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• Calibration of a kinematically redundant robotic cell to accurately po-
sition the X-ray source mounted on an industrial robot with respect to
the detector mounted on another robot

• Development of new tools, including a large-sized test phantom and a
calibration comb, to facilitate the calibration of the X-ray tomography
system

• Implementation of a well-defined methodology aimed at improving the
process capability for accurate part reconstruction
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Abstract

Aeronautical performance is enhanced by increasingly complex and lightweight
composite parts. The improvement of their manufacturing must ensure the
quality measured by Non-Destructive Testing. To evaluate the health of aero-
nautical parts that are a few meters long, we built a high dimensional robotic
cell including two industrial robots positioned on 5-meter-tracks equipped
with X-Ray Computed Tomography devices. Our main objective is to re-
construct the interior of the parts and detect any anomaly that may have
occurred during life cycle or manufacturing (such as porosity or inclusions).
In this way, the objective is to present a methodology, firstly, to evaluate
the raw process capability and secondly, to assess the improved process ca-
pability. The raw process capability uses geometrical identification and we
demonstrate that without proper identification, some defects can remain hid-
den. Three strategies are then developed. The first one involves improving
the robot behavior model, which takes into account a thermo-geometrical
model, including backlash compensation. Due to possible repositioning prob-
lems and to ensure the correct knowledge of the source with respect to the
detector, the second strategy involves a real-time test phantom located on the
detector named the comb prototype. Finally, a large-sized steel balls phan-
tom is designed to allow a calibration in the full workspace of the robots. This
phantom is also used to accurately determine the axis of the rotary horizontal-
axis support on which the large parts to be controlled are fixed. We demon-
strate that such an architecture, for reconstructing a perfect sphere, leads
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to an initial mean radius error of 0.05 mm which we improve to 0.016-0.017
mm with our methodology.

Keywords: X-ray computed tomography, Non-Destructive Test, robot
positioning, process capability, calibration phantom, accuracy improvement

1. Introduction

The integration of industrial robots in machining, assembly and control
processes has increased for decades. In aeronautics and naval industries,
high dimensional parts (measuring a few meters) are numerous and need to
be controlled [1]. Non-Destructive Testing (NDT) methods are used to assess
material health. X-ray Computed Tomography (XCT) is a NDT volumetric
control method that involves the 3D reconstruction of the inspected object
[2]. Inspection enables the detection of volumetric defects such as porosity
and inclusions. The quality of the reconstructed volume depends on precise
knowledge of the position and orientation [3] of the X-ray source relative to
X-ray detector. This aspect has been extensively studied since the work of
Hashem et al. [4] which confirmed the compatibility between the tomography
process and robot performance. Researchers have then turned their attention
to various sources of error, such as the influence of geometrical distortion
on the flat-panel detector [5]. Finally, progress is being made towards the
implementation of devices to determine motion errors [6].

Existing tomography platforms [7] generally employ fixed robot(s) to hold
either the source and detector or the controlled object [8] for acquiring data
used in object reconstruction [9]. Based on this straightforward architec-
ture, a circular scanning path is usually sufficient to reconstruct the part.
Unfortunately, artifacts can occur and the use of a kinematically redundant
robotic cell can be advantageous in facilitating access to different areas for
observation by moving X-ray detector and X-ray source as shown in Figure
1 [10] [11] [12].

The resolution of reconstructed volumes can reach sub-millimeter dimen-
sions. To achieve this, the quality of reconstruction depends mostly on a good
understanding of the geometry which includes the position of the source and
the position and orientation of the detector [13]. An inaccurate estimation
of the true geometry can result in artifacts [4] in the reconstruction such as
a contour artifact as shown in Figure 2.

