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1. Introduction 1.1. Motivations. In order to describe the dynamic that rules the evolution of a molecular system at temperature of order h > 0, the following homogeneous Langevin process is widely used

(1.1) dX t = ξ(X t )dt + √ 2hσ(X t )dB t
where (X t ) t≥0 gives the positions of the particles, the vector field ξ is the drift coefficient, the matrix field σ is the diffusion coefficient and (B t ) t≥0 denotes a d-dimensional Brownian motion. In the low temperature regime, i.e. h → 0, we observe metastable behaviour of the solution of (1.1), this can be obtained via the study of the exit problem for this SDE. Considering an open set Ω and a point x ∈ Ω the question is to know where and when does the process exit Ω having set X 0 = x. This problem has been intensively studied in [START_REF] Freidlin | Random perturbations of dynamical systems[END_REF] or [START_REF] Day | On the exponential exit law in the small parameter exit problem[END_REF] for some pioneer work, we also refer to [START_REF] Di Gesu | Sharp asymptotics of the first exit time density[END_REF], [START_REF] Nectoux | Mean exit time for the overdamped langevin process: the case with critical points on the boundary[END_REF] and [START_REF] Le Peutrec | Exit time and principal eigenvalue of nonreversible elliptic diffusions[END_REF] for recent progress concerning this question. Another approach is to look at the Fokker-Planck associated to (1.1). Considering

L = h i,j a i,j ∂ i ∂ j + k ξ k ∂ k ,
where (a i,j ) i,j = σσ T , the infinitesimal generator associated to the semigroup solving the following PDE (1.2)

∂ t u -Lu = 0, u |t=0 = u 0 .
whose solution is u(t, x) = E(u 0 (X t )|X 0 = x). Its adjoint problem is

(1.3) ∂ t ψ -L * ψ = 0, ψ |t=0 = ψ 0 .
where A * denotes the formal adjoint of any differential operator A. It is this last equation which is mainly called the Fokker-Planck equation whose solution is given by 1 the density ψ(t, X) that the random variable X t follows when it makes sense. Therefore studying L or L * is a good way to obtain results concerning X t .

A main question about this PDE is its resolution, implied by the maximal accretivity of -L which is a real problem when it is not self-adjoint. In order to study the long time behaviour of (1.2) an efficient strategy is to study the spectral properties of L and particularly its smallest eigenvalues when they have non-negative real part. Determining its spectral gap informs us on equilibrium states and the metastability of (1.1). When considering self-adjoint operators, the spectral Theorem directly implies the decreasing in time of the solution of (1.2), but it needs some more results otherwise. Although we will not go that far in this paper, let us mention that the non-self-adjoint setting yields consequent additional difficulties which are solved using the Gearhart-Prüss Theorem. In [START_REF]From resolvent bounds to semigroup bounds[END_REF] and [START_REF]Improving semigroup bounds with resolvent estimates[END_REF], the authors have established a quantitative version of this Theorem uniform in h which is the main argument to prove for example [START_REF] Bony | Eyring-Kramers law for Fokker-Planck type differential operators[END_REF]Corollary 1.5 and 1.6] or likewise [START_REF] Normand | Metastability results for a class of linear boltzmann equations[END_REF]Corollary 1.8 and 1.9].

The SDE (1.1) and its generator have been largely studied in the past decades, in particular when h → 0 and under more assumptions : for example taking ξ = -∇V for V : R d → R a potential and σ = Id we recover the overdamped Langevin process

dX t = -∇V (X t ) + √ 2hdB t ,
whose generator is the Kramers-Smoluchowski operator

(1.4) L = h∆ -∇V • ∇
which is conjugated to the Witten Laplacian :

-e -V /2h hLe V /2h = ∆V

2 := -h 2 ∆ + 1 4 |∇V | 2 - h 2 ∆V.
Introduced in [START_REF] Witten | Supersymmetry and Morse theory[END_REF] in order to prove the Morse inequalities, this Laplacian is a positive self-adjoint operator that arises in many different domains such as control theory [START_REF] Laurent | On uniform controllability of 1d transport equations in the vanishing viscosity limit[END_REF] or dynamical system [START_REF] Dang | Pollicott-ruelle spectrum and Witten laplacians[END_REF]. As discussed previously, one main goal is to determine its spectrum (which we already know is included in R + ) and especially the bottom of its spectrum for metastability questions and exit time estimates. At first, only estimates about the order of the bottom of the spectrum were proved in [START_REF] Helffer | Puits multiples en mécanique semi-classique. IV. Étude du complexe de Witten[END_REF]. They obtained that ∆ V has as much low lying eigenvalues as V has minima and these eigenvalues satisfy the bound : λ = O(e -c/h ), for a certain c > 0 uniform in h. No more could have been proven on the small eigenvalues for 20 years because of the topological restrains, but in [START_REF] Bovier | Metastability in reversible diffusion processes. I. Sharp asymptotics for capacities and exit times[END_REF] and [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach[END_REF] this barrier has been crossed and sharp estimates have been proven, obtaining the right order and describing precisely the prefactor λ j = z j e -2S j /h (1 + o(1))

with explicit z j > 0 and S j > 0 and 1 ≤ j ≤ n 0 where n 0 denotes the number of minima of V . These kind of formulae go back to pioneer work [START_REF] Kramers | Brownian motion in a field of force and the diffusion model of chemical reactions[END_REF], [START_REF] Eyring | The Activated Complex in Chemical Reactions[END_REF] and are called Eyring-Kramers laws. Through functionnal analysis for self-adjoint operators, such estimates induce results about convergence rates of the semigroup associated to (1.4), the return to equilibrium being in 1/λ 2 (because λ 1 = 0). More precisely, due to the different S j , we seem to have a sort of stability of the system during exponentially large time intervals corresponding to the inverse of the λ j , each one around the eigenfunction associated to λ j , it is this phenomenon which is called metastability.

It has also been proven (see [START_REF] Day | On the exponential exit law in the small parameter exit problem[END_REF], [START_REF] Freidlin | Random perturbations of dynamical systems[END_REF], [START_REF] Nectoux | Mean exit time for the overdamped langevin process: the case with critical points on the boundary[END_REF], [START_REF] Le Peutrec | Exit time and principal eigenvalue of nonreversible elliptic diffusions[END_REF]) that for this special operator, its first positive eigenvalue is the inverse of the mean exit time of the processus solving (1.1) in the boundary case.

These works and approaches which were doing just fine with this operator (1.4) does not directly apply to non-self-adjoint operators which arise naturally from the homogeneous Langevin process. For example in R 2d taking V :

R d → R a potential, ξ(x, v) = (v, -∇V (x) -v), γ > 0 a friction coefficient and σ = 0 x ⊕ Id v we obtain (1.5) dx t = v t dt, dv t = (-∇V (x t ) -γv t )dt + 2γhdB t ,
whose generator is the Kramers-Fokker-Planck operator

L = v • ∂ x -∂ x V • ∂ v +γ(h∆ v -v • ∂ v )
where ∆ v denotes the Laplacian acting only on the v coordinates.

Due to the lack of self-adjointness because of the hamiltonian part v • ∂ x -∂ x V • ∂ v , the previous method had to be adapted, the main issue was resolvent estimates which were not free anymore. Through microlocal analysis, this problem was first solved in the non-semiclassical framework [START_REF] Hérau | Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential[END_REF] and then in the semiclassical one [START_REF] Hérau | Tunnel effect for Kramers-Fokker-Planck type operators[END_REF].

Equation (1.1) is used not only for modelling particle system, but its efficiency has been spread to other domains such as molecular dynamics [START_REF] Várnai | Tests of an adaptive QM/MM calculation on free energy profiles of chemical reactions in solution[END_REF] or high dimensional data analysis [START_REF] Cheng | Underdamped langevin MCMC: A non-asymptotic analysis[END_REF]. The main advantage using the Langevin dynamic for numerical simulations instead of a usual Monte Carlo random walk is the use of the gradient of the potential V , which result in less wasted computation [START_REF] Scemama | An efficient sampling algorithm for variational monte carlo[END_REF], [START_REF] Cancès | Theoretical and numerical comparison of some sampling methods for molecular dynamics[END_REF]. Despite this benefit, it requires some precise information about that gradient which is a very challenging task. Thus the Adaptive Langevin dynamic was introduced in [START_REF] Jones | Adaptive stochastic methods for sampling driven molecular systems[END_REF], [START_REF] Leimkuhler | Adaptive thermostats for noisy gradient systems[END_REF] from a fusion of a deterministic Nosé-Hoover scheme and a more usual overdamped Langevin process in order to reduce the needed knowledge about the gradient of V . By that time they mainly show their results through numerical simulations (we refer to [START_REF] Lelièvre | Free energy computations[END_REF] for further details about the numerical study and modelisation of theses processes). The adaptive Langevin dynamic was next studied in [START_REF] Leimkuhler | Hypocoercivity properties of adaptive langevin dynamics[END_REF] at fixed temperature where the authors determines some of its properties, namely spectral gap (see [START_REF] Leimkuhler | Hypocoercivity properties of adaptive langevin dynamics[END_REF]Theorem 2.1]) using hypocoercive estimates. The main question we want to address in this paper is to study how these properties depend on the semiclassical parameter h. In short, we model the gradient noise by another stochastic process which results in adding another unknown Brownian motion (that we can combine with the already existing one). But in order to retrieve the standard Gibbs state, we need to consider the friction coefficient to be a new variable, and all this leads to a slight modification in the SDE (1.5) :

(1.6)      dx t = v t dt, dv t = (-∇V (x t ) -νy t v t -γv t )dt + 2γhdB t , dy t = ν(|v t | 2 -dh)dt.
where γ, ν > 0 denotes positive parameters and the variable [26, (2.4)] with several names changed. Its associated generator called L AdL in [START_REF] Leimkuhler | Hypocoercivity properties of adaptive langevin dynamics[END_REF] is

X t = (x t , v t , y t ) lives in R d × R d × R. This SDE is
(1.7) L = v • ∂ x -∂ x V • ∂ v +ν((|v| 2 -dh) ∂ y -yv • ∂ v ) + γ(h∆ v -v • ∂ v ).
Even if it shares some similarities with the overdamped Langevin dynamics, (1.6) and its generator (1.7) do not satisfy some of the crucial hypotheses made by [START_REF] Bony | Eyring-Kramers law for Fokker-Planck type differential operators[END_REF]. Mainly, they require that the operator is at most quadratic microlocally. In (1.6) the terms that do not respect this assumption are -νy t v t dt and ν|v y | 2 dt which will result in the cubic terms ν(|v| 2 ∂ y -yv • ∂ v ) in (1.7). That hypothesis inherited from [START_REF] Hérau | Tunnel effect for Kramers-Fokker-Planck type operators[END_REF] was crucial for their microlocal estimates. In our work we manage to avoid that necessity by using the separated variable property of our particular operator which justifies the use of hypocoercivity methods in the spirit of [START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF]. In that sense, [START_REF] Bony | Eyring-Kramers law for Fokker-Planck type differential operators[END_REF] is more general because it applies to a wide class of operator, but our work is not contained in their because of the operator's cubic term.

