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Introduction

Type 2 diabetes (T2D) is a metabolic disease, with a high prevalence worldwide, that remains a major public health issue in all countries. T2D is mainly characterized by a high blood glucose concentration with an abnormally low concentration of blood insulin, its down-regulator hormone secreted by the pancreas. It is commonly admitted that T2D is correlated with a low pancreatic activity and a reduced ability for the different tissues to absorb and use the glucose available in the blood. As it has multifactorial causes, associated with various comorbidities, such as obesity, the challenge to develop an actual therapy is still up to be tackled.

One of the markers of possible risks of T2D in patients is a change in the glycemic postprandial response [START_REF] Bergman | Lessons learned from the 1-hour post-load glucose level during ogtt: Current screening recommendations for dysglycaemia should be revised[END_REF], that is, a modification of the dynamics over time of glucose concentration in the blood after a meal. It has been shown that one of the major contributors of this postprandial response is intestinal glucose absorption (IGA) [START_REF] Tricò | Intestinal glucose absorption is a key determinant of 1-hour postload plasma glucose levels in nondiabetic subjects[END_REF][START_REF] Baud | Sodium glucose transport modulation in type 2 diabetes and gastric bypass surgery[END_REF]. Therefore, IGA monitoring would lead to a better prevention of T2D in patients at risk, improve the cure of patients affected, and more generally better understand the physiological mechanisms at work in this disease.

In this regard, modeling postprandial glucose dynamics in blood is crucial to predict how a change of IGA can affect the concentration of glucose in blood and to devise new diabetes markers. This requires, in particular, to model the rate of appearance of exogenous glucose (Ra G ), that is, the rate of glucose coming from the meal. However, calibrating such a model involves the experimental measure of this rate, which is a difficult challenge. Indeed, the direct measurement of Ra G requires an access to the portal vein, which is generally hardly feasible and even impossible on humans. In addition, it cannot be deduced from other easily observable variables like the concentration of glucose in blood, because other mechanisms occur all the time: glucose excretion (by the kidneys), glucose production (by the liver) and metabolization (by the tissues), regulated by insulin, as illustrated in Figure 1a.

The current approach to experimentally measure Ra G is to perform oral glucose tests with multiple isotopic tracers (dual-or triple-tracer) that consist in injesting labelled glucose [START_REF] Toffolo | Assessment of postprandial glucose metabolism: conventional dual-vs. tripletracer method[END_REF]. They allow to distinguish between the different fluxes of glucose in the blood, and to measure the fraction coming from the meal. Nevertheless, these tests are invasive and complex to set up in a clinical or lab routine, and as such don't allow to gather data on large cohorts of patients.

Here, we propose an alternative approach to measure Ra G that uses D-xylose as an IGA marker. As illustrated in Figure 1b, D-xylose is a sugar absorbed by the small intestine and eliminated by the kidneys, in the same way than glucose, but with no significant metabolization by any other organs, including the liver, unlike glucose. Therefore, as it is not stored, released, or regulated from an endogenous source, we can assume that monitoring D-xylose concentration in the blood mainly reflects its gastro-intestinal activity. Moreover, it is by far simpler to use than isotopic tracer methods. Using D-xylose as a quantitative marker of IGA in the clinical and experimental settings has already been proposed [START_REF] Fujita | Increased intestinal glucose absorption and postprandial hyperglycaemia at the early step of glucose intolerance in otsuka longevans tokushima fatty rats[END_REF][START_REF] Baud | Sodium glucose transport modulation in type 2 diabetes and gastric bypass surgery[END_REF][START_REF] Goutchtat | 1361-p: D-xylose test as a biomarker for glucose intestinal absorption in humans and minipigs[END_REF]. However, such direct measurement is not perfectly accurate since it ignores the effect of D-xylose elimination that takes place in addition to intestinal absorption, and cannot distinguish the respective roles of gastric emptying and intestinal absorption in the rate of D-xylose appearance.

Related works So far, no mechanistic model of D-xylose dynamics has been proposed yet. When it comes to glucose dynamics, most of the models of glucose appearance in blood rely on a complex gastric emptying modeling. Historically, Elashoff et al. proposed the first well-referenced model to describe gastric emptying [START_REF] Elashoff | Analysis of gastric emptying data[END_REF]. It is based on a power exponential decrease function that describes the fraction of the dose D of glucose that remains in the stomach:

D • (1 -e (-k empt •t) β )
where k empt is the rate of gastric emptying and β is a value used to represent the texture of the meal (liquid or solid).