2



Figure 1: X-Ray CT robotic cell including industrial robots located on tracks

[10] [11] [12]

(a) Reconstructed volume with
accurate geometry estimation

(b) Accurate geometry estima-
tion

(c) Inaccurate geometry estima-
tion (contour artifact)

Figure 2: Contour artefact observation of two rangefinder reconstructed volumes: (a)
volume and (b) slice with an accurate and (c) erroneous geometry knowledge

Driven by industrial needs, the ELIXIR platform (CEA-Tech) has been
developed to address this issue by using two industrial 6-axes robots ABB
IRB4600 (Position repeatability 0.05 mm) [14] mounted on 5-meter-tracks,
each robot holds either a X-ray tube (source) and a X-ray detector (Figure
3). Additionally, one vertical and one horizontal rotation axis table can be
used to position and rotate the object to be evaluated. As X-ray equipment is
mounted on the robot wrist, their position directly depends on the positioning
performance of the robots and the stability of their environment.

Additionally, new methods have emerged alongside standard circular to-
mography such as helical tomography or limited-view-angle tomography [15].
These methods applied to large parts with complex shapes involve displace-
ments of source and detector. Moreover, the robotization of the X-ray instru-
mentation raises questions about the impact of robot positioning on the to-
mography process, i.e the quality of reconstruction. Trajectory optimization
is then a key topic to meet process expectations. Hiller et al. [16] evaluated
performance in terms of accuracy and repeatability and highlighted that the
robot pose can be corrected using appropriate compensation methods. The
researchers demonstrate the complexity of trajectory generation, but they
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Figure 3: Robotised X-ray imaging platform ELIXIR - The positioning on the rotary
table is not studied within this work. We address the problematic of high-dimensional
parts located on the horizontal axis support (Fig.17).

express regret that no measurements in using real scan data have been be
performed yet. Additionaly, they emphasize the need of calibration meth-
ods to compensate for the robot absolute positioning errors [17]. Different
methods have been proposed to improve positioning performance such as on-
line positioning adaptation with external tools (laser-tracker) or modelings
that account for the transient changes due to environmental factors or robot
self-heating (thermal effect) [18].

The novelty of this work lies in a methodology (See Figure 4) that com-
bines different tools. The first one improves the absolute accuracy of the
robot by identifying thermal drift and backlashes [18] (1). The second one,
using an original calibration phantom named the calibration comb and placed
on the detector allows us to have a good understanding of the source in re-
lation to the detector (2). Finally, a large-sized phantom is designed to
calibrate source and detector positions in the cell frame. This device also en-
ables a clear definition of the rotation axis of the part to be reconstructed (3).
To highlight the quality of our work, we evaluate the raw process capability
and the contribution of each method.

To evaluate the process capability, reconstruction criteria are defined ac-
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Figure 4: Process capability measurement methodology

cordingly to the controlled object. The size of inner defects such as porosity
or cracks represents one reconstruction criterion. Another criterion is the re-
construction accuracy of specific geometrical objects. In this case, following
the literature, sphere objects [19] are used to assess the quality of recon-
struction with key performance indicators including radius, sphere-to-sphere
distances and mean sphericity errors.

The work is organised as follows: in Section II, we evaluate the capability
of the robotic cell and its impact on part reconstruction. Section III is
dedicated to the three strategies. Section IV and V deal with the discussion,
the conclusion and providing perspectives.

2. Raw process capability

The raw process capability involves measuring the capability of the robo-
tized XCT. After evaluating the robot positioning performances, we assess
the influence of positioning errors in two configurations. In the first one,
these errors serve as input for the numerical reconstruction of spheres. This
quantitative assessment of the degradation of reconstructed volumes is used
as a reference to evaluate the relevance of the methods presented in Section
3. In the second configuration, we qualitatively demonstrate the effect of
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raw process capability on the detectability of porosity defects in a composite
industrial part.

