
HAL Id: hal-04329516
https://hal.science/hal-04329516

Submitted on 7 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal transport for data integration
Valérie Garès, Chloé Friguet, Nicolas Courty

To cite this version:
Valérie Garès, Chloé Friguet, Nicolas Courty. Optimal transport for data integration. 54ème journées
de la Société Française de Statistique, SFdS, Jul 2023, Bruxelles (BE), Belgium. �hal-04329516�

https://hal.science/hal-04329516
https://hal.archives-ouvertes.fr


Optimal transport for data integration

Valérie Garès1 & Nicolas Courty 2 & Chloé Friguet3

1 IRMAR, INSA Rennes, Rennes, France, valerie.gares@insa-rennes.fr
2 IRISA, Univ. Bretagne Sud, Vannes, France, nicolas.courty@univ-ubs.fr
3 IRISA, Univ. Bretagne Sud, Vannes, France, chloe.friguet@univ-ubs.fr

Résumé. Les méthodes d’appariement statistique consistent à intégrer deux ou plusieurs
sources de données, relatives à une même population cible. Ces sources partagent un sous-
ensemble de covariables tout en disposant d’autres sous-ensembles de variables distincts. Le
but est de construire un ensemble unique de données synthétique dans lequel toutes les vari-
ables des différentes sources sont disponibles conjointement. Une méthode basée sur une
application du transport optimal a été proposée dans Garès and Omer (2020), dans le cas
où les variables distinctes des différentes sources de données sont catégorielles. La distri-
bution jointe des variables partagées et distinctes est transportée dans un jeu de données.
L’approche proposée ici utilise également le transport optimal pour la distribution des vari-
ables partagées et distinctes, mais intègre de plus l’estimation d’une fonction pour prédire
les variables distinctes dans l’autre source. Les performances de la méthode sont évaluées via
une étude par simulation de Monte Carlo.

Mots-clés. Intégration des données, Appariement statistique, Recodage des variables,
Adaptation de domaines, Transport optimal.

Abstract. Statistical matching methods consist in integrating two or more data sources,
related to the same target population, which share a subset of covariates while each data
source has its own distinct subset of variables. The aim is to derive a unique synthetic data
set in which all the variables, coming from the different sources, are jointly available. A
method based on an application of optimal transport theory has been proposed by Garès
and Omer (2020), in the case where the distinct variables in the different data sources are
categorical. Joint distribution of shared and distinct variables is transported within the data
sources. Although the method demonstrated good performance, the proposed approach also
transports the distribution of shared and distinct variables and estimate a function to predict
the missing variables. The performances are assessed through a Monte Carlo simulation
study.

Keywords. Data integration, Statistical matching, Variable recoding, Domain adapta-
tion, Optimal transport.

1 Introduction

This work addresses the challenge of integrating different data sources considering a Statis-
tical Matching strategy based on Optimal Transport theory.
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It is motivated by an application in variable recoding. For example, such issues are
encountered when a variable is not coded in the same scale in two datasets. As an illustration,
a previous work on data recoding Gares et al. (2019) is applied on a French cohort study, the
ELFE study, where the variable of interest is the answer to the question: "how would you
rate your overall health?". During the first baseline data collection wave (January to April
2011), the different possible answers were proposed in a five points ordinal scale: "excellent",
"very well", "well", "fair", "bad" and during the second baseline data collection wave (May to
December 2011), another five points ordinal scale was used: "very well", "well", "medium",
"bad" and "very bad".

Data recoding is a particular case of Statistical Matching (SM) which consists in deter-
mining a model allowing to aggregate information contained in two or more data sources,
coming from the same target population. The aim is to derive a unique synthetic dataset in
which all the variables, coming from the different sources, are jointly available. The quality
and accuracy of statistical analysis carried out retrospectively can therefore be optimised.

As illustrated in Figure 1a, the problem can be formalized in terms of two data sources
A and B, with respectively nA and nB observations. It is assumed that A and B have
disjoint samples and share a subset of p variables X (called covariates). Besides, A and B
have another distinct subset of variables, denoted respectively Y in A and Z in B (called
outcomes). As a consequence, there is no unit for which Y and Z are simultaneously observed.