Later, Dalla Man et al. exposed the limitations of the previous approach from Elashoff et al., and proposed a complete gastro-intestinal model, not only describing the gastric emptying, but also the glucose intestinal absorption in post-prandial condition [START_REF] Dalla Man | A system model of oral glucose absorption: Validation on gold standard data[END_REF]. In this model, the intestinal absorption is reduced to a single flux with constant rate, whereas the gastric emptying involves a complex equation with 5 parameters. This model (also defined in section 4, Figure 9) allowed to fit their own dataset of exogenous glucose, obtained with the isotopic triple tracer method, considered as the gold standard experimental approach to measure Ra G .

Salinari et al. proposed a spatial model of intestinal absorption and transit, defined by means of a system of partial differential equations, depending on time and on the position along the intestine [START_REF] Salinari | Intestinal transit of a glucose bolus and incretin kinetics: a mathematical model with application to the oral glucose tolerance test[END_REF]. The rate of transit was determined by their specific data, mainly depending on the length of the intestine (see Subsection 3.2). More importantly, in this spatial model, we can consider a non-uniform intestinal absorption rate along the intestine. This hypothesis is indeed considered as realistic and the authors show that different spatial distributions of absorption may result in different glucose appearance dynamics. We also show that the rates of gastric emptying and of absorption, in particular, are identifiable.

In addition, to decypher the relative contribution of gastric emptying and intestinal absorption to D-xylose dynamics, we show that the alternative model of Dalla Man et al. [START_REF] Dalla Man | A system model of oral glucose absorption: Validation on gold standard data[END_REF] emphasizying on gastric emptying cannot fit equally well our experimental data. Finally, we performed a sensitivity analysis to decypher which of the rate of gastric emptying and the rate of intestinal absorption have the most significant impact on the overall quantity of D-xylose absorbed after 180 minutes. We show that this quantity is more sensitive to intestinal absorption and that D-xylose can thus potentially serve as a marker of IGA that is easy to use in the clinical setting.

Outline Section 2 presents the experimental datasets. Section 3 presents the model of D-xylose dynamics, the results of parameter identification, the results of the parameter identifiability analysis, and the fitting of the model with the glucose rate of absorption obtained by double tracer. In Section 4, we present the results of the global sensitivity analysis, and compare our model with Dalla Man's one in terms of fitting accuracy. In Section 5, we discuss the results and present some future work.

Minipigs Datasets for Parameters Estimations

For the model calibration, we use experimental data that involves Göttingen minipig datasets [START_REF] Goutchtat | 1361-p: D-xylose test as a biomarker for glucose intestinal absorption in humans and minipigs[END_REF].

This species is indeed well adapted for gastrointestinal experiments and has a physiology that is close to the human one, thus allowing experiments that were not ethically possible on humans. For our problematic, different experiments have been performed to monitor sugar in the blood after an intake of a bolus of sugar using intravenous, intestinal or oral administration.

This entails two subpopulations of pigs each producing several datasets.

• The individuals of the first subpopulation underwent an oral administration along with two alternative administrations: intravenous and jenunal, thus producing a total of 3 datasets.

-Oral bolus dataset: this dataset allows to to monitor blood D-xylose in the normal state after an oral administration of the meal. Additional individuals from previously existing experiments were also added if they also underwent the same oral bolus administration in the same experimental conditions, in order to improve this dataset. -Intravenous bolus dataset: in this dataset, the experiment consists of administrating a single shot of solution of sugar in the blood, including 30 g of D-xylose. These data allow to estimate the volume of distribution V D that is used to convert both the initial amount of sugar into a concentration and the rate of exogenous appearance into the right dimension (see Section 3.1). -Intestinal (or jejunal) bolus dataset: for this dataset, the stomach is bypassed and the meal is directly administrated in the small intestine, and more precisely in its proximal half, the jejunum. The blended meal includes 30 g of D-xylose. This experiment is interesting to study gastric emptying, as its results can be used in conjunction with the oral bolus dataset for the same subpopulation. From a modeling point of view, it consolidates the estimated rate k empt of gastric emptying (part of the bolus transferred from the stomach to the intestine, later presented in Section 3.2).

