tl

]
. (130)

Substituting Tl = tl+1 − tl = lκ+σ/2ℓ and using αl < αl−1 = αl−σ into (130) yields the bound

E
[
|Θl − Θ̃l−1|21[Bl−1]

]
≤ c9

α2

l2σ

(
δ2

1

lσ+κ
+ 2δ

1

lσ+3κ/2ℓ
+

1

lκ+σ/2

)
≤ c10

α2

l5σ/4+κℓ
, (131)

where in the last inequality we have taken the term with the highest order. Using the previous bounds from
Lemma 2 we can show that

E
[
|Θl − Θ̃l|21[Bl]

]
≤ α2

lE
[
dist(Θl,M∩ U)1[Bl]

]
≤ c11

a2

l3σ+κ
, (132)

37

so that using the triangle inequality and combining the bounds of (131) and (132) we obtain

E
[
|Θl+1 −Θl|21[Bl]

]1/2 ≤ c12α
(
l−3/2σ−κ/2 +

√
ℓ
−1

l−5σ/8−κ/2
)
. (133)

Hence, since σ ∈ (2/3, 1) adding the bound (133) in (120) yields

E
[
max

1≤l≤m

∣∣Θl −Θ0

∣∣1[Bl−1]
]
≤

m∑
l=1

c12α(l
−3/2σ−κ/2 +

√
ℓ
−1

l−σ−κ/2)

≤ c13α(m
1−3/2σ−κ/2 +

√
ℓ
−1

m1−5σ/8−κ/2).

C.6 Proof of Lemma 4

The proof mimicks the proof strategy of [13, Prop. 24], but modifications are required due to our Markovian
assumptions and appearances of biases. Specifically, we must carefully consider the adverse effects that these
biases could have on the probability that the iterates exit the basin of attraction. Concretely, our effort will
go into firstly proving the following sufficiently strong analogue of [13, (75)] that is applicable to our problem:

Lemma 7. There exist constants c1, c2 > 0 such that

P[dist(Θm,M∩ U) > δ,Bm−1] ≤
c1α

2

δ2ℓm2σ
P[Bm−1] +

c2
δ4ℓmσ+κ

. (134)

The proof of Lemma 7 can be found in Appendix C.6.1.
Once Lemma 7 has been established, we secondly estimate the combined probability that any of the

iterates escape in directions tangential to the manifold. The proof of this fact, which is analogous to [13,
(78)–(79)], can be found in Appendix C.6.2.

Lemma 8. If Θ0 ∈ Vr/2,δ(θ
⋆), then

m∑
l=1

P[dist(Θl,M∩ U) < δ,Θl /∈ Vr,δ(θ
⋆),Bl−1] ≤ P

[
max

1≤l≤m

∣∣Θl −Θ0

∣∣1[Bl−1] > R/2− 2δ,
]
. (135)

Proof that Lemmas 7 and 8 imply Lemma 4. First, note that the recursion

P[Bm] = P[Θm ∈ Vr,δ(θ
⋆),Bm−1] = P[Bm−1]− P[Θm /∈ Vr,δ(θ

⋆),Bm−1] (136)

can be iterated whenever we can control and bound the following probabilities

P[Θm /∈ Vr,δ(θ
⋆),Bm−1] = P[dist(Θm,M∩ U) > δ,Bm−1]

+ P[dist(Θm,M∩ U) ≤ δ,Θm /∈ Vr,δ(θ
⋆),Bm−1]. (137)

Using Lemma 7 and induction on (136) and (137), it follows that for some c > 0,

P[Bm] ≥
m∏
l=1

(
1− cα2

δ2ℓl2σ

)
+
−

m∑
l=1

c

ℓδ4lσ+κ
−

m∑
l=1

P[dist(Θl,M∩ U) < δ,Θl /∈ Vr,δ(θ
⋆),Bl−1]. (138)

