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Let Z H = {Z H (t), t ∈ R N } be a real-valued N -parameter harmonizable fractional stable sheet with index H = (H 1 , . . . , H N ) ∈ (0, 1) N . We establish a random wavelet series expansion for Z H which is almost surely convergent in all the Hölder spaces C γ ([-M, M ] N ), where M > 0 and γ ∈ (0, min{H 1 , . . . , H N }) are arbitrary. One of the main ingredients for proving the latter result is the LePage representation for a rotationally invariant stable random measure.

Also, let X = {X(t), t ∈ R N } be an R d -valued harmonizable fractional stable sheet whose components are independent copies of Z H . By making essential use of the regularity of its local times, we prove that, on an event of positive probability, the formula for the Hausdorff dimension of the inverse image X -1 (F ) holds for all Borel sets F ⊆ R d . This is referred to as a uniform Hausdorff dimension result for the inverse images.

Introduction

For any given 0 < α < 2 and H = (H 1 , . . . , H N ) ∈ (0, 1) N , let Z H = {Z H (t), t ∈ R N } be a real-valued harmonizable fractional α-stable sheet (HFSS, for brevity) with index H, defined by

Z H (t) := Re R N N j=1
e it j λ j -1

|λ j | H j + 1 α M α (dλ), (1.1) 
where M α is a complex-valued rotationally invariant α-stable random measure with Lebesgue control measure; we refer to Chapter 6 of [START_REF] Samorodnitsky | Stable Non-Gaussian Processes: Stochastic Models with Infinite Variance[END_REF], for a detailed presentation of such random measures as well as the corresponding stochastic integrals.

From (1.1) it follows that Z H has the following operator-scaling property: for any N × N diagonal matrix E = (b ij ) with b ii = b i > 0 for all 1 ≤ i ≤ N and b ij = 0 if i = j, we have

Z H (Et), t ∈ R N d = N j=1 b H j j Z H (t), t ∈ R N . (1.
2)

The property (1.2) is also called "multi-self-similarity" by Genton, Perrin and Taqqu (2007). By using (1.1), one can verify that, along each canonical direction of R N , Z H becomes a realvalued harmonizable fractional stable motion; a detailed presentation of the latter process, as well as other self-similar stable processes is given in [START_REF] Samorodnitsky | Stable Non-Gaussian Processes: Stochastic Models with Infinite Variance[END_REF]. When the indices H 1 , . . . , H N are not the same, Z H has different scaling behavior along different directions of R N . Namely, Z H is anisotropic in the "time" variable. If one replaces in (1.1) the parameter α by 2, then Z H becomes a fractional Brownian sheet (FBS, for brevity) denoted by B H . Sample path properties of FBS and several related classes of anisotropic Gaussian random fields have been studied by several authors; see, for example, [START_REF] Kamont | On the fractional anisotropic Wiener field[END_REF], [START_REF] Ayache | Drap brownien fractionnaire[END_REF], [START_REF] Ayache | Asymptotic properties and Hausdorff dimensions of fractional Brownian sheets[END_REF], [START_REF] Ayache | Joint continuity of the local times of fractional Brownian sheets[END_REF], Wu andXiao (2007, 2011), [START_REF] Xiao | Sample path properties of anisotropic Gaussian random fields[END_REF] and the references therein. Observe that, up to a multiplicative constant, the Gaussian field B H , can also be represented as a moving average Wiener integral, in which the complex-valued kernel N j=1 e it j λ j -1 |λ j | -H j -1/2 is replaced by the real-valued kernel N j=1 (t j -s j )

H j -1/2 + -(-s j ) H j -1/2 +
, with the convention that for all real-numbers x and β, (x) β + = x β when x > 0 and (x) β + = 0 else. However, for 0 < α < 2, the harmonizable α-stable field Z H does not have such a property, and it is very different from the real-valued linear fractional stable field (LFSS, for brevity) Y H = {Y H (t), t ∈ R N } which is defined by

Y H (t) := R N N j=1 (t j -s j ) H j -1 α + -(-s j ) H j -1 α + M α (ds), (1.3) 
where M α is a real-valued α-stable random measure.

The main purpose of the present article is to study sample path properties of HFSS and compare them with the properties of LFSS obtained in [START_REF] Ayache | Linear fractional stable sheets: wavelet expansion and sample path properties[END_REF]. In Section 2 we establish a random wavelet series representation for Z H ; to this end, we expand the corresponding harmonizable kernel in (1.1) in terms of the Fourier transform of the tensor product of a Lemarié-Meyer wavelet basis for L 2 (R). One of the main difficulties in this matter is that, when α < 2 we do not know whether the Fourier transform of a Lemarié-Meyer wavelet basis is an unconditional basis for L α (R). This is in contrast with the case of LFSS in [START_REF] Ayache | Linear fractional stable sheets: wavelet expansion and sample path properties[END_REF], where one does not have to use the Fourier transform of a wavelet basis. In order to overcome this difficulty, we use some specific properties of the harmonizable kernel as well as the fact that the Fourier transform of a Lemarié-Meyer mother wavelet is compactly supported and vanishes in a neighborhood of the origin. Also, it is worth noticing that, the behavior of the random coefficients, in our wavelet expansion of HFSS, can be estimated through their LePage representations. This, in turn, leads to the conclusion that the wavelet expansion of Z H is, for any α ∈ (0, 2), almost surely convergent in all the Hölder spaces C γ ([-M, M ] N ), where M > 0 and γ ∈ (0, min{H 1 , . . . , H N }) are arbitrary constants. In the case of LFSS, a weaker result holds: under the condition that min{H 1 , . . . , H N } > 1/α, the wavelet expansion of Y H is almost surely convergent in all the Hölder spaces C γ ([-M, M ] N ), where M > 0 and γ < min{H 1 , . . . , H N } -1/α (see [START_REF] Ayache | Linear fractional stable sheets: wavelet expansion and sample path properties[END_REF]). Notice that, in contrast with HFSS, when min{H 1 , . . . , H N } ≤ 1/α, the LFSS sample path is discontinuous and even becomes unbounded on every open set when the latter inequality is strict. The results in this section may be compared with those of [START_REF] Ayache | Stationary increments harmonizable stable fields: upper estimates on path behaviour[END_REF], where regularity properties of harmonizable stable random fields with stationary increments are studied by using the wavelet method, and those of Xiao (2010), Biermé andLacaux (2009, 2015), [START_REF] Panigrahi | Maximal moments and uniform modulus of continuity of stable random fields[END_REF], where uniform modulus of continuity of stable random fields including harmonizable ones are studied by using different methods.