Therefore, this article is at the edge between [START_REF] Leimkuhler | Hypocoercivity properties of adaptive langevin dynamics[END_REF] and [START_REF] Bony | Eyring-Kramers law for Fokker-Planck type differential operators[END_REF], trying to use the arguments of the second reference in order to generalize the results of the first one in a semiclassical way and describe the low lying eigenvalues of their degenerate operator. Here we will obtain hypocoercivity, resolvent estimates and rough description of the eigenvalues uniform in the parameters γ and ν (depending on h) but for sharp estimates, we had to fix γ and ν independant of h.

1.2.

Statements. Considering L from (1.7),we clearly have that L1 = 0 and taking

f (x, v, y) = V (x) 2 + |v| 2 + y 2 4 
one can show that L * e -2f /h = 0. For this paper, we consider the conjugate operator P = -e f /h hL * e -f /h . In our context, L has only real coefficient, thus σ(L * ) = σ(L), and we obtain

P = H 0 + νY + γO where          H 0 = v • h∂ x -∂ x V • h∂ v , Y = (vh∂ y -yh∂ v ) • v -hd(h∂ y - y 2 ), O = -h 2 ∆ v + |v| 2 4 -h d 2 .
We observe that we have the algebraic relations:

(1.8)

H * 0 = -H 0 , Y * = -Y, O * = O
and inherited from the properties of L, (1.9) P (e -f /h ) = P * (e -f /h ) = 0

Proposition 1.1. The operator P initially defined on C ∞ c (R 2d+1 ) admits a unique maximally accretive extension that we still denote by (P, D(P )).

We postpone the proof of this Proposition to the Appendix. Assumption 1. There exist C > 0 and a compact set

K ⊂ R d such that V (x) ≥ -C, |∇V (x)| ≥ 1 C and | Hess V (x)| ≤ C . for all x ∈ R d \ K.
Under this assumption, it is known (see for example [START_REF] Menz | Poincaré and logarithmic Sobolev inequalities by decomposition of the energy landscape[END_REF]Lemma 3.14]) that there exists b > 0, such that V (x) ≥ -b + b|x|. Lemma 1.2. Suppose that Assumption 1 holds true. One has e -f /h ∈ D(P ) and

(1.10) H 0 (e -f /h ) = Y (e -f /h ) = O(e -f /h ) = 0
Proof. The proof of (1.10) is a simple computation, and therefore, we retrieve (1.9), thus e -f /h ∈ D(P ) thanks to the maximal accretivity of P and e -f /h ∈ L 2 (R 2d ) thanks to Assumption 1.

□

Assumption 2. The function V is a Morse function.

Under Assumptions 1 and 2, the set U of critical points of V is finite. We denote by U (0) the set of minima of V and U (1) the set of critical points of index 1. We shall also denote n 0 = ♯U (0) . As the critical points of f are the (x * , 0, 0) for x * ∈ U, with the same index, we will identify those two and use x * instead of (x * , 0, 0) where it is clear which one we are really talking about (x * will mostly be denoted either m if of index 0 or s if of index 1).

Throughout the paper, we suppose that V satisfies Assumptions 1 and 2.

Theorem 1. There exists h 0 > 0, c 0 , c 1 , c, c ′ > 0, such that for all h ∈]0, h 0 ], there exists G h subspace of L 2 (R 2d ) of finite dimension such that for all γ, ν > 0, and all u ∈ D(P ) ∩ G ⊥ h , one has

∥(P -z)u∥ L 2 ≥ c 1 g(h)∥u∥ L 2
uniformly with respect to z ∈ C such that Re(z) ≤ c 0 g(h), where

(1.11) g(h) = h min ν 2 hγ, 1 γ , γ ν 2 h , ν 2 h γ .
If g(h) satisfies

(1.12) g(h) ≥ e -c 2h for any c < c f where c f = inf

m∈U (0) inf supp ∇χm f -f (m) > 0,
then there exists λ m (h) ∈ C for all m ∈ U (0) such that σ(P ) ∩ {Re z ≤ c 0 g(h)} = {λ m (h), m ∈ U (0) }, and

∀m ∈ U (0) , |λ m (h)| ≤ c ′ e -c f /h . Moreover, for all 0 < c ′ 0 < c 1 ∀|z| > c ′ 0 g(h), such that Re z ≤ c 0 g(h), (P -z) -1 L 2 ≤ 2 c ′ 0 g(h)
.

Remark 1.3. Formally, when taking h = 1, we recognize the conclusion of [26, Corollary 1] noticing ν in our paper is ε -1 in theirs. Through similar hypocoercive methods we achieve to generalize their result to the semiclassical regime.

This Theorem, true in its general form will allow us to prove the following one, which describes a much more restrain case for the purpose of this paper : the double well. We will only consider this case because of its simplicity compared to the general one, the aim of this paper is to show that the sharp quasimodes and the methods developed in [START_REF] Bony | Eyring-Kramers law for Fokker-Planck type differential operators[END_REF] can be adapted to our operator although it does not satisfy some key assumption they made. To detail a bit more the technicality avoided here, in order to deal with a more generic case, one need to introduce several topological definitions regarding the minima of V and sets around theses minima that will be essential to defined sharp quasimodes and have the most precise estimates. Moreover, at the end we obtain a matrix whose eigenvalues are the eigenvalues we are looking for, but in our case it is a mere 2×2 matrix with three zeros. In the general case, the matrix is not even diagonal and it needs a non trivial study to extract its eigenvalues. We will get into the general case in a forecasting paper.

Theorem 2. Let us suppose U (0) = {m, m} where m is the unique global minimum of V , U (1) = {s} and γ, ν > 0 are fixed. There exists c 0 , h 0 > 0, such that for all h ∈]0, h 0 ], one has σ(P ) ∩ {Re z ≤ c 0 g(h)} = {0, λ}, where g(h) ∝ h 2 is as in (1.11) and with

λ = µ(s)(det Hess V ( m)) 1 2 2π| det Hess V (s)| 1 2 he -S( m)/h (1 + O( √ h)),
where µ(s) = 1 2 (-γ + γ 2 + 4η) > 0 with η the sole negative eigenvalue of Hess s V and S( m) = V (s) -V ( m).

Remark 1.4. If familiar with this sort of results, one should expect to have an Arrhenius law of the form λ = O(e -2S( m)/h ) but here we do not have that 2, this is the result of having a Gibbs state e -f /h ∝ e -V 2h .

Remark 1.5. One can prove a similar Theorem without the double well assumption, it requires much more geometric constructions. Going further in the development of w (defined in (3.3)) in order to obtain higher principal orders in (3.10), one can transform the 1+O( √ h) into 1+O(h) and even obtain a full semiclassical asymptotic development 1+h j≥0 a j h j with explicit a j . Consult [START_REF] Bony | Eyring-Kramers law for Fokker-Planck type differential operators[END_REF] for more details and an explicit way to obtain that generalisation.
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Hypocoercive estimates

We introduce the function ρ(v) = (2πh) -d 4 e -|v| 2 4h and the projector onto the kernel of

O defined on L 2 (R 2d+1 ) by Π ρ u(x, v, y) = R d u(x, v ′ , y)ρ(v ′ )dv ′ ρ(v) = u ρ (x, y)ρ(v),
where we denoted

u ρ = ⟨u, ρ⟩ L 2 v (R d ) .
Let us denote Z = H 0 + νY the skew-adjoint part of P and notice that we have

Π ρ ZΠ ρ = OΠ ρ = 0.
Indeed using (2.3):

Π ρ ZΠ ρ = Π ρ (v • δ x + ν(|v| 2 -dh)δ y )Π ρ Π ρ v j Π ρ u = cu ρ v j e -|v| 2 2h dv = 0 Π ρ (|v| 2 -dh)Π ρ u = chu ρ (|v| 2 -d)e -|v| 2 2 dv = 0
whence Π ρ ZΠ ρ = 0 (with c a constant that changed from line two to three). Moreover we have the following Lemma that will be useful many times in the following.

Lemma 2.1. For any j = 1, . . . , d, the operator

v j Π ρ is bounded on L 2 and ∀k ∈ N, ∥v k j Π ρ ∥ L 2 →L 2 = O(h k/2 ) Proof. We notice that for u ∈ L 2 (R 2d+1 ), v j Π ρ u = 2h ∂ v j Π ρ u hence the result. □ We define for α > 0 (2.1) A = hα + h -1 (ZΠ ρ ) * (ZΠ ρ ) -1 (ZΠ ρ ) * .
This auxiliary operator is introduced in [START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF] and used in [START_REF] Leimkuhler | Hypocoercivity properties of adaptive langevin dynamics[END_REF] in order to ease the calculus in the proof of Theorem 1. This kind of method to compute hypocoercivity was mainly introduced and used at first in [START_REF] Villani | Hypocoercivity[END_REF], [START_REF] Hérau | Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential[END_REF] and [START_REF] Hérau | Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation[END_REF].

Lemma 2.2. The operator A is bounded on L 2 (R 2d+1 ), it satisfies

A = Π ρ A = A(1 -Π ρ )
and one has the estimate

∥A∥ L 2 ≤ 1 √ α
Proof. See [START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF] for the bound, and

A = A(1 -Π ρ ) comes from Π ρ ZΠ ρ = 0.

□

We introduce also the semiclassical Witten Laplacian associated to the function

V 2 , acting on L 2 (R d x ) ∆ V 2 = -h 2 ∆ x + 1 4 |∇V | 2 - h 2 ∆V
and the semiclassical Witten Laplacian associated to the function y → y 2 4 , acting on

L 2 (R y ) N y = -h 2 ∂ 2 y + y 2 4 - h 2 .
Throughout the paper, we denote x i δ x i and N y = δ * y δ y .