2.1. Robot positioning measurement

To simplify the study, the robot positioning accuracy is evaluated on a
linear trajectory along x axis without displacement of the robot basis on the
track. The study is performed on one robot and the method is applied to the
second one. The displacement involves stretching and bending the robot arm
(Figure 5). The positioning accuracy is assessed at multiple positions along
the trajectory using laser-tracker measurement which provide Tool Center
Point (TCP) positions in the cell frame after processing. The measured
positions are then compared to programmed ones, as illustrated in Figure
6. The results reveal substantial accuracy errors between the programmed
(orange) and measured (blue) trajectories. The maximal positioning error
∆ri in each axis is then identified as follows:

∆ri = max |im − ip| , i = {x, y, z} (1)

where im and ip are respectively the measured and programmed positions.
The values ∆rx, ∆ry and ∆rz are estimated:

• ∆rx = 0.24 mm

• ∆ry = 0.38 mm

• ∆rz = 0.72 mm

These results highlight the approximate sizes of positioning errors that can
be anticipated in the context of X-ray source and detector positioning.

2.2. Modeling of the geometrical configuration

The effect of the positioning uncertainty, as determined by previous mea-
surement, is studied in circular XCT simulations. The quality of reconstruc-
tion relies on a precise estimation of the geometrical configuration (Figure 7)
which is defined through nine parameters describing the positioning of source
and detector:

• f is the distance between the source and the principal point U0 which
is the orthogonal projection of the source onto the detector plane
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Figure 5: Linear trajectory measurement from folded (a) to stretched (b) arm configura-
tions

Figure 6: Comparison between measured and programmed trajectory: 3D view and Carte-
sian projections

• u0, v0 are the coordinates of the principal point U0 in the detector frame
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• θ, η, ϕ are the detector angles with reference to the world coordinate
frame (axes x, y, z) for a ZYX Euler convention

• t1, t2, t3 are the source coordinates with reference to the world coordi-
nate frame

Figure 7: Geometrical configuration of detector and source positions and orientation

This approach allows us to evaluate u0, v0, f , t1, t2 and t3 within the
range of ∆rx, ∆ry and ∆rz to estimate the reconstruction errors. Since the
orientation errors of robot positioning can not be directly obtainable from
measurement, we utilize a modified Denavit-Hartenberg model (DHm) [20]
to calculate these values based on the robot geometry. The position 0XTCP

and orientation 0RTCP of the end-effector are defined using the homogeneous
transformation matrix 0TTCP as follows :

0TTCP =

[
0RTCP

0XTCP

0 1

]
(2)

Where:

0TTCP =
n∏

i=0

i−1Ti(qi, ai, di, αi, θi) (3)
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With ai, di, αi, θi the geometrical parameters of the DHm and qi the joint
angles.
DH parameters are determined through a least-square resolution that min-
imizes residuals between the model and measured positions. Using Eq. 2
and 3, the homogeneous transformation matrix 0TTCP is computed for every
position along the trajectory, utilizing the identified DHm parameters. As a
result, the rotation matrix 0RTCP is extracted and Euler angles θ, η and ϕ
are determined such as:

0RTCP = Rz(ϕ)Ry(η)Rx(θ) (4)

The orientation errors are then determined similarly to Equation 1 with
i = {θ, η, ϕ}. The resulting maximal orientation errors are:

• ∆rθ = 0.13◦

• ∆rη = 0.15◦

• ∆rϕ = 0.11◦

To this extent, the influence on the quality of reconstruction can be eval-
uated afterwards.

2.3. Influence of positioning errors on the quality of reconstruction

The object under study is a simulated test phantom in which 3 mm
diameter steel balls are placed along a spiral depicted in Figure 8. Steel balls
are commonly used as reference reconstruction objects. Radiographs of the
phantom are simulated using the attenuation Beer-Lambert law (Equation 5
and 9) for the ideal geometrical configuration (Table 1) and a 2048 × 2048
pixels detector with a pixel size Tpixel = 0.200 mm.

I = I0 exp(−µL) (5)

with I the absorbed energy, I0 the initial energy, µ the steel attenuation
linear coefficient and L the crossed length of steel.