In Section 3, we consider the (N, d) harmonizable fractional stable sheet

X = {X(t), t ∈ R N } with values in R d defined by X(t) = X 1 (t), . . . , X d (t) , (1.4) 
where X 1 , . . . , X d are independent copies of Z H . Our main result of this section is Theorem 3.9 which establishes a uniform Hausdorff dimension result for the inverse images X -1 (F ) for all Borel sets F ⊂ R d , which are either deterministic or random. This theorem is new even for fractional Brownian sheets (i.e., α = 2) and solves the problem raised in Remark 2.8 in Biermé, Lacaux and [START_REF] Xiao | Sample path properties of anisotropic Gaussian random fields[END_REF]. The methodology for proving this uniform Hausdorff dimension result is based on the regularity properties (e.g., Hölder conditions in the set-variable) of the local times of X which is of independent interest for (N, d) random fields. The results of this section motivate several questions that will need further investigation. At the end of Section 3, we provide some remarks and open questions.

Throughout this paper we use | • | to denote the Euclidean norm in R N . The inner product and Lebesgue measure in R N are denoted by •, • and λ N , respectively. A vector t ∈ R N is written as t = (t 1 , . . . , t N ), or as

c if t 1 = • • • = t N = c.
For any s, t ∈ R N we write s ≺ t if s j < t j for all j = 1, . . . , N . In this case [s, t] = N j=1 [s j , t j ] is called a closed interval (or a rectangle). We will let A denote the class of all closed intervals in R N . For two functions f and g, the notation f (t) g(t) for t ∈ T means that the function f (t)/g(t) is bounded from below and above by positive constants that do not depend on t ∈ T .

We will use c and c(n) to denote unspecified positive and finite constants, the latter depends on n. Both of them may not be the same in each occurrence. More specific constants are numbered as c 1 , c 2 , . . .. the financial support from CEMPI are appreciated. The research of Yimin Xiao is partially supported by NSF grants DMS-1612885 and DMS-1607089.

Wavelet series representation of Z H

The goal of this section is to establish a random wavelet series representation for HFSS Z H . First we fix some notation that will be extensively used in the sequel.

(i) The function ψ denotes a usual Lemarié-Meyer mother wavelet, see [START_REF] Lemarié | Ondelettes et bases hilbertiennes[END_REF], [START_REF] Meyer | Wavelets and Operators[END_REF] and [START_REF] Daubechies | Ten Lectures on Wavelets[END_REF]. The function ψ satisfies the following properties:

(a) ψ is real-valued and belongs to the Schwartz class S(R).

(b) ψ, the Fourier transform of ψ, is compactly supported and its support is contained in the ring {ξ ∈ R : 2π 3 ≤ |ξ| ≤ 8π 3 }. Recall that the Fourier transform of a function f ∈ L 2 (R) is the limit of the Fourier transforms of functions of the Schwartz class S(R) converging to f ; throughout this article the Fourier transform over S(R) is defined as (Fg)(ξ) = g(ξ) = (2π) -1/2 R e -is•ξ g(s) ds and the inverse map as

(F -1 h)(s) = (2π) -1/2
R e is•ξ h(ξ) dξ, thus the Fourier transform is a bijective isometry from L 2 (R) to itself.

(c) The sequence {ψ j,k : (j, k) ∈ Z 2 } forms an orthonormal basis of L 2 (R), where

ψ j,k (x) := 2 j/2 ψ(2 j x -k), ∀ x ∈ R. (2.1) 
Note that the isometry property of the Fourier transform implies that the sequence ψ j,k : (j, k) ∈ Z 2 forms an orthonormal basis of L 2 (R) as well. Moreover, simple computation shows that, for all ξ ∈ R, ψ j,k (ξ) = 2 -j/2 e -ik2 -j ξ ψ(2 -j ξ).

(2.2)

For the sake of convenience, for each v ∈ (0, 1) and x ∈ R, we set

w v j,k (x) := R f v (x, ξ) ψ j,k (ξ) dξ, (2.3) 
where the function f v (x, •) is defined by f v (x, 0) = 0 and, for all ξ ∈ R \ {0}, by

f v (x, ξ) := e ixξ -1 |ξ| v+ 1 α . (2.4) 
Observe that when

f v (x, •) ∈ L 2 (R) (this is equivalent to 1 < 2v + 2 α < 3)
, then, by using the fact that ψ j,k : (j, k) ∈ Z 2 is an orthonormal basis of the latter space, one has

f v (x, •) = j,k∈Z w v j,k (x) ψ j,k (•), (2.5) 
where the series converges in the L 2 (R) norm. Roughly speaking, the key idea for obtaining a wavelet representation for HFSS consists in showing that the equality (2.5) holds in L α (R), even when f v (x, •) / ∈ L 2 (R). For this purpose, it is convenient to renormalize the functions ψ j,k in such a way that their L α (R) norms be equal to ψ L α (R) .

(ii) For each (j, k) ∈ Z 2 and ξ ∈ R, we set

ψ α,j,k (ξ) := 2 -j( 1 α -1 2 ) ψ j,k (ξ) = 2 -j/α e -ik2 -j ξ ψ(2 -j ξ).
(2.6)

Moreover for every x ∈ R, we set

w v α,j,k (x) := 2 j( 1 α -1 2 ) w v j,k (x) = 2 j( 1 α -1) R e ixξ -1 |ξ| v+1/α e -ik2 -j ξ ψ(2 -j ξ) dξ. (2.7)
Observe that, for all x, ξ ∈ R, one has

w v α,j,k (x) ψ α,j,k (ξ) = w v j,k (x) ψ j,k (ξ). (2.8) 
(iii) In order to conveniently express w v α,j,k (x), let us introduce, for each fixed v ∈ (0, 1), the function ψ v , defined as

ψ v (y) := R e iyη ψ(η) |η| v+1/α dη, ∀ y ∈ R. (2.9)
Observe that in view of the properties (a) and (b) of the Lemarié-Meyer mother wavelet ψ, one can easily show that ψ v is a well-defined real-valued function which belongs to S(R). Furthermore, the change of variable η = 2 -j ξ in (2.7) yields that, for all x ∈ R,

w v α,j,k (x) = 2 -jv ψ v (2 j x -k) -ψ v (-k) . (2.10) 
(iv) Let { J,K , (J, K) ∈ Z N × Z N } be the sequence of complex-valued SαS random variables defined as

J,K = R N Ψ α,J,K (λ) M α (dλ), (2.11) 
where

Ψ α,J,K (λ) := N l=1 ψ α,j l ,k l (λ l ), ∀λ ∈ R N . (2.
12)

It is easy to verify that, for every (J, K) ∈ Z N × Z N , the scale parameter of J,K is

J,K α = ψ N L α (R) .
Hence the random variables { J,K , (J, K) ∈ Z N ×Z N } are identically distributed.

We are now in position to state our first main result of the section. Proposition 2.1 Let (D n ) n∈N be an increasing sequence of finite subsets of Z N × Z N which "converges" to Z N × Z N (i.e., for every n ∈ N, D n ⊂ D n+1 and ∪ n∈N D n = Z N × Z N ). For each n ∈ N and t ∈ R N , we denote by U n (t) the real-valued random variable defined as

U n (t) = Re (J,K)∈Dn 2 -J,H J,K N l=1 ψ H l (2 j l t l -k l ) -ψ H l (-k l ) .
(2.13)

Then U n (t) converges in probability to Z H (t) when n goes to infinity.