δ x i = h∂ x i + ∂ x i V 2 

Along with δ

v = h ∂ v + v 2 which then gives O = δ * v δ v ,
these twisted derivatives allow us to rewrite H 0 and Y in a more fancy way through direct computations

H 0 = v • δ x -∂ x V • δ v , Y = (|v| 2 -dh)δ y -yv • δ v . (2.2)
And because Π ρ is a projector on the kernel of δ v , we thus have

(2.3) H j Π ρ = v j δ x j Π ρ and Y Π ρ = (|v| 2 -dh)δ y Π ρ where H 0 = d j=1 H j and thus H j = v j h ∂ x j -∂ x j V h ∂ v j .
We also recall the commutation rules

(2.4) [δ x i , δ x j ] = 0, [δ x i , δ * x j ] = h∂ 2 ij V, [δ x i , δ * x j δ x j ] = h∂ 2 ij V δ x j and (2.5) [δ y , N y ] = hδ y . Lemma 2.3. One has (2.6) (ZΠ ρ ) * (ZΠ ρ ) = dhBΠ ρ where B = ∆V 2 + 2ν 2 hN y .
Proof. We have

ZΠ ρ = (H 0 + νY )Π ρ = (v • δ x + ν(|v| 2 -dh)δ y )Π ρ but, because of the parity of ρ : ⟨ZΠ ρ u, ZΠ ρ w⟩ = ⟨v • δ x Π ρ u, v • δ x Π ρ w⟩ + ν 2 ⟨(|v| 2 -dh)δ y Π ρ u, (|v| 2 -dh)δ y Π ρ w⟩ + 2ν Re ⟨v • δ x Π ρ u, (|v| 2 -dh)δ y Π ρ w⟩ =0 ,
the last scalar product involves an integral over R d of an odd function of v it is therefore null. With the same argument, in the double sum, we only have the diagonal terms :

⟨v • δ x Π ρ u, v • δ x Π ρ w⟩ = d i=1 ⟨v i δ x i Π ρ u, v i δ x i Π ρ w⟩ = d i=1 ⟨v 2 i δ * x i δ x i Π ρ u, Π ρ w⟩ = d i=1 ⟨v 2 i δ * x i δ x i u ρ ρ, w ρ ρ⟩ = d i=1 ⟨δ * x i δ x i u ρ , w ρ ⟩ L 2 x,y ⟨v 2 i ρ, ρ⟩ L 2 v = d i=1 ⟨δ * x i δ x i u ρ ρ, w⟩ L 2 x,v,y ⟨v 2 i ρ, ρ⟩ L 2 v
By integration by parts, we note

⟨v 2 i ρ, ρ⟩ = (2π) -d 2 R d v 2 i e -|v| 2 2h dv h d 2 = hα d
and so :

⟨v • δ x Π ρ u, v • δ x Π ρ w⟩ = ⟨hα d ∆V 2 Π ρ u, w⟩.
And with very similar computations, we obtain :

⟨(|v| 2 -dh)δ y Π ρ u, (|v| 2 -dh)δ y Π ρ w⟩ = ⟨δ * y δ y u ρ ρ, w⟩⟨(|v| 2 -dh) 2 ρ, ρ⟩ ⟨(|v| 2 -dh) 2 ρ, ρ⟩ = h 2 β d ⟨(|v| 2 -dh)δ y Π ρ u, (|v| 2 -dh)δ y Π ρ w⟩ = ⟨h 2 β d N y Π ρ u, w⟩.

By naming

I n = (2π) -d/2 |v| n e -|v| 2 2
dv one has

α d = I 2 = dI 0 = d and β d = I 4 -2dI 2 + d 2 I 0 = (d(d + 2) -2d 2 + d 2 )I 0 = 2d
Finally, we observe that we indeed have proved 2.6 :

(ZΠ ρ ) * (ZΠ ρ ) = dhBΠ ρ □ One direct consequence of Lemma 2.

and (2.1) is that we have

A = (hα + dB) -1 (ZΠ ρ ) * Let χ m , m ∈ U (0) be some cutoffs in C ∞ c (R d ) such that χ m is supported in B(m, r
) for some r > 0 to be chosen small enough and χ m is constant near m. We then introduce the quasimodes

f m (x, v, y) = χ m (x)e -(f (x,v,y)-f (m))/h ,
and we set the constant χ m (m) such that f m is of norm one in L 2 (R 2d+1 ). For r > 0 small enough, these functions have disjoint support and hence the vector space

F h = span{f m , m ∈ U (0) } has dimension n 0 .
We in fact have that G h in Theorem 1 is F h we just defined. It is a natural space to consider noticing that e -f /h R is the kernel of BΠ ρ which should not be surprising since BΠ ρ is a self-adjoint operator built to behave like P . Lemma 2.4. There exists c 0 , h 0 > 0 such that for all h ∈]0, h 0 ], ν > 0 and u ∈ F ⊥ h , one has

⟨BΠ ρ u, u⟩ ≥ c 0 h min(1, ν 2 h)∥Π ρ u∥ 2 Proof. We set W (x, y) = V (x) 2 + y 2 4 , hence ∆ W = ∆V 2
+ N y , and we see that W has the same property as

V : if V ≥ -C then so is W , |∇W | 2 = 1 4 (|∇V | 2 + y 2 ) and Hess W (x, y) = 1 2
Hess V (x) 0 0 1 . Therefore W satisfies Assumptions 1 and 2 as much as V , and the minima of W are the (m, 0) where m ∈ U (0) . In order to lighten the notations we will identify m and (m, 0), likewise we will identify U (0) with U (0) × {0}.

We also denote δ W = h∇ + ∇W , and X = (x, y) ∈ R d+1 .

Using known facts about the Witten laplacian (see for example [START_REF] Cycon | Schrödinger operators with application to quantum mechanics and global geometry[END_REF]Theorem 11.1] or [START_REF] Helffer | Puits multiples en mécanique semi-classique. IV. Étude du complexe de Witten[END_REF] for the exponential bound) we have that

(2.7) ∃c, ε, h 0 > 0, ∀h ∈ ]0, h 0 ] σ(∆ W )∩ ]ce -c/h , ε h[ = ∅,
and ∆ W has exactly n 0 eigenvalues in [0, ce -c/h ] that we denote E n (∆ W ).

We also denote

F h = {u ρ , u ∈ F h } = span( f m ) m∈U (0)
where f m = f m (•, 0, •) up to a normalization factor, then we will admit for now that because of what we stated,

∃ ε ′ > 0, ∀u ∈ F ⊥ h , ⟨∆ W u, u⟩ ≥ ε ′ h ∥u∥ 2 . Therefore, for u ∈ F ⊥ h ⟨BΠ ρ u, u⟩ = ⟨BΠ 2 ρ u, u⟩ = ⟨Π ρ BΠ ρ u, u⟩ = ⟨BΠ ρ u, Π ρ u⟩ = ⟨∆ V 2 Π ρ u, Π ρ u⟩ + 2ν 2 h⟨N y Π ρ u, Π ρ u⟩ ≥ min(1, ν 2 h)⟨∆ W Π ρ u, Π ρ u⟩ ≥ ε ′ h min(1, ν 2 h) ∥Π ρ u∥ 2
□ And so we proved the lemma, let's now show what we have admitted :

Lemma 2.5. There exists ε ′ > 0, such that for all u ∈ F ⊥ h , ⟨∆ W u, u⟩ ≥ ε ′ h ∥u∥ 2 .
Proof. We first have the spectral projector on the eigenvectors associated to the small eigenvalues :

Π W = 1 2iπ C (z -∆ W ) -1 dz where we denote C = C(0, ε 2 h) the
circle centered in 0 of radius ε 2 h positively oriented, where ε is defined in (2.7). Thus,

Π W -Id = 1 2iπ C ((z -∆ W ) -1 -z -1 ) dz = 1 2iπ C (z -∆ W ) -1 ∆ W z -1 dz, applied to the f m , we get (2.8) Π W f m -f m = 1 2iπ C (z -∆ W ) -1 =O(h -1 ) ∆ W ( f m ) =O(e -c/h ) dz z = O(e -c ′ /h )
Then by the spectral theorem (which we can use because ∆ W is self-adjoint), noting φ n eigenvectors of ∆ W associated to E n (∆ W ) :

⟨∆ W u, u⟩ = n≤n 0 E n (∆ W )|⟨u, φ n ⟩| 2 + ∞ ε h λd⟨E λ u, u⟩ ≥ ∞ ε h λd⟨E λ u, u⟩ ≥ ε h ∥u∥ 2 - n≤n 0 |⟨u, φ n ⟩| 2 We now want to show that ∃c > 0, ∀u ∈ F ⊥ h , ∥u∥ 2 - n≤n 0 |⟨u, φ n ⟩| 2 ≥ c ∥u∥ 2 , or in an equivalent way n≤n 0 |⟨u, φ n ⟩| 2 ≤ c ′ ∥u∥ 2 with c ′ < 1. But as ∀m ∈ U (0) , ⟨u, f m ⟩ = 0 be- cause u ∈ F ⊥ h , and since ⟨ f m , f m ′ ⟩ = δ m,m ′ +O(e -C/h ), noticing that span(Π W f m ) U (0) = span(φ n ) n≤n 0 , hence using (2.8) we obtain n≤n 0 ⟨•, φ n ⟩ φ n = m∈U (0) a m ⟨•, Π W f m ⟩Π W f m = m∈U (0) a m ⟨•, f m ⟩ f m + O(e -c/h ) and thus n≤n 0 |⟨u, φ n ⟩| 2 ≤ Ce -C/h ∥u∥ 2 .
□ Lemma 2.6. One has the following identities (2.9)

H * i H j Π ρ = (-v i v j δ x i δ x j + δ i,j h∂ x i V δ x j )Π ρ (2.10) Y * Y Π ρ = (|v| 2 -dh) 2 δ * y δ y -((|v| 2 -dh) 2 -2h|v| 2 )yδ y Π ρ (2.11) H * i Y Π ρ = -v i (|v| 2 -dh)δ x i δ y + 2v i h∂ x i V δ y Π ρ (2.12) Y * H i Π ρ = -v i (|v| 2 -dh)δ x i δ y + v i hyδ x i Π ρ
These identities will be useful for the following lemma but since its proof is mere calculus we postpone it to the Appendix. Lemma 2.7. There exists C, h 0 > 0 such that for all h ∈]0, h 0 ], ν > 0 and for all u ∈ F ⊥ h , one has

(2.13) |⟨AZ(1 -Π ρ )u, u⟩| ≤ C(1 + ν √ hα -1 2 + α -1 2 )h∥Π ρ u∥ ∥(1 -Π ρ )u∥ (2.14) |⟨AOu, u⟩| ≤ Cα -1 2 h∥Π ρ u∥ ∥(1 -Π ρ )u∥ (2.15) |⟨Zu, Au⟩| ≤ Ch∥(1 -Π ρ )u∥ 2
Proof. Within this proof, C will denote a positive constant that may only depends on the dimension d and may change from line to line.