Reconstruction is performed using FBP algorithm [21] implemented in
the RTK Python package [22] and leads to a voxel size of 0.133 mm.

This configuration corresponds to a standard X-ray source and detector
positioning in a circular XCT with a reasonable magnification (1.5).

The methodology used to measure the effect of geometrical parameters
errors on the quality of spheres reconstruction follows these steps :
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Figure 8: Simulation of a test phantom with balls steel

f u0 v0 θ η ϕ t1 t2 t3
600.00 0.00 0.00 0.00 0.00 0.00 0.00 -400.00 0.00

Table 1: Ideal configuration geometrical parameters: lengths are in mm and angles in ◦

• The acquisition of 360 radiographs of the balls phantom is performed
using an attenuation Beer-Lambert model with the ideal geometrical
configuration.

• An offset to one of the nine parameters is applied based on the previous
estimated positioning errors.

• The reconstruction is performed using FBP algorithm.

• An empirical threshold is applied to the volume slices to select the vox-
els corresponding to the balls. This threshold has been determined for
the ideal geometry reconstruction which leads to the optimal recon-
struction quality.

• 3D clustering of the corresponding balls regions is performed.

• Each group of cloud points is fitted to a sphere with a least-square reso-
lution by optimizing radius r and center position (xc, yc, zc) to minimize
residuals between the cloud points and the virtual sphere. Three sphere
properties are then determined: sphere center, sphericity error (mean
error between cloud points and the fitted sphere) and radius error (dif-
ference between actual and measured radius). From the spheres center
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positions, the distances to closest spheres are computed and compared
to the theoretical ones to calculate the sphere-to-sphere distance errors.

Figure 9 provides an example of inaccurate geometry estimation in the re-
construction of spheres. The reconstruction with actual parameters results in
satisfactory spheres identification, but the introduction of positioning errors
affects the spheres properties. This approach enables us to quantitatively
link positioning errors with the geometrical quality of the reconstruction.

(a) Ideal reconstruction (b) Flawed reconstruction

Figure 9: Reconstructed spheres after image thresholding

Positioning errors have been previously estimated at up to 0.5 mm for
length parameters and 0.15° for angle parameters. The latter have been in-
creased to 1.0° to study a wider range. Geometrical parameters are studied
independently to observe the critical impact of each one on the reconstruc-
tion criteria. Therefore, each simulation pertains to a single parameter error
to avoid coupled effects. The results are summarized in Figure 10 which in-
cludes mean radius, sphere-to-sphere distance and sphericity errors for both
length and angle parameters. An overall substantial difference in the quality
of reconstruction is observed based on these parameters. Notably, the param-
eters u0 and t1 corresponding to horizontal shifts of source and detector are
the most critical for the quality of sphere reconstruction as they significantly
increase the radius and sphericity errors. Indeed, a 0.5 mm error on u0 leads
to 0.25 mm radius error while magnification and vertical parameters barely
affects sphere reconstruction properties. Orientation errors also deform the
spheres shape. The in-plane angle η has a more significant impact than the
out-of-plane angles θ and ϕ as it increases errors in all three reconstruction
criteria. The effect is approximately three times stronger for the in-plane
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angle. The out-of-plane ϕ angle (rotation around vertical axis z) has no in-
fluence on the reconstructed spheres. In the most critical configuration, the
radius errors reach up to 0.25 mm. This value is substantial compared to
the nominal radius value (1.5 mm), highlighting the strong deformation of
spheres shape.

(a) Mean radius errors for lengths parameters (b) Mean radius errors for angles parameters

(c) Mean sphere-to-sphere distance errors for lengths
parameters

(d) Mean sphere-to-sphere distance errors for angles
parameters

(e) Mean sphericity errors for lengths parameters (f) Mean sphericity errors for angles parameters

Figure 10: Reconstruction errors for lengths and angles parameters errors

To sum up, for a configuration with a voxel size of 0.133 mm, robot
positioning errors can lead to a degradation of reconstruction quality.