We use Lemma 8 together with Lemma 3 and Markov’s inequality to obtain the bound

m∑
l=1

P[dist(Θl,M∩ U) < δ,Θl /∈ Vr,δ(θ
⋆),Bl−1] ≤ cα

(m1−3/2σ−κ/2 + ℓ−1/2m1−5σ/8−κ/2)

(r/2− 2δ)+
(139)

38

Thus, substituting (139) in (138), for some c > 0 we have

P[Bm] ≥
m∏
l=1

(
1− cα2

δ2ℓl2σ

)
+
−

m∑
l=1

c

ℓδ4lσ+κ
− cα

(m1−3/2σ−κ/2 + ℓ−1/2m1−5σ/8−κ/2)

(r/2− 2δ)+
. (140)

Note first that since σ ∈ (2/3, 1) and κ ≥ 0, if σ + κ ̸= 1, then there exists a constant c1 > 0 such that

m∑
l=1

c

ℓδ4lσ+κ
≤ c1m

1−σ−κ (141)

Lastly, there also exists a constant c > 0, α0 > 0, δ0 such that if α ∈ (0, α0] and δ ∈ (0, δ0] then there exists
ℓ0 > 0 such that if ℓ ∈ [ℓ0,∞) then

m∏
l=1

(
1− cα2

δ2ℓl2σ

)
+
≥ exp

(
−cα2

δ2ℓ

)
(142)

Lower bounding (140) using (141) and (142) yields Lemma 4. □

C.6.1 Proof of Lemma 7

We follow first [13, (69)], by fixing δ1 small enough such that δ ∈ (0, δ1], on the event Bm−1 it is shown in
[13] that we have the inequality

dist(Θm,M∩ U) ≤
(
1− λαm−1

2

)
dist(Θm−1,M∩ U) + αm−1|ηm−1|. (143)

We consider now the event {dist(Θm,M∩ U) > δ} ∩ Bm−1. This event occurs when in (143), either
Θm−1 ∈ Vr,δ/2(θ

⋆) and |ηm−1| ≥ αm−1δ/2, or Θm−1 ∈ Vr,δ(θ
⋆)\Vr,δ/2(θ

⋆) and the gradient term can have
smaller size. Mathematically, this translates into the inequality

P[dist(Θm,M∩ U) > δ,Bm−1] ≤ P
[
|ηm−1| ≥

δ

2αm−1
,Θm−1 ∈ Vr,δ/2(θ

⋆),Bm−2

]
(144)

+ P
[
|ηm−1| ≥

δλ

2
,Θm−1 ∈ Vr,δ(θ

⋆)\Vr,δ/2(θ
⋆),Bm−2

]
=: P1 + P2.

Contrary to what is done in the proof of [13, Prop. 24], we cannot use an independence property to
estimate the probabilities P1 and P2 in (144). After all, the Markov chain’s behavior at epoch m−1 depends
on Θm−1.

In order to overcome this issue we will use the characterization of ηm−1 in Lemma 1. Recall Lemma 1,
and note that it implies

E
[
1[Bm−1]1

[
|ηm−1| ≥

δ

2αm−1

]∣∣∣Fm−1

]
= P

[
|ηm−1| ≥

δ

2αm−1
,Bm−1

∣∣Fm−1

]
≤ E[|ηm−1|21[Bm−1] |Fm−1]

δ2

4(αm−1)2

≤
4c2(αm−1)

2L4(Stm−1
)

δ2Tm
(145)

since there exist a constant c > 0 such that Tm < cTm−1.

Bounding P1 in (144). We can write

P1
(i)
= E

[
1
[
|ηm−1| ≥

δ

2αm−1

]
1[Θm−1 ∈ Vr,δ/2(θ

⋆)]1[Bm−2]1[Bm−1]
]

39

= E
[
1[Θm−1 ∈ Vr,δ/2(θ

⋆)]1[Bm−2]E
[
1[Bm−1]1[|ηm−1| ≥

δ

2αm−1
]|Fm−1

]]
(145)

≤ 4c2(αm−1)
2

Tmδ2
E
[
1[Θm−1 ∈ Vr,δ/2(θ

⋆)]1[Bm−2]L4(Stm−1
)
]

(146)

where for (i) we have used the fact that {Θm−1 ∈ Vr,δ/2(θ
⋆)} ∩ Bm−2 ⊂ Bm−1.

