Class "GlobalUniversality" Class "Eventually" Class "GlobalResponseTimed" Class "GlobalResponseUntil" Class "GlobalUniversalityTimed" Class "AfterUntilUniversality" Class "MonitoringLoop" Package "rqcode.patterns.win10"

Class "AccountManagementRequirement" Class "LogonRequirement" Class "UserAccountManagementRequirement" Class "LogonLogoffRequirement" Class "SensitivePrivilegeUseRequirement" Class "PrivilegeUseRequirement" Class "AuditPolicyRequirement"

Package "rqcode.stigs.ubuntu" Class "UbuntuPackagePattern" Class "Main" Class "V_219157" Class "V_219158" Class "V_219161" Class "V_219177" Class "V_219304" Class "V_219318

Introduction

In VeriDevOps, Work package 2 -Automated generation of security requirements investigates automatic extraction, formalization and verification of the security requirements from natural language requirements, vulnerability databases and standards. The resulting information is used as input for WP4 -Prevention at development and WP3 -Reactive Protection at Operations.

The second task of WP2, T2.1: Security Formal Modelling explores methods for modeling the security requirements in the form of observer timed automata and TCTL queries. It also investigates the suitability of such formalisms for security requirements and proposes certain extensions. The task also investigates the definition of domain specific languages to make the formalism more expressive and easy to use by domain experts. Finally the task analyses the body of knowledge for specifics of security properties formal specification for a set of patterns. The current software deliverable, D2.7: Patterns catalogue presents the current state of catalogue of patterns for formal specification of security properties. This catalogue is presented from the end-user perspective.

The main contribution of this deliverable is RQCODE -Requirements as Code repository [START_REF] Naumchev | RQCODE GitHub Repository[END_REF]. The document provides a brief User's Guide helping to install and get started with the RQCODE security patterns. Section 2 is the getting started overview. Section 3 gives guidelines for troubleshooting.

RQCODE Reminder

The RQCODE approach has been introduced in VeriDevOps deliverable D2.2 [START_REF]D2.2 Specification of patterns for security requirements[END_REF]. RQCODE stands for "Requirements as Code" approach that derives from Seamless Object-Oriented Requirements defined in [START_REF] Naumchev | Seamless Object-Oriented Requirements[END_REF]. Requirements are represented as classes in Java. This representation may offer many important advantages:

• Class may incorporate various notations for requirements such as textual form or LTL.

• Class may include verification and validation means -that way a lightweight formalisation of a requirement may be achieved. • Requirements in a form of class may be extended and instantiated with various parameters providing a means for massive reuse. In order to implement the approach one should implement Requirement interface from rqcode.concepts package. In addition, Checkable and Enforceable interfaces are available to augment requirements with verification means.

Patterns, Anti-Patterns and Smells Specifications

The pattern specification patterns and anti-patterns have been introduced in VeriDevOps deliverable D2.2 [START_REF]D2.2 Specification of patterns for security requirements[END_REF]. The advantage of using these patterns and detecting anti-patterns relates to reuse, reduction of ambiguity, and improvement of comprehensibility. In the next subsections we will detail how to access the patterns and anti-patterns catalogue related to the following methods:

• Anti-patterns and smells in natural language requirements (NALABS)

• Given-when-then patterns (GWT)

• Ontology-based patterns (RESA) and Real-time specification patterns (PROPAS)

• TEARS patterns (TEARS)

Getting Started

RQCODE

As it was mentioned previously, please refer to [START_REF]D2.2 Specification of patterns for security requirements[END_REF] In this example, UbuntuPackagePattern security requirement is applied for the package nis. The behaviour is reused for the all set of such security requirements.

Accessing the RQCODE Catalogue

The RQCODE source code and patterns repository is accessible at: https://github.com/anaumchev/VDO-Patterns/

To contribute you may request access from andrey.sadovykh@softeam.fr

Structure of the repository

The current structure of the repository is depicted in the following figures: • concepts include the major interfaces that RQCODE classes implement.

• patterns.temporal contain the major temporal patterns such as GlobalUniversality.

• patterns.windows include specific patterns extracted from the Window 10 related STIGs.

• stigs.ubuntu and stigs.win10 are examples of the concrete security requirements from the STIG repository. • https://github.com/anaumchev/VDO-Patterns/blob/master/src/rqcode/stigs/ubuntu/Main.j ava for Ubuntu STIGs only.