12



2.4. Direct reconstruction of an industrial composite part with inner defects

A complementary study of the raw process capability is conducted on
an industrial composite part exhibiting porosities. In this case, the quality
criteria are the detectability of inner defects. The experimental setup is as fol-
lows: the source and detector are positioned on both sides of the part, which
is placed on a rotating table for this recording of projections. Consequently,
the positioning effect is taken into account. Two reconstructions are com-
puted: one with the theoretical parameters resulting from the programmed
positions and the second one with the parameters identified to improve the
quality of reconstruction. Comparison between both reconstructed volumes
highlights the effect of raw process capability on the detection of defects such
as porosity or inclusions (Figure 11). Indeed, the calibrated reconstruction
(b) allows for slice visualization, enabling the detection of a porosity with a
maximum length of 4.5 mm. However, this defect is not discernible by the
reconstruction resulting from programmed positions as artifacts obscure the
reconstructed volume.

The study of raw process capability through the measurement of robot posi-
tioning accuracy and the reconstruction of specific shapes or industrial parts
has highlighted the sensitivity of a standard circular XCT to geometrical
errors. The magnitudes of undetected defects sizes or shape deformations
are linked to robot accuracy, which is especially influenced by the trajec-
tory and the tomography configuration. The latter is primarily defined by
the magnification ratio, which in turn modifies the voxel size. It is within
this framework that three main strategies are investigated to enhance the
capability of the XCT robotic cell.

3. Improvement methods of X-ray tomography process capability

Three different methods are investigated to enhance the process capabil-
ity. In each case, the steel ball phantom is used to assess the enhancement of
reconstruction quality. Advantages, drawbacks and usage conditions are also
presented. Table 3 provides a summary of the properties of the reconstructed
spheres for the three methods.

3.1. Thermo-geometrical robot model

A relevant information of the study of raw process capability is the signif-
icant impact of accuracy errors on the tomography process. Improving the
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(a) Reconstruction with programmed positions (b) Reconstruction with identified parameters -
The porosity length is 4.5 mm

Figure 11: Zooms on porosity defect in a slice of the reconstructed volumes

robot behavior model is a way of limiting robot positioning errors. Here, a
corrective method is employed, focusing on the compensation of the thermal
drift and the backlash effect, which can respectively negatively affect repeata-
bility and bidirectional accuracy. The backlash effect is highlighted in Figure
6 with the gap between forwards and backwards paths. A thermo-geometrical
model adapted from DHm is defined. Optimization of the parameters enables
a significant reduction in the effects of backlash and thermal drift [18]. The
obtained results underline that achieving an accuracy close to the repeata-
bility of the robot is achievable. In this way, the residual maximal accuracy
errors in each direction are (Figure 12):

• ∆rx = 0.091 mm

• ∆ry = 0.075 mm

• ∆rz = 0.096 mm

Similarly to Section 2.3, these errors are input into the reconstruction algo-
rithm to evaluate the deformation of the reconstructed spheres.

3.2. Implementation of an online calibration phantom

This method leans on the fastening of a calibration phantom to the de-
tector. It theoretically enables an online calibration. For a non-standard
trajectory such as limited-view-angle tomography which requires displace-
ments of source and detector around the Region of Interest (ROI), a cali-
bration phantom fixed to the detector enables to calibrate source positions
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Figure 12: Calibration of DHm robot

which respect to the detector. In each position, a unique radiograph is per-
formed containing the ROI of the controlled part and the projection of the
calibration phantom. Features of the ROI and phantom must not overlap.
As a result, the area dedicated to the controlled part is reduced. However,
this method is not time consuming as it does not require to replace the part
with a standard calibration phantom. Moreover, each position is calibrated
independently.