• The individuals of the second subpopulation underwent a surgical experiment to assess the sugar response in blood after a change in the absorption processes. This subpopulation is interesting to compare the rate of appearance of exogenous glucose (Ra G ) with the rate of appearance of D-xylose (Ra X ) in normal and experimental conditions to demonstrate the relevance of D-xylose to study IGA behavior. Indeed, this subpopulation benefitted from a gold standard technique to monitor their IGA, known as dual-tracer, implying two differently labeled glucoses to distinguish glucose from an exogenous source and glucose from an endogenous source (typically produced by the liver). This subpopulation thus produced four datasets: before and after the surgery, both measuring D-xylose and glucose concentrations in blod.

-Oral bolus before intestinal resection dataset: this dataset allows to to monitor blood sugar in the normal state (before surgery) after an oral administration of the meal. -Oral bolus after intestinal resection dataset: in this dataset, about 80% of the mid-part of the small intestine has been removed. After a time of recovery, an oral administration of the meal is performed.

All these datasets are graphically represented in Figure 2 and are used to calibrate the models presented in the next section.

Model structure, fitting and exploitation

This section presents the main model of this work and results provided by this model. The first step is to estimate the volume of distribution of D-xylose, which is a parameter of the model that can be calculated.

Volume of distribution of D-xylose

As stated in the previous section, we need to assess the volume of distribution of D-xylose V D X . This volume of distribution is the total volume of fluid (mainly blood, but also interstitial fluids) that D-xylose can occupy once absorbed by the intestine: it serves as a reference to compute concentrations of D-xylose in the body instead of quantities. It is usually normalized by the body weight, so the dimension of V D X is dL/kg. After an intravenous injection experiment, it is defined by the following equation:

V D X = D X BW • X p
where D X is the administrated dose of D-xylose (mg), X p is the concentration of D-xylose in the blood (mg/dL) when D X is fully administrated instantly, and BW is the body weight (kg). To obtain this value, we perform a simple model fitting from observations of D-xylose dynamics after an intravenous injection, reported in Figure 3, which features the curves of the observed and simulated D-xylose in plasma, X p , over time. Given that, in true experimental conditions, the intravenous injection procedure spreads over 5 min while the elimination starts immediately, the value we actually consider for X p is the concentration obtained for the curve extroplated to 0. From this work, we found a significant linear correlation between the body weight and the volume of distribution as shown in Figure 4. This observation allowed us to infer, from their body weight BW , the volume of distribution, de- noted V D X (BW ), of the minipigs that did not underwent an intravenous injection experiment.

Multi-Compartment model

The model that is used in the rest of this work is given in Figure 5 both as a system of ordinary differential equations (ODEs) and in the form of a reaction network (using a Petri net-like graphical notation). It is composed of:

• one variable X s modeling the stomach,

• one variable X p modeling plasma,

• n variables X g1 , . . . , X gn modeling the intestinal tract, where n = 10 for all following numerical analyses.

The rate k empt (min -1 ) models gastric emptying, that is, the emptying of the stomach into the intestine. This rate is willingly kept simple, as opposed to other modelings such as [START_REF] Dalla Man | A system model of oral glucose absorption: Validation on gold standard data[END_REF] and as discussed in Section 4.2.

Intestinal transit is modeled as a flux of D-xylose between the compartments X g1 , ..., X gn modeling the intestine. More precisely, this flux allows D-xylose to transit from each compartment, X g i , to the next, X g i+1 . We assume that this flux is uniform with rate k trans (min -1 ) defined by the following equations:

k trans = 1 τ τ = L u
• n where τ is the time required for the transit through one compartment (min), L is the length of the small intestine (estimated at 1100 cm, the average length obtained from the surgery performed for the oral bolus after resection dataset), and u the speed of intestinal transit (empirically set to 6 cm/min, an estimation for the PDE intestinal model of [START_REF] Salinari | Intestinal transit of a glucose bolus and incretin kinetics: a mathematical model with application to the oral glucose tolerance test[END_REF]).

The global intestinal absorption, from the gut to the plasma, is modeled with rate k abs (min -1 ). However, the distribution of this rate of absorption along the intestine is supposed non-uniform. For this, for each variable X g i , the rate of absorption is modulated by a strictly positive parameter α i . The sum of all parameters α 1 , ..., α n equals 1, so that the global absorption rate (the sum of the rates from each compartment of the intestine) is thus k abs . Note that if the distribution of these parameters is uniform (that is, α i = 1/n for all i) then this model is equivalent to a model where the whole intestine would be represented by a unique variable X g and an output rate of k abs . We therefore don't force any particular distribution, and the parameters α i are estimated in the following.