Figure . Example of RQCODE instantiation.

Patterns, Anti-Patterns and Smells Specifications (MDH)

In this section we cover the set of requirement patterns (guides and templates used for creating and modifying requirements) as well as the anti-patterns (commonly occurring requirement problems or class of problems that generate negative consequences during development) used in VeriDevOps.

The anti-patterns focus on specifications expressed in natural language (i.e., NALABS) while patterns target the specification of requirements in structured and semi-structured language related to formal verification and software testing (i.e., TEARS, RESA, PROPAS, GWT).

Accessing the MDH Catalogues

NALABS. We use the idea of smells and anti-patterns to specifications expressed in natural language, defining a set of specifications bad smells. We developed a tool called NALABS (NAtural LAnguage Bad Smells) available on https://github.com/eduardenoiu/NALABS and used it for automatically checking specifications. Based on several natural language smells observed in previous studies, we established a set of indicators for requirement flaws and defined dictionary-based metrics to automatically detect these smells in natural language artefacts.

TEARS. These patterns can be found at https://bitbucket.org/danielFlemstrom/napkin. This is an interactive integrated development and analysis environment for TEARS patterns. More details on how to access the catalogue and use the TEARS patterns can be found on https://bitbucket.org/danielFlemstrom/napkin/src/main/. TEARS was introduced as a specification syntax for independent guarded assertions (G/As).

RESA and PROPAS specification patterns can be found in Github at https://github.com/eduardenoiu/ReSA-Tool-VeriDevOps. The patterns used in PROPAS can also be found in an externally-maintained catalog project at https://github.com/hub-se/PSP-UPPAAL 1 . The PROPAS tool provides the necessary means for generating formal system specifications (CTL, TCTL) based on Specification Patterns. The resulting formalized requirements can then be used in various model checkers such as UPPAAL for algorithmic formal verification. RESA is focusing on requirements specification in constrained natural language in the domain of automotive systems development. It renders natural language terms (words, phrases), and syntax, which gives readability of requirements specification. Moreover, it uses boilerplates to structure the construction of requirements specification.

GWT patterns can be used using the TIGER tool found in the following repository: https://github.com/MuhammadNoumanZafar/TestScriptGeneration. The Given-When-Then was proposed by Dan North as part of behavior-driven development (BDD). Given-When-Then (GWT) is a semi-structured approach to writing requirements and test specifications more closely related to testing and test cases.

Structure of the Repositories

The NALABS anti-patterns catalogue can be found directly under the metrics folder: https://github.com/eduardenoiu/NALABS/tree/master/RCM/Metrics. In this section, we describe the structure of the repository related to the quality of natural language specifications, how we created the set of smells and the automatic measurement of these smells using specific dictionaries:

• ConjunctionMetric.cs • ContinuancesMetric.cs • ICountMetric.cs • ImperativesMetric.cs • NVMetric.cs • OptionalityMetric.cs • References2.cs • ReferencesMetric.cs • SubjectivityMetric.cs • WeaknessMetric.cs
These relate to the following anti-patterns and smells:

• Vagueness is a common problematic property when it comes to understanding requirements and requirements complexity. • Referenceability. This is usually an indication of nesting in the requirements documents or a need for additional reading in order to understand the requirement that contains references • Optionality. Optional words are giving the developers a latitude of interpretations to satisfy the specified statements and their use is usually not recommended in requirements documentation. • Subjectivity. Subjectivity metric is measuring personal opinions or feelings in sentences.

• Weakness is a metric that counts words and phrases that may introduce uncertainty into requirements statements by leaving room for multiple interpretations. • Readability. Automated Readability Index (ARI) is calculated using W S + 9 × SW, where WS is the average number of words per sentence and SW is the average number of letters per word.

• Over-Complexity Metrics. Measuring the size of the requirement was used in a couple of studies. It can be defined in many different ways such as the total number of characters, number of words, paragraphs and lines of text.

The TEARS global project settings2 assumes that there has to be a session directory that contains logs and TEARS g/a's. Note that the back-end server needs to write to this directory, so it typically resides on the same level as the git repo (so it gets mounted properly when starting the container). The structure of that directory looks as follows:

session ├── GA │ ├── TEARS requirements.txt ├── generated │ ├── ANALYSIS_overview.html ├── log │ ├── logs │ └── Expert-Sessions │ ├── LOGDATA.TXT │ └── LOGDATA.