The device is called the ”calibration comb”. The comb, as illustrated in
Figure 13, is an experimental sample manufactured by electrical discharge
machining with a teeth width of 0.51 mm. A calibration comb consists of
a regular alternation of teeth and gaps, whose geometry is precisely known.
The principle is similar to a vernier scale in a caliper. Based on the geometry
of the comb, i.e teeth width, and the geometrical configuration, the projec-
tion of the comb onto the detector produces a specific pattern. Figure 14
illustrates an experimental configuration with a radiograph of the comb. The
theoretical pattern projection is depicted in Figure 15. The objective is that
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the teeth shadows Tzone length is superior to the pixel size Tpixel, defined by
the fraction x such as:

x =
Tzone

Tpixe

(6)

Figure 15 gives an example of a fraction of x = 1.1. First pixel absorbs 100%,
second one 90%, third 20%, and so on. Spatial derivation of this raw signal
leads to a nearly-sinusoidal function with one predominant frequency fx. We
demonstrate that fx is correlated to x such as:

fx =
1

10x
(7)

Figure 13: Calibration comb prototype with 0.51 mm teeth width

(a) Comb on the detector (b) Radiography of the comb

Figure 14: Radiography of the comb

The signal phase is measured by fitting a sinusoidal function (Figure
16(a)). A first calibration of the signal reference is performed to measure
the signal phase ϕr in a configuration where the source is perfectly aligned
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Figure 15: Theoretical projection of calibration comb. Teeth shadows are little larger than

pixel size. Here is an example where x =
Tzone

Tpixel
= 1.1.

with the detector center. The signal phase for the actual configuration ϕa is
determined to compute the phase difference ∆ϕ. The calibration consists of
measuring the phase difference to estimate the detector shift u0 or v0.

Simulations were carried out on a numerical comb to establish the func-
tion between signal phase difference ∆ϕ and geometrical misalignments u0

(horizontal detector axis) or v0 (vertical detector axis). Figure 16(b) dis-
plays the signal phase difference as a function of horizontal offset u0. The
blue cross points correspond to the signal phase difference measurement on
numerical signals. The evolution is fitted by a linear regression:

∆ϕ = ku0 (8)

with: k = −76.6◦/mm
A signal analysis sensitivity study estimated the phase difference uncer-

tainty measurement: ϕunc = ±2.5◦. This value leads to source-to-detector-
center offsets uncertainty : u0,unc = v0,unc = ±0.03 mm.

Reconstruction simulations are conducted using raw source-to-detector-
center offsets accuracy errors and calibrated offsets to evaluate the effective-
ness of the calibration comb. The calibration comb reduces the reconstruc-
tion spheres errors, as mean radius and sphericity errors decrease respectively
from 0.093 to 0.016 mm and 0.013 to 0.001 mm.

This numerical study underlines the enhancement offered by such a cali-
bration phantom which can significantly reduce horizontal and vertical source-
to-detector-center misalignments.

3.3. Large-sized steel balls calibration phantom

The online calibration comb has demonstrated its potential to reduce
errors on two parameters of the geometrical configuration such as the hor-
izontal and vertical source-to-detector-center misalignments. However, the
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(a) Phase difference for several horizontal offsets u0 (b) Signal phase difference - horizontal offset graph

Figure 16: Signal analysis of the comb phantom simulations with a geometrical configu-
ration corresponding to a signal frequency F = 0.909 pixels−1

raw process capability study has underlined the potential impact of other
parameters, particularly orientation errors. Therefore, a method based on a
standard balls calibration phantom [23] has been explored and adapted to
the specific requirements of a large robotized XCT cell. This type of cali-
bration phantom relies on the perfect knowledge of spheres centers X(x, y, z)
in the cell frame (Figure 17). It involves capturing radiographs of a suffi-
cient number of balls where the radiograph displays ellipses corresponding to
the projection of the balls (Figure 18). These ellipses are then processed to
calculate the projection centers U(u, v) which corresponds to the projection
of the ball centers. These points X and U are related through a pin-hole
camera model:

sU = SR(X − T ) (9)
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with:

S =

f u0 0
0 1 0
0 v0 0

 (10)

R = Rz(ϕ)Ry(η)Rx(θ) (11)

R =

cϕcη −sϕcθ + cϕsηsθ sϕsθ + cϕsηcθ
sϕ cϕcθ + sϕsηsθ −cϕsθ + sϕsηcθ
−sη cηsθ cηcθ

 (12)

T =

t1t2
t3

 (13)

where si = sin(i) and ci = cos(i).