Finally, here, "elimination" is a generic term to designate both D-xylose renal clearance and metabolization, both resulting in D-xylose blood concentration decrease after a certain time, modeled by a rate k elim (min -1 ). It is admitted that metabolization by the tissue and in the gut can be considered as negligible, making renal clearance the main factor of D-xylose elimination; therefore, a single rate of elimination from the plasma compartment is relevant.

This model is a discretized variant of the model of [START_REF] Salinari | Intestinal transit of a glucose bolus and incretin kinetics: a mathematical model with application to the oral glucose tolerance test[END_REF], which models the intestine as a long continuous compartment inside which the meal bolus moves with a certain speed; the rate of absorption thus depends on the position of the bolus inside this unique compartment. In the present work, this is instead modeled as a series of successive compartments with different absorption factors (α 1 , ..., α n ). The point is to take into account both the transport k empt (min -1 ) k abs (min -1 ) k elim (min -1 ) 0.0379 0.2223 0.007 of D-xylose along the intestinal tract, and the nonuniform distribution of glucose transporters (proteins involved in the absorption of glucose from the gut to the blood) along the intestinal tract.

We also use a "jejunal injection" variant of the model, that is used to fit the intravenous bolus dataset. This variant is obtained by removing the variable X s from the model and changing the initial value of X g1 to

D X BW •V D X (BW )
, in order to model the injection of D-xylose directly into the intestine.

Parameter estimation

Using our various available experimental datasets, we adopt a parameter estimation strategy that minimizes the risks of non-identifiability. For this, we estimate parameters using two datasets at the same time: the oral bolus dataset (on the main model) and the jejunal bolus dataset (on its jejunal variant). The estimated parameters are the rates k empt , k abs and k elim , in addition to the absorption distribution parameters α 1 , ..., α n . All these parameters were considered common to both models, except for k empt that does not exist in the jejunal variant.

Technically, we fit the mean values of the plasma D-xylose data X p (purple bullets in Figure 6) taking into account the standard deviation (purple shaded area) to minimize the Negative Log-Likelihood Loss. This is achieved using the CMA-ES (Covariance matrix adaptation evolution strategy) numerical optimization algorithm [START_REF] Hansen | The cma evolution strategy: A tutorial[END_REF]. All implementation steps (data pre-processing, model implementation and numerical analyses) were made in the Julia programming language (v1.8.2) with the following packages: CMAEvolutionStrategy (v0.2.6), Differ-entialEquations (v7.7.0), DiffEqParamEstim (v2.0.1), ModelingToolkit (v8.46.1), Catalyst (v12.3.2), Like-lihoodProfiler (v0.5.0) and Plots (v1.38.5).

The parameter values that are obtained for k empt , k abs and k elim are reported in Table 1. As can be seen on Figure 6, the model performs a good fitting of both the oral and jejunal datasets. equally or satisfyingly fit the data. Indeed, experimental data are noisy and part of the fitting deviation is to be attributed to experimental error. Intuitively, assuming acceptable error intervals for the observed variables, if there is a "unique" set of parameter values that makes the observed variables fit the data within these intervals, then the model is said practically identifiable. However, if non-identifiability can be attributed to the data (e.g., because of limited amount or too noisy data), it can also be attributed to the model itself in which changing the values of some parameters can always be compensated by other parameter values whatever the data. In the latter case, we say that the model is structurally non-identifiable [START_REF] Bellman | On structural identifiability[END_REF]. Identifiability analysis is an important step in assessing the quality of a model. In this paper, we consider practical identifiability based on the profile likelihood method [START_REF] Raue | Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood[END_REF]. This method investigates the practical identifiability locally, that is, near the estimated value of a given parameter. For this, we used the Julia package Likeli-hoodProfiler (v0.5.0). This tool locally analyses each parameter in a given interval to scan, which gives a confidence interval bound if the parameter is identifiable, or none if the tool has reached the given scan interval bounds or if no identifiability gain is detected along this interval. As it is an exploratory step, we gave a relatively large interval to scan for each parameter of interest. We set the confidence interval to 95%. The confidence intervals found for each parameter are collected in Table 2. We actually ignore the identifiability of the speed of intestinal transit and the distribution of absorption parameters that are irrelevant for the present work and, hence, set as constants for this identifiability analysis. These intervals indicate total identifiability for the three relevant parameters: k empt , k abs and k elim . The results can be interpreted as an indication of the good relevance of the collected datasets and especially the good reliability of the estimation of our main parameter of interest, k abs . This