In order to be able to prove Proposition 2.1, we need some preliminary results.

Remark 2.2 Recall that, in contrast to the case where α ≥ 1, when α ∈ (0, 1), the map

f → R N |f (λ)| α dλ 1/α
is no longer a norm on L α (R N ); however one can define a metric ∆ on this space by

∆ L α (R N ) (f, g) := R N |f (λ) -g(λ)| α dλ, ∀ (f, g) ∈ L α (R N ) × L α (R N ).
(2.14)

Moreover the resulting metric space is complete. For the sake of convenience, when α ≥ 1, one sets for every (f, g)

∈ L α (R N ) × L α (R N ), ∆ L α (R N ) (f, g) := f -g L α (R N ) = R N |f (λ) -g(λ)| α dλ 1/α . (2.15)
For simplicity we will abuse the notation slightly and write f L α (R N ) as f α , which should not be confused with the scale parameter of a SαS random variable.

We will make use of the following elementary lemma.

Lemma 2.3 Let (E, d) be a complete metric vector space such that the metric d is translation invariant, namely for all x, y, z ∈ E one has,

d(x + z, y + z) = d(x, y). (2.16)
Let (a i ) i∈I be an arbitrary sequence of elements of E which satisfies

i∈I d(a i , 0) < +∞. (2.17)
Then there is a unique element a ∈ E satisfying the following property: Proof Relation (2.16) implies that, for every p ∈ N and m ∈ N,

d i∈D m+p a i , i∈Dm a i = d i∈D m+p \Dm a i , 0 . (2.18) 
Moreover, using the triangle inequality and (2.16), one can prove, by induction on the cardinality of D m+p \ D m , that,

d i∈D m+p \Dm a i , 0 ≤ i∈I\Dm d(a i , 0). (2.19)
Putting together (2.17), (2.18) and (2.19), one can easily show that i∈Dn a i n∈N is a Cauchy sequence of (E, d), which in turn implies that it converges to some limit a ∈ E. Let us now show that the limit a does not depend on the choice of the sequence (D n ) n∈N . Let (D n ) n∈N and (D n ) n∈N be two arbitrary increasing sequences of finite subsets of I which converge to I. We denote by a and a , respectively, the limits of the sequences ( i∈D n a i ) n∈N and ( i∈D n a i ) n∈N . Observe that there exists an increasing map φ : N → N such that, for every n ∈ N, one has D n ⊆ D φ(n) . Therefore, it follows from (2.16) that, for each n ∈ N,

d i∈D φ(n) a i , i∈D n a i = d i∈D φ(n) \D n a i , 0 ≤ i∈I\D n d(a i , 0), (2.20)
where the last inequality is derived in the same way as the inequality (2.19). Finally, letting n go to infinity, one obtains, in view of (2.17) and (2.20), that d(a , a ) = 0.

In the following lemma, recall that w H l α,j l ,k l (t l ) is defined in (2.7) and Ψ α,J,K in (2.12).

Lemma 2.4 For each fixed t ∈ R N , one has:

(J,K)∈Z N ×Z N ∆ L α (R N ) N l=1 w H l α,j l ,k l (t l ) Ψ α,J,K , 0 < +∞. (2.21)
Consequently, in view of Lemma 2.3, there exists a function

F (t) ∈ L α (R N ) such that, for every increasing sequence (D n ) n∈N of finite subsets of Z N × Z N which converges to Z N × Z N , one has lim n→+∞ ∆ L α (R N ) (J,K)∈Dn N l=1 w H l α,j l ,k l (t l ) Ψ α,J,K , F (t) = 0. (2.22)
In order to show (2.21), we first estimate the decreasing rate of the coefficients w v α,j,k (x). Lemma 2.5 For any constant L > 0, the following two results hold:

(i) There exists a constant c 1 > 0, depending only on L, v and α, such that for each x ∈ R, j ∈ Z + and k ∈ Z, one has

|w v α,j,k (x)| ≤ c 1 2 -jv 2 + |2 j x -k| -L + 2 + |k| -L . (2.23) 
(ii) For any positive number M , there exists a constant c 2 > 0, depending only on L, v, α and M , such that for each x ∈ [-M, M ], j ∈ Z -and k ∈ Z, one has

|w v α,j,k (x)| ≤ c 2 2 (1-v)j 2 + |k| -L . (2.24)
Proof Part (i) follows easily from (2.10) and the fact that ψ v ∈ S(R). Next we prove Part (ii). Denote by (ψ v ) the derivative of ψ v , then by using again the fact that ψ v ∈ S(R), one has, for all y ∈ R,

(ψ v ) (y) ≤ c 3 2 + M + |y| -L , (2.25) 
where c 3 is a constant depending on L, v, α and M only. On the other hand (2.10) and the Mean Value Theorem imply that, for each x ∈ [-M, M ], j ∈ Z -and k ∈ Z, one has

w v α,j,k (x) = 2 j(1-v) x(ψ v ) (2 j d -k), (2.26) 
where d ∈ (-M, M ). Thus, combining (2.25) with (2.26) and the triangle inequality, one gets (2.24).

Proof of Lemma 2.4 We will only give the proof for the case where α ∈ (0, 1), the proof in the case α ∈ [1, 2) is rather similar. First, notice that, for every (J, K) ∈ Z N × Z N , one has,

R N Ψ α,J,K (λ) α dλ = R | ψ(ξ)| α dξ N := c 4 .
Therefore, using (2.14), one gets that, for all t ∈ R N ,

(J,K)∈Z N ×Z N ∆ L α (R N ) N l=1 w H l α,j l ,k l (t l ) Ψ α,J,K , 0 = c 4 N l=1 (j l ,k l )∈Z×Z |w H l α,j l ,k l (t l )| α . (2.27)
On the other hand, it follows from (2.23), (2.24), and the inequality (x + y) α ≤ x α + y α for x, y ≥ 0 that, for every l = 1, . . . , N ,

(j l ,k l )∈Z×Z |w H l α,j l ,k l (t l )| α ≤ c 5 +∞ j l =0 2 -j l αγ +∞ k l =-∞ (2 + |2 j l t l -k l |) -Lα + (2 + |k l |) -Lα , (2.28)
where γ = min{H l , 1 -H l } and c 5 is a constant independent of (j l , k l ). Moreover for every constant L which satisfies Lα > 

F (t, λ) = N l=1 f H l (t l , λ l ) := N l=1 e it l λ l -1 |λ l | H l + 1 α .
(2.30)

Proof For any constant M > 0 and n ∈ N, we set

D n,M := {(j, k) ∈ Z 2 : |j| ≤ n and |k| ≤ M 2 n+1 } (2.31) and D N n,M := (J, K) ∈ Z N × Z N : (j l , k l ) ∈ D n,M for each l = 1, . . . , N . (2.32)
Similarly to (2.21), one can show that, for every fixed t ∈ R N and l = 1, . . . , N ,