We deal now with the remaining term in (146). Differently to the independent and unbiased case we need
to control the bias and use the tail probability that the Lyapunov function is larger than a certain bound in
order to estimate the deviation probability. This step is the crucial different step compared to [13], where
we have to explicitly use Assumption 4 and 6. Note that a Cauchy–Schwartz inequality in (146) will not
yields an inequality strong enough. See the remark after the proof for further details.

Before bounding the remaining term in (146), we obtain the necessary inequalities. Recall from Lemma 6
that since E[L4(Stm−1

)41[Bm−2]] < E[Lv(Stm−1
)1[Bm−2]] < D < ∞, then by Markov’s inequality we have

that there exists D > 0 such that for any m > 0,

P[L(Stm−1) > ms,Bm−2] ≤ D4m−4s. (147)

Note also that under the moment assumptions the following holds

E
[
L(Stm−1

)1[Bm−2]1[L(Stm−1
) > ms]

]
=

∫ ∞

ms

P[L(Stm−1
) > t,Bm−2] dt

=

∫ ∞

ms

D4

t4
dt ≤ D4m−3s+1. (148)

We use the (148) to bound (146) as follows

E
[
1[Θm−1 ∈ Vr,δ/2(θ

⋆)]L4(Stm−1
)1[Bm−2]

]
≤ E

[
1[Θm−1 ∈ Vr,δ/2(θ

⋆)]L4(Stm−1
)1[Bm−2]

(
1[L4(Stm−1

) > ms] + 1[L4(Stm−1
) ≤ ms]

)]
≤ E

[
1[Θm−1 ∈ Vr,δ/2(θ

⋆)]ms1[Bm−2]
]
+ E

[
L(Stm−1

)1[Bm−2]1[L(Stm−1
) > ms]

]
(148)

≤ msP[Θm−1 ∈ Vr,δ/2(θ
⋆),Bm−2] + c3Dm−3s+1 ≤ msP[Bm−1] + c3Dm−3s+1. (149)

Thus, using (149), we can bound P1 in (144). Specifically,

P1 ≤
4c4(αm−1)

2

Tmδ2
(msP[Bm−1] +m−3s+1). (150)

This completes our bound for P1.

Bounding P2 in (144). Repeating the argumentation behind (150), we can show that

P2 ≤
4c5

Tmλ2δ2

(
msP

[
Θm−1 ∈ Vr,δ(θ

⋆)\Vr,δ/2(θ
⋆),Bm−2

]
+m−3s+1

)
. (151)

Using the facts (i) {Θm−1 ∈ Vr,δ(θ
⋆)\Vr,δ/2(θ

⋆)} ⊆ {dist(Θm−1,M∩ U) ≥ δ/2}, with (ii) an application of
Lemma 2 and Markov’s inequality, reveals that

P[Θm−1 ∈ Vr,δ(θ
⋆)\Vr,δ/2(θ

⋆),Bm−2]
(i)

≤ P
[
dist(Θm−1,M∩ U) ≥ δ

2
,Bm−2

] (ii)

≤ 4

δ2
c6m

−σ−κ. (152)

Applying the bound in (151) to (152) yields

P2 ≤
4c7

Tmλ2δ4

(
msm−σ−κ +m−3s+1

)
. (153)

This completes the bound for P2 in (144).

