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91192 Gif-sur-Yvette, France (e-mail:
francoise.lamnabhi-lagarrigue@centralesupelec.fr)

Abstract
The aim of this paper is to propose an extension of the high-gain observed-based control design
obtained in Ahmed-Ali et al. (2023) to the case of sampled-data systems by considering a
Zero-Order-Hold (ZOH) device at the input. Moreover the class of nonlinear PDE is also enlarged
by adding a nonlinear term in the heat equation. The stability of the overall closed systems is
analyzed by using a suitable Lyapunov function.
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1. INTRODUCTION

In this paper, we consider the design of sampled-data
output feedback control for a class of nonlinear cascade
ODE-PDE systems. This topic is receiving an important
attention in the literature. Let us mention for instance the
works by Krstic (2009) and by Wu (2013) for a linear ODE
and the work by Wu (2013) where a nonlinear ODE is
considered. Recently Ahmed-Ali et al. (2023) proposed to
use the high-gain observer-based output feedback control
for nonlinear systems developed by Khalil and Praly
(2014) in order to design a new scheme of output feedback
of nonlinear ODEs triangular systems in cascade with
a PDE (heat equation). This algorithm, which can be
viewed as an extension of Khalil and Praly (2014) to a
class of cascade ODE-PDE systems, offers us a simple
parameters design and a kind of separation principle for
this class of systems. Another important advantage of
using the high-gain observers is that they can recover the
performances of state feedback control in the sense that,
for instance, the trajectories of the system under output
feedback are approaching those under state feedback as
soon as the observer gain increases.

In the present contribution we propose to extend the result
of Ahmed-Ali et al. (2023) to a more complex case by
considering a nonlinear term in the PDE part and by
adding the presence at the input of a Zero-Order-Hold
(ZOH) device. A new Lyapunov functional is introduced
in order to derive new stability conditions of the the overall
closed loop system.

Notations and preliminaries

Throughout the paper the superscript T stands for matrix
transposition, Rn denotes the n-dimensional Euclidean

space with vector norm |.|, In is the n×n identity matrix,
Rn×m is the set of all n×m real matrices, and the notation
P > 0, for P ∈ Rn×n, means that P is symmetric and
positive definite. In matrices, symmetric terms are denoted
∗; λmin(P ) (resp.λmax(P )) denotes the smallest (resp.
largest) eigenvalue. L2(0, D) is the Hilbert space of square
integrable functions z :→ R with the corresponding norm

∥z∥L2 =

 D

0
z2(x)dx. Hk(0, D) is the Sobolev space of

functions z : [0, D] → R having k square integrable weak
derivatives. Given a two-argument function u(x, t), then

its partial derivatives are denoted ut = ∂u
∂t , uxx = ∂2u

∂x2 .
u[t] and ux[t] refer to the functions defined on 0 ≤ x ≤ D

by (u[t])(x) = u(x, t) and (ux[t])(x) =
∂u(x,t)

∂x .

2. PROBLEM STATEMENT

Let us consider the following class of systems in the state
space Rn × L2(0, D).




Ẋi = Xi+1, i = 1, . . . , n− 1

Ẋn = f(X, v(tk)) t ∈ [tk, tk+1)
u(D, t) = X1

ux(0, t) = 0
ut = uxx + g(u), x ∈ [0, D]
y(t) = u(0, t)

(1)

where v and y represent respectively the input and the
output of the above system. The sampling instants tk are
an increasing sequence defined as follows :

0 = t0 < t1 < . . . , < tk < . . . , lim
i→∞

tk = ∞

with tk+1− tk ≤ h, where h > 0 is the maximum allowable
sampling period.
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Ẋn = f(X, v(tk)) t ∈ [tk, tk+1)
u(D, t) = X1

ux(0, t) = 0
ut = uxx + g(u), x ∈ [0, D]
y(t) = u(0, t)

(1)

where v and y represent respectively the input and the
output of the above system. The sampling instants tk are
an increasing sequence defined as follows :

0 = t0 < t1 < . . . , < tk < . . . , lim
i→∞

tk = ∞

with tk+1− tk ≤ h, where h > 0 is the maximum allowable
sampling period.