Figure 17: Large-sized test phantom installed

The calibration consists of minimizing the objective function g which
calculates the difference between measured Uexp and model Umod projection
centers by optimizing the geometrical parameters p.

g(p) =
∑

∥Uexp − Umod(p)∥ (14)

where Umod are calculated following Equation 9.
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Figure 18: Example of a radiography of the large-sized steel balls calibration phantom.
Centres of the ellipses are determined after image processing.

The quality of geometrical calibration strongly depends on a precise un-
derstanding of the positions of the center of the balls. This is why a metrolog-
ical control and an identification of the phantom origin and orientation with
respect to the cell frame are necessary to accurately determine the position of
the balls in the cell frame. After minimization of the objective function, the
identified geometrical parameters must match the actual geometrical con-
figuration. To account for the uncertainty of the metrological control and
the phantom frame identification, denoted as ∆xunc, a Monte-Carlo simu-
lation is performed to estimate the resulting uncertainty in the geometrical
parameters. The features of the simulation are as follows :

• Number of simulations: N = 1000

• Number of balls: M = 43

• Uncertainty of balls positions: ∆xunc = ±0.032 mm

The distributions of the identified geometrical parameters are illustrated
in Figure 19. A D’Agostino and Pearson test [24] is conducted to check the
normality of the distributions, which enables the computation of 1-σ and 3-σ
probability intervals corresponding to 68% and 99% respectively. Table 2
summarizes the 1-σ and 3-σ uncertainties of geometrical parameters. The 3-
σ uncertainty is used as an input to the reconstruction algorithm to evaluate
the effect of residuals errors on the quality of sphere reconstruction.
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Figure 19: Distributions of identified parameters over N = 1000 simulations. The length
and angles parameters are respectively expressed in mm and °.

The results are presented in Table 3, where we compare all the method-
ologies and showcase the improvements achieved in terms of accuracy.

Interval
f u0 v0 t1 t2 t3 θ η ϕ

(mm) (°)
1-σ 0.049 0.026 0.055 0.007 0.033 0.007 0.005 0.000 0.002
3-σ 0.147 0.079 0.164 0.020 0.099 0.020 0.015 0.001 0.007

Table 2: Parameters uncertainty at 1-σ and 3-σ

4. Discussion

The first section underscores the concerns regarding a large-sized robo-
tized XCT cell. The precise control of robot positioning is essential to ensure
the highest quality tomography, whether it involves standard circular, helical,
or non-standard trajectories. Such platforms are designed to handle large,
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complex-shaped parts. Helical and limited-view-angle trajectories align with
the capabilities of the cell, which utilizes two industrial robots and one au-
tomated system specifically designed for handling long parts. These types of
tomography require the source and detector to move on both sides of the part.
The quality of reconstruction is significantly impacted by errors in estimat-
ing the geometrical configuration. Therefore, an inaccurate understanding
of the geometrical configuration, caused by errors in robot positioning or
the absence of correction, becomes critical for the relevance of tomographic
control.

Three complementary methods have been investigated to enhance the
process capability. For simplicity, the improvement possibilities offered by
these methods are evaluated in a standard circular tomography configuration.
Each method reduces reconstruction errors but also presents advantages and
drawbacks.

According to the authors, the thermo-geometrical model is the first method
to consider since it requires no additional work during the tomographic pro-
cess and can be executed within the development time frame of the platform.
The primary drawback is the requirement for specific equipment, such as a
laser tracker, to calibrate the model.