Practical identifiability analysis

X s k empt X g1 k trans X g2 . . . X gn α 1 • k abs α 2 • k abs . . . α n • k abs X p k elim (a) Reaction network Ẋs (t) = -k empt • X s (t) Ẋg1 (t) = k empt • X s (t) -(α 1 • k abs + k trans ) • X g1 (t)
. . . analysis has been performed in the same setting that was used for fitting in Section 3.3, that is, on the main model and its jejunal variant simultaneously.

Ẋgn (t) = k trans • X g n-1 (t) -α n • k abs • X gn (t) Ẋp (t) = Ra X (t) -k elim • X p (t) Ra X (t) = k abs • ( n ∑ i=1 α i • X gi (t)) and n ∑ i=1 α i = 1 (b) ODE system Ẋs (0) = D X BW •V D X (BW ) Ẋg1 (0) = 0 . . . Ẋgn (0) = 0 Ẋp (0) = 0 (c) Initial conditions

Prediction of the rate of glucose absorption from the dataset of intestinal resection

In order to validate the usefulness of our model, we test its capability to predict the rate of appearance of exogenous glucose (Ra G ) both in normal condition and after an intestinal resection. Recall that this rate corresponds to the part of the concentration of glucose per unit of time appearing in blood that is originating from the meal. This rate was experimentally monitored using the dual tracer protocol. We show in the following that the model is able to adapt to data obtained after intestinal resection, which is considered to experimentally simulate a change in the mechanisms of glucose absorption. In this study, since the setting and individuals are different from the datasets used above, we re-evaluate all parameters (rates and absorption parameters) except the elimination (considered untouched by the operation) before and after intestinal resection. However, since our model is designed for D-xylose, we do not directly train it on the available glucose data: instead, we train it on the available D-xylose datasets (not featuring doubletracer data, but only D-xylose concentration in blood over time) and compare the results with the glucose dynamics form the glucose datasets. Finally, we compare the rate of D-xylose appearance (Ra X ) computed using the model (with the formula given in Figure 5b) and compare it with the Ra G experimental data (the rate of appearance of exogenous glucose) obtained with the double-tracer method. This result is presented in Figure 7. As we can see, although the values of the parameters were estimated on D-xylose plasma measurments, the model gives a relatively satisfying prediction of the rate of appearance of exogenous glucose (Figure 7, lower plots). This tends to indicate that D-xylose might be an acceptable marker for glucose absorption. Note that the difference of the rates of appearance between glucose and D-xylose after a resection might reflect, on the one hand, that Ra x is the exclusive reflection of the gastric emptying and the intestinal absorption, whereas on the other hand, Ra G reflects these two mechanisms in addition to the inevitable hepatic glucose metabolization, despite the use of the gold standard method.

Relative roles of gastric emptying and intestinal absorption

In this section, we propose to compare the relative roles that gastric emptying and intestinal absorption play in the appearance of D-xylose in the blood, according to our model. For this, we first perform a global sensitivity analysis, which is designed to assess the impact of the model parameters on a chosen model output. In our case, such analysis would assess which parameter is the most impactful on the D-xylose appearance, especially between gastric emptying and intestinal absorption. Since we considered D-xylose as a relevant biomarker for glucose exogenous appearance, it is expected that the model is more sensitive to intestinal absorption than gastric emptying. In addition to the sensitivity analysis, we estimated the parameters on a model inspired by Dalla Man and colleagues [START_REF] Dalla Man | A system model of oral glucose absorption: Validation on gold standard data[END_REF] characterized by a detailed gastric emptying modeling and a simplified intestinal modeling.

Global sensitivity analysis

The rate of exogenous sugar appearance (either Ra X for D-xylose or Ra G for glucose) depends not only on the rate of intestinal absorption but also on the rate of gastric emptying. Hence, both gastric emptying and intestinal absorption events are potentially contributing to IGA. As we seek for a model that can assess the intestinal activity to profile any individual, it is important to check which factor is the most impactful on IGA.