Figure 1: Problem formulation. Statistical matching provides joint information on variables
collected through sources A and B, with both common (covariates X) and distinct (outcomes
Y and Z respectively) variables
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(a) Datasets A and B
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(b) Synthetic dataset: joint information

Two main SM approaches are usually considered D’Orazio et al. (2006): (1) the macro
approach which aims to identify associations between the variables Y and Z, such as joint
distributions or correlations and (2) the micro approach which consists in generating a com-
plete database in which the data of all the variables are available for each unit, as in Figure 1b
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.
However, the association measures between Y and Z conditionally on X can not be

estimated and they are therefore generally assumed to be zero (known as the Conditional
Independence Assumption (CIA)). CIA is required for non-parametric hot-deck approaches,
the methods based on likelihood or propensity score. Multiple imputation methods are also
proposed and don’t require the CIA. It is worth noting that CIA can not be tested from the
datasets and remains a strong assumption.

Besides, Optimal Transport (OT) has been proposed recently as an efficient tool to deal
with SM issues in Gares et al. (2019). Outcome Z, observed in B but not in A, is viewed
as an additional information that can be specified in the model to improve the estimation of
Y in B. However, inequalities between the joint distributions of (X, Y, Z) in A and B may
be possible. The distribution of Y is transported forward to the distribution of Z within
a data source and a cost function is proposed as an average distance between covariates
X from each data sources. This approach has shown better performances when compared
to missing data imputation methods such as multiple imputation, non-parametric hot-deck
approaches or a statistical learning method. It is assumed that distributions µY , µZ , µY |X

and µZ|X remain unchanged across data sources. This algorithm is extended in Garès and
Omer (2020), considering the transport of the joint distribution between (X, Y ) and (X, Z)
within a data source. The constraints on marginals of OT problem are also relaxed, because
they may be too restrictive in the presence of errors in the estimations. A regularization
term is added to the objective function to smooth the variations of outcomes with respect to
covariates. Only µY |X and µZ|X are assumed to remain unchanged across data sources.

In machine learning literature, transfer learning refers to the training of a model on a
(largely) labelled dataset, called source domain, and applied to a new unlabeled data set,
called target domain. It often occurs in various application that source and target domain
differ regarding their conditional or/and marginal distributions, so models trained on source
data can not be directly applied to target domain. Domain Adaptation (DA) is a set of
proposed techniques to overcome this problem. Recently, OT has been proposed to solve DA
issues, under target shift or covariate shift assumptions Courty et al. (2016, 2017). To handle
these assumptions, the algorithm jointly optimises a function f to predict a (categorical or
continuous) output Y given a input X, and minimizes the OT loss between the joint source
distribution (X, Y ) and an estimated target joint distribution (X, f(X)) Courty et al. (2017).

In this article, we propose a new formulation of the solution proposed in Garès and Omer
(2020) for statistical matching as an extension of the model developed in Courty et al. (2017)
for domain adaptation. Two classifiers f and g are introduced to predict the missing values
for Z in A and Y in B. The proposed algorithm minimizes the OT loss between the joint
distribution of (X, Y, g(X, Y )) in A and the joint distribution of (X, f(X, Z), Z) in B.

The remainder of the article is organized as follows. In Section 2, the OT model defined in
Garès and Omer (2020) to transport the distribution of covariates and outcomes within data
source is firstly reviewed. Then, the new formulation is introduced in Section 3, considering
OT between the joint distribution of covariates and estimated outcomes. In Section 4, the
proposed method is evaluated through simulation studies.
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2 Background on optimal transport for statistical match-
ing

Notations and assumptions. Let A and B be two data sources containing distinct units
as in 1a. It is further assumed, without loss of generality, that nA = nB = n. Let’s denote the
set of indices in both datasets by A = {i1, . . . , in} and B = {j1, . . . , jn}. (Xi, Yi, Zi)i∈A and
(Xj, Yj, Zj)j∈B are two sequences of i.i.d. random variables with values in X × Y × Z, where
X ⊂ RP and Y and Z are finite subsets of R. Variables (Xi, Yi, Zi)i∈A, are i.i.d replications
of (XA, Y A, ZA) and (Xj, Yj, Zj)j∈B, are i.i.d copies of (XB, Y B, ZB).