(j l ,k l )∈Z×Z ∆ L α (R) w H l α,j l ,k l (t l ) ψ α,j l ,k l , 0 < +∞.
By applying Lemma 2.3 with D n = D n,M , we see that there exists a function 

f l (t l ) ∈ L α (R) such that lim n→+∞ ∆ L α (R) (j l ,k l )∈D n,M w H l α,j l ,k l (t l ) ψ α,j l ,k l , f l (t l ) = 0. ( 2 
= D N n,M that, for almost all λ ∈ R N , F (t, λ) = N l=1 f l (t l , λ l ).
Thus, in order to show (2.30), it is sufficient to prove that, for every l = 1, . . . , N and for almost all λ l ∈ R, one has

f l (t l , λ l ) = f H l (t l , λ l ). (2.34)
For every m ∈ N, let h m be the function defined, for all λ l ∈ R, as

h m (λ l ) = 0, if |λ l | ≤ 2 -m+1 π 3 , 1, else. (2.35)
Observe that (2.4) and (2.35) 

imply that f H l (t l , •)h m (•) ∈ L 2 (R) and, since ψ j l ,k l : (j l , k l ) ∈ Z 2
is an orthonormal basis of the latter space, one gets

lim n→+∞ R f H l (t l , λ l )h m (λ l ) - (j l ,k l )∈D n,M w j l ,k l (t l ) ψ j l ,k l (λ l ) 2 dλ l = 0, (2.36) 
where

w j l ,k l (t l ) := R f H l (t l , λ l )h m (λ l ) ψ j l ,k l (λ l ) dλ l . (2.37) 
On the other hand, the property (b) of ψ (given at the beginning of this section) and (2.2) entails that

supp ψ j l ,k l ⊆ λ l ∈ R : 2 j l +1 π 3 ≤ |λ l | ≤ 2 j l +3 π 3 . (2.38) 
Putting together (2.37), (2.35), (2.38) and (2.3), we see that, for every j l ≥ -m and k l ∈ Z,

w j l ,k l (t l ) = w H l j l ,k l (t l ). (2.39)
Denote by C m the ring,

C m := λ l ∈ R : 2 -m+3 π 3 ≤ |λ l | ≤ 2 m+3 π 3 . (2.40) 
From now on, we assume that λ l ∈ C m . Notice that (2.38) implies that, for all j l ≤ -m and k l ∈ Z, one has that

ψ j l ,k l (λ l ) = 0.
Therefore, in view of (2.39), one obtains that

(j l ,k l )∈D n,M w j l ,k l (t l ) ψ j l ,k l (λ l ) = (j l ,k l )∈D n,M w H l j l ,k l (t l ) ψ j l ,k l (λ l ). (2.41)
On the other hand (2.35) entails that 

f H l (t l , λ l )h m (λ l ) = f H l (t l , λ l ) for λ l ∈ C m . ( 2 
f H l (t l , λ l ) - (j l ,k l )∈D n,M w H l j l ,k l (t l ) ψ j l ,k l (λ l ) 2 dλ l = 0.
Since C m is a bounded set, Hölder's inequality and (2.8) imply that

lim n→+∞ Cm f H l (t l , λ l ) - (j l ,k l )∈D n,M w H l α,j l ,k l (t l ) ψ α,j l ,k l (λ l ) α dλ l = 0. (2.43)
On the other hand, (2.33) entails that 

lim n→+∞ Cm f l (t l , λ l ) - (j l ,k l )∈D n,M w H l α,j l ,k l (t l ) ψ α,j l ,k l (λ l ) α dλ l = 0. ( 2 
λ l ∈ C m , one has f H l (t l , λ l ) = f l (t l , λ l ).
Finally, by using the latter equality and the fact that R \ {0} = ∪ m∈N C m , one gets (2.34).

We are now in position to show Proposition 2.1. Proof of Proposition 2.1 This proposition is a straightforward consequence of Lemmas 2.4 and 2.6 as well as of the following standard result on integrals with respect to stable measures: if [START_REF] Samorodnitsky | Stable Non-Gaussian Processes: Stochastic Models with Infinite Variance[END_REF]).

g n converges to g in L α (R N ) then R N g n (λ) M α (dλ) converges to R N g(λ) M α (dλ) in probability (see
The second main result of this section is the following theorem.

Theorem 2.7 For any constant M > 0 and n ∈ N we denote by U * n the real-valued random function defined, for every t ∈ R N , as

U * n (t) = Re (J,K)∈D N n,M 2 -J,H J,K N l=1 ψ H l (2 j l t l -k l ) -ψ H l (-k l ) ,
where D N n,M is defined in (2.32). Then, the following two results hold:

(i) with probability 1, {U * n } n∈N is a Cauchy sequence in the Hölder space C γ [-M, M ] N of any order γ < min{H 1 , . . . , H N }, the limit is denoted by U * ;

(ii) the random field

U * = {U * (t)} t∈[-M,M ] N is a version of the HFSS {Z H (t)} t∈[-M,M ] N .
Proof Part (i) of the theorem can be proved by using the wavelet method similar to that in the proof of Proposition 6 in Ayache et al (2009). It also follows from Proposition 2.8 below, which provides a sharp "deterministic" upper bound for the random variables | J,K |. Part (ii) of the theorem is an easy consequence of Part (i) and of Proposition 2.1 with

D n = D N n,M .
Proposition 2.8 There is an event Ω * of probability 1 such that for all fixed η > 0 there exists a random variable C > 0 (depending on Ω * , η and α) which satisfies the following property:

(i) If α ∈ (0, 1), then for every ω ∈ Ω * and for all (J, K)

∈ Z N × Z N , | J,K (ω)| ≤ C(ω) N l=1 (1 + |j l |) 1/α+η . (2.45) (ii) If α ∈ [1, 2)
, then for every ω ∈ Ω * and for all (J, K)

∈ Z N × Z N , | J,K (ω)| ≤ C(ω) N l=1 (1 + |j l |) 1/α+η log(2 + |j l |) log(2 + |k l |) . (2.46)
The proof of Proposition 2.8 mainly relies on a LePage series representation of the complexvalued SαS process J,K : (J, K) ∈ Z N × Z N . We skip it since it is similar to that of Lemma 2.7 in Ayache and Boutard (2017).

Uniform Hausdorff dimension result for the inverse images

Let X = {X(t), t ∈ R N } be an (N, d) harmonizable fractional stable sheet defined in (1.4). For any Borel set F ⊂ R d , we define the inverse image X -1 (F ) by

X -1 (F ) = {t ∈ (0, ∞) N : X(t) ∈ F }.
Notice that we have avoided the boundary of R N + on which X(t) ≡ 0 a.s. This causes little loss of generality.