Global sensitivity analysis is another process used to understand how the uncertainty or variability in the inputs of a mathematical or computational model affects the output or outcome of the model. [START_REF] Sobo Ĺ | Sensitivity estimates for nonlinear mathematical models[END_REF]. In this work, the sensitivity analysis has been done on the model without the jejunal variant. For the model's output we consider the area under the curve of D-xylose's rate of appearance, noted AUC Ra X at 180 minutes. AUC Ra X , corresponds to the integration of Ra X , that is, to the total quantity of D-xylose that has reached the blood at a given time t independently from the influence of the rate of elimination k elim . In the absence of tracer methods (as it is the case for D-xylose in this work), computing AUC Ra X is of interest to assess D-xylose absorption because simply observing its concentration in plasma (X p ) would be also influenced by the elimination rate. Furthermore, by checking the output's at the maximum time monitored (180 min), we wanted to ensure that the gastric emptying has way less influence on the rate of appearance than the intestinal absorption, hence, making sure that D-xylose can potentially be used as a biomarker to assess Ra X (and eventually Ra G ).

We use the Julia package GlobalSensitivity (v2.1.4) to perform this analysis and obtain Firgure 8 for AUC Ra X at 180 minutes. This analysis systemat- ically states the importance of intestinal absorption, without denying the role of gastric emptying, for both parameters.

Model with complex gastric emptying

To validate furthermore the degree of implication of intestinal absorption over gastric emptying on the glucose or D-xylose appearance in the blood, we compared our results with another model featuring a more complex gastric emptying part, inspired from the works of Dalla Man and colleagues [START_REF] Dalla Man | A system model of oral glucose absorption: Validation on gold standard data[END_REF]. This model is given in Figure 9 and features two compartments for the stomach contents, the first (X s1 ) representing non-grinded food and the second (X s1 ) representeing grinded food (as opposed to only one compartment for the model of Figure 5) but only one compartment (X g ) for the intestine (as opposed to several compartments for the model of Figure 5). Moreover, the rate of gastric emptying k empt from X s2 to X g is not a constant value but depends on the sum of the two variables that represent the total content of the stomach (X s1 + X s2 ), on the initial bolus (D X ) and on other constant parameters (k min , k max , a and b). Intuitively, this rate is U-shaped and reaches its maximum value (k max ) at the beginning and the end of the griniding (when the stomach is almost full or almost empty) and reaches its minimum value (k min ) in-between.

The values of all constant parameters in the model of Figure 9 were obtained with the same data (oral bolus dataset and jejunal bolus dataset) and the same fitting method than the model of Section 3. As a reminder, the experimental dataset features the D-xylose concentration over time, measured in the peripheral blood, both after an oral bolus and after a bolus directly injected in the jejunum, and the fitting of the parameters is performed using both experimental conditions at once. The idea is to check if a model with a more complex stomach and gastric emptying coupled with a simpler intestine modeled as a single compartment is able to fit this dataset as efficiently as the model of Figure 5. The result of this experiment is given in the simulation of Figure 10, showing that the more complex gastric part of the model is not able to fit the data as well as the model of Figure 5. Hence, combined with the sensitivity analysis on the multicompartment model, we demonstrate the necessity to use the model of Figure 5 to reflect D-xylose appearance.

X s1 k gri X s2 k empt X g k abs X p k elim
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Conclusions and Perspectives

In this work, we propose a multi-compartment model of postprandial D-xylose dynamics as a first step towards a predictive model of intestinal glucose absorption. This model is based on three major parameters representing the (linear) rates of gastric emptying, intestinal absorption and elimination, and models the intestine as a succession of compartments, thus introducing a delay that models the intestinal transit. We calibrated the model using a tailored dataset from several minipig populations that underwent oral, intravenous or jejunal administration of D-xylose, as well as intestinal resection. We studied the identifiability and the sensitivity of its parameters.