The following assumption is required in Garès and Omer (2020).

Assumption 1. For all x ∈ X , the probability distributions of Y A and ZA given that XA = x
are respectively equal to those of Y B and ZB given that XB = x, i.e.,

P(Y A = y | XA = x) = P(Y B = y | XB = x), ∀x ∈ X , ∀y ∈ Y , and
P(ZA = z | XA = x) = P(ZB = z | XB = x), ∀x ∈ X , ∀z ∈ Z.

(1)

All random variables are defined on the same probability space (Ω, F ,P). The probability
distribution of a random variable V with possible values in V is given by µV . In the case of
a discrete variable, µV = ∑

v∈V µV
v δv, where δv is the Dirac delta measure centered at v. If V

is finite with cardinality |V |, µV will also refer to the vector of probabilities (µV
v )v∈V .

Optimal transport theory. Consider X and Y two Radon spaces. Let µX be a probability
measure on X , µY a probability measure on Y and c : X × Y −→ [0, ∞] a Borel-measurable
function. Let two random variables, X and Y , which respectively follow distributions µX and
µY . Kantorovich’s formulation of the OT problem consists in finding a measure γ ∈ Γ(µX , µY )
such that:

inf
{
E[c(X, Y )] =

∫
X ×Y

c(x, y) dγ(x, y)
∣∣∣∣ γ ∈ Γ(µ, ν)

}
, (2)

where Γ(µX , µY ) is the set of measures on X × Y with marginals µX on X and µY on Y .
Kantorovich’s formulation plugs the problem in a linear setting and the solution is achievable
thanks to compacity argument.

Review of regularized optimal transport of covariates and outcomes in data re-
coding Garès and Omer (2020) The aim is to search for an OT between the two joint
distributions of (XA, Y A) and (XA, ZA) with marginals µ(XA,Y A) and µ(XA,ZA) respectively.
Under Kantorovich’s formulation in a discrete setting, it is restated as:

γ∗ ∈ argmin
γ∈Γ(µ(XA,Y A),µ(XA,ZA))

∑
X ×Y×X ×Z

cx,y,x′,z γx,y,x′,z,

where c is a given cost function. Any element γ ∈ Γ
(
µ(XA,Y A), µ(XA,ZA)

)
corresponds to the

vector of joint probabilities P
(

(XA = x, Y A = y), (XA = x′, ZA = z)
)

for all x, x′ ∈ X ,
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y ∈ Y and z ∈ Z. Since this probability is null for all x ̸= x′, γ is defined as a vector of
[0, 1]|X |×|Y|×|Z|, where γx,y,z stands for the joint probability P(XA = x, Y A = y, ZA = z). The
following OT model is therefore introduced:

P1 :



min
γ

∑
X ×Y×X ×Z

cx,y,z γx,y,z

s.t.
∑
z∈Z

γx,y,z = µ(XA,Y A)
x,y , ∀x ∈ X , ∀y ∈ Y ,

∑
y∈Y

γx,y,z = µ(XA,ZA)
x,z , ∀x ∈ X , ∀z ∈ Z,

γx,y,z ≥ 0, ∀x ∈ X , ∀y ∈ Y , ∀z ∈ Z.

(3)

The above model can be solved only if the cost c and the marginals µ(XA,Y A) and µ(XA,ZA)

are known. Thanks to assumption 1, consistent estimators µ̂(XA,Y A)
n and µ̂(XA,ZA)

n of µ(XA,Y A)

and µ(XA,ZA) can be derived.
Let’s define the unbiased estimators of µ(XA,Y A) and µ(XB ,ZB) by:

µ̂(XA,Y A)
n,x,y = 1

n

∑
i∈A

1{Xi=x,Yi=y}, ∀x ∈ X , ∀y ∈ Y , (4)

µ̂(XB ,ZB)
n,x,z = 1

n

∑
j∈B

1{Xj=x,Zj=z}, ∀x ∈ X , ∀z ∈ Z. (5)

Similarly, µ̂XA

n and µ̂XB

n denote the unbiased empirical estimators of µXA and µXB .
Under assumption 1, the estimator of µ(XA,ZA) is, ∀x ∈ X , ∀z ∈ Z:

µ̃(XA,ZA)
n,x,z =


µ̂
(XB,ZB)
n,x,z µ̂XA

n,x

µ̂XB
n,x

, if µ̂XB

n,x ̸= 0,

0, if µ̂XB

n,x = 0.