TXT ├── main_definitions.ga └── req

For PROPAS patterns, one can access the already developed catalogue 3 documented in the wiki https://github.com/hub-se/PSP-UPPAAL/wiki and one can see the structure of these patterns and their implementation as observer automata: https://github.com/hub-se/PSP-UPPAAL/tree/master/Tool/observer_templates.

In the GWT test generation repository 4 For accessing TEARS6 patterns, you need to have the NAPKIN tool installed. For this, you need to have Docker installed on your local machine. We decided to use a dockerized development environment since it is quite a lot of work to get all dependencies to work. The dependencies are specificed in two places: in the <napkin>/Docker/pyproject.toml and <napkin>/client/package.json. You can start the development servers: In <napkin>/client: npm run dev.

For RESA, one needs to create an empty project and create a new file with an extension .resa (generic specification), .vl -for east-adl vehicle-level specification, .al -for east-adl analysis-level specification and .dl -for east-adl design-level specification.

D2.7. Patterns Catalogue

For GWT patterns used through Graphwalker, an interface has been developed to provide input files i.e Model file in Json or GraphML (as GraphWalker supports these two formats of model for generating abstract test cases) We have also defined mapping rules to concretize the abstract test cases. A customised class can be added to generate test scripts of your own choice.

Troubleshooting

RQCODE

Known Issues

• The current set of SITG patterns is not exhaustive. This set is continuously updated. The list of SITGs to be encoded is prioritised based on the VeriDevOps case study partners suggestions.

Issues Reporting

Report issues through the GitHub mechanisms.

Conclusions

This report provides a getting started information that accompanies the catalogue for security requirements patterns and their instatiations. In particular the tools by SOFT and MDH are overviewed. These tools will be further extended based on the feedback from the case studies. Temporal requirements pattern: Timed Globally, Universally: Globally, it is always the case that if P held for T time units, then S holds. It is detrimental for Ubuntu operating systems to provide, or install by default, functionality exceeding requirements or mission objectives. These unnecessary capabilities or services are often overlooked and therefore may remain unsecured. They increase the risk to the platform by providing additional attack vectors. Ubuntu operating systems are capable of providing a wide variety of functions and services. Some of the functions and services, provided by default, may not be necessary to support essential organizational operations (e.g., key missions, functions). The rsh-server service provides an unencrypted remote access service that does not provide for the confidentiality and integrity of user passwords or the remote session and has very weak authentication. If a privileged user were to log on using this service, the privileged user password could be compromised. Remote access services, such as those providing remote access to network devices and information systems, which lack automated control capabilities, increase risk and make remote user access management difficult at best. Remote access is access to DoD nonpublic information systems by an authorized user (or an information system) communicating through an external, non-organization-controlled network. Remote access methods include, for example, dial-up, broadband, and wireless. Ubuntu operating system functionality (e.g., RDP) must be capable of taking enforcement action if the audit reveals unauthorized activity. Automated control of remote access sessions allows organizations to ensure ongoing compliance with remote access policies by enforcing connection rules of remote access applications on a variety of information system components (e.g., servers, workstations, notebook computers, smartphones, and tablets). A session lock is a temporary action taken when a user stops work and moves away from the immediate physical vicinity of the information system but does not want to log out because of the temporary nature of the absence. The session lock is implemented at the point where session activity can be determined. Rather than be forced to wait for a period of time to expire before the user session can be locked, the Ubuntu operating system need to provide users with the ability to manually invoke a session lock so users may secure their session should the need arise for them to temporarily vacate the immediate physical vicinity. Satisfies: SRG-OS-000030-GPOS-00011, SRG-OS-000031-GPOS-00012.