Sampled-Data Output Feedback Control of
Nonlinear ODE-PDE Systems

Tarek Ahmed-Ali ∗ Francoise Lamnabhi-Lagarrigue ∗∗

∗ Normandie University, ENSICAEN, 06 boulevard du marechal Juin
14000 Caen, France and Laboratoire LINEACT-CESI, UR 7525, 01
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Ẋi = Xi+1, i = 1, . . . , n− 1
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CNRS-CentraleSupelec-Université Paris-Sud, Université Paris-Saclay,

91192 Gif-sur-Yvette, France (e-mail:
francoise.lamnabhi-lagarrigue@centralesupelec.fr)

Abstract
The aim of this paper is to propose an extension of the high-gain observed-based control design
obtained in Ahmed-Ali et al. (2023) to the case of sampled-data systems by considering a
Zero-Order-Hold (ZOH) device at the input. Moreover the class of nonlinear PDE is also enlarged
by adding a nonlinear term in the heat equation. The stability of the overall closed systems is
analyzed by using a suitable Lyapunov function.

Keywords: Sampled- data control, High-gain observers, Cascade ODE-PDE systems.

1. INTRODUCTION

In this paper, we consider the design of sampled-data
output feedback control for a class of nonlinear cascade
ODE-PDE systems. This topic is receiving an important
attention in the literature. Let us mention for instance the
works by Krstic (2009) and by Wu (2013) for a linear ODE
and the work by Wu (2013) where a nonlinear ODE is
considered. Recently Ahmed-Ali et al. (2023) proposed to
use the high-gain observer-based output feedback control
for nonlinear systems developed by Khalil and Praly
(2014) in order to design a new scheme of output feedback
of nonlinear ODEs triangular systems in cascade with
a PDE (heat equation). This algorithm, which can be
viewed as an extension of Khalil and Praly (2014) to a
class of cascade ODE-PDE systems, offers us a simple
parameters design and a kind of separation principle for
this class of systems. Another important advantage of
using the high-gain observers is that they can recover the
performances of state feedback control in the sense that,
for instance, the trajectories of the system under output
feedback are approaching those under state feedback as
soon as the observer gain increases.

In the present contribution we propose to extend the result
of Ahmed-Ali et al. (2023) to a more complex case by
considering a nonlinear term in the PDE part and by
adding the presence at the input of a Zero-Order-Hold
(ZOH) device. A new Lyapunov functional is introduced
in order to derive new stability conditions of the the overall
closed loop system.

Notations and preliminaries

Throughout the paper the superscript T stands for matrix
transposition, Rn denotes the n-dimensional Euclidean

space with vector norm |.|, In is the n×n identity matrix,
Rn×m is the set of all n×m real matrices, and the notation
P > 0, for P ∈ Rn×n, means that P is symmetric and
positive definite. In matrices, symmetric terms are denoted
∗; λmin(P ) (resp.λmax(P )) denotes the smallest (resp.
largest) eigenvalue. L2(0, D) is the Hilbert space of square
integrable functions z :→ R with the corresponding norm

∥z∥L2 =

 D

0
z2(x)dx. Hk(0, D) is the Sobolev space of

functions z : [0, D] → R having k square integrable weak
derivatives. Given a two-argument function u(x, t), then

its partial derivatives are denoted ut = ∂u
∂t , uxx = ∂2u

∂x2 .
u[t] and ux[t] refer to the functions defined on 0 ≤ x ≤ D

by (u[t])(x) = u(x, t) and (ux[t])(x) =
∂u(x,t)

∂x .

2. PROBLEM STATEMENT

Let us consider the following class of systems in the state
space Rn × L2(0, D).




Ẋi = Xi+1, i = 1, . . . , n− 1

Ẋn = f(X, v(tk)) t ∈ [tk, tk+1)
u(D, t) = X1

ux(0, t) = 0
ut = uxx + g(u), x ∈ [0, D]
y(t) = u(0, t)

(1)

where v and y represent respectively the input and the
output of the above system. The sampling instants tk are
an increasing sequence defined as follows :

0 = t0 < t1 < . . . , < tk < . . . , lim
i→∞

tk = ∞
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(6) admits a unique classical solution (p̃, η) ∈ (C0[0,∞);H)∩
(C1(0,∞);H) such that (p̃(t), η(t)) ∈ D(A0)× Rn × Rn

∀t > t0. We can also do similar analysis for observer (4).