Let us start with the proof of (2.13). Since A = Π ρ A, by the Cauchy-Schwarz inequality it is sufficient to show that the operator AZ (or equivalently its adjoint) is bounded on L 2 . One has

Z * A * = Z * ZΠ ρ (hα + dB) -1 Π ρ = i,j H * i H j + ν 2 Y * Y + ν i (H * i Y + Y H * i ) Π ρ (hα + dB) -1 Π ρ
and we estimate each term separately. We start with the term involving H * i H j . From (2.9), we deduce that (2.16)

H * i H j Π ρ (hα + dB) -1 = (-v i v j δ x i δ x j + δ i,j h∂ x i V δ x j )(hα + dB) -1 Π ρ
First we observe that

∥δ x i δ x j (hα + d∆ V 2 ) -1 u∥ 2 ≤ k,l ∥δ x k δ x l (hα + d∆ V 2 ) -1 u∥ 2 ≤ k,l ⟨δ * x k δ x k δ x l (hα + d∆ V 2 ) -1 u, δ x l (hα + d∆ V 2 ) -1 u⟩ ≤ l ⟨∆V 2 δ x l (hα + d∆ V 2 ) -1 u, δ x l (hα + d∆V 2 ) -1 u⟩ ≤ l ⟨∆V 2 (hα + d∆V 2 ) -1 u, δ * x l δ x l (hα + d∆V 2 ) -1 u⟩ + l ⟨[∆ V 2 , δ x l ](hα + d∆V 2 ) -1 u, δ x l (hα + d∆V 2 ) -1 u⟩ ≤ ∥∆V 2 (hα + d∆ V 2 ) -1 u∥ 2 - k,l ⟨h∂ 2 kl V δ x k (hα + d∆V 2 ) -1 u, δ x l (hα + d∆V 2 ) -1 u⟩ ≤ C(1 + h max k ∥δ x k (hα + d∆ V 2 ) -1 2 ∥ 2 ∥(hα + d∆ V 2 ) -1 2 ∥ 2 )∥u∥ 2
where we used (2.4) to compute the commutator, Assumption 1 and Lemma 5.2 to get the last estimates. Thanks to Lemma 5.3 and Lemma 5.2, this implies (2.17)

∥δ x i δ x j (hα + d∆V 2 ) -1 u∥ ≤ C(1 + h 1 2 h -1 2 α -1 2 )∥u∥ ≤ C(1 + α -1 2 )∥u∥
Using Lemma 2.1 and Lemma 5.1 this implies (2.18)

v i v j δ x i δ x j (hα + dB) -1 Π ρ = (1 + α -1 2 )O(h) Similarly, since |∇V | 2 ≤ 4(∆V 2 + h 2 ∆V
) in the sense of operators, we have

∥∂ x i V δ x j (hα + d∆ V 2 ) -1 u∥ 2 ≤ k,l ⟨|∂ x k V | 2 δ x l (hα + d∆ V 2 ) -1 u, δ x l (hα + d∆ V 2 ) -1 u⟩ ≤ C l ⟨∆ V 2 δ x l (hα + d∆ V 2 ) -1 u, δ x l (hα + d∆V 2 ) -1 u⟩ + Ch max k ∥|∆V | 1 2 δ x k (hα + d∆ V 2 ) -1 u∥ 2 ≤ C l ⟨∆ V 2 δ x l (hα + d∆ V 2 ) -1 u, δ x l (hα + d∆V 2 ) -1 u⟩ + Ch max k ∥δ x k (hα + d∆V 2 ) -1 u∥ 2
using Assumption 1, which implies by the same arguments as above that

∥∂ x i V δ x j (hα + d∆V 2 ) -1 u∥ ≤ C(1 + α -1 2 )∥u∥.
Using again Lemma 5.1, it follows that (2. [START_REF] Hérau | Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation[END_REF]) 

h∂ x i V δ x j (hα + dB) -1 Π ρ = (1 + α -1 2 )O(h)Π ρ Combining (2.
H * i H j Π ρ (hα + dB) -1 = (1 + α -1 2 )O(h)Π ρ .
Now, from (2.10), we have :

ν 2 Y * Y Π ρ (hα + dB) -1 = ν 2 (|v| 2 -dh) 2 δ * y δ y -((|v| 2 -dh) 2 -2h|v| 2 )yδ y × (hα + dB) -1 Π ρ
First we notice that due to Lemma 5.2,

δ * y δ y (hα + 2dν 2 hN y ) -1 = N y (hα + 2dν 2 hN y ) -1 ≤ Cν -2 h -1
And using Lemma 2.1 and 5.1, we then get :

(|v| 2 -dh) 2 δ * y δ y (hα + dB) -1 Π ρ ≤ (|v| 2 -dh) 2 Π ρ δ * y δ y (hα + 2dν 2 hN y ) -1 × (hα + 2dν 2 hN y )(hα + dB) -1 ≤ Cν -2 h Hence (2.21) (|v| 2 -dh) 2 δ * y δ y (hα + dB) -1 Π ρ = ν -2 O(h)Π ρ .
Now since y 2 ≤ 4N y + 2h in the sense of operators, we have :

( * 1 ) := yδ y (hα + 2dν 2 hN y ) -1 u 2 = ⟨y 2 δ y (hα + 2dν 2 hN y ) -1 u, δ y (hα + 2dν 2 hN y ) -1 u⟩ ≤ 4⟨N y δ y (hα + 2dν 2 hN y ) -1 u, δ y (hα + 2dν 2 hN y ) -1 u⟩ + 2h δ y (hα + 2dν 2 hN y ) -1 u 2 = 4 N y (hα + 2dν 2 hN y ) -1 u 2 + 2h δ y (hα + 2dν 2 hN y ) -1 u 2 + 4⟨[N y , δ y ](hα + 2dν 2 hN y ) -1 u, δ y (hα + 2dν 2 hN y ) -1 u⟩ = 4 N y (hα + 2dν 2 hN y ) -1 u 2 -2h δ y (hα + 2dν 2 hN y ) -1 u 2 ≤ 4ν -4 h -2 ∥u∥ 2 ,
where we used (2.5) to compute the commutator and Lemma 5.3 for the last estimate. Thus, thanks to Lemma 2.1 and 5.1, it implies :

( * 2 ) := ((|v| 2 -dh) 2 -2h|v| 2 )yδ y (hα + dB) -1 Π ρ ≤ yδ y (hα + 2dν 2 hN y ) -1 (hα + 2dν 2 hN y )(hα + dB) -1 × ((|v| 2 -dh) 2 -2h|v| 2 )Π ρ ≤ Cν -2 h -1 h 2 ≤ Cν -2 h which proves (2.22) ((|v| 2 -dh) 2 -2h|v| 2 )yδ y (hα + dB) -1 Π ρ = ν -2 O(h)Π ρ
Combining (2.21) and (2.22) we have :

(2.23) ν 2 Y * Y Π ρ (hα + dB) -1 = O(h)Π ρ .
Let us now study simultaneously the last two terms, using lemma 2.6 we have

Y * H i Π ρ (hα + dB) -1 = (-v i (|v| 2 -dh)δ x i δ y + v i hyδ x i )(hα + dB) -1 Π ρ H * i Y Π ρ (hα + dB) -1 = (-v i (|v| 2 -dh)δ x i δ y + 2v i h ∂ x i V δ y )(hα + dB) -1
Π ρ Thanks to Lemma 5.3 and since δ x and δ y commute

( * 3 ) := δ x i δ y (hα + 2dν 2 hN y ) -1/2 (hα + d∆ V 2 ) -1/2 ≤ δ y (hα + 2dν 2 hN y ) -1/2 δ x i (hα + d∆V 2 ) -1/2 ≤ Cν -1 h -1 2
Therefore, since B commute with ∆V 2 and N y , we get with Lemma 2.1 and Lemma 5.1

( * 4 ) := v i (|v| 2 -dh)δ x i δ y (hα + dB) -1 Π ρ ≤ δ x i δ y (hα + 2dν 2 hN y ) -1/2 (hα + d∆V 2 ) -1/2 v i (|v| 2 -dh)Π ρ × (hα + 2dν 2 hN y ) 1/2 (hα + dB) -1/2 (hα + d∆V 2 ) 1/2 (hα + dB) -1/2 ≤ Cν -1 h -1 2 h 3 2
Consequently,

v i (|v| 2 -dh)δ y δ x i (hα + dB) -1 Π ρ = ν -1 O(h)Π ρ
Similarly, thanks to Lemma 5.3 and then Lemma 5.2 :

( * 5 ) := yδ x i (hα + 2dν 2 hN y ) -1/2 (hα + d∆ V 2 ) -1/2 2 ≤ δ x i (hα + d∆V 2 ) -1/2 2 y(hα + 2dν 2 hN y ) -1/2 2 ≤ C y(hα + 2dν 2 hN y ) -1/2 2 ≤ C⟨N y (hα + 2dν 2 hN y ) -1/2 u, (hα + 2dν 2 hN y ) -1/2 u⟩ + Ch (hα + 2dν 2 hN y ) -1/2 u 2 ≤ C N y (hα + 2dν 2 hN y ) -1 + h (hα + 2dν 2 hN y ) -1/2 2 ∥u∥ 2 ≤ C(ν -2 h -1 + hh -1 α -1 ) ∥u∥ 2 ≤ Cν -2 h -1 (1 + ν 2 hα -1 ) ∥u∥ 2
Which leads to

yδ x i (hα + 2dν 2 hN y ) -1/2 (hα + d∆V 2 ) -1/2 ≤ Cν -1 h -1 2 (1 + ν √ hα -1 2 )
And with very identical arguments, we get :

∂ x i V δ y (hα + 2dν 2 hN y ) -1/2 (hα + d∆ V 2 ) -1/2 ≤ Cν -1 h -1 2 (1 + α -1 2 )
Therefore, with Lemma 2.1 and Lemma 5.1:

v i hyδ x i (hα + dB) -1 Π ρ + 2v i h ∂ x i V δ y (hα + dB) -1 Π ρ ≤ Cν -1 h(1+α -1 2 +ν √ hα -1 2 ) which leads to (2.24) ν(Y * H i + H * i Y )(hα + dB) -1 Π ρ = (1 + α -1 2 + ν √ hα -1 2 )O(h)Π ρ .
Combining (2.20), (2.23) and (2.24) we have finally completely proved (2.13).