Name Description integer variant (Inout i integer) integer sleepMilliseconds () boolean invariant () boolean precondition () boolean postcondition () boolean exitCondition () CheckStatus check () string TCTL ()

through an external, non-organization-controlled network. Remote access methods include, for example, dial-up, broadband, and wireless. This requirement only applies to components where this is specific to the function of the device or has the concept of an organizational user (e.g., VPN, proxy capability). This does not apply to authentication for the purpose of configuring the device itself (management). Requires further clarification from NIST. Without verification of the security functions, security functions may not operate correctly and the failure may go unnoticed. Security function is defined as the hardware, software, and/or firmware of the information system responsible for enforcing the system security policy and supporting the isolation of code and data on which the protection is based. Security functionality includes, but is not limited to, establishing system accounts, configuring access authorizations (i.e., permissions, privileges), setting events to be audited, and setting intrusion detection parameters. This requirement applies to the Ubuntu operating system performing security function verification/testing and/or systems and environments that require this functionality. Maintaining an audit trail of system activity logs can help identify configuration errors, troubleshoot service disruptions, and analyze compromises that have occurred, as well as detect attacks. Audit logs are necessary to provide a trail of evidence in case the system or network is compromised. Collecting this data is essential for analyzing the security of information assets and detecting signs of suspicious and unexpected behavior. Logon records user logons. If this is an interactive logon, it is recorded on the local system. If it is to a network share, it is recorded on the system accessed. Maintaining an audit trail of system activity logs can help identify configuration errors, troubleshoot service disruptions, and analyze compromises that have occurred, as well as detect attacks. Audit logs are necessary to provide a trail of evidence in case the system or network is compromised. Collecting this data is essential for analyzing the security of information assets and detecting signs of suspicious and unexpected behavior. User Account Management records events such as creating,

Figure 1 .

 1 Figure 1. Structure of the RQCODE repository. The rqcode package contains concepts, patterns and stigs subpackages.• concepts include the major interfaces that RQCODE classes implement.• patterns.temporal contain the major temporal patterns such as GlobalUniversality.• patterns.windows include specific patterns extracted from the Window 10 related STIGs.• stigs.ubuntu and stigs.win10 are examples of the concrete security requirements from the STIG repository.

Figure 2 .

 2 Figure 2. Temporal RQCODE patterns

 , the 'JsonReading' class contains the implementation detail to read the abstract test cases and a customised method for deserialization of information contained in a Json file in a List of 'DataModel' class objects. 'Signal' class contains the model for storing information about the signals. 'xmlReader' takes the information about signals in xml format and stores the relevant information in a List of Signals. Mapping Rules are defined in the 'TestGenerator' class which are used to concretize the abstract test cases generate the scripts using 'ScriptCreator' class. Program.cs is the main executor class. 2.2.3. Using the MDH Catalogues for Patterns, Anti-Patterns and Smells Specifications NALABS is composed of two main components: the GUI as the main program executable and the metrics used as proxy for bad smells. The latest release of the NALABS executable can be downloaded from GitHub 5 on the releases page. Alternatively, it can be built from source code. You can use different methods to build an application: the Visual Studio IDE and the MSBuild command-line tools. Add the package Microsoft.Office.Interop.Excel using the NuGet Package Manager. First change some settings. Choose Edit/Settings menu tab. In the Excel view you should choose the REQ ID and Text column in the requirement excel document. To open a requirement excel file choose the File/Open menu tab.

Figure 4 .Figure 5 .

 45 Figure 4. GitHub Issue Reporting3.1.3. Suggesting New Features for RQCODEsOne may suggest new features through GitHub's mechanism of labelling issues. Use the "enhancement" label for suggesting new features.

D2. 7 .Figure 3

 73 Figure 3 Enforceable (ClassStructureDiagramTemplate) Name Description EnforcementStatus enforce () Modifies the hosting environment to satisfy the requirement.Table 4 Operations of Interface "Enforceable"

from

 Package rqcode.conceptsStereotypes: JavaInterface Implementations of this interface are requirements that can be checked programmatically through the check function.

Figure 4

 4 Figure 4 Checkable (ClassStructureDiagramTemplate) Name Description CheckStatus check () Checks whether the current environment satisfies the requirement of not.Table6Operations of Interface "Checkable"

from

 Package rqcode.conceptsStereotypes: JavaClassThis class is a direct mapping of the structure of STIG findings as presented in stigviewer.com. All the member names are self-explanatory.