(6)

Moreover, the cost measure is defined by:

cx,y,z := cy,z := E
[
d(XA, XB) | Y A = y, ZB = z

]
, ∀x ∈ X , ∀y ∈ Y , ∀z ∈ Z, (7)

with d a distance on the metric space X , and is estimated by:

ĉn,y,z =
{ 1

κn,y,z

∑
i∈A

∑
j∈B 1{Yi=y,Zj=z} × d(Xi, Xj), ∀y ∈ Y , ∀z ∈ Z : κn,y,z ̸= 0,

0, ∀y ∈ Y , ∀z ∈ Z : κn,y,z = 0,
(8)

with
κn,y,z ≡

∑
i∈A

∑
j∈B

1{Yi=y,Zj=z}.

As datasets A and B are independent, ĉn,y,z is a consistent estimator of cx,y,z, ∀x ∈
X , ∀y ∈ Y , ∀z ∈ Z. Plugging the observed values for these estimators in (3) yields a linear
programming model denoted as P̂1,n. The solution γ̂n can then be interpreted as an estimator
µ̂(XA,Y A,ZA)

n of the joint distribution of XA, Y A and ZA, µ(XA,Y A,ZA).

5



An estimation of the distribution of ZA given the values of XA and Y A is then deduced:

µ̃ZA|XA=x,Y A=y
n,z =


γ̂n,x,y,z

µ̂
(XA,Y A)
n,x,y

, ∀x ∈ X , ∀y ∈ Y , ∀z ∈ Z : µ̂(XA,Y A)
n,x,y ̸= 0,

0, ∀x ∈ X , ∀y ∈ Y , ∀z ∈ Z : µ̂(XA,Y A)
n,x,y = 0.

(9)

Due to the possible errors in the estimations of the terms of P̂1,n, the equality constraints
is relaxed by adding slack variables in the constraints, such that they sum to zero and the
ℓl-norm of the vector of slack variables is bounded.

A regularization term is also added, considering
(

γx,y,z

µ̂XA
n,x

)
x∈X ,y∈Y,z∈Z

. Some regularity in

the variations of the conditional distribution µY A,ZA|XA=x with respect to x is then expected.

3 Optimal transport between the joint distribution of
covariates and estimated outcomes between two datasets

In this section, we extend the model developed by Courty et al. (2017) and propose to
search for an optimal transport between the two joint distributions of (XA, Y A, ZA) and
(XB, Y B, ZB) leading to the following OT model:

γ∗ ∈ argmin
γ∈Γ(µ(XA,Y A,ZA),µ(XB,Y B,ZB))

∑
(X×Y×Z)2

c
(

(x, y, z), (x′, y′, z′)
)

γ(x,y,z),(x′,y′,z′), (10)

where c((x, y, z), (x′, y′, z′)) = d(x, x′) + α1L1(y, y′) + α2L2(z, z′) is a cost measure combining
both the distances between the modalities of X and loss functions L1 and L2 measuring the
discrepancy between y and y′ and z and z′ respectively. Since z and y′ are not observed, we
replace them by f(x, y) and g(x′, z′) respectively where f : X × Y → Z and g : X × Z → Y
are prevision rules. We thus consider the following joint distributions (XA, Y A, f(XA, Y A))
and (XB, g(XB, ZB), ZB). α1 and α2 are crucial hyper-parameters which need to be cali-
brated balancing the alignment of covariates and outcomes. A regularization term, such that
entropic, can also be added, such as in Courty et al. (2014).

Transport of individuals. The empirical version of (10) is given by

P̂2,n :



min
f,g,γ

∑
i∈A,j∈B

c
(

(xi, yi, f(xi, yi)), (xj, g(xj, zj), zj)
)

γi,j,

s.t.
∑
i∈A

γi,j = 1
n

, ∀j ∈ B,

∑
j∈B

γi,j = 1
n

, ∀i ∈ A,

γi,j ≥ 0, ∀i ∈ A, ∀j ∈ B.