When α = 2 (i.e., X is a fractional Brownian sheet in R d ) and F is fixed, Biermé, Lacaux and Xiao (2009, Theorem 2.3) proved the following result on the Hausdorff dimension of X -1 (F ):

dim H X -1 (F ) L ∞ (P) = min 1≤k≤N k j=1 H k H j + N -k -H k d -dim H F , (3.1) 
where for any function Y : Ω → R + , Y L ∞ (P) is defined as

Y L ∞ (P) = sup θ : Y ≥ θ on an event E with P(E) > 0 .
Observe that in (3.1), the probability P{dim H X -1 (F ) > 0} depends on F . In Remark 2.8 in Biermé, Lacaux and Xiao (2009), they asked the following question: If N j=1 1/H j > d, does there exist a single event Ω 1 ⊆ Ω of positive probability such that on Ω

1 , dim H X -1 (F ) = min 1≤k≤N k j=1 H k H j + N -k -H k d -dim H F
holds for all Borel sets F ⊆ R d ? This is referred to as a uniform Hausdorff dimension problem for the inverse images of X. Our objective of this section is to solve this problem for the (N, d) harmonizable fractional α-stable sheet X with α ∈ [START_REF] Adler | The Geometry of Random Fields[END_REF][START_REF] Ayache | Stationary increments harmonizable stable fields: upper estimates on path behaviour[END_REF]. Our main result is Theorem 3.9 below.

Some preliminaries results

Let us collect some known results on harmonizable fractional stable sheets, which will be useful for later sections.

For any n ≥ 1 and t 1 , . . . , t n ∈ R N , the characteristic function of the joint distribution of Z H (t 1 ), . . . , Z H (t n ) is given by

E exp i n j=1 u j Z H (t j ) = exp - n j=1 u j F (t j , •) α α , (3.2) 
where

u j ∈ R (1 ≤ j ≤ n), F (t, λ) is the function in (2.30). Recall that for every f ∈ L α (R N ), f α denotes f L α (R N ) .
It follows from (3.2) that the scale parameter of the SαS random variable n j=1 u j Z H (t j ) is

n j=1 u j Z H (t j ) α := n j=1 u j F (t j , •) α . (3.3) 
This allows us to describe some probabilistic properties of Z H by the analytic properties of the functions F (t, •) and the geometric structures of the space L α (R N ). Lemma 3.1 is proved in Xiao (2011) for α ∈ [1, 2) and in [START_REF] Wu | Geometric properties of the images of fractional Brownian sheets[END_REF] for α = 2. Part (i) shows that for all 0 < a < b and s, t ∈ [a, b] N the scale parameter of Z H (s) -Z H (t) is comparable with ρ(s, t), which is the metric ρ on R N defined by

ρ(s, t) = N j=1 |s j -t j | H j , ∀ s, t ∈ R N . (3.4) 
Part (ii) says that Z H has the property of sectorial local nondeterminism.

Lemma 3.1 Suppose α ∈ [1, 2] and 0 < a < b are constants. Then there exist constants c 6 ≥ 1 and c 7 > 0, depending on a, b, H and N only, such that the following properties hold:

(i) For all s, t ∈ [a, b] N . c -1 6 ρ(s, t) ≤ Z H (s) -Z H (t) α ≤ c 6 ρ(s, t). (3.5) 
(ii) For all positive integers n ≥ 2 and all t 1 , . . . , t n ∈ [a, b] N , we have

Z H (t n ) Z H (t 1 ), . . . , Z H (t n-1 ) α ≥ c 7 N j=1 min 0≤k≤n-1 t n j -t k j H j , (3.6) 
where Z H (t n ) Z H (t 1 ), . . . , Z H (t n-1 ) α is the L α (R N )-distance from F (t n , •) to the subspace generated by F (t j , •) (j = 0, 1, . . . , t n-1 ).

Remark 3.2 We believe that (3.6) still holds if α ∈ (0, 1), but we have not been able to prove this. The Fourier analytic method in Ayache and Xiao (2016) works well for proving the property of local nondeterminism for harmonizable fractional α-stable fields with stationary increments for all α ∈ (0, 2). Unfortunately, the last part of the proof of Theorem 2.1 in Ayache and Xiao (2016) breaks down for harmonizable fractional stable sheets.

In order to make use of the property of sectorial local nondeterminism, we need the following useful lemma from [START_REF] Xiao | Properties of strong local nondeterminism and local times of stable random fields[END_REF]. The case of α = 2 is included for completeness and in this case it can be shown that c(n) does not depend on n. Lemma 3.3 Assume α ∈ [1, 2] and 0 < a < b are constants. For all integers n ≥ 2 there exists a positive constant c(n) such that for all t 1 , . . . , t n ∈ [a, b] N and u 1 , . . . , u n ∈ R,

n j=1 u j Z H (t j ) α ≥ c(n) |v 1 | Z H (t 1 ) α + n j=2 |v j | Z H (t j ) Z H (t 1 ), . . . , Z H (t j-1 ) α .
(3.7)

In the above, (v 1 , . . . , v n ) = (u 1 , . . . , u n ) A, (3.8) 
where A = (a ij ) is an n × n lower triangle matrix (which depends on t 1 , . . . , t n ) with a ii = 1 for all 1 ≤ i ≤ n.

Remark 3.4 Roughly speaking, in (3.7) we expand n j=1 u j Z H (t j ) α by repeatedly "conditioning" Z H (t j ), given Z H (t 1 ), . . . , Z H (t j-1 ). Moreover, this "conditioning" can be done in an arbitrary order of the random variables Z H (t 1 ), . . . , Z H (t n ). This observation will be useful for studying regularity properties of the local times of Z H below.

The sample function of Z H is continuous and has the following uniform modulus of continuity, which was proved in [START_REF] Xiao | On uniform modulus of continuity of random fields[END_REF]. A similar result for operator-scaling stable random fields with stationary increments was proved by Biermé andLacaux (2009, 2015). Lemma 3.5 Let Z H = {Z H (t), t ∈ R N } be a real-valued harmonizable fractional stable sheet defined by (1.1) Then for any constants 0 ≤ a < b and ε > 0, one has

lim h→0 sup s,t∈[a,b] N |s-t|≤h |Z H (s) -Z H (t)| ρ(s, t) log ρ(s, t)
1/α+ε = 0, a.s.

(3.9)

Local times

Many geometric properties of a random field are related to the existence and analytic properties of its local times. We recall briefly some aspects of the theory of local times. For further information we refer to [START_REF] Geman | Occupation densities[END_REF] and [START_REF] Dozzi | Occupation density and sample path properties of N -parameter processes[END_REF]. Let X : R N → R d be a (deterministic or stochastic) Borel vector field. For any Borel set T ⊆ R N , the occupation measure of X on T is defined as

µ T (•) = λ N t ∈ T : X(t) ∈ • ,
which is a Borel measure on R d . If µ T is almost surely absolutely continuous with respect to the Lebesgue measure λ d , then X(t) is said to have a local time on T . The local time, L(•, T ), is defined as the Radon-Nikodým derivative of µ T with respect to λ d , i.e.,

L(x, T ) = dµ T dλ d (x), ∀x ∈ R d .
In the above, x is called the space variable, and T is the time variable. It is clear that if X has local times on T , then for every Borel set S ⊆ T , L(x, S) also exists. It follows from Theorems 6.3 and 6.4 in Geman and Horowitz (1980) that the local times of X have a version, still denoted by L(x, T ), such that it is a kernel in the following sense:

(i) For each fixed S ⊆ T , the function x → L(x, S) is Borel measurable in x ∈ R d .
(ii) For every x ∈ R d , L(x, •) is a Borel measure on B(T ), the family of Borel subsets of T .