Figure 5

 5 Figure 5 Requirement (ClassStructureDiagramTemplate)NameDescription string findingID () string version () string ruleID () string iAControls () string severity () string description () string sTIG () string date () string checkTextCode () string checkText () string fixTextCode () string fixText () string toString ()A crude parsing of the finding (requirement) specification into a document. Hopefully in the future we would parse it as HTML. Table8Operations of Class "Requirement"

Figure

 Figure 11 GlobalResponseTimed (ClassStructureDiagramTemplate) Name Description GlobalResponseTimed (Inout s Checkable,Inout r Checkable,Inout boundary integer)

Figure

 Figure 13 GlobalUniversalityTimed (ClassStructureDiagramTemplate) Name Description GlobalUniversalityTimed (Inout p Checkable,Inout boundary integer) string toString ()

Figure

 Figure 14 AfterUntilUniversality (ClassStructureDiagramTemplate)Name Description AfterUntilUniversality (Inout q Checkable,Inout p Checkable,Inout r Checkable) boolean precondition () boolean invariant () boolean exitCondition () string toString () string TCTL ()Table20Operations of Class "AfterUntilUniversality"

Figure 15

 15 Figure 15 MonitoringLoop (ClassStructureDiagramTemplate)

Figure

 Figure 27 UbuntuPackagePattern (ClassStructureDiagramTemplate) Name Description UbuntuPackagePattern (Inout name string,Inout mustBeInstalled boolean) CheckStatus check () string toString () EnforcementStatus enforce ()Table 36 Operations of Class "UbuntuPackagePattern"

Figure

 Figure 28 Main (ClassStructureDiagramTemplate) Name Description main (Inout args string)Table38Operations of Class "Main"

D2. 7 .Figure

 7 Figure 30 V_219158 (ClassStructureDiagramTemplate)Name Description CheckStatus check () string toString ()Table43Operations of Class "V_219158"

Figure

 Figure 31 V_219161 (ClassStructureDiagramTemplate) Name Description CheckStatus check () string toString ()Table 46 Operations of Class "V_219161"

Figure

 Figure 34 V_219318 (ClassStructureDiagramTemplate) Name Description CheckStatus check () string toString ()Table 55 Operations of Class "V_219318"

Figure

 Figure 36 V_219343 (ClassStructureDiagramTemplate) Name Description CheckStatus check () string toString ()Table 61 Operations of Class "V_219343"

Figure

 Figure 38 Windows10SecurityTechnicalImplementationGuide (ClassStructureDiagramTemplate) Name Description CheckableEnforceableRequirement allSTIGs ()Table 65 Operations of Class "Windows10SecurityTechnicalImplementationGuide"

FigureFigure

 Figure 40 V_63463 (ClassStructureDiagramTemplate) Name Description string getFailure () string getInclusionSetting () string getSuccess () string checkTextCode () string date ()

Table 4

 4 Operations of Interface "Enforceable"

	Name	Values	Description
	EnforcementStatus	SUCCESS	
		FAILURE	
		INCOMPLETE	
	Table 5 Owned Enumerations of Interface "Enforceable"	
	Interface "Checkable"		

Table 6

 6 Operations of Interface "Checkable"

	Name	Values	Description
	CheckStatus	PASS	
		FAIL	
		INCOMPLETE	
	Table 7 Owned Enumerations of Interface "Checkable"	
	Class "Requirement"		

Table 8

 8 Operations of Class "Requirement" Figure 9 GlobalUniversality (ClassStructureDiagramTemplate)

	Name	Description
	GlobalUniversality (

Inout p Checkable) boolean invariant () string toString () string TCTL ()

 Table 11 Operations of Class "GlobalUniversality"

	Eventually (Inout p Checkable)	
	boolean exitCondition ()		
	boolean postcondition ()		
	string toString ()		
	string TCTL ()		
		Table 13 Operations of Class "Eventually"	
		Name	Description
	->p : [0..1] Checkable ->p : [0..1] Checkable	Name Table 14 Associations of Class "Eventually"	Description
		Table 12 Associations of Class "GlobalUniversality"	
	Class "GlobalResponseTimed"	
	Class "Eventually"		
		Name	Description

from Package rqcode.patterns.temporal Inherits from: MonitoringLoop Stereotypes: JavaClass Temporal requirements pattern: P always eventually holds Figure 10 Eventually (ClassStructureDiagramTemplate) from Package rqcode.patterns.temporal Inherits from: MonitoringLoop Stereotypes: JavaClass

Temporal requirements pattern: Globally, Real-time Response: Globally, it is always the case that if P holds, the S eventually holds within T time units.