40

A return to (144), and parameter selection. Let us now combine (149) and (153) and return to
bounding the left-hand side of (144). Specifically, observe that we proved that

P[dist(Θm,M∩ U) > δ,Bm−1] ≤
4c8(αm−1)

2

Tmδ2
(
msP[Bm−1] +m−3s+1

)
+

4c9
Tmδ4

(
ms−σ−κ +m−3s+1

)
. (154)

We now specify s = κ+σ/2 in (154). Without loss of generality we will again assume that Tm = ℓmσ/2+κ

instead of ⌊ℓmσ/2+κ⌋—there is namely only a constant changed. By choosing the smallest exponents in m
in (154) for all m > 0 we have

P[dist(Θm,M∩ U) > δ,Bm−1] ≤ c10
a2

δ2ℓm2σ
P[Bm−1] +

c10
δ4ℓ

(
m−3σ−4κ+1 +m−σ−κ

)
. (155)

Since σ ∈ (2/3, 1), then −3σ − 4κ + 1 < −σ − κ for any κ ≥ 0. Upper bounding the leading orders in m
completes the proof of Lemma 7. □

Remark. A Cauchy–Schwartz inequality in (146) would only yield a factor P[Bm−1]
1/2 > P[Bm−1], which

would not be sufficient. Similarly, we could have used Lemma 6 directly and obtain a bound on E[1[Bm−2]L4(Stm−1
)].

However, this would not give an inequality that can be iterated inductively and is sharp enough. We can
directly simplify this term to obtain P(Bm−1) in the inequality only when L4(Stm−1

) is bounded.

C.6.2 Proof of Lemma 8

In [13], it is [13, Lem. 23] that establishes [13, (78)–(79)] directly. Since [13, Lem. 23] is solely a geometric
argument, and does not concern the stochastic process, it also applies in our Markovian setting. □

D The compact case

In the case that the set of maximaM is compact, we can improve the convergence rate of Theorem 2. We
will namely assume the following

Assumption 8 (Compactness, Optional). The open subset U defined in Assumption 7 is such thatM∩ U
is compact.

Under the additional Assumption 8, in Appendix D.1 we show the following

Theorem 3 (Compact case). Suppose that Assumptions 1 to 8 hold, except that (16) is now relaxed to allow
for σ ∈ (0, 1) and κ ∈ [0,∞). For every maximizer θ⋆ ∈ M, there exist constants c > 0 and α0 > 0 such
that, for every α ∈ (0, α0], there exists a neighborhood V of θ⋆ such that there exists ℓ0 > 0 such that for any
ℓ ∈ [ℓ0,∞), m ∈ N+, and ϵ ∈ (0, 1),

P[J(Θm) < J⋆ − ϵ|Θ0 ∈ V] ≤ c

(
ϵ−2m−σ−κ +

m1−σ−κ

ℓ
+

α2

ℓ

)
. (156)

The term proportional to αm−κ/2+αm1−σ/2−κ/2ℓ−
1
2 is not in Theorem 3 compared to Theorem 2. This

term estimates the probability that the iterates escape V along directions almost parallel to those ofM. As
it turns out, in the compact case such event cannot occur. The bound in (156) thus holds when the set of
maxima is, for example, a singletonM∩ U = {x0}.

With the additional assumption that the reward r is bounded, we immediately obtain a typical sample
complexity bound by optimizing a bound over ϵ.

41

Corollary 1 (Sample Complexity, Compact case). Under the same assumptions and setting as in Theorem 3,
assume moreover that there exists some b > 0 such that |r(s, a)| < b for any (s, a) ∈ S ×A. Then we have

E[J⋆ − J(Θm)|Θ0 ∈ V] ≤ 3
(cb
2

) 1
3

m− (σ+κ)
3 + 2bc

m1−(σ+κ) + α2

ℓ
.

Proof. Optimizing the following bound over ϵ > 0,

E[J⋆ − J(Θm)|Θ0 ∈ V] ≤ P[J(Θm) < J⋆ − ϵ|Θ0 ∈ V]2b+ ϵ, (157)

immediately yields the result by using the bound in (156).