Moreover, L(x, T ) satisfies the following occupation density formula: For every measurable function f : It is known from [START_REF] Adler | The Geometry of Random Fields[END_REF] that, when a local time is jointly continuous, L(x, •) can be extended to be a finite Borel measure supported on the level set

R d → R + , T f (X(t)) dt = R d f (x)L(x, T ) dx. (3.10) Suppose we fix an interval T = N i=1 [a i , a i + h i ] in A. If we can choose a version of the local time, still denoted by L x, N i=1 [a i , a i + t i ] , such that it is a continuous function of (x, t 1 , • • • , t N ) ∈ R d × N i=1 [0, h i ],
X -1 T (x) = {t ∈ T : X(t) = x}. (3.11)
In order to use this fact for proving Theorem 3.9 below, we also need to obtain the Hölder conditions for the local time L(x, •) in the set variable.

For convenience we assume in the rest of this paper that

0 < H 1 ≤ • • • ≤ H N < 1. (3.12)
Of course, there is no loss of generality in the arbitrary ordering of H 1 , . . . , H N . Assume that d < N j=1 1/H j holds and let τ ∈ {1, . . . , N } be the integer such that

τ -1 =1 1 H ≤ d < τ =1 1 H (3.13)
with the convention that 0 =1 1 H := 0. We denote in the sequel

β τ = τ =1 H τ H + N -τ -H τ d. (3.14) 
As shown by Theorem 7.1 in Xiao (2009), for any x ∈ R d , we have dim H X -1 (x) = β τ with positive probability. We will make use of the following uniform Hölder condition for the local time L(x, •) in the set variable. We refer to [START_REF] Nolan | Local nondeterminism and local times for stable processes[END_REF], [START_REF] Kôno | Local times and related sample path properties of certain self-similar processes[END_REF], [START_REF] Xiao | Properties of strong local nondeterminism and local times of stable random fields[END_REF] for earlier results of this type for self-similar stable processes and harmonizable fractional stable motion. The new feature of Proposition 3.7 is that the uniform Hölder condition is given in terms of (H 1 , . . . , H N ) and the side-lengths of I, so it characterizes the anisotropy of X, and the exponents of r are almost optimal. Proposition 3.7 Let X = {X(t), t ∈ R N } be an (N, d) harmonizable fractional stable sheet defined by (1.4) and let T ⊂ (0, ∞) N be an interval. Suppose α ∈ [1, 2] and τ ∈ {1, . . . , N } is the integer so that (3.13) holds. Let L(x, •) be the jointly continuous local time of X on T . Then, for any ε > 0, almost surely there exist positive and finite constants c 8 = c 8 (ω) and r 0 = r 0 (ω) such that

max x∈R d L(x, I) ≤ c 8 τ =1 r 1- H d p N =τ +1 r 1-ε (3.15) for all intervals I = [a, a + r ] ⊆ T with r ≤ r 0 . Here p ≥ 1 (1 ≤ ≤ τ ) are positive numbers such that τ =1 p -1 = 1.
The proof of Proposition 3.7 relies on the moment estimates in Lemma 3.8 below and a chaining argument in [START_REF] Ehm | Sample function properties of multi-parameter stable processes[END_REF] [see also Geman and Horowitz (1980, pp 49-50)]. Since this proof is standard, we omit it.

We remark that, unlike the Gaussian cases considered in [START_REF] Xiao | Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields[END_REF] and Wu and Xiao (2011), we are not able to replace the exponent 1 -ε in (3.15) by 1 together with a logarithmic factor. This is due to the inability in taking full advantage of the sectorial local nondeterminism in Part (ii) of Lemma 3.1. Instead, our proof of Lemma 3.8 below makes use of Lemma 3.3. Lemma 3.8 Assume the conditions of Proposition 3.7 hold. Then for any positive constants p ≥ 1 (1 ≤ ≤ τ ) such that τ =1 p -1 = 1 the following statements hold. (i) For all integers n ≥ 1, there exists a positive and finite constant c 9 = c 9 (n) such that for all intervals I = [a, a + r ] ⊆ T with side-lengths r ∈ (0, 1) and all

x ∈ R d E L(x, I) n ≤ c 9 τ =1 r 1- H d p N =τ +1 r n . (3.16) 
(ii) For all even integers n ≥ 2 and all γ ∈ (0, 1) small enough, there exists a positive and finite constant c 10 = c 10 (n) such that for all intervals

I = [a, a + r ] ⊆ T , x, y ∈ R d with |x -y| ≤ 1, E L(x, I) -L(y, I) n ≤ c 10 |x -y| nγ τ =1 r 1- H d p N =τ +1 r n . (3.17) 
Proof This is essentially proved in Lemmas 4.3 and 4.7 in Xiao (2011). The difference is that I is assumed to be a cube in [START_REF] Xiao | Properties of strong local nondeterminism and local times of stable random fields[END_REF] and here it is an arbitrary interval, which is needed for proving Theorem 3.9 below. Again we start with the following identities about the moments of the local time and its increments from Geman and Horowitz (1980): For all x, y ∈ R d and all integers n ≥ 1,

E L(x, I) n = (2π) -nd I n R nd exp -i n j=1 u j , x E exp i n j=1
u j , X(t j ) du dt (3.18) and for all even integers n ≥ 2,

E L(x, I) -L(y, I) n =(2π) -nd I n R nd n j=1 e -i u j ,x -e -i u j ,y × E exp i n j=1 u j , X(t j ) du dt, (3.19) 
where u = (u 1 , . . . , u n ), t = (t 1 , . . . , t n ), and each u j ∈ R d , t j ∈ I ⊆ (0, ∞) N . In the coordinate notation we then write u j = (u j 1 , . . . , u j d ). Then upper bounds for (3.18) and (3.19) can be derived by using Lemmas 3.1 and 3.3. More precisely, the proof of (3.16) is the same as the proof of Lemma 4.3, up to (4.28) in [START_REF] Xiao | Properties of strong local nondeterminism and local times of stable random fields[END_REF], and the proof of (3.17) is the same as the proof of Lemma 4.7, up to (4.47) in [START_REF] Xiao | Properties of strong local nondeterminism and local times of stable random fields[END_REF]. This finishes the proof of Lemma 3.8.