Theorem 2. Consider system (1). Then, there exist θ1,
D⋆(θ), h̄(θ) such that ∀θ > θ1, ∀D ∈ (0, D⋆(θ))
and ∀h ∈ (0, h̄(θ)), the observation error system (6)
converges exponentially to zero in the sense of the norm :(
|η(t)|2 +

∫D

0
ũ2(x, t)dx

) 1
2

Proof. In order to prove the exponential stability of the
system (6), we will divide the proof into three parts: for the
infinite dimensional sub-system, for the finite dimensional
one and finally for the overall error system.

Infinite dimensional sub-system

In this first part we will analyse the sub-system

{
p̃t = p̃xx + g(p̂(x, t) + Z1)− g(p(x, t) +X1)− θξ2
p̃(D, t) = 0
p̃x(0, t) = 0

(8)

In order to do this, we consider the following Lyapunov
functional :

W =
1

2

∫ D

0

p̃2(x, t)dx+
1

2

∫ D

0

p̃2x(x, t)dx

Then, the time derivative of W(t) along the trajectory of
the system (5) is

Ẇ (t) =

∫ D

0

p̃(x, t)p̃t(x, t)dx+

∫ D

0

p̃x(x, t)p̃xt(x, t)dx

=

∫ D

0

p̃(x, t)(p̃xx(x, t) + g̃ − θξ2)dx

+

∫ D

0

p̃x(x, t)p̃tx(x, t)dx

where

g̃ = g(p̂(x, t) + Z1)− g(p(x, t) +X1).

Notice that under Hypotheses (H3), we have

|g̃|2 ≤ 2Kg

(
|p̃(x, t)|2 + |η|2

)
From the fact that p̃(D, t) = 0, then we have p̃t(D, t) = 0

and by using the integration by parts on [0, D], we can
easily derive that

Ẇ = −
∫ D

0

p̃2x(x, t)dx− θ

∫ D

0

p̃(x, t)ξ2dx−
∫ D

0

p̃2xx(x, t)dx

+

∫ D

0

p(x, t)g̃dx−
∫ D

0

p̃xxg̃dx+ θ

∫ D

0

p̃xxξ2dx

If we use Young’s inequality, and under Hypotheses (H3)
then,

Ẇ ≤−
∫ D

0

p̃2x(x, t)dx− 1

2

∫ D

0

p̃2xx(x, t)dx

+

(
1

4
+ 24K2

g

)∫ D

0

p̃2(x, t)dx

+D(24K2
g + 12θ2)|ξ|2

Now by By using Wirtinger’s inequality Fridman and
Blighovsky (2012), we can also derive

Ẇ + 2δW ≤−(
π2

4D2
− 1

4
− 24K2

g − δ)

∫ D

0

p̃2(x, t)dx

− (
π2

8D2
− δ)

∫ D

0

p̃2x(x, t)dx

+D(24K2
g + 12θ2)|ξ|2

Finite-dimensional system

Let us now analyse the unperturbed sub-system

η̇ = F0(η, 0).

By considering the following Lyapunov function,

V (η) =
1

θ2(n−1)
V0(X) + ξTPξ (9)

where P is a positive definite symmetric matrix which
satisfies

P (A− LC) + (A− LC)TP = −In
Now let us compute the derivative of V along the solution

of the unperturbed system, we obtain

V̇ =
∂V

∂η
F0(η, 0).