This model presents good performances in terms of goodness-of-fit, even with the data of jejunal injection, especially when compared with another model where the gastric part is more complex but the intestinal part is simplified, and which does not fit the data of jejunal injection data as well. This suggests that the chosen multi-compartment modeling of the intestine is relevant, and emphasizes the important role of intestinal absorption. Furthermore, the model appeared to be identifiable for all relevant parameters. Finally, we also compared the rate of appearance of D-xylose predicted by the model with the actual rate of appearance of exogenous glucose (Ra G ), that is, glucose only coming from the meal and not from kidney storage, for instance. These results are very interesting as they corroborate that D-xylose could be a valuable marker of intestinal absorption. It reinforces the fact that our model is a good candidate to predict Ra G , at least qualitatively.

Besides of experimental investigations, further work is necessary to improve, or better take advantage of, the ability of the model to predict Ra G . Also, we plan to propose a simplified model of the glucoseinsulin regulation system based on the minimalmodel of [START_REF] Bergman | Quantitative estimation of insulin sensitivity[END_REF] with an accurate D-xylose-based model of IGA. Finally, datasets on humans that underwent glucose and D-xylose bolus administrations could help translate this model to humans. In the long term, it is hoped that this model could be applied to humans and could help in a medical setting to diagnose patients with abnormal intestinal glucose absorption.

  (a) Glucose/Insulin system (b) D-xylose system Figure 1: Simplified diagrams of the regulated glucose/insulin system and the unregulated D-xylose system.
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 2 Figure 2: Experimental minipigs blood D-xylose concentration datasets, for different experimental conditions.
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 3 Figure 3: Results of the simple intravenous model fitting the intravenous injection dataset in order to estimate the volume of distribution V D X . The estimated parameter is k elim = 0.00960 with a log-likelihood loss of 29.49956. The bullets represent the mean values of the dataset, the envelope represents its standard deviation, and the line represents the model simulation.
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 4 Figure 4: Tracing the significant linear correlation between the body weight of each individual that underwent intravenous injection and their respective volume of distribution. Pearson coefficient: -0.94725.
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 5 Figure 5: Multi-compartment model.

  (a) Results of the model fitting the oral bolus before intestinal resection dataset. (b) Results of the model fitting the oral bolus after intestinal resection dataset.

Figure 7 :

 7 Comparing the rate of glucose exogenous appearance (Ra G ) from double tracer experiment, the gold standard method, to the generated rate of appearance of D-xylose (Ra X ), obtained from parameter estimation on the same population. The dots represent the mean experimental values, the envelope is the standard deviation, and the lines are the simulations produced with the model. The top figures represent the plasma D-xylose (used for fitting the parameters). The bottom figures represent the simulated rate of absorption of D-xylose (Ra X ) from the model, and the observed rate of absorption of glucose (Ra G ) from double-tracer experiments. In both experimental conditions (pre-and post-resection) we can observe a relatively good fitting between the glucose and the D-xylose, despite the absence of a glucose model in this work.

  It helps identify which input factors or variables have the most significant impact on the model's results. In other words, its goal is to figure out which factors matter the most and how they contribute to the overall variability of the model's predictions or outputs. Sobol indices are widely used measures in global sensitivity analysis. They quantify the contribution of each input factor or variable to the overall variability of a model's output. Sobol indices are calculated by decomposing the total variance of the model output into different components attributed to individual input factors or combinations of factors. They provide insights into the relative importance and interactions of different input variables in influencing the model's output

Figure 8 :

 8 Figure 8: Results of the global sensitivity analysis of AUC Ra X at 180 minutes.

  d) Expression of k empt Figure 9: Model with complex gastric emptying (a) X p from oral bolus. (b) X p from jejunal bolus.

Figure 10 :

 10 Results of parameter estimations of the model inspired from Dalla Man et al. on the oral and jejunal bolus datasets.

Table 1 :

 1 Parameter values estimated by fitting simultaneously the oral and jejunal bolus datasets with, respectively, the model and its jejunal variant. Obtained loss: 44.035.

Table 2 :

 2 Parameter estimation allows to find one set of parameter values that makes a model fit the data. It does not guarantee that there aren't any other values that could Practical identifiability analysis table on the gastric emptying rate k empt , the intestinal absorption rate k abs and the elimination rate k elim for the model.

		Confidence	Confidence
		interval	interval
	Parameter lower bound upper bound
	k empt	0.03737	0.09202
	k abs	0.22197	0.32798
	k elim	0.00622	0.00708
			Here, each
	value represents a bound that is reached, meaning complete
	practical identifiability for the model. Missing values would
	have denoted unreached bounds and thus incomplete iden-
	tifiability.		
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