Inverse image X -1 (F )

In this section we prove the following uniform result for the Hausdorff dimensions of the inverse images X -1 (F ), where F ⊆ R d are Borel sets, of the harmonizable fractional stable sheet defined in (1.4). For definition and basic properties (such as σ-stability and Frostman's lemma) of Hausdorff dimension, we refer to [START_REF] Falconer | Fractal Geometry[END_REF], or [START_REF] Khoshnevisan | Multiparameter Processes: An Introduction to Random Fields[END_REF]. Theorem 3.9 Let X = {X(t), t ∈ R N } be an (N, d) harmonizable fractional stable sheet defined in (1.4). We assume that α ∈ [1, 2] and N j=1 1

H j > d. Denote the random open set O = s,t∈Q N ; 0≺s≺t x ∈ R d : L(x, [s, t]) > 0 .
(3.20)

Then the following statements hold:

(i) With probability 1, dim H X -1 (F ) = min 1≤k≤N k j=1 H k H j + N -k -H k (d -dim H F ) = k j=1 H k H j + N -k -H k (d -dim H F ), if k-1 j=1 1 H j ≤ d -dim H F < k j=1 1 H j (3.21)
for all Borel sets F ⊆ O. In the above we use the convention

0 j=1 H -1 j = 0. (ii) P{O = R d } > 0.
In order to prove Theorem 3.9, we will make use of the following lemma where Y can be quite general. Lemma 3.10 Let Y = {Y (t), t ∈ R N } be a function with values in R d . We assume that for every bounded interval T ⊆ R N and every ε > 0,

Y (s) -Y (t) ≤ ρ(s, t) 1-ε ∀s, t ∈ T (3.22)
and Y has a local time L(x, T ) which is bounded in the space variable x. Then for every Borel set

F ⊆ R d , dim H Y -1 (F ) ≤ min 1≤k≤N k j=1 H k H j + N -k -H k (d -dim H F ) . (3.23)
Proof Our argument is reminiscent to the proof of a corresponding result in [START_REF] Monrad | Local nondeterminism and Hausdorff dimension[END_REF]. For any integer n ≥ 2, we divide T into sub-rectangles R n,i of side-lengths 2 -n/H j (j = 1, . . . , N ). Note that there are at most c 2 nQ such rectangles (recall that Q = N j=1 1 H j ), and each R n,i is equivalent to a ball of radius 2 -n in the metric ρ.

For any (open or closed) ball B(y, Note that the constant c 11 is independent of y and n. Now we prove (3.23) by using (3.25) and a covering argument. Note that it is sufficient to show that dim H Y -1 (F ) ∩ T is bounded by the right hand side of (3.23). The general result follows from the arbitrariness of T and the σ-stability of dim H .

2 -(1-ε)n ), let N ρ (y, n, T ) be the number of R n,i 's such that R n,i ∩ X -1 (B(y, 2 -(1-ε)n )) = ∅.
Given any Borel set F ⊆ R d , we choose and fix an arbitrary constant γ > dim H F . Then there exist a constant δ > 0 and a sequence of balls {B(y j , r j ), j ≥ 1} in R d (in Euclidean metric) such that r j ≤ δ for all j ≥ 1,

F ⊆ ∞ j=1 B(y j , r j ) and ∞ j=1 (2r j ) γ ≤ 1. (3.26)
For every integer j ≥ 1, let n j be the integer such that 2

-(1-ε)(n j +1) ≤ r j < 2 -(1-ε)n j . Since X -1 (F ) ⊆ ∞ j=1 X -1 B(y j , r j ) ,
we obtain a covering of X -1 (F ) ∩ T by a subsequence of intervals {R n j ,i } (i.e., those satisfying R n j ,i ∩ X -1 B(y j , r j ) = ∅). For simplicity, we set N j = N ρ (y j , n j , T ).

For every k ∈ {1, . . . , N }, each rectangle R n j ,i can be covered by at most N =k 2

n j ( 1 H k -1 H )
+1 cubes of side-length 2 -n j /H k . In this way, we obtain a covering of X -1 (F ) ∩ T by cubes of side-length 2 -n j /H k which can be used to bound the Hausdorff measure of X -1 (F ) ∩ T . Let

β k = k j=1 H k H j + N -k -H k (d -γ).
It follows from (3.26) and (3.25) that

∞ j=1 N j N =k 2 n j ( 1 H k -1 H ) + 1 2 - n j H k β k ≤ c ∞ j=1 2 -n j γ ≤ c 12 . (3.27) 
This implies that H β k X -1 (F ) ∩ T ) ≤ c 12 . Hence we have dim H X -1 (F ) ∩ T ≤ β k for every k ∈ {1, . . . , N }. Letting γ ↓ dim H F yields the desired upper bound.

We are ready to prove Theorem 3.9.

Proof of Theorem 3.9 First we prove Part (i). Since it is elementary to verify the second equality in (3.21), we will only prove the first equality in (3.21).

For any bounded interval T ⊆ (0, ∞) N , by Lemmas 3.5 and 3.6, X satisfies a uniform Hölder condition in the metric ρ on T of order 1 -ε and has a jointly continuous (hence bounded) local time on T . Hence the upper bound in (3.21) follows from Lemma 3.10 and the σ-stability of Hausdorff dimension.

For proving the lower bound in (3.21), let γ < dim H F be an arbitrary constant. Then by Frostman's lemma [cf. [START_REF] Falconer | Fractal Geometry[END_REF]] there exists a Borel probability measure ν on R d supported by F such that ν(B(y, r)) ≤ c 13 r γ , ∀ y ∈ R d and r > 0.

(3.28)

We define a random Borel measure on (0, ∞) N by

µ(I) = R d L(x, I) ν(dx), for all I ⊂ (0, ∞) N . (3.29) 
Since ν is supported by F and L(•, I) vanishes outside the closure X(I), we can see that µ is a finite measure supported on X -1 (F ). Moreover, for every F ⊂ O, we have µ(X -1 (F )) > 0.

Let k ∈ {1, . . . , N } be the integer satisfying

k-1 j=1 1 H j ≤ d -dim H F < k j=1 1 H j . (3.30) 
For any r ∈ (0, 1), there is an integer n ≥ 0 such that

2 -(n+1)/H k ≤ r < 2 -n/H k . (3.31)
Hence, for every t ∈ (0, ∞) N , the Euclidean ball U (t, r) can be covered by at most N n intervals

{I i = [t i , t i + 2 -n/H ], 1 ≤ i ≤ N n } (each I i is a subset of the ball centered at t i in the metric ρ of radius √ N 2 -n ),
where

N n ≤ c N j=k+1 2 -n H k + n H j = c 2 n N j=k+1 1 H j -N -k H k . (3.32)
Let us fix an ω ∈ Ω such that the conclusions of both Lemma 3.5 and Theorem 3.7 hold. Hence, by (3.15) and (3.9), we have that a. s. for all n large enough, max

x∈R d L(x, I i ) ≤ c 12 2 -n(1-ε) N =1 1 H -d (3.33) and max s,t∈I i X(s) -X(t) ≤ c 2 -n(1-ε) (3.34)
for every 1 ≤ i ≤ N n . It follows from (3.32), (3.33), (3.28), and (3.34) that for any ε > 0 small

µ(U (t, r)) ≤ Nn i=1 R d L(x, I i ) ν(dx) ≤ c 17 Nn i=1 max x∈R d L(x, I i ) diamX(I i ) γ ≤ c 2 -n k j=1 1 H j -N -k H k -d+γ-ε = c r η , (3.35) 
where

η = k j=1 H k H j -N + k -H k (d -γ) -ε ,
where ε = c 18 ε. This, together with the Frostman's theorem [cf. [START_REF] Falconer | Fractal Geometry[END_REF]], implies that almost surely for every

F ⊂ O, dim H X -1 (F ) ≥ k j=1 H k H j -N + k -H k (d -γ) -ε
Letting ε ↓ 0 yields the desired lower bounds for dim H X -1 (F ). This proves (3.21).