To prove (2.14), we first show that OA * Π ρ is bounded :

OA * Π ρ = OZΠ ρ (hα + dB) -1 Π ρ OZΠ ρ u = (O(v • δ x + ν(|v| 2 -dh)δ y )Π ρ )u = [O, v • δ x + ν(|v| 2 -dh)δ y ]Π ρ u = -2dh 2 νδ y Π ρ u -2h 2 (δ x + 2νδ y v) • - v 2h Π ρ u = h v • δ x + 2ν(|v| 2 -dh)δ y Π ρ u.
Using Lemmas 2.1, 5.1, 5.2, 5.3, it proves

OA * Π ρ = α -1 2 O(h)Π ρ Which leads to ⟨AOu, u⟩ = ⟨Π ρ AO(1 -Π ρ )u, u⟩ = ⟨(1 -Π ρ )u, OA * Π ρ u⟩ |⟨AOu, u⟩| ≤ ∥OA * Π ρ ∥ ∥Π ρ u∥ ∥(1 -Π ρ )u∥ ≤ Cα -1 2 h ∥Π ρ u∥ ∥(1 -Π ρ )u∥ which proves (2.14).
Then, for (2.15) we show that ZΠ ρ (hα + dB) -1/2 is bounded :

ZΠ ρ (hα + dB) -1/2 u 2 = ⟨(ZΠ ρ ) * (ZΠ ρ )(hα + dB) -1/2 u, (hα + dB) -1/2 u⟩ = h ∥u∥ 2 -h 2 α (hα + dB) -1/2 u 2 which gives us ZΠ ρ (hα + dB) -1/2 = O √ h . Thanks to that result, ⟨Zu, Au⟩ = ⟨(1 -Π ρ )u, (Π ρ Z) * A(1 -Π ρ )u⟩ |⟨Zu, Au⟩| ≤ ∥(Π ρ Z) * A∥ ∥(1 -Π ρ )u∥ 2 = ∥-ZΠ ρ A∥ ∥(1 -Π ρ )u∥ 2 ≤ ZΠ ρ (hα + dB) -1 (ZΠ ρ ) * ∥(1 -Π ρ )u∥ 2 ≤ ZΠ ρ (hα + dB) -1/2 (hα + dB) -1/2 (ZΠ ρ ) * ∥(1 -Π ρ )u∥ 2 ≤ ZΠ ρ (hα + dB) -1/2 2 ∥(1 -Π ρ )u∥ 2 ≤ Ch ∥(1 -Π ρ )u∥ 2
which completes the Lemma 2.7.

□

Proposition 2.8. There exists C, δ 0 , h 0 > 0 such that for all h ∈]0, h 0 ], γ, ν > 0 and for all u ∈ D(P ) ∩ F ⊥ h , one has Re P u,

(1 + δ(h)(A + A * ))u L 2 ≥ Cg(h)∥u∥ 2 L 2 choosing α = min(1, ν 2 h), where δ(h) = δ 0 g(h)
h and with g(h) defined in (1.11).

Proof. For all δ > 0, let us define

I δ = Re P u, (1 + δ(A + A * )u L 2
Using the decomposition P = Z + γO, and the skew-adjointness of Z coming from (1.8), one gets I δ = γ⟨Ou, u⟩ + δ Re⟨P u, (A + A * )u⟩ From the spectral properties of O, it follows that 

AZΠ ρ ≥ dh c 0 h min(1, ν 2 h) h min(1, ν 2 h) + c 0 dh min(1, ν 2 h) Π ρ = c 0 dh 1 + c 0 d Π ρ = c ′ 0 hΠ ρ
Consequently, there exists c ′ 0 > 0 such that Re J ≥ c ′ 0 h∥Π ρ u∥ 2 + Re J ′ Plugging this estimate into (2.25) we get (2.27)

I δ ≥ γh∥(1 -Π ρ )u∥ 2 + δc ′ 0 h∥Π ρ u∥ 2 + δ Re J ′ . Recall that (2.28) J ′ = ⟨AZ(1 -Π ρ )u, u⟩ + γ⟨AOu, u⟩ + ⟨Zu, Au⟩.
Combining (2.27), (2.28) and Lemma 2.7, we get

I δ ≥ -Chδ(1 + (1 + ν √ h + γ)α -1 2 )∥Π ρ u∥ ∥(1 -Π ρ )u∥ + (γh -Chδ)∥(1 -Π ρ )u∥ 2 + δc ′ 0 h∥Π ρ u∥ 2 ≥ h γ -Cδ - C 2 δ(1 + (1 + ν √ h + γ)α -1 2 ) 2 2c ′ 0 ∥(1 -Π ρ )u∥ 2 + h δc ′ 0 2 ∥Π ρ u∥ 2
Optimizing the right hand side by taking

δ = 2γc ′ 0 c ′2 0 + 2Cc ′ 0 + C 2 (1 + (1 + ν √ h + γ)α -1 2 ) 2
, we get

I δ ≥ δhc ′ 0 2 ∥u∥ 2 .
We shall say that δ(h) ≍ δ(h) if there exists C 1 , C 2 > 0 such that for h small enough,

C 1 δ(h) ≤ δ(h) ≤ C 2 δ(h). Therefore we have that δ ≍ γ 1 + (1 + ν 2 h + γ 2 )α -1
Recalling we took α = min(1, ν 2 h), hence α -1 = max(1, (ν 2 h) -1 ), one has Case 1 :

ν 2 h ≤ 1 δ ≍ γ 1 + (1 + ν 2 h + γ 2 )(ν 2 h) -1 ≍ ν 2 hγ 1 + γ 2 ≍ min ν 2 hγ, ν 2 h γ . Case 2 : 1 ≤ ν 2 h δ ≍ γ 1 + ν 2 h + γ 2 ≍ γ ν 2 h + γ 2 ≍ min γ ν 2 h , 1 γ . 
This yields δ(h) ≍ g(h) h and therefore I δ ≥ Cg(h)∥u∥ 2 for some new constant C > 0 independent of h, γ and ν. This proves the proposition.

□

We finally have the tools to prove Theorem 1. On one hand, with a mere Cauchy-Schwartz, we have

(2.29) Re⟨(P -z)u, (1 + δ(h)(A + A * ))u⟩ ≤ ∥(P -z)u∥ ∥1 + δ(h)(A + A * )∥ ∥u∥
On the other hand, we can see thanks to Proposition 2.8 that

Re⟨(P -z)u, (1 + δ(h)(A + A * ))u⟩ ≥ Cg(h) ∥u∥ 2 -Re(z⟨u, (1 + δ(h)(A + A * ))u⟩)
But because 1 + δ(h)(A + A * ) is positive for δ 0 small enough, we can simplify it to

(2.30) Re⟨(P -z)u, (1+δ(h)(A+A * )u⟩ ≥ Cg(h) ∥u∥ 2 -Re(z)∥1 + δ(h)(A + A * )∥ ∥u∥ 2
We now use that for δ 0 small We can combine (2.31) and (2.32) to have

∥1 + δ(h)(A + A * )∥ ≤ 1 + 2δ(h)α -
∥(P -z)u∥ ≥ C 2 g(h) ∥u∥ -Re(z) ∥u∥ .
Finally, taking 0 < c 0 < C 2 and noting c 1 = C 2 -c 0 > 0, we have for Re z ≤ c 0 g(h)

∥(P -z)u∥ ≥ c 1 g(h) ∥u∥ .
And we can now deduce the second part of Theorem 1 from that, following the same sketch of proof than in [START_REF] Normand | Metastability results for a class of linear boltzmann equations[END_REF].

By recalling f m (x, v, y) = χ m (x)e -(f (x,v,y)-f (m))/h , as we know from (1.10) that e -f /h ∈ Ker O ∩ Ker Y , we obtain :

P (f m ) = H 0 (f m ) = hv • ∇χ m e -(f -f (m))/h = O(e -cm/h ) with c m = inf supp ∇χm f -f (m) > 0 (because χ ≡ 1 near m).
Moreover, since the (f m ) m∈U (0) are orthonormal, we actually have :

(2.33) ∀u ∈ F h , ∥P u∥ = O(e -c f /h ) ∥u∥
where c f = min

m∈U (0)
c m > 0. Furthermore, (2.33) is also true replacing P by P * because

P * (f m ) = -H 0 (f m ).
We denote by Π the projector on F h . Let z ∈ {Re z ≤ c 0 g(h)} such that |z| ≥ c ′ 0 g(h) with 0 < c ′ 0 ≤ c 1 , and u ∈ D(P )

∥(P -z)u∥ 2 = ∥(P -z)(Π + Id -Π)u∥ 2 = ∥(P -z)(Id -Π)u∥ 2 + ∥(P -z)Πu∥ 2 + 2 Re⟨(P -z)(Id -Π)u, (P -z)Πu⟩
One has

∥(P -z)(Id -Π)u∥ 2 ≥ c 2 1 g(h) 2 ∥(Id -Π)u∥ 2 , ∥(P -z)Πu∥ 2 ≥ (∥P Πu∥ -∥zΠu∥) 2 ≥ ∥zΠu∥ (∥zΠu∥ -2 ∥P Πu∥).
Using that |z| ≥ c ′ 0 g(h) ≥ c ′ 0 e -c/(2h) ≥ c ′ 0 e -c/h with c < c f thanks to (1.12), we have using (2.33)

∥(P -z)Πu∥ 2 ≥ |z| 2 2 ∥Πu∥ 2
We can also see, studying each term in the scalar product :

Re⟨(P -z)(Id -Π)u, (P -z)Πu⟩ = Re ⟨P (Id -Π)u, P Πu⟩ -z⟨(Id -Π)u, P Πu⟩ -z⟨P (Id -Π)u, Πu⟩ ≤ (1 + |z|) ∥(Id -Π)u∥ ∥Πu∥ O(e -c f /h ) ≤ ∥u∥ 2 + |z| 2 ∥Πu∥ 2 + ∥(Id -Π)u∥ 2 O(e -c f /h ) hence ∥(P -z)u∥ 2 ≥ c 2 1 g(h) 2 ∥(Id -Π)u∥ 2 + |z| 2 3 ∥Πu∥ 2 + (∥u∥ 2 + ∥(Id -Π)u∥ 2 )O(e -c f /h ) ≥ c ′2 0 3 g(h) 2 ∥u∥ 2 + (∥u∥ 2 + ∥(Id -Π)u∥ 2 )O(e -c f /h ) ≥ c ′2 0 4 g(h) 2 ∥u∥ 2
for h small enough, using (1.12). It leads to (2.34)

∥(P -z)u∥ ≥ c ′ 0 2 g(h) ∥u∥ .
By using the same arguments for P * we have the same result for it (the key point is that e -f /h is in the kernel of O, H 0 and Y hence it also is in P * 's one). It just remains to show that P -z is surjective in order to obtain the resolvent estimate, we show it the classical way, by showing that Ran(P -z) is closed and dense.

Let u n ∈ D(P ) and v ∈ L 2 such that (P -z)u n → v therefore ((P -z)u n ) n∈N is Cauchy and so is (u n ) n∈N thanks to (2.34), hence there exists u ∈ L 2 such that u n → u. Because the convergence is also true in D ′ , we have that (P -z)u = v in D ′ , and since v ∈ L 2 , so is (P -z)u, thus u ∈ D(P ) and Ran(P -z) is closed. Now to show that Ran(P -z) is dense, we use (2.34) for P * and so Ker(P * -z) = {0}.