After some computations as in Khalil and Praly (2014),
we can easily derive the following inequality:

V̇ ≤− c4
2θ2(n−1)

|X|2 −
[
θ − 2λmax(P )K0 −

4c23
c4

K2
0

]
|ξ|2

+ 8
c23
c4

K2
0 |ξ(t)− ξ(tk)|2

+
8

θ2(n−1)

c23
c4

K2
0 |X(t)−X(tk)|2 (10)

for some positive constant K0 independent of θ, and c4
defined in (2).
Choosing θ > θ0 such that :

θ0 = max

{
2λmax(P )K0 +

2c23
c4

K2
0 +

c4
2
, 1

}
(11)

we deduce that

V̇ ≤ −
c4

2θ2(n−1)
|η|2 + 8

c23
c4

K2
0 |ξ(t)− ξ(tk)|2

+
8

θ2(n−1)

c23
c4

K2
0 |X(t)−X(tk)|2

Now let us consider the following Lyapunov functional

W1(η) =
1

θ2(n−1)
V0(X) + ξTPξ

+ V1 + V2 (12)

where

Compared to Ahmed-Ali et al. (2023), we need to consider
that: i) the control v(tk) is constant between [tk, tk+1), and
ii) the PDE part contains a new nonlinear term g(u) .

Throughout the paper, we assume the following hypotheses:

H1: The function f is continuous globally Lipschitz in
both X and v with a Lipschitz constant K0 and f(X, 0) =
0.

H2: : There exists a continuously differentiable and
globally Lipschitz function α(X), such that the following
dynamical system 

Ẋi = Xi+1

Ẋn = f(X,α(X))

is globally exponentially stable.

Using the converse Lyapunov Theorem Khalil (1996) we
can say that there exists a function V0(X) > 0 and positive
parameters ci, i = 1, . . . , 4 such that:




c1|X|2 ≤ V0(X) ≤ c2|X|2

| ∂V0

∂Xi
| ≤ c3|X|

n−1
i=1

∂V0

∂Xi
Xi+1 +

∂V0

∂Xn
f(X,α(X)) ≤ −c4|X|2

(2)

for all X.

H3: : The function g is globally Lipschitz function in u
with a Lipschitz constant Kg.

If we consider the changes of coordinates p(x, t) = u(x, t)−
X1 then the above system can be written as follows



Ẋi = Xi+1, i = 1, . . . , n− 1

Ẋn = f(X, v(tk)) t ∈ [tk, tk+1)
p(D, t) = 0
px(0, t) = 0
pt = pxx + g(p(x, t) +X1)−X2, x ∈ [0, D]
y(t) = p(0, t) +X1

(3)

3. OUTPUT FEEDBACK DESIGN

Based on the above hypotheses, we propose the following
high-gain observer-based output feedback control:




Żi = Zi+1 − liθ
i(û(0, t)− y), i = 1, . . . , n− 1

Żn = f(Z, v(tk))− lnθ
n(û(0, t)− y) t ∈ [tk, tk+1)

v = α(Z)
p̂(D, t) = 0
p̂x(0, t) = 0
p̂t = p̂xx + g(p̂(x, t) + Z1)− Z2 x ∈ [0, D]

(4)
with

û(x, t) = p̂(x, t) + Z1

if we consider the errors p̃(x, t) = p̂(x, t) − p(x, t) and
ũ(x, t) = û(x, t)− u(x, t), then

Let us consider the dynamical error system e = Z−X and
ũ = û− u, then for any x ∈ [0, D], we obtain




ėi = ei+1 − liθ
ie1 − liθ

ip̃(0, t) i = 1, . . . , n− 1
ėn = f(Z,α(Z(tk)))− f(X,α(Z(tk)))− lnθne1 − lnθnp̃(0, t)

t ∈ [tk, tk+1)

Ẋi = Xi+1, i = 1, . . . , n− 1

Ẋn = f(X,α(Z(tk))) t ∈ [tk, tk+1)
p̃(D, t) = 0
p̃x(0, t) = 0.
p̃t = p̃xx + g(p̂(x, t) + Z1)− g(p(x, t) +X1)− e2, x ∈ [0, D]
ũ(x, t) = p̃(x, t)− e1

(5)

By using the classical change of coordinates ξi = θ1−iei,

we derive


ξ̇i = θξi+1 − θliξ1 − liθp̃(0, t), i = 1, . . . , n− 1

ξ̇n = θ1−n [f(Z,α(Z(tk)))− f(X,α(Z(tk)))]− θlnξ1 − θlnp̃(0, t)
t ∈ [tk, tk+1)

Ẋi = Xi+1, i = 1, . . . , n− 1

Ẋn = f(X,α(Z(tk))) t ∈ [tk, tk+1)
p̃(D, t) = 0
p̃x(0, t) = 0
p̃t = p̃xx + g(p̂(x, t) + Z1)− g(p(x, t) +X1)− θξ2
ũ(x, t) = p̃(x, t)− ξ1

Let us now introduce the following augmented vector state

η = [ξ,X]T , where ξ = (ξ1, . . . , ξn)
T .