In order to prove Part (ii), we first notice that, for any bounded interval I ⊂ (0, ∞) N with non-empty interior, we have E L(0, I) > 0. This follows directly from (3.18), (3.2) and (3.5). Hence P L(0, I) > 0 > 0. Using the a.s. continuity of x → L(x, I), we see that there are constants r > 0 and δ > 0 such that P L(x, I) > 0 for all x ∈ B(0, r) ≥ δ. This implies that where E is the N × N diagonal matrix diag(n H -1 1 , . . . , n H -1 N ) and Q = N j=1 H -1 j . It follows from (3.36) and (3.37) that P B(0, n N r) ⊂ O ≥ δ. By Fatou's lemma, we have P B(0, n N r) ⊂ O for infinitely many n s ≥ δ.

P B(0, r) ⊂ O ≥ δ. ( 3 
This proves P O = R d ≥ δ.
We remark that, even though in the present paper we have focused on harmonizable fractional stable sheet X, the methods in this section are applicable to stable random fields that have jointly continuous local times such that their uniform moduli of continuity satisfy (3.9) in Lemma 3.5 and (3.15) in Proposition 3.7, respectively. With some extra effort, one can verify that Part (i) of Theorem 3.9 holds for a large class of (N, d) stable random fields X defined as in (1.4) such that X 1 is a harmonizable stable random field with stationary increments. For example, X 1 can be taken as an operator-scaling harmonizable stable random field constructed by Biermé, Meerschaert and Scheffler (2007) (in this case, Part (ii) of Theorem 3.9 also holds) or a stable random field in Sections 3.1 and 3.2 of [START_REF] Xiao | Properties of strong local nondeterminism and local times of stable random fields[END_REF].

This paper also raises several interesting open questions. We list some of them below.

• We believe that P O = R d = 1 for an (N, d) harmonizable fractional stable sheet in Theorem 3.9, but we have not been able to prove this conjecture in general. When α = 2, this can be proved by applying Theorem 2 of [START_REF] Monrad | Local nondeterminism and Hausdorff dimension[END_REF] to the stationary Gaussian random field obtained from a fractional Brownian sheet via the Lamperti transform (cf. [START_REF] Genton | Self-similarity and Lamperti transformation for random fields[END_REF] for the latter). For α ∈ (1, 2), the conjecture would be proven if one can establish a Hewitt-Savage zero-one law for harmonizable fractional stable sheets. See Orey and Pruitt (1973, p.141) and Tran (1976, p.32) for results for the Brownian sheet.

• By checking the proofs in Section 3, one can see that the results on local times and uniform Hausdorff dimension of X -1 (F ) would hold for harmonizable fractional α-stable sheets with α ∈ (0, 1), if the property of local nondeterminism of Z H had been proved when α ∈ (0, 1). See Remark 3.2.

• In light of Biermé, Lacaux and Xiao (2009) and the present paper, it is a natural question to determine the packing dimension (cf. [START_REF] Falconer | Fractal Geometry[END_REF]) of the inverse image X -1 (F ) for F ⊂ R d and to establish a corresponding uniform packing dimension result. Solving these problems would require new results on the local times of harmonizable fractional stable sheets. More precisely, instead of Proposition 3.7 which is concerned with uniform modulus of continuity of the local times, it will be essential to study the liminf behavior of the local times. No results of this kind have been proven for stable random fields.

• It would be interesting to establish a similar uniform dimension result for linear fractional stable sheets (LFSS) considered in [START_REF] Ayache | Linear fractional stable sheets: wavelet expansion and sample path properties[END_REF]. The method for proving Theorem 3.9 breaks down for a LFSS due to the fact that its uniform modulus of continuity is different from that of Z H in Lemma 3.5, a new method will be needed.

• In (1.4), the real-valued random fields X 1 , . . . , X d are assumed to be independent copies. This technical assumption brings convenience for studying sample path properties of X but it is obviously too restrictive. Recently, Xiao and Li (2011), Kremer and Scheffler (2018), [START_REF] Sönmez | Fractal behavior of multivariate operator-self-similar stable random fields[END_REF][START_REF] Sönmez | The Hausdorff dimension of multivariate operator-self-similar Gaussian random fields[END_REF] have introduced and studied several classes of operator-selfsimilar (N, d) stable random fields whose components are dependent in general. It would be of interest to further investigate the fractal properties and local times of these stable random fields.

  For each increasing sequence (D n ) n∈N of finite subsets of I which converges to I (i.e., D n ⊂ D n+1 for every n ∈ N and ∪ n∈N D n = I), one has lim n→+∞

  then X is said to have a jointly continuous local time on T . The following result follows from Lemmas 3.1 and 3.3 above and Theorem 4.2 in Xiao (2011). Lemma 3.6 Let X = {X(t), t ∈ R N } be an (N, d) harmonizable fractional stable sheet defined by (1.4). If α ∈ [1, 2] and N j=1 1/H j > d, then for any bounded interval T ⊆ (0, ∞) N , X has a jointly continuous local time on T almost surely.

  For each such rectangle R n,i , the uniform Hölder condition(3.22) implies that X(R n,i ) ⊆ B(y, 2 -(1-ε)n+1). It follows from the occupation density formula (3.10) thatN ρ (y, n, T ) 2 -Qn ≤ B(y, 2 -(1-ε)n+1 ) L(x, T ) dx ≤ c 2 -(1-ε)dn . (3.24) This yields N ρ (y, n, T ) ≤ c 11 2 (Q-(1-ε)d)n . (3.25)

. 36 )

 36 On the other hand, by the scaling property (1.2) and the occupation formula (3.10), one can verify that the local times L(x, I) have the following property: For any integer n ≥ 2,L(x, I) d = n N d-Q L(n N x, n E I),(3.37)

  For every t ∈ R N and for Lebesgue almost all λ ∈ R N , one has

	Lemma 2.6

1, we have sup y∈R +∞ k=-∞ (2 + |y -k|) -Lα < +∞. (2.29) Finally, putting together (2.27), (2.28) and(2.29), one gets (2.21). The following lemma shows that the function F (t) in (2.22) is in fact the kernel function corresponding to HFSS (see (1.1)).

  .33) It follows from (2.12), (2.33), (2.32) and (2.22) with D n

  .44) It follows from (2.43) and (2.44) that, for almost all
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