All this leads to the resolvent estimate :

(2.35) (P -z) -1 ≤ 2 c ′ 0 g(h)
.

Hence, P has no spectrum in {Re z ≤ c 0 g(h)} ∩ {|z| ≥ c ′ 0 g(h)}. We will show that on {Re z ≤ c 0 g(h)}, P has at most n 0 = dim F h eigenvalues. By denoting D ε = D(0, ε g(h)), let us denote

Π 0 = 1 2iπ ∂ Dε (z -P ) -1 dz
the projector on the small eigenvalues. We start by proving the following lemma Lemma 2.9. There exists C > 0 such that ∥P Π 0 ∥ ≤ C ε 2 g(h)

Proof. (2.35).

P Π 0 = 1 2iπ ∂ Dε P (z -P ) -1 dz = 1 2iπ ∂ Dε z(z -P ) -1 dz, hence ∥P Π 0 ∥ ≤ C (ε g(h)) 2 c ′ 0 g(h) thanks to

□

We first prove that dim Ran Π 0 ≤ n 0 . By contradiction, let us suppose F ⊥ h ∩Ran Π 0 ̸ = ∅ and so let us take u ∈ F ⊥ h ∩Ran Π 0 of norm one. Since u ∈ Ran Π 0 , by Lemma 2.9, ∥P u∥ ≤ C ε 2 g(h), but because u ∈ F ⊥ h we can use Theorem 1 and so ∥P u∥ ≥ c 1 g(h). Taking ε low enough, we have the contradiction we aimed for and thus, dim Ran Π 0 ≤ n 0 .

For the converse inequality, taking ε = c 1 2 , we have

Π 0 -Id = 1 2iπ ∂ Dε z -1 (z -P ) -1 P dz
and therefore

ε m = Π 0 f m -f m = 1 2iπ ∂ Dε (z -P ) -1 =O(g(h) -1 ) P (f m ) =O(e -c f /h ) dz z = O(g(h) -1 e -c f /h ) = O(e -c f 2h )
(2.36) using (2.35) and (2.33) and the hypothesis (1.12).

Let us suppose

m∈U (0) a m Π 0 f m = 0 with m∈U (0) |a m | 2 = 1, since Π 0 f m = f m + ε m , we have ∀m ′ ∈ U (0) m∈U (0) a m (δ m,m ′ + ⟨ε m , f m ′ ⟩) = 0 and so ∀m, a m = O(e -c/h ) which is in contradiction with |a m | 2 = 1.
We deduce that dim Ran Π 0 ≥ n 0 and hence, with what we already showed, dim Ran Π 0 = n 0 .

And so we can say we have

σ(P ) ∩ {Re z ≤ c 0 g(h)} = {λ m (h), m ∈ U (0) } ⊂ D(0, c 1 2 g(h)).
It only remains to show that λ m (h) = O(e -c/h ), noticing that Ran Π 0 is P -stable and that (Π 0 f m ) m∈U (0) is one of its basis,

∥P Π 0 f m ∥ = ∥Π 0 P f m ∥ = O(∥P f m ∥) = O(e -c f /h ). therefore, P | Ran Π 0 = O(e -c f /h ) hence σ(P | Ran Π 0 ) ⊂ D(0, Ce -c f /h ).

Sharp quasimodes

We now want to have a better view on the small eigenvalues of P . For this purpose, we are going to build sharp quasimodes, and so we are following the steps of [1, section 3&4]. Their Theorem does not apply here because our operator P does not satisfy the hypothesis they labeled (Harmo) as explained in the last paragraph before the statements. We therefore have to rewrite the proof using tricks to avoid that necessity. As in this reference, given s ∈ U (1) we look for an approximate solution to the equation

P ũ = 0 in a neighborhood U of s under the form ũ = ue -(f -f (m))/h
where we recall e

-(f -f (m))/h ∈ Ker P with f (x, v, y) = V (x) 2 + |v| 2 + y 2 4
. And we set

u(x, v, y) = ℓ(x,v,y,h) 0 ζ(s/τ )e -s 2 /2h ds where the function ℓ ∈ C ∞ (U ) has a classical expansion ℓ ∼ j≥0 h j ℓ j in C ∞ (U ).
Here, ζ denotes a fixed smooth even function equal to 1 on [-1, 1] and supported in [-2, 2], and τ > 0 is a small parameter which will be fixed later. The object of this section is to construct the function ℓ. In the following, we will use X instead of (x, v, y) to simplify the equations. We see that our operator P can be written as in [START_REF] Bony | Eyring-Kramers law for Fokker-Planck type differential operators[END_REF] :

(3.1) P = -h div •A • h∇ + 1 2 (b • h∇ + h div •b) + c with A =   0 0 0 0 γ Id 0 0 0 0   , b =   v -∂ x V -νyv ν(|v| 2 -dh)   and c = γ |v| 2 4 -h d 2 
Since P is of the form (3.1), we can apply [1, Lemma 3.1], and we get

(3.2) P (ue -(f -f (m))/h ) = h(w + r)e -f -f (m)+ ℓ 2 2 /h
with r vanishing around s and

(3.3) w = (b + 2A∇f ) • ∇ℓ + ℓA∇ℓ • ∇ℓ -h div A∇ℓ.
In the following, we will consider γ, ν > 0 fixed and s = 0. Under these hypothesis, w can be expressed in powers of h, w ∼ j≥0 h j w j .

Foreshadowing the suitable estimates we will need in the end, we want to solve w = O(X 4 + hX 2 + h 2 ) in order to have

P (ue -(f -f (m))/h ) = O(h 2 ) λ m ,
this order is the lowest that will give us precise results on the low lying eigenvalues λ m , hence this choice. Thus we decide to take ℓ = ℓ 0 + hℓ 1 , which gives us w = w

0 + hw 1 + O(h 2 ) with (3.4) w 0 = (b 0 + 2A∇f ) • ∇ℓ 0 + A∇ℓ 0 • ∇ℓ 0 ℓ 0 , w 1 = (b 0 + 2A(∇f + ℓ 0 ∇ℓ 0 )) • ∇ℓ 1 + A∇ℓ 0 • ∇ℓ 0 ℓ 1 + R 1 , where b = b 0 + hb 1 and R 1 = b 1 • ∇ℓ 0 -div A∇ℓ 0 .
As in [START_REF] Bony | Eyring-Kramers law for Fokker-Planck type differential operators[END_REF] we call eikonal equation w 0 = 0 and transport equation w 1 = 0, we now are going to solve the eikonal equation up to the fourth order, and the transport equation up to the second one.

3.1. Solving the eikonal equation. Unlike in [START_REF] Bony | Eyring-Kramers law for Fokker-Planck type differential operators[END_REF], the outgoing manifolds of the flow passing through the saddle point are not a Lagrangian ones that project nicely on the X-space. Therefore, we need to find an other way to solve that equation, we will consider homogeneous polynomials to simplify it following [13, Remark 2.3.9].

We introduce P j hom the set of homogeneous polynomial of degree j and we consider

(3.5) ℓ 0 = 3 j=0 ℓ 0,j ,
with ℓ 0,j ∈ P j hom . In the following, we will need to have ℓ 0 (s) = 0 therefore, we need to set ℓ 0,0 = 0. We also denote ℓ 0,1 (X) = ξ • X for a certain ξ ∈ R 2d+1 to be determined. Thanks to (3.5) and (3.4), we have that w 0 also has a similar development

w 0 = 3 j=0 w 0,j + O(X 4
), w 0,j ∈ P j hom with w 0,0 = Aξ • ξ ℓ 0,0 = 0.

As in [START_REF] Bony | Eyring-Kramers law for Fokker-Planck type differential operators[END_REF], we denote by H and B the matrix Hess s f and db 0 (s) respectively. We also denote

Λ = 2HA + B T =   0 -Hess s V 0 Id γ Id 0 0 0 0  
and noticing that at the order 1, we have ∇f (X) ∼ HX and b 0 (X) ∼ BX, w 0,1 = 0 becomes

(3.6) Λξ • X + (Aξ • ξ)ξ • X = 0,
with unknown ξ and must be true for any X near 0. Taking ξ an eigenvector of Λ associated with a negative eigenvalue will solve the equation, we will just have to chose the right vector on Rξ.

Recalling we set ourselves on s a critical point of order 1 of V , therefore, there exists

η > 0, ξ v ∈ R d \ {0} such that Hess s V ξ v = -ηξ v .
We look for an eigenvector ξ 1 =   ξ x ξ v 0   of Λ associated to an eigenvalue -µ < 0, thus they satisfy :

Λξ 1 =   ηξ v ξ x + γξ v 0   = -µ   ξ x ξ v 0  
Wich leads to the system :

ηξ v = -µξ x ξ x + γξ v = -µξ v
Hence µ is the positive solution of µ 2 + γµ -η = 0, i.e.

(3.7)

µ = 1 2 (-γ + γ 2 + 4η) > 0,
and we get

ξ x = - η µ ξ v .
Going back to (3.6), we look for a ξ that solves this equation, we are going to look for one of the type ξ = tξ 1 , in other words, we have to solve :

(3.8) t 2 (Aξ 1 • ξ 1 ) -µ = 0 We thus have t = µ Aξ 1 • ξ 1 = 1 |ξ v | µ γ (with Aξ 1 • ξ 1 ̸ = 0 because ξ v is an eigenvector, hence it is not null).
We now notice that for j ∈ {2, 3}, we have (3.9) w 0,j = Lℓ 0,j + R 0,j , with L = ΥX • ∇ + µ an endomorphism of P j hom , Υ = Λ T + 2AΠ ξ , Π ξ (X) = X • ξ ξ and where R 0,j is a smooth function of ℓ 0,k and ∇ℓ 0,k for k < j.

Solving (3.9) by homogeneous polynomial is a technique we take from [9, Chapter 3], although we will not solve it up to O(X ∞ ). One can show that if σ(Υ) ⊂ {Re z ≥ 0}, then σ(ΥX •∇) ⊂ {Re z ≥ 0}, see [START_REF] Bony | Eyring-Kramers law for Fokker-Planck type differential operators[END_REF]Lemma A.1] where they only consider {Re z > 0}, but there is no difficulty expanding the result to {Re z ≥ 0} either by continuity or just by doing the same proof. Because µ > 0, if we show that σ(Υ) ⊂ {Re z ≥ 0}, we will have that L is invertible and so we will solve w 0 = O(X 4 ).