Then the above system can be written as


η̇ = F0(η, p̃(0, t))
p̃(D, t) = 0
p̃x(0, t) = 0
p̃t = p̃xx + g(p̂(x, t) + Z1)− g(p(x, t) +X1)− θξ2
ũ(x, t) = p̃(x, t)− ξ1

(6)

where F0(η, p̃(0, t)) is given by


θξi+1 − θliξ1 − liθp̃(0, t), i = 1, . . . , n− 1

θ1−n [f(∆ξ +X,α(Z(tk)))− f(X,α(Z(tk)))]

−θlnξ1 − θlnp̃(0, t)

Xi+1, i = 1, . . . , n− 1

f(X,α(∆ξ(tk) +X)(tk))




. (7)

where ∆ = diag(1, . . . , θn−1).

Remark 1. The well- posedness problem of the system (6)
can be proven by using the work of Pazy (1983) and
by using similar arguments to those used in Katz and
Fridman. (2020) and Katz and Fridman. (2022) for each
interval [tk, tk+1). For instance, it is not difficult to see
that the infinite dimensional part of the system (6) can
be written in the Hilbert space L2(0, D) as an ordinary
differential equation: ˙̃p(t) = A0p̃(t) + g̃(p̃(t), ξ(t))− θξ2 with

g̃(p̃(t), ξ(t)) = g(p̂(t) +Z1)− g(p(t) +X1) and A0 = ∂2

∂x2 which is
defined on the dense domain D(A0)

D(A0) =

p̃ ∈ H2(0, D) : p̃x(0) = p̃(D) = 0}

The domain D(A0) ⊆ H2(0, D) ⊆ L2(0, D). Furthermore
as in Katz and Fridman. (2022) let us consider the operator

Ã =

A0 0 0
0 θ(A− LC) 0
0 0 A


.

Then following the same arguments than in Ahmed-Ali
et al. (2023), we can conclude that, the Cauchy-problem
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W =
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2
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1
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∫ D
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0

p̃(x, t)(p̃xx(x, t) + g̃ − θξ2)dx

+

∫ D

0

p̃x(x, t)p̃tx(x, t)dx

where

g̃ = g(p̂(x, t) + Z1)− g(p(x, t) +X1).

Notice that under Hypotheses (H3), we have

|g̃|2 ≤ 2Kg

(
|p̃(x, t)|2 + |η|2

)
From the fact that p̃(D, t) = 0, then we have p̃t(D, t) = 0

and by using the integration by parts on [0, D], we can
easily derive that

Ẇ = −
∫ D

0

p̃2x(x, t)dx− θ

∫ D

0

p̃(x, t)ξ2dx−
∫ D

0

p̃2xx(x, t)dx

+

∫ D

0

p(x, t)g̃dx−
∫ D

0

p̃xxg̃dx+ θ

∫ D

0

p̃xxξ2dx

If we use Young’s inequality, and under Hypotheses (H3)
then,

Ẇ ≤−
∫ D

0

p̃2x(x, t)dx− 1

2

∫ D

0

p̃2xx(x, t)dx

+

(
1

4
+ 24K2

g

)∫ D

0

p̃2(x, t)dx

+D(24K2
g + 12θ2)|ξ|2

Now by By using Wirtinger’s inequality Fridman and
Blighovsky (2012), we can also derive

Ẇ + 2δW ≤−(
π2

4D2
− 1

4
− 24K2

g − δ)

∫ D

0

p̃2(x, t)dx

− (
π2

8D2
− δ)

∫ D

0

p̃2x(x, t)dx

+D(24K2
g + 12θ2)|ξ|2

Finite-dimensional system

Let us now analyse the unperturbed sub-system

η̇ = F0(η, 0).