Inout p Checkable,Inout q Checkable,Inout r Checkable) boolean precondition () boolean exitCondition () boolean postcondition () string toString () string TCTL ()

 Table 15 Operations of Class "GlobalResponseTimed" Table 17 Operations of Class "GlobalResponseUntil"

	Name Table 16 Associations of Class "GlobalResponseTimed" Description ->s : [0..1] Checkable ->r : [0..1] Checkable Class "GlobalResponseUntil" Name Description Description ->p : [0..1] Checkable ->q : [0..1] Checkable ->r : [0..1] Checkable Table 18 Associations of Class "GlobalResponseUntil" GlobalResponseUntil (Name Class "GlobalUniversalityTimed"

from Package rqcode.patterns.temporal Inherits from: MonitoringLoop Stereotypes: JavaClass Temporal requirements pattern: Globally, it is always the case that if P holds then, unless R holds, Q will eventually hold Figure 12 GlobalResponseUntil (ClassStructureDiagramTemplate) from Package rqcode.patterns.temporal Inherits from: GlobalUniversality Stereotypes: JavaClass

from Package rqcode.patterns.win10

 Table 22 Operations of Class "MonitoringLoop"

	D2.7. Patterns Catalogue D2.7. Patterns Catalogue D2.7. Patterns Catalogue		
	Class "LogonLogoffRequirement"	
		Name	Description
	string getSubcategory ()		
	string description ()		
	string checkText ()		
	string fixText ()		
	Table 26 Operations of Class "LogonRequirement"	
	Name Class "UserAccountManagementRequirement"	Summary
	AccountManagementRequirement	
	LogonRequirement		
	UserAccountManagementRequirement	
	LogonLogoffRequirement Figure 16 AccountManagementRequirement (ClassStructureDiagramTemplate) Figure 20 SensitivePrivilegeUseRequirement (ClassStructureDiagramTemplate)
	SensitivePrivilegeUseRequirement Name Name PrivilegeUseRequirement string getCategory () string getSubcategory () AuditPolicyRequirement Table 25 Operations of Class "AccountManagementRequirement" Description Description string description () Table 24 Owned Classes of Package "win10" string checkText ()
	string fixText ()		
	Class "AccountManagementRequirement" Class "LogonRequirement" Table 29 Operations of Class "SensitivePrivilegeUseRequirement"
	from Package rqcode.patterns.win10 Class "PrivilegeUseRequirement"	
	Inherits from: AuditPolicyRequirement	
	from Package rqcode.patterns.win10	
	Stereotypes: JavaClass		
	Inherits from: AuditPolicyRequirement	
	General STIG requirement pattern for checking settings of Win10 User Account Management
	functionality. Stereotypes: JavaClass		
	General STIG requirement pattern for checking settings of Win10 Privilege Use policies.
	Inherits from: PrivilegeUseRequirement	
	Stereotypes: JavaClass	Name	Description
	string getSubcategory () General STIG requirement pattern for checking settings of Win10 Sensitive Privilege Use policies.
	string description ()		
	string checkText ()		
	Name Table 27 Operations of Class "UserAccountManagementRequirement" Description boundary : [1..1] integer string fixText ()
		Table 23 Attributes of Class "MonitoringLoop"	

VeriDevOps Project nr: 957212 D2.7. Patterns Catalogue Package "rqcode.patterns.win10" from Package rqcode.patterns Stereotypes: JavaPackage This are security requirements patterns that were created from STIGs. from Package rqcode.patterns.win10 Inherits from: LogonLogoffRequirement Stereotypes: JavaClass General STIG requirement pattern for checking settings of Win10 Logon functionality. D2.7. Patterns Catalogue Figure 17 LogonRequirement (ClassStructureDiagramTemplate) from Package rqcode.patterns.win10 Inherits from: AccountManagementRequirement Stereotypes: JavaClass General STIG requirement pattern for checking settings of Win10 User Account Management policies.

Figure 18 UserAccountManagementRequirement (ClassStructureDiagramTemplate) from Package rqcode.patterns.win10 Inherits from: AuditPolicyRequirement Stereotypes: JavaClass General STIG requirement pattern for checking settings of Win10 Logon and Logoff functionality.