In a basis of eigenvectors of Λ with ξ being the first one, we have that Λ is diagonal with only its first entry negative : -µ to be exact, the other ones are positive. In that same base, 2Π ξ A is also diagonal and its first entry is exactly 2µ, the other ones being non negative, therefore Υ T and thus Υ has no eigenvalue with negative real part.

Conclusion :

w 0 = O(X 4 ) 3.2. Solving the transport equation. The transport equation is much simpler to solve after having solved the eikonal one. Taking ℓ 1 = ℓ 1,0 + ℓ 1,1 with ℓ 1,j ∈ P j hom , we have w 1 = w 1,0 + w 1,1 + O(X 2 ), w 1,j ∈ P j hom and

w 1,0 = µℓ 1,0 + b 1 • ξ -div A∇ℓ 0,2 , w 1,1 = Lℓ 1,1 + R 1,1 ,
with R 1,1 a smooth function of ℓ 0 , ℓ 1,0 and their derivatives up to the second order. The first equation is easily solved (µ ̸ = 0) and the second is solved using the same methode as for w 0,2 and w 0,3 .

After this we now have (3.10)

P (ue -(f -f (m))/h ) = hO(X 4 + hX 2 + h 2 )e -f -f (m)+ ℓ 2 2 /h .
We now have to state [1, Lemma 3.3]'s result and adapt [1, Lemma 4.1]'s proof as we don't have their Lagrangian manifold and its generating function which directly proves this lemma, let us recall the result : Lemma 3.1. We have (3.11) det Hess

s f + ℓ 2 0 2 = -det H.
and hence, recalling that s ∈ U (0)

Hess s f + ℓ 2 0 2 > 0.
Thus, around s,

(3.12) X -s ∈ ξ ⊥ =⇒ f (X) > f (s).
Proof. We first observe that :

Hess s f + ℓ 2 0 2 = H + Π ξ
We thus have that (3.11) is equivalent to

det E = -1,
where E = Id +H -1 Π ξ . We first observe that ξ ⊥ is stable by E and that E |ξ ⊥ = Id. On the other hand, one has

Eξ • ξ = ∥ξ∥ 2 (1 + H -1 ξ • ξ). But, H(2A + H -1 B T )ξ = Λξ = -µξ gives (2A + H -1 B T )ξ • ξ = -µH -1 ξ • ξ.
Looking at the skew-adjoint part of P and using (1.9), we obtain

h div b -b • ∇f = 0,
identifying the first term in the classical expansion we get b 0 • ∇f = 0, and knowing that ∇f (X) ∼ HX and b 0 (X) ∼ BX it follows that B T H is antisymmetric and so is H -1 B T = H -1 (B T H)H -1 because H is symmetric. Hence we have

H -1 ξ • ξ = - 2 µ Aξ • ξ = -2
using (3.8), which leads to Eξ • ξ = -∥ξ∥ 2 . Taking a basis adapted to ξ ⊥ completed with ξ we can easily compute det E and obtain the aimed result. For (3.12), around s,

f (X) = f (s) + 1 2 H(X -s) • (X -s) + O(|X -s| 3 ) But, over ξ ⊥ , H = H + Π ξ = Hess s f + ℓ 2 0 2
> 0 by what we have done just before.

□

Simpler case of a two wells function

In the following, we will restrain our study to a potential V being a two-wells function, in other words, a function satisfying U (0) = {m, m} and U (1) = {s} (see fig. In this configuration we know from Theorem 1 that P has exactly two low lying eigenvalues, among which 0 that we decide to associate to m, the other one still not precisely known is associated to m. This choice will appear to be relevant later on, when the exact form of the eigenvalue will be explicit. This is why we consider two wells and so we will focus on the second smallest eigenvalue, the aim of this section is to prove Theorem 2.

We define several sets following the description of [START_REF] Bony | Eyring-Kramers law for Fokker-Planck type differential operators[END_REF], for τ, δ > 0 :

B τ,δ = {f ≤ f (s) + δ} ∩ {X ∈ R 2d+1 , |ξ • (X -s)| ≤ τ } E τ,δ = {f ≤ f (s) + δ} \ C τ,δ
where C τ,δ denotes the connected component of B τ,δ containing s. We note E + τ,δ the connected component of E τ,δ containing m and E - τ,δ its complement in E τ,δ . One can show that for τ 0 , δ 0 small enough, for every τ ∈ ]0, τ 0 ], δ ∈ ]0, δ 0 ], we have m ∈ E - τ,δ . These are useful to define the following cutoff properly

χ ℓ (X) = +1 for X ∈ E + 4τ,4δ -1 for X ∈ E - 4τ,4δ
and

χ ℓ (X) = C -1 h ℓ(X) 0 ζ(r/τ )e -r 2 2h dr for X ∈ C 4τ,4δ ,
where We notice by the way that ∃β > 0, C -1 h = 2 πh (1+O(e -β/h )). χ ℓ is indeed a smooth function because on the border of C 4τ,4δ we have for

C h = 1 2 +∞ -∞ ζ(r/τ )e -
h small ℓ ∼ ℓ 0 ∼ ξ•(X -s) = 4τ but ζ(•/τ ) is vanishing passing 2τ . To have a cutoff defined properly on R d , we introduce θ(X) = 1 for X ∈ {f ≤ f (s) + δ} 0 for X ∈ R d \ {f ≤ f (s) + 2δ}
and smooth between these sets. Hence, we have θχ ℓ ∈ C ∞ c (R 2d+1 , [-1, 1]) and supp θχ ℓ ⊂ {f ≤ f (s) + 2δ}. Definition 4.1. For τ > 0 and then δ, h > 0 small enough, we define the quasimodes

ψ m (X) = 2e -f (X)-f (m) h ψ m (X) = θ(X)(χ ℓ (X) + 1)e -f (X)-f ( m) h
And in the same time, we define the normalized quasimodes

φ m = ψ m ∥ψ m ∥ φ m = ψ m ∥ψ m ∥
For shortness, we write D X * = | det Hess X * (f )| 1/2 for X * ∈ U. We recall that γ, ν > 0 are fixed. Proposition 4.2. For τ > 0 and then δ > 0 small enough, there exists C > 0 such that for every m, m ′ ∈ U (0) = { m, m} and h > 0 small,

i) ⟨φ m , φ m ′ ⟩ = δ m,m ′ + O(e -C/h ), ii) ⟨P φ m , φ m ⟩ = he -2 S(m)/h µ(s) 2π D m D s (1 + O(h)) iii) ∥P φ m ∥ 2 = O(h 4 )⟨P φ m , φ m ⟩ iv) ∥P * φ m ∥ 2 = O(h)⟨P φ m , φ m ⟩
where S( m) = f (s) -f ( m) and S(m) = +∞.

Remark 4.3. We have built our constant µ to be positive and thus -µ is the eigenvalue of Λ while [START_REF] Bony | Eyring-Kramers law for Fokker-Planck type differential operators[END_REF] did it the other way, hence the lack of absolute value in ii).

Proof. Noticing f attains its absolute minimum at m on supp ψ m , by using a Laplace method on ψ m we obtain Let us now prove i). By definition, ∀m ∈ U (0) , ⟨φ m , φ m ⟩ = 1. Computing ⟨φ m , φ m ⟩, using Cauchy-Schwarz inequality and noticing that f ≥ f ( m) on supp φ m , we have

⟨φ m , φ m ⟩ = 1 ∥ψ m ∥ ⟨2e -(f -f (m))/h , φ m ⟩ L 2 (supp φ m ) = 1 ∥ψ m ∥ O e -(f ( m)-f (m))/h ,
which implies i) using (4.1) and recalling m is the lone global minimum of f . Recalling P ψ m = P * ψ m = 0 we only have to prove ii), iii) and iv) for m = m. Using the calculus done in [START_REF] Bony | Eyring-Kramers law for Fokker-Planck type differential operators[END_REF] of ⟨P ψ m , ψ m ⟩ we have

⟨P ψ m , ψ m ⟩ = h 2 C -2 h C 4τ,4δ θ 2 ζ(ℓ/τ ) 2 A∇ℓ • ∇ℓ e -2 f + ℓ 2 2 -f ( m) /h + O(e -2( S( m)+δ)/h ).
According to how we built ℓ and Lemma 3.1, Let us now prove iii). Using [START_REF] Bony | Eyring-Kramers law for Fokker-Planck type differential operators[END_REF]'s work on ∥P ψ m ∥ 2 , we have

f + ℓ 2 0 2 (s) = f (s), ∇ f + ℓ 2 0 2 ( 
∥P ψ m ∥ 2 = P (χ ℓ e -(f -f ( m))/h ) 2 L 2 (supp θ) + O(e -2( S( m)+δ)/h
), and we recall (3.10) with the constant C h

P (χ ℓ e -(f -f ( m))/h ) = √ hO(X 4 + hX 2 + h 2 )e -f -f ( m)+ ℓ 2 2 /h
and thus, since we are on supp θ ⊂ C 4τ,4δ , we obtain with another Laplace method

∥P ψ m ∥ 2 = O(h 4 )⟨P ψ m , ψ m ⟩.
Now let us move to iv). We notice P * satisfies (3.1) with -b instead of b therefore, it satisfies an equation similar to (3.2), with a w * slightly different from w but with w * 0,0 = w 0,0 = 0 and w * 0,1 = O(X), it leads to 

P * (χ ℓ e -(f -f (m))/h ) = √ hO(X)e -f -f (m)+ ℓ 2 2 /
= ⟨P φ m , φ m ⟩ = he -2 S( m)/h µ(s) 2π D m D s (1 + O(h)). Recalling f (x, v, y) = 1 2 V (x) 2 + |v| 2 + y 2 2 we have that 2 S( m) = 2(f (s) -f ( m)) = V (s) -V ( m) = S( m) and D m D s = | det Hess m f | 1/2 (det Hess s f ) 1/2 = 2 -(2d+1) | det Hess m V | 1/2 2 -(2d+1) (det Hess s V ) 1/2 = | det Hess m V | 1/2 (det Hess s V ) 1/2 hence λ = he -S( m)/h µ(s) 2π | det Hess m V | 1/2 (det Hess s V ) 1/2 (1 + O(h)).
We thus have

∥P φ m ∥ = O h 2 λ and ∥P * φ m ∥ = O h λ . Let us recall Π 0 = 1 2iπ ∂ D (z -P ) -1 dz where D = D(0, c 1 2 g(h)), recalling g(h) is defined in (1.11), we also denote u 1 = Π 0 φ m and notice that u 0 = Π 0 φ m = φ m .
And so there exists c > 0, such that for j, k ∈ {0, 1}

⟨u j , u k ⟩ = δ j,k + O(e -c/h ) and ⟨P u j , u k ⟩ = δ j,k δ j,1 λ + O(g(h) -1 h 5 2 λ),
having computed, following (2.36)

⟨P u 1 , u 1 ⟩ = ⟨P φ m , φ m ⟩ + ⟨P (Π 0 φ m -φ m ), φ m ⟩ + ⟨P Π 0 φ m , Π 0 φ m -φ m ⟩ = λ + O ∥Π 0 φ m -φ m ∥ ∥P * φ m ∥ + ∥Π 0 φ m -φ m ∥ ∥P φ m ∥ = λ + O g(h) -1 h 2 ( √ h + h 2 ) λ = λ 1 + O g(h) -1 h 5 2 = λ 1 + O √ h
We then see that for h small enough, (u 0 , u 1 ) is a basis of Ran Π 0 , by the Gram-Schmidt process we orthonormalize the previous basis into a basis e = (e 0 , e 1 ) (notice that in fact e 0 = φ m ), and we have e j = u j + O(e -c/h ). We can easily compute the matrix of P | Ran Π 0 in this basis Seeing its eigenvalues, we conclude Theorem 2.