By considering the following Lyapunov function,

V (η) =
1

θ2(n−1)
V0(X) + ξTPξ (9)

where P is a positive definite symmetric matrix which
satisfies

P (A− LC) + (A− LC)TP = −In
Now let us compute the derivative of V along the solution

of the unperturbed system, we obtain

V̇ =
∂V

∂η
F0(η, 0).

After some computations as in Khalil and Praly (2014),
we can easily derive the following inequality:

V̇ ≤− c4
2θ2(n−1)

|X|2 −
[
θ − 2λmax(P )K0 −

4c23
c4

K2
0

]
|ξ|2

+ 8
c23
c4

K2
0 |ξ(t)− ξ(tk)|2

+
8

θ2(n−1)

c23
c4

K2
0 |X(t)−X(tk)|2 (10)

for some positive constant K0 independent of θ, and c4
defined in (2).
Choosing θ > θ0 such that :

θ0 = max

{
2λmax(P )K0 +

2c23
c4

K2
0 +

c4
2
, 1

}
(11)

we deduce that

V̇ ≤ −
c4

2θ2(n−1)
|η|2 + 8

c23
c4

K2
0 |ξ(t)− ξ(tk)|2

+
8

θ2(n−1)

c23
c4

K2
0 |X(t)−X(tk)|2

Now let us consider the following Lyapunov functional

W1(η) =
1

θ2(n−1)
V0(X) + ξTPξ

+ V1 + V2 (12)

where
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c4 − 16α1h
2e2δh(1 +K2

0 ) > 0

θ − 2λmax(P )K0 −
4c23
c4

K2
0 −D(24K2

g + 12θ2)

− 8K2
0α1h

2e2δh − α2h
2e2δh(θ|A− LC|+K0)

2 − β > 0

π2

4D2
−

1

4
− 24K2

g − δ > 0

π2

8D2
− (2θ2|L|2α2h

2e2δh +
1

β
θ2|PL|2)D > 0. (24)

for a positive fixed constant δ > 0 which represents
the speed of convergence. Then in order to satisfy the
above inequalities, we can choose h sufficiently small such
that the inequalities α2h2e2δh(θ|A − LC| + K0)2 < 1

2
and

c4 − 16α2h2e2δh(1 + K2
0 ) > 0 hold. Please note that it’s

not difficult to see that there exists h̄ such that for all
h ∈ [0, h̄(θ)) the above inequalities and the inequalities
(22) hold since the terms involving h are increasing when h
increases. We can also chooseD sufficiently small such that
the two last inequalities of (24) hold and the term D(24K2

g+

12θ2) involved in the second inequality (24) remains less
than 1

2 . Indeed we can easily deduce that

D < D∗(θ) = min {D⋆
1(θ), D

⋆
2(θ)} (25)

where

D⋆
1(θ) = min

{
π

2

√
1

1
4 + 24K2

g + δ
,

1

2(24K2
g + 12θ2)

}

and

D⋆
2(θ) =

(
π2

8(2θ2|L|2α2h2e2δh + 1
β θ

2|PL|2 + δ)

)1/3

After satisfying the above inequalities, we have to satisfy
the second inequality of (24) by choosing θ > max {θ1, θ0}
where θ0 is defined in (11) and

θ1 = 1 + 2λmax(P )(K0 + δ) +
4c23
c4

K2
0 + 8K2

0α1h
2e2δh + β (26)

and β is a tuning positive constant. This ends the proof.

Remark 3. The expression for D∗(θ) shows that there is a
trade off between θ and D. Indeed as θ increases, D∗(θ)
decreases. This also true for θ and D : the larger the
observer gain θ, the smaller the length of the PDE. Notice
that the gain of the observer does not depend on D. Then
the condition (25) means only a restriction on the class of
systems. Please note also that the tuning constant β can
be used to realize the above trade off and δ is used to fix
the speed of convergence.