D.1 Proof of Theorem 3

The proof is the same as with Theorem 2, but we can omit the last term in (62) by showing that we can
choose r arbitrarily large. The argument is as follows. If the manifoldM∩ U is compact, it can be covered
by a finite number k of local tubular neighborhoods Vi = Vri,δi(θi) where θi ∈M∩U andM∩U ⊂ ∪i∈[k]Vi.
Choose δ = mini∈[k] δi. Then, any θ ∈ U such that dist(θ,M∩U) < δ will satisfy that p(θ) ∈M∩U , where
p is the unique local orthogonal projection onM∩U from (27). Now, from compactness, for any θ⋆ ∈M∩U
there exists r̃ > 0 such that M∩ U ⊂ Br̃(θ

⋆). For any r ≥ r̃ we thus have that Vr,δ(θ
⋆) = Vr̃,δ(θ

⋆) is a
tubular neighborhood containingM∩U . Then, we can choose r arbitrarily large and conclude that the last
term in the bound for the probability in Theorem 2 vanishes ifM∩ U is a compact manifold. More details
on tubular neighborhoods and their existence for embedded manifolds can be found in [20].

E Proof of Proposition 1

We consider the following setting. Let D < 1. We consider θ ∈ R and a function f such that in R\[−D,D]
satisfies f(θ) = 0 and in [−D/2, D/2] satisfies

f(θ) = 1− θ2. (158)

In [−D,−D/2] ∪ [D/2, D], we define f such that it is smoothly and monotonically interpolated between
[−D/2, D/2] and R\[−D,D].

We let Hm be such that Hm = 0 in R\[−D,D]. Hence, the set R\[−D,D] is an absorbing set that is 1-
suboptimal. In [−D/2, D/2], we will consider ηm = ∇f(Θm)−Hm to be a random variable that, conditional
on Fm, is unbiased and has a second moment for all m but is heavy tailed. In particular, for β > 0, we
define ηm such that there exists c > 0 such that for any m, we have

P[|ηm| > s|Fm] ≥ c

s2+βTm
for s > D. (159)

Note that this constraint on ηm is compatible with the finite second moment condition from (22). If moreover
α ≤ 1 and

√
ϵ < 2D, under the previous conditions we can bound

P[f(Θm) < f⋆ − ϵ|Θ0 ∈ V]
(i)

≥ P
[
f(Θm) < f⋆ − ϵ|Θ0 = θmin

]
= P

[
|Θm| >

√
ϵ|Θ0 = θmin

]
(ii)

≥ P
[
sup
l≤m
|Θl| > 2D|Θ0 = θmin

]
≥ P

[
|Θ1| > 2D|Θ0 = θmin

]
= P

[
|θmin + α1η1| > 2D|Θ0 = θ0

]
(iii)

≥ P[α1|η1| > D|Θ0]

42

(159)

≥ c
α2+β
1

D2+βT1

≥ c
α2+β

D2+βℓ
, (160)

where (i) we have used that for any V = [−δ, δ] with δ < D,

P[f(Θm) < f⋆ − ϵ|Θ0 ∈ V] =

∫
θ∈V

P[f(Θm) < f⋆ − ϵ|Θ0 = θ]dP[Θ0 = θ|Θ0 ∈ V]

≥ min
θ∈V

P[f(Θm) < f⋆ − ϵ|Θ0 = θ]

≥ P
[
f(Θm) < f⋆ − ϵ|Θ0 = θmin

]
(161)

for some θmin ∈ V . In (ii), we have used the fact that from the definition of f , we have the inclusion of
events {supl≤m |Θl| > 2D} ∈ {|Θm| > 2D}, since the set R\[−D,D] is absorbent for the process {Θt}t≥0.

In (iii), we have used that θmin belongs at least to [−D,D], since otherwise it cannot be the minimum as
defined in (161). To guarantee that ϵ ∈ (0, 1) we may choose D = 1/2, for example.

F Proof of Proposition 2

To prove the proposition we will show that for almost all π̃ in the Lebesgue measure of the class of policies
defined in (5), the function Jπ̃(θ) is Morse. Morse functions are smooth functions f such that every critical
point of f is nondegenerate, that is, for any x such that ∇xf = 0 we have that Hessxf is nonsingular. Hence,
all critical points are isolated. If the function Jπ̃(θ) is Morse and furthermore satisfies that Jπ̃(θ)→ −∞ as
|θ| → ∞, it will then have bounded isolated maxima.