Figure 19 LogonLogoffRequirement (ClassStructureDiagramTemplate) Name Description string getCategory ()

Table 28 Operations of Class "LogonLogoffRequirement" Class "SensitivePrivilegeUseRequirement" D2.7. Patterns Catalogue Figure 21 PrivilegeUseRequirement (ClassStructureDiagramTemplate) Name Description string getCategory () Table 30 Operations of Class "PrivilegeUseRequirement" Class "AuditPolicyRequirement" from Package rqcode.patterns.win10 Inherits from: CheckableEnforceableRequirement Stereotypes: JavaClass Instances of this class are requirements related to Windows 10 audit policies. Instances of this utilize auditpol.exe to perform checking and enforcing; that is, they fork auditpol.exe manipulate its input and output. It would be ideal to perform checking and enforcing through Win32 API calls instead, but for the time being this approach works. D2.7. Patterns Catalogue Figure 22 AuditPolicyRequirement (ClassStructureDiagramTemplate)

Name Description string getCategory () string getSubcategory () string getInclusionSetting () string getSuccess () string getFailure () CheckStatus check () EnforcementStatus enforce ()

 Table 31 Operations of Class "AuditPolicyRequirement"

	Name	Summary
	AuditPol	
	Table 32 Owned Classes of Class "AuditPolicyRequirement"

VeriDevOps Project nr: 957212 D2.7. Patterns Catalogue Package "rqcode.stigs.ubuntu" from Package rqcode.stigs Stereotypes: JavaPackage Ubuntu related security requirements from STIG repository implemented in RQCODE. Class "UbuntuPackagePattern" from Package rqcode.stigs.ubuntu Implements: CheckableImplements: Enforceable Stereotypes: JavaClass RQCODE security requirements pattern from STIGS repository.

from Package rqcode.stigs.ubuntu.V_219158

 Table 38 Operations of Class "Main"

	D2.7. Patterns Catalogue	
	Figure 29 V_219157 (ClassStructureDiagramTemplate)
	Name	Description
	CheckStatus check ()	
	string toString ()	
	Table 40 Operations of Class "V_219157"	
	Name	Description
	->_package : [0..1] UbuntuPackagePattern	
	Table 41 Associations of Class "V_219157"	
	Class "V_219157" Class "V_219158"	
	from Package rqcode.stigs.ubuntu.V_219157	
	Implements: Checkable	
	Implements: Checkable	
	Stereotypes: JavaClass	
	Stereotypes: JavaClass	
	Removing the Network Information Service (NIS) package decreases the risk of the accidental (or
	intentional) activation of NIS or NIS+ services.	
	https://www.stigviewer.com/stig/canonical_ubuntu_18.04_lts/2021-06-16/finding/V-219157

from Package rqcode.stigs.ubuntu.V_219161

 Table 43 Operations of Class "V_219158"

	Name	Description
	->_package : [0..1] UbuntuPackagePattern	
	Table 44 Associations of Class "V_219158"	
	Class "V_219161"	
	Implements: Checkable	
	Stereotypes: JavaClass	

from Package rqcode.stigs.ubuntu.V_219304

 Table 46 Operations of Class "V_219161"Passwords need to be protected at all times, and encryption is the standard method for protecting passwords. If passwords are not encrypted, they can be plainly read (i.e., clear text) and easily compromised.

	Name	Description
	CheckStatus check ()	
	string toString ()	
	Table 49 Operations of Class "V_219177"	
	Name	Description
	->_package : [0..1] UbuntuPackagePattern	
	Table 50 Associations of Class "V_219177"	
	Name	Description
	->_package : [0..1] UbuntuPackagePattern Class "V_219304"	
	Table 47 Associations of Class "V_219161"	
	Class "V_219177" Implements: Checkable	
	Stereotypes: JavaClass	
	from Package rqcode.stigs.ubuntu.V_219177	
	Implements: Checkable	
	Stereotypes: JavaClass	

https://www.stigviewer.com/stig/canonical_ubuntu_18.04_lts/2021-06-16/finding/V-219177 Figure 32 V_219177 (ClassStructureDiagramTemplate)

Name Description ->_package : [0..1] UbuntuPackagePattern

 Table55Operations of Class "V_219318" use of PIV credentials facilitates standardization and reduces the risk of unauthorized access. DoD has mandated the use of the CAC to support identity management and personal authentication for systems covered under Homeland Security Presidential Directive (HSPD) 12, as well as making the CAC a primary component of layered protection for national security systems.