4. CONCLUSION

A sampled-data case of the design of high-gain observer-based
output feedback control for a nonlinear systems with
sensors described by parabolic PDEs has been proposed
by bringing into light explicitly the expected trade-off
between the gain of the observer and the length of the
PDE. Further works will be undertaken in the same vein
by considering actuators PDEs and sampling in both input
and output. On the other hand, we are working on the
relaxation of the globally Lipschitz condition.
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V1 =
α1

θ2(n−1)
h2e2δh

∫ t

tk

e2δ(s−t)|Ẋ(s)|2ds

− π2

4

α1

θ2(n−1)

∫ t

tk

|X(s)−X(tk)|2ds (13)

and

V2 = α2h
2e2δh

∫ t

tk

e2δ(s−t)|ξ̇(s)|2ds

− π2

4
α2

∫ t

tk

|ξ(s)− ξ(tk)|2ds. (14)

where α1 and α2 are two positive constants which will
be determined later. By using the result of Selivanov
and Fridman (2016), which uses generalized Wirtinger’s
inequality, we easily deduce that both V1 and V2 are
nonnegative and does not grow at the jumps occurring
at instants tk. The time-derivative of W1, along the
sub-system

η̇ = F (η, p̃(0, t))

, satisfies :

Ẇ1 ≤ −
c4

2θ2(n−1)
|X|2 −

[
θ − 2λmax(P )K0 −

4c23
c4

K2
0

]
|ξ|2

+ 2θξTPLp̃(0, t) + 8
c23
c4

K2
0 |ξ(t)− ξ(tk)|2

+
8

θ2(n−1)

c23
c4

K2
0 |X(t)−X(tk)|2

− 2δV1 +
α1

θ2(n−1)
h2e2δh|Ẋ(t)|2 −

π2

4

α1

θ2(n−1)
|X(t)−X(tk)|2

− 2δV2 + α2h
2e2δh|ξ̇(t)|2 −

π2

4
α2|ξ(t)− ξ(tk)|2

(15)

Using Hypotheses (H1-H2-H3) and from the definition
of the system (6) and (7) , we can deduce the following
inequalities :

|Ẋ(t)| ≤ |A|.|X(t)|+ |b|K0|Z(tk)| (16)

and

|Ẋ(t)| ≤ |A|.|X(t)|+ |b|K0

(
θn−1|ξ(tk)− ξ(t)|

)

+ |b|K0

(
θn−1|ξ(t)|+ |X(t)|+ |X(tk)−X(t)|

)
. (17)

By using Young’s inequality, and since |A| = |b| = 1, then
we derive

|Ẋ(t)|2 ≤ 8(1 +K2
0 )|X(t)|2 + 8K2

0

(
θ2(n−1)|ξ(tk)− ξ(t)|2

)

+ 8K2
0

(
θ2(n−1)|ξ(t)|2 + |X(tk)−X(t)|2

)
(18)

On the the hand, we have also the following inequality :

|ξ̇(t)| ≤ (θ|A− LC|+K0)|ξ(t)|+ θLp̃(0, t) (19)

Combining the above inequalities, we easily deduce :

Ẇ1 + 2δW1 ≤ −
1

2θ2(n−1)

[
c4 − 16α1h

2e2δh(1 +K2
0 )− 4δc2

]
|X|2

−
[
θ − 2λmax(P )(K0 + δ)−

4c23
c4

K2
0

]
|ξ|2

+
[
8K2

0α1h
2e2δh + α2h

2e2δh(θ|A− LC|+K0)
2 + β

]
|ξ|2

−
1

θ2(n−1)

[
α1(

π2

4
− 8h2e2δhK2

0 )− 8
c23
c4

K2
0

]
|X(t)−X(tk)|2

−
[
α2

(
π2

4
− 2h2e2δh(θ|A− LC|+K0)

2

)]
|ξ(t)− ξ(tk)|2

+

[
8α1h

2e2δhK2
0 + 8

c23
c4

K2
0

]
|ξ(t)− ξ(tk)|2

+ (2θ2|L|2α2h
2e2δh +

1

β
θ2|PL|2)D

∫ D

0

p̃2x(x, t)dx (20)

for positive constants δ > 0 and β > 0.

Stability of the overall error system

At this stage, we consider the Lyapunov functional W2 =
W +W1.