We show first that for almost all π̃, the function Jπ̃(θ) is a Morse function. To do so, we will implicitly
use the fact that Morse functions are dense and form an open subset in the space of smooth functions [25].

We introduce first notation. For a finite dimensional smooth manifold M , we denote by TxM and T ∗
xM

the tangent and cotangent spaces at x ∈ M , respectively. When M = Ru, for f : Ru → R we will denote
the (covariant) derivative and gradient of f at x by dxf ∈ T ∗

xM and ∇xf ∈ TxM , respectively. In local
coordinates (w1, . . . , wu), we have namely

dxf =

u∑
i=1

∂f(x)

∂wi
dwi

∇xf =

u∑
i=1

∂f(x)

∂wi

d

dwi
, (162)

where dwi(
d

dwi
) = 1[i = j]. In this notation and since M = Ru, we have then

dx(df) =

u∑
i=1

dx

(∂f(x)
∂wi

dwi

)
=

u∑
i=1

u∑
j=1

∂2f(x)

∂wj∂wi
dwj ⊗ dwi = Hessxf ∈ T ∗

xM ⊗ T ∗
xM. (163)

We require the following lemmas and definitions.

Definition 1. Let M and N be two manifolds and let B be a submanifold of N . We say a smooth map
f : M → N is transversal to B if for every point x ∈M such that f(x) ∈ B we have

dxf(TxM) + Tf(x)B = Tf(x)N. (164)

We will use the following result that has is its core an application of Sard’s theorem that states that in
a map between smooth manifolds, the set of critical points has measure zero in the image.

43

Lemma 9 (Parametric transversality theorem [16]). Let Z,M and N be smooth manifolds and let B be a
smooth submanifold of N . Let F : Z ×M → N be a smooth submersion, that is, the differential map is
surjective everywhere. If F is transversal to B, then for almost every z ∈ Z, the map

Fz(m) = F (z,m) (165)

is transversal to B.

When appropriate, we will make explicit the dependence of v ∈ T ∗
xM on x by writing (x, v) ∈ T ∗

xM . We
can now show the following,

Lemma 10. Let M = Ru and let f : M → R be a smooth map. Consider the map f̃ : M → T ∗M given for
x ∈M by

f̃(x) = (x, dxf) ∈ T ∗
xM. (166)

Let B ⊂ T ∗M be the zero section submanifold, that is, B(x) = (x, 0) ∈ T ∗
xM for every x. Then x is a

nondegenerate critical point of f if and only if f̃ is transversal to B at x and ∇xf = 0.

Proof. x is a critical nondegenerate point if and only if ∇xf = 0 and Hessxf ∈ T ∗
xM ⊗ T ∗

xM is nonsingular.
For any ν ∈ TxM , we have then that

dxf̃(ν) = (ν,Hessxf(ν)) (167)

By definition, f̃ is transversal to B if and only if for every x ∈M ,

dxf̃(TxM) + TxM ⊕ 0 = (Id⊕Hessx(f))(TxM) + TxM ⊕ 0

= TxM ⊕Hessxf(TxM)

= TxM ⊕ T ∗
xM, (168)

which is true if and only if Hessxf is nonsingular.

From the last two lemmas it follows that by adding an appropriate perturbation to a function, the
perturbed function is nondegenerate. This result is well-known in the literature in the context of genericity
of Morse functions and can be generalized to general smooth manifolds; see [16].

Lemma 11. Let M = Ru. Let f : M → R and gi : M → R for i ∈ [l] be smooth functions such that for
every x ∈M , span({dxgi}li=1) = T ∗

xM . Then for almost every z = (z1, . . . , zl) ∈ Ru we have that

fz(·) = f(·) +
l∑

i=1

zigi(·) (169)

is a Morse function.