Additionally, two calibration methods have been introduced, both rely-
ing on the measurement of geometrical positioning errors. The calibration
comb is particularly useful in the context of non-standard tomography, which
involves multiple source and detector positions, and consequently, robot dis-
placements. It offers the advantage of online calibration, as no further manip-
ulation is required. Indeed, it consists of capturing the features of the comb
and the controlled part in a single radiograph. However, a limitation of this
method is that a portion of the radiograph must be allocated to the comb,
reducing the available space for the controlled part. Despite this drawback,
the method allows for the calibration of two parameters, the effects of which
on the reconstruction process have been emphasized.

The third method involves the use of a standard ball calibration phan-
tom, which has been adapted to meet the cell size requirements. This phan-
tom allows for the calibration of all geometrical parameters and significantly
reduces reconstruction errors. In the case of a circular trajectory without
robot displacement, radiographs of the phantom are captured after the part
inspection. However, for helical or limited-view-angle tomographies, multiple
source and detector positions are required. In this method, the trajectory is
repeated after inspecting the part to calibrate each position. Consequently,
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the calibration accuracy depends on the repeatability of the robots, which
is, however, closely aligned with the remaining uncertainty provided by the
calibration. In all configurations, this method exhibits high efficiency po-
tential but is more time-consuming. Additionally, it requires a budget for
manufacturing and controlling the phantom.

Finally, to assess the performance of metrological tools, specifically X-Ray
Computed Tomography systems [25], ISO 14253–1:2017 [26] and the Inter-
national Vocabulary of Metrology (VIM) [27] define MPE as the ’Extreme
value of measurement error, with respect to a known reference quantity value,
permitted by specifications or regulations for a given measurement, measur-
ing instrument, or measuring system.’ In our case, we defined this error as
the mean error plus three standard deviations. Consequently, our relatively
independent test results reveal the following outcomes: a maximum error of
0.020 mm for the radius and 0.015 mm for the sphere-to-sphere distance.

Simulation
Radius error (mm) Sphere-to-sphere

distance error (mm)
Mean sphericity error (mm)

Mean Std Mean Std
Raw accuracy errors 0.051 0.022 0.033 0.003 0.012

Robot model 0.017 0.001 0.007 0.001 0.001
Calibration comb 0.016 0.001 0.012 0.001 0.001

Large-sized phantom 0.015 0.001 0.011 0.001 0.001

Table 3: Properties of the reconstructed spheres with raw process and improvement meth-
ods capabilities

5. Conclusion and perspectives

Robotized X-ray tomography has demonstrated its potential in inspect-
ing volumetric defects in large-dimensional parts. The process quality relies
heavily on the precision of robot positioning. We assessed the raw process
capability through simulations with a standard circular tomography using a
ball phantom and practical applications on industrial parts. Both approaches
underscored the impact of robot positioning accuracy on the reconstructed
volume.

To enhance process capability, we explored three complementary meth-
ods: a thermo-geometrical robot model, the implementation of an online
calibration phantom and a large-sized steel ball calibration phantom. Each
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method exhibited the potential to improve reconstruction quality in stan-
dard circular tomography, offering distinct advantages and applications. We
validated the theoretical improvements through simulations.

Furthermore, we discussed the applicability of these methods in non-
standard trajectory XCT applications, highlighting specific advantages and
drawbacks. Importantly, these methods can be implemented concurrently.
Our future objectives include the complete experimental validation of these
methods and their application in limited-view-angle and helical XCT trajec-
tories.

The reconstruction of large parts deformed under their own weight is also
an important issue to deal with, as the parts’ geometries may differ from
their natural shape.

Another perspective is the thermal instrumentation of the robots to up-
date the thermo-geometrical model in real-time. The objective is to avoid
a lengthy warming phase that may be required to reach a stable thermal
state. Enhancing the prediction offered by the thermo-geometrical model
would improve the repeatability of the robot on long trajectories, bringing it
closer to its nominal repeatability.
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