5. Appendix : some technical results

5.1.

Proof of Proposition 1.1. The idea is to mimic the proof of [START_REF]Spectral theory and its applications[END_REF]Theorem 15.1]. Let h, ν, γ > 0 be fixed. To show that P admits a maximal accretive extension, it is first necessary to show that it admits an accretive extension, this comes from the skew-adjointness of H 0 and Y , as well as from the positivity of O. It therefore remains to show the maximal side, for that we use the criterion which tells us that P is maximal accretive if T = P + γ(h/2 + 1) Id has a dense image.

Let f ∈ L 2 (R 2d+1 ) such that ∀u ∈ C ∞ c (R 2d+1
), ⟨f, T u⟩ = 0.

We then must show that f = 0. As P is real, we can assume also is f . We split

Y = h((|v| 2 -dh) ∂ y -yv • ∂ v ) =Y 1 - y 2 dh =Y 0
where we can see Y 1 is a homogeneous differential operator of order 1 and Y 0 is a mere C ∞ function. We want to apply the standard hypoellipticity theorem for Hörmander operators to use our solution as test function, so let's verify the hypothesis : P = - 

γh 2 ∥∂ v (ζ k f )∥ 2 + γ 4 ∥ζ k vf ∥ 2 + γ ∥ζ k f ∥ 2 + ζ k f 2 H 0 (ζ k ) + ν f Y (ζ 2 k f ) = γh 2 ∥ | ∂ v ζ k |f ∥ 2 .
(5.1)

Helffer doesn't use the expression of ζ k before this, the result is true for any compactly supported function. For the following computations, C will denote a positive constant that might change from line to line.

Noting C(k 1 ) ≃ sup |x|≤2k 1

|∇V | we have : 

-ζ k f 2 H 0 (ζ k ) ≤ C k 1 ∥ζ k vf ∥ ∥f ∥ + C(
γ ∥ζ k f ∥ 2 + γ 8 ∥ζ k vf ∥ 2 + ν f Y (ζ 2 k f ) ≤ C 1 k 2 1 + C(k 1 ) 2 k 2 2 + 1 k 2 ∥f ∥ 2 .
It only remains to study the last integral, we have by integration by parts : 

f Y 1 (ζ 2 k f ) = f (Y 1 (ζ k )ζ k f + Y 1 (ζ k f )ζ k ) ζ k f Y 1 (ζ k f ) = 1 2 Y 1 ((ζ k f ) 2 ) = - h 2 yv • ∂ v ((ζ k f ) 2 ) f Y (ζ 2 k f ) = f 2 ζ k Y (ζ k ) + dh 2 y(ζ k f ) 2
-f Y (ζ 2 k f ) = h 2 d ζ k f 2 ∂ y ζ k ≤ C √ k 2 ∥ζ k f ∥ ∥f ∥ ≤ γ 2ν ∥ζ k f ∥ 2 + C k 2 ∥f ∥ 2
We finally get :

γ 2 ∥ζ k f ∥ 2 ≤ γ 8 ∥ζ k vf ∥ 2 + γ 2 ∥ζ k f ∥ 2 ≤ C 1 k 2 1 + C(k 1 ) 2 k 2 2 + 1 k 2 ∥f ∥ 2
And by taking the limit k 2 → +∞ and then k 1 → +∞, we obtain ∥f ∥ = 0. □ 5.2. Proof of Lemma 2.6. By simple computations, we recall (2.2) :

H 0 = v • δ x -∂ x V • δ v , Y = (|v| 2 -dh)δ y -yv • δ v .
For (2.9), this leads to

H * i H j Π ρ = -H i v j δ x j Π ρ = (-v i v j δ x i δ x j + h ∂ x i V ∂ v i (v j )δ x j )Π ρ = (-v i v j δ x i δ x j + δ i,j h ∂ x i V δ x j )Π ρ .
For (2.10), recalling that Y is skew-adjoint and thanks to -δ y = δ Proof. The first equation is straightforward when noticing ∆V 2 and N y are non negative. The second equation can be proved using functional calculus considering x →

x hα + cx . Let us remark that we can compute the constant, being 2 for the first equation, and 3 2d for the second one, but since the exact form of these constant will not be useful, we will keep C. □ Lemma 5.3. There exists C > 0 such that for all h > 0 and ν > 0 one has

∥δ x i (hα + d∆ V 2 ) -1 2 ∥ + ν √ h∥δ y (hα + 2dν 2 hN y ) -1 2 ∥ ≤ C
Proof. This estimate is obtained by taking the adjoint and using the spectral theorem. More precisely, for any u ∈ L 2 , one has

∥δ x i (hα + d∆ V 2 ) -1 2 u∥ 2 = ⟨δ * x i δ x i (hα + d∆ V 2 ) -1 2 u, (hα + d∆ V 2 ) -1 2 u⟩ ≤ ⟨∆ V 2 (hα + d∆V 2 ) -1 2 u, (hα + d∆V 2 ) -1 2 u⟩ ≤ ∥∆ V 2 (hα + d∆V 2 ) -1 ∥∥u∥ 2 ≤ C∥u∥ 2
by the previous lemma. The same arguments give the estimate on δ y (hα+2dν 2 hN y ) -1 2 . □

and δ y = h∂ y + y 2

 2 

(2. 25 )

 25 I δ ≥ γh∥(1 -Π ρ )u∥ 2 + δ Re⟨P u, (A + A * )u⟩. Denoting J = ⟨P u, (A + A * )u⟩, one has J = ⟨AZu, u⟩ + γ⟨AOu, u⟩ + ⟨Zu, Au⟩ + γ⟨Ou, Au⟩ and since A = Π ρ A and Π ρ O = 0 it follows that J = ⟨AZΠ ρ u, u⟩ + J ′ with J ′ = ⟨AZ(1 -Π ρ )u, u⟩ + γ⟨AOu, u⟩ + ⟨Zu, Au⟩. Moreover, by definition, one has AZΠ ρ = (hα + dBΠ ρ ) -1 dhBΠ ρ . Combined with Lemma 2.4 and taking α = min(1, ν 2 h), this shows that (2.26)

Figure 4 . 1 .

 41 Figure 4.1. Representation of a typical two-wells Morse function

  r 2 2h dr, ζ ∈ C ∞ (R, [0, 1]) is even and satisfies ζ = 1 on [-1, 1] and ζ = 0 outside [-2, 2].

(4. 1 ) 4 D - 1 / 2 m( 1 +

 14121 ∥ψ m ∥ = 2(πh) 2d+1 O(h)).

2 -(πh) 2d+1 2 ( 2 0 2 - 1 / 2 e - 2 S 0 2 = D 2 s

 222212202 s) = 0 and Hess s f + f ( m) as the phase function and s as the global minima, we have⟨P ψ m , ψ m ⟩ = 2h π A∇ℓ 0 • ∇ℓ 0 )(s) det Hess s f + ℓ ( m)/h (1 + O(h)).Using that (A∇ℓ 0 • ∇ℓ 0 )(s) = µ = µ(s) and det Hess s f + ℓ 2 thanks to (3.8) and (3.11), we have⟨P ψ m , ψ m ⟩ = 2h π (πh) 2d+1 2 µD -1 s e -2 S( m)/h (1 + O(h)). and (4.1) is enough to conclude.

  Mat e P | Ran Π 0 = (⟨P e j , e k ⟩) 0≤j,k≤1 =

2 jX 0 =ζ x k 1 ζ |v| 2 + y 2 k 2 (

 202 + X 0 + a(x, v, y) with k = d, X j = h ∂ v j , a(x, v, y) H 0 + νY 1 = v • h ∂ x -∂ x V • h ∂ v +νh((|v| 2 -dh) ∂ y -yv • ∂ v )Therefore, the Lie brackets are :[X j , X 0 ] = h 2 ∂ x j +νh 2 (2v j ∂ y -y ∂ v j ) [X j , [X j , X 0 ]] = 2νh 3 ∂ yWhich ensures that (X j ) j≥0 is bracketgenerating. By taking back the computation of[14, p219] with a modified ζ :ζ k (x, v, y) = where ζ, ζ ∈ C ∞ c , are cutoffs around 0 and k = (k 1 , k 2 ) ∈ (R * + )2 ), we get :

  Now with the expression of ζk , we have Y (ζ k ) = -dh h ∂ y + y 2 (ζ k ), and thus :

  * y -y, we first set Y * = (|v| 2 -dh)(δ * y -y) + yv • δ v = (|v| 2 -dh)δ * y -y(|v| 2 -dh) + yv • δ v .

  [START_REF] Helffer | Puits multiples en mécanique semi-classique. IV. Étude du complexe de Witten[END_REF]),(2.18) and (2.19) , we finally get(2.20) 

  h , and hence ∥P * ψ m ∥ 2 = O(h)⟨P ψ m , ψ m ⟩.

	□
	We can now complete the proof of Theorem 2.
	From Proposition 4.2 we denote
	λ

  And since| ∂ v j ζ k | ≤ C v j k 2 , we have γh 2 ∥ |∇ v ζ k |f ∥ ≤

					k 1 ) k 2	∥ζ k vf ∥ ∥f ∥
	≤	γ 16	∥ζ k vf ∥ 2 +	C k 2 1	∥f ∥ 2 +	γ 16	∥ζ k vf ∥ 2 +	C(k 1 ) 2 1 k 2	∥f ∥ 2
							C √ k 2	∥f ∥. Plugging these two into
	(5.1) we get								

We then get

Obtaining the last to equations (2.11) and (2.12) is pretty straightforward, we just write

3. Some resolvent estimates.

Lemma 5.1. One has the following estimates

Proof. For any u ∈ L 2 , since N y ≥ 0, one has