Proof. Define the smooth function F : Rl ×M → T ∗M given by

F (z, x) = (x, dxf +

l∑
i=1

zidxgi) = (x, dxfz). (170)

The derivative of this map at (z, x) evaluated at (η, χ) ∈ TzRl × TxM is then

d(z,x)F (η, χ) = (χ,Hessxfz(χ) +

l∑
i=1

ηidxgi) ∈ TF (z,x)(T
∗M) ≃ TxM ⊕ T ∗

xM. (171)

For every x, we have span({dxgi}li=1) = T ∗
xM , then d(z,x)F (TzRl, TxM) = TF (z,x)(T

∗M) and d(z,x)F is
surjective. Thus, F is a submersion and is therefore transversal to the zero section of T ∗M and by Lemma 9
for almost every z ∈ Z the map Fz(x) = F (z, x) is transversal to the zero section of T ∗M . Finally, by
Lemma 10 we can conclude that for almost every z ∈ Z, the critical points of fz are nondegenerate, that is,
fz is a Morse function.

44

We are now in position to show the proposition. Recall from the definition of the policy in (5) that there is
an index set I and a function h : S → I that determines the parameter dependence of {θi,a : (i, a) ∈ I ×A}.
For s ∈ I, let z(a,i) = π̃(a|i) and denote ζ̃(i) =

∑
s∈S:h(s)=i ζ(s). We can write

dθRπ̃(θ) = b
∑
s∈S

ζ(s)
∑
a∈A

π̃(a|s)dθ log(π(a|s, θ))

= b
∑
s∈S

ζ(s)
∑
a∈A

π̃(a|s)
(∑
a′∈A

(1[a = a′]− π(a′|s, θ))dθh(s),a′

)
= b

∑
s∈S

ζ(s)
∑
a′∈A

(π̃(a|s)− π(a′|s, θ))dθh(s),a′

= b
∑
i∈I

∑
a∈A

ζ̃(i)(π̃(a|i)− π(a|i, θ))dθi,a

= b
∑

(i,a)∈I×A

ζ̃(i)(z(i,a) − π(a|i, θ))dθi,a (172)

If ζ̃(i) > 0 for all i ∈ I, it is clear from (172) that the terms {dθi,a}(i,a)∈I×A span T ∗
θ R|A|×|I| for each θ,

since π(a|s, θ) ̸= 0 for any finite θ. By Lemma 11 and the assumption on ζ, we immediately obtain that for
almost all policies π̃, the function

Jπ̃(θ) = J(θ)− bRπ̄(θ). (173)

is Morse and has nondegenerate critical points—including the maximum. Finally, the set of maxima of (173)
will be nonempty. Indeed, the function −bRπ̄(θ) → −∞ whenever for any s ∈ S, π(· |s) → ∂∆(S). Thus,
by continuity, the set of maxima belongs to a compact set.

45

	Introduction
	Score-Aware Gradient Estimators (SAGEs)
	Convergence of SAGE-based policy-gradient methods

	Related works
	Gradient estimation, exponential families, and product forms
	SGA and policy-gradient methods

	Problem formulation
	Basic notation
	Markov decision process (MDP)
	Stationary analysis and optimality criterion
	Learning algorithm

	Score-aware gradient estimator (SAGE)
	Product-form and exponential family
	Score-aware gradient estimator (SAGE)
	SAGE-based policy-gradient algorithm

	A local convergence result
	Assumptions pertaining to algorithmic convergence
	Local convergence results
	Lower bound
	Local convergence with entropy regularization
	Proof outline for Theorem 2

	Examples and numerical results
	Load-balancing system
	Admission control in an M/M/1 queue

	Actor-critic algorithm
	Examples
	Load-balancing system
	M/M/1 queue with admission control
	Example trajectories of the actor-critic algorithm in the M/M/1 unstable queue

	Proof of Theorem 2
	Preliminaries
	Proof of Theorem 2
	Proof of Lemma 1
	Proof of (33)
	Proof of (34)

	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 7
	Proof of Lemma 8

	The compact case
	Proof of Theorem 3

	Proof of Proposition 1
	Proof of Proposition 2