If we choose α1 and α2 such that

α1 =
8
c23
c4

K2
0

(π
2

4
− 8h2e2δhK2

0 )

α2 =
8α1h2e2δhK2

0 + 8
c23
c4

K2
0

π2

4
− 2h2e2δh(θ|A− LC|+K0)2

(21)

then to guaranty that α1 > 0 and α2 > 0, we have to
choose h sufficiently small such that

π2

4
− 8h2e2δhK2

0 > 0

π2

4
− 2h2e2δh(θ|A− LC|+K0)

2 > 0 (22)

Then from the two previous parts, we obtain the following
inequality

Ẇ2 + 2δW2 ≤ −
1

2θ2(n−1)

[
c4 − 16α1h

2e2δh(1 +K2
0 )− 4δc2

]
|X|2

−
[
θ − 2λmax(P )(K0 + δ)−

4c23
c4

K2
0 −D(24K2

g + 12θ2)

]
|ξ|2

+
[
8K2

0α1h
2e2δh + α2h

2e2δh(θ|A− LC|+K0)
2 + β

]
|ξ|2

− (
π2

4D2
−

1

4
− 24K2

g − δ)

∫ D

0

p̃2(x, t)dx

−
(

π2

8D2
− δ − (2θ2|L|2α2h

2e2δh

)∫ D

0

p̃2x(x, t)dx

−
1

β
θ2|PL|2)D

∫ D

0

p̃2x(x, t)dx (23)

In order to ensure the exponential stability, it is sufficient
to guaranty the following inequalities
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c4 − 16α1h
2e2δh(1 +K2

0 ) > 0

θ − 2λmax(P )K0 −
4c23
c4

K2
0 −D(24K2

g + 12θ2)

− 8K2
0α1h

2e2δh − α2h
2e2δh(θ|A− LC|+K0)

2 − β > 0

π2

4D2
−

1

4
− 24K2

g − δ > 0

π2

8D2
− (2θ2|L|2α2h

2e2δh +
1

β
θ2|PL|2)D > 0. (24)

for a positive fixed constant δ > 0 which represents
the speed of convergence. Then in order to satisfy the
above inequalities, we can choose h sufficiently small such
that the inequalities α2h2e2δh(θ|A − LC| + K0)2 < 1

2
and

c4 − 16α2h2e2δh(1 + K2
0 ) > 0 hold. Please note that it’s

not difficult to see that there exists h̄ such that for all
h ∈ [0, h̄(θ)) the above inequalities and the inequalities
(22) hold since the terms involving h are increasing when h
increases. We can also chooseD sufficiently small such that
the two last inequalities of (24) hold and the term D(24K2

g+

12θ2) involved in the second inequality (24) remains less
than 1

2 . Indeed we can easily deduce that

D < D∗(θ) = min {D⋆
1(θ), D

⋆
2(θ)} (25)

where

D⋆
1(θ) = min

{
π

2

√
1

1
4 + 24K2

g + δ
,

1

2(24K2
g + 12θ2)

}

and

D⋆
2(θ) =

(
π2

8(2θ2|L|2α2h2e2δh + 1
β θ

2|PL|2 + δ)

)1/3

After satisfying the above inequalities, we have to satisfy
the second inequality of (24) by choosing θ > max {θ1, θ0}
where θ0 is defined in (11) and

θ1 = 1 + 2λmax(P )(K0 + δ) +
4c23
c4

K2
0 + 8K2

0α1h
2e2δh + β (26)

and β is a tuning positive constant. This ends the proof.

Remark 3. The expression for D∗(θ) shows that there is a
trade off between θ and D. Indeed as θ increases, D∗(θ)
decreases. This also true for θ and D : the larger the
observer gain θ, the smaller the length of the PDE. Notice
that the gain of the observer does not depend on D. Then
the condition (25) means only a restriction on the class of
systems. Please note also that the tuning constant β can
be used to realize the above trade off and δ is used to fix
the speed of convergence.

4. CONCLUSION

A sampled-data case of the design of high-gain observer-based
output feedback control for a nonlinear systems with
sensors described by parabolic PDEs has been proposed
by bringing into light explicitly the expected trade-off
between the gain of the observer and the length of the
PDE. Further works will be undertaken in the same vein
by considering actuators PDEs and sampling in both input
and output. On the other hand, we are working on the
relaxation of the globally Lipschitz condition.
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