(11)
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The problem can be written as
min
f,g

W1

(
µ̂A,f , µ̂B,g

)
,

where W1 is the 1-Wasserstein distance for the cost c,

µA,f =
(

x, y, f(x, y)
)

(x,y)∼µ(XA,Y A)
and µB,g =

(
x, z, g(x, z)

)
(x,z)∼µ(XB,ZB)

,

and
µ̂A,f = 1

n

∑
i∈A

δ(xi,yi,f(xi,yi)) and µ̂B,g = 1
n

∑
j∈B

δ(xj ,zj ,g(xj ,zj)).

We will assume that f and g belongs to the function space H which is a Reproducing
Kernel Hilbert Space (RKHS) or a function space parameterized by some parameters w ∈ Rp.
For example, linear models, neural networks and kernel methods belong to such a space.

Problem P̂2,n is smooth and the constraints are separable according to γ, f and g. Hence, a
natural way to solve the problem in Equation (11) is to alternate optimization on parameters
γ, f and g. This algorithm is known as Block Coordinate Descent (BCD) or Gauss-Seidel.
Solving P̂2,n when f and g are fixed is a classic linear programming problem. The optimization
problem with fixed γ and f leads to a new learning problem given by:

min
g∈H

∑
i∈A,j∈B

L1

(
g(xj, zj), yi

)
γi,j. (12)

The optimization problem is similar with fixed γ and g.
For estimating a multiclass classifier with a one-against-all strategy, in Courty et al.

(2017), they suggest to use the Hinge function for classification problem equal to L1(y, f(x, z)) =
max(0, 1 − yf(x, z))2. Let define P such that P B

j,y = 1 if the unit j is of class y ∈ Y and
P B

j,y = 0 otherwise. Denote as gy the decision function related to the y-vs-all problem. They
replace the problem defined in 12 by:

min
gy∈H,y∈Y

∑
j∈B,

∑
Y

P̂ B
j,yL1(1, gy(xj, zj)) + (1 − P̂ B

j,y)L1(−1, gy(xj, zj)), (13)

where P̂ B is the transported class proportion matrix given by P̂ B = nγT P A.

4 Simulations

Simulation scenarios. Simulation scenarios are chosen to be the same as in Garès and
Omer (2020). Each dataset is constructed by generating n independent samples of (X, Y, Z)
according to predefined distributions that may vary between A and B. In all our simulations,
(Yi, Zi)i∈A and (Yj, Zj)j∈B are obtained by discretization of continuous multivariate random
variables. Let {Ui}i∈A be a family of i.i.d. 3-dimensional random vectors with multivariate
normal distribution N (mA, ΣA). Likewise, {Uj}j∈B is a family of i.i.d. random vectors with
distribution N (mB, ΣB). For simplicity, we consider ΣA = ΣB = Σ, where Σi,i = 1, ∀i =
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1, 2, 3 and Σi,j = 0.2 for i ̸= j. In contrast, we may have mA ̸= mB when the distributions of
XA and XB are different. For the discretization, for some i ∈ A, we denote as t1 the median of
Ui,1, t2,1 and t2,2 the tertiles of Ui,2, and t3,1, t3,2 and t3,3 the quartiles of Ui,3. For all i ∈ A∪B,
we then discretize Ui,1 into two modalities by setting Xi,1 = 1{Ui,1>t1}. Covariate Xi,2 is the
discretization of Ui,2 into three modalities defined by Xi,2 = 1{t21<Ui,2≤t22} + 2 × 1{Ui,2>t22}.
Finally, we set Xi,3 = 1{t31<Ui,3≤t32} + 2 × 1{t32<Ui,3≤t33} + 3 × 1{Ui,3>t33}. Observe that the
values of t1, . . . , t33 are defined once from the quantiles of U in base A, so that if Ui, i ∈ A,
and Uj, j ∈ B, have different means, XA and XB will have different distributions.
For all i ∈ A ∪ B, we then construct Yi and Zi by two different discretizations of a single
latent variable Vi. In the default scenario, Vi depends linearly on Ui as follows.