	D2.7. Patterns Catalogue	
	Name	Description
	CheckStatus check ()	
	string toString ()	
	Table 58 Operations of Class "V_219319"	
	Name	Description
	->_package : [0..1] UbuntuPackagePattern	
	Table 59 Associations of Class "V_219319"	
	Table 56 Associations of Class "V_219318"	
	Class "V_219343"	
	Class "V_219319"	
	from Package rqcode.stigs.ubuntu.V_219343	
	Implements: Checkable	
	Implements: Checkable Stereotypes: JavaClass	
	Stereotypes: JavaClass	

from Package rqcode.stigs.ubuntu.V_219319 The https://www.stigviewer.com/stig/canonical_ubuntu_18.04_lts/2021-06-16/finding/V-219319 Figure 35 V_219319 (ClassStructureDiagramTemplate)

Name Description ->_package : [0..1] UbuntuPackagePattern

 Table 61 Operations of Class "V_219343"

	string fixTextCode ()
	string iAControls ()
	string ruleID ()
	string sTIG ()
	string severity ()
	string version ()
	Table 64 Operations of Class "V_63487"
	Class "Windows10SecurityTechnicalImplementationGuide"
	Table 62 Associations of Class "V_219343"

from Package rqcode.stigs.win10

Stereotypes: JavaClass This is example of the instantiation of the Win 10 STIG requirements.

 Table 66 Associations of Class "Windows10SecurityTechnicalImplementationGuide" Table 67 Operations of Class "V_63449"

	string getSuccess ()
	string getFailure ()
	Class "V_63463"
	from Package rqcode.stigs.win10
	Inherits from: LogonRequirement
	Stereotypes: JavaClass

VeriDevOps Project nr: 957212

VeriDevOps Project nr: 957212

https://bitbucket.org/danielFlemstrom/napkin/src/main/ VeriDevOps Project nr: 957212

For more detailed instructions you can find a tutorial video on Zenodo: https://zenodo.org/record/4662060 5 https://github.com/eduardenoiu/NALABS/releases 4 https://github.com/MuhammadNoumanZafar/TestScriptGeneration 3 This catalog is the basis for PROPAS patterns which will be updated during the project. VeriDevOps Project nr: 957212

Annex 1 -RQCODE Reference Specification

Hereafter we provide reference documentation for the RQCODE package.

Package "rqcode.concepts" from Package rqcode Stereotypes: JavaPackage Contains the major RQCODE concepts.

Name Summary Enforceable Checkable

Table 2 Owned Interfaces of Package "concepts"

Name Summary Requirement CheckableEnforceableRequirement

Table 3 Owned Classes of Package "concepts"

Interface "Enforceable" from Package rqcode.concepts

Stereotypes: JavaInterface

Implementations of this interface are requirements that can be enforced on the hosting environment programmatically through the enforce function.

Class "CheckableEnforceableRequirement" Using an authentication device, such as a CAC or token that is separate from the information system, ensures that even if the information system is compromised, that compromise will not affect credentials stored on the authentication device. Multifactor solutions that require devices separate from information systems gaining access include, for example, hardware tokens providing time-based or challenge-response authenticators and smart cards such as the U.S. Government Personal Identity Verification card and the DoD Common Access Card. A privileged account is defined as an information system account with authorizations of a privileged user. Remote access is access to DoD nonpublic information systems by an authorized user (or an information system) communicating

Package "rqcode.stigs.win10" from Package rqcode.stigs

Class "V_63487" from Package rqcode.stigs.win10

Inherits from: SensitivePrivilegeUseRequirement Stereotypes: JavaClass

Maintaining an audit trail of system activity logs can help identify configuration errors, troubleshoot service disruptions, and analyze compromises that have occurred, as well as detect attacks. Audit logs are necessary to provide a trail of evidence in case the system or network is compromised. Collecting this data is essential for analyzing the security of information assets and detecting signs of suspicious and unexpected behavior. Sensitive Privilege Use records events related to use of sensitive privileges, such as "Act as part of the operating system" or "Debug programs".

https://www.stigviewer.com/stig/windows_10/2016-10-28/finding/V-63487