Vi = a1Ui,1 + a2Ui,2 + a3Ui,3 + σWi, (14)

where a ∈ R3 is a given parameter of the scenario and Wi follows a standard normal distri-
bution (with {Wi}i∈A∪B i.i.d. random variables). As above, we build Yi by discretization of
Vi into three modalities using the tertiles of Vj for some j ∈ A. In contrast, Zi is obtained
by discretization of Vi into four modalities using the quartiles of Vk for some k ∈ B.

A scenario following the above definition is completely defined by the values of mA, mB,
a, σ and n. In the remainder, σ will be set so that, R2, the coefficient of determination of
V from U reaches a given value. The default scenario, denoted as Sref , is characterized by
mA = (0, 0, 0), mB = (1, 0, 0), a = (1, 1, 1), R2 = 0.6 and n = 1000.

Methods. In this work, we compare the different algorithms without any relaxation of the
constraints (α = 0) or regularization (λ = 0) to focus on the objective function performance.
We compare the different OT algorithms:

OT Transport of the joint distribution of covariates and outcomes within a data source
(P̂1,n).

OTE Transport of covariates and estimated outcomes between data sources (P̂3,n). For
classifiers f and g, we used neural networks with one hidden layer with relu activation
function and 160 neurons and softmax activation function for the last layer, adam
optimizer, 100 epochs and a batch size equal to 10. We used 10 iterations for the BCD
algorithm.

OTE-boost Transport of covariates and estimated outcomes between data sources (P̂3,n)
using eXtreme Gradient Boosting algorithms with depth equal to 5 and 1000 estimators
for classifiers f and g. We used 10 iterations for the BCD algorithm.

We choose α1 = 0.25 and α2 = 0.33 to balance the alignment of covariates and outcome.

Evaluation of the methods. To evaluate the performance of the methods, we compute
the accuracy of prediction of Z in A and Y in B given by: 1

n

∑
i∈A 1{ẑi=zi} + ∑

j∈B 1{ŷj=yj}
where, for the first algorithms, we use the usual prediction provided by the maximum a
posteriori decision rule ẑA

i = argmaxz∈Z

{
µ̃ZA|XA=xi,Y

A=yi
n,z

}
, ∀i ∈ A.
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Effectiveness of different methods to the different data assumptions Taking the
results obtained for Sref as reference, the impact of the elements characterizing the simulations
will be studied through the following scenarios.

Effect of the R2 Keeping mB and a as in Sref , we investigate the impact of the R2 choosing
R2 ∈ {0.2, 0.4, 0.6, 0.8}.

Covariate shift assumption Keeping R2 and a as in Sref , we investigate the impact of
differences in the distributions of XA and XB by considering the following four sce-
narios: 1: mA = mB = (0, 0, 0), mA = (0, 0, 0), 2: mB = (1, 0, 0), 3: mA = (0, 0, 0),
mB = (1, 1, 0), and 4: mA = (0, 0, 0), mB = (1, 2, 0).

Changes in conditional distribution Y |X Finally, we wish to evaluate the importance
of satisfying the assumption that the distributions of Y and Z given X are the same in
the two databases. For this, we allow the vector a to be different in the two databases
when computing V . More formally,Vi = aA

1 Ui,1 + aA
2 Ui,2 + aA

3 Ui,3 + σWi, ∀i ∈ A,

Vj = aB
1 Uj,1 + aB

2 Uj,2 + aB
3 Uj,3 + σWj, ∀j ∈ B,

with aA, aB ∈ R3. Keeping R2, mA as in Sref and mB = (0, 0, 0), we consider the
following four scenarios: 1: aA = (aB1, 1, 1), 2: aA = (1, 1, 1) and aB = (1, 1, 2), 3:
aA = (1, 1, 1) and aB = (1, 1.5, 2), 4: aA = (1, 1, 1) and aB = (3, 1.5, 2).

Results The performances of (OT) are larger than the ones of (OTE) and (OTE-boost) for
all scenarios. The performances of the algorithms increase as R2 increases (2a) and decrease
as the difference between the covariate distribution increases (2b). The change in conditional
distribution has a small negative effect on the performances (2c) .
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Figure 2: Effect of different scenario parameters on the methods performances (Accuracy)

(a) R2 (b) Covariate shift (c) Changes in Y |X
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