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Type 2 Diabetes (T2D) is one of the main epidemics of this century. One of the hypothesis of medical research
is that an important cause of T2D may be the abnormal regulation of intestinal glucose absorption (IGA).
Early detection of IGA disorders, and, more generally, precision medicine, may help to prevent the risk of
T2D. This could be achieved by predictive models of glucose dynamics in blood following an oral ingestion.
Even though many such models have been proposed, they either do not cope with IGA at all, or their calibration
requires the use of complex and invasive tracer protocols that make them clinically unusable on a daily basis.
To overcome this issue, D-xylose may be used as an IGA marker. Indeed, it is a glucose analogue with
similar intestinal absorption mechanisms but, contrary to glucose, its dynamics in blood only results from
gastric emptying, intestinal absorption and elimination by the kidney. In this paper, we investigate, for the
first time, a model-based assessment of IGA based on D-xylose dynamics in blood after oral absorption. We
show that a multi-compartment model of instestinal absorption can fit very well D-xylose data obtained from
different experimental conditions and be a good qualitative estimate of IGA. And addition, because gastric
emptying is a possible confounding factor with intestinal absorption, we explore the relative contribution of

both mechanisms to the rate of D-xylose (and thus glucose) appearance in blood.

1 Introduction

Type 2 diabetes (72D) is a metabolic disease, with a
high prevalence worldwide, that remains a major pub-
lic health issue in all countries. T2D is mainly char-
acterized by a high blood glucose concentration with
an abnormally low concentration of blood insulin, its
down-regulator hormone secreted by the pancreas. It
is commonly admitted that T2D is correlated with a
low pancreatic activity and reduced ability for the dif-
ferent tissues to absorb and use the glucose available
in the blood. As it has multifactorial causes, associ-
ated with various comorbidities, such as obesity, the
challenge to develop an actual therapy is still up to be
tackled.

One of the markers of possible risks of T2D in
patients is a change in the glycemic postprandial re-
sponse (Bergman et al., 2018), that is, a modification
of the dynamics over time of glucose concentration in
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the blood after a meal. It has been shown that one of
the major contributors of this postprandial response is
intestinal glucose absorption (/GA) (Trico et al., 2019;
Baud et al., 2016). Therefore, IGA monitoring would
lead to a better prevention of T2D in patients at risk,
improve the cure of patients affected, and more gener-
ally better understand the physiological mechanisms
at work in this disease.

In this regard, modeling postprandial glucose dy-
namics in blood (Dalla Man et al., 2007) is crucial to
predict how a change of IGA can affect the concen-
tration of glucose in blood and to devise new diabetes
markers. This requires, in particular, to model the rate
of appearance of exogenous glucose (Rag), that is, the
rate of glucose coming from the meal. However, mea-
suring this rate experimentally is a difficult challenge.
Indeed, it cannot be deduced from other easilly ob-
servable variables like the concentration of glucose in
blood, because other mechanisms occur all the time:
glucose excretion (by the kidneys), glucose produc-
tion (by the liver) and metabolization (by the tissues),
regulated by insulin, as illustrated in Figure 1a.
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Figure 1: Simplified diagrams of the regulated glu-
cose/insulin system and the unregulated D-xylose system.

In addition, the direct measurement of Rag re-
quires an access to the portal vein, which is gener-
ally hardly feasible and impossible on humans. The
current approach to experimentally measure Rag is to
perform oral glucose tests with multiple isotopic trac-
ers (dual- or triple-tracer) that consist in injesting la-
belled glucose (Toffolo et al., 2006). They allow to
distinguish between the different fluxes of glucose in
the blood, and to measure the fraction coming from
the meal. Nevertheless, these tests are invasive and
complex to set up in a clinical or lab routine, and as
such don’t allow to gather data on large cohorts of pa-
tients.

Here, we propose an alternative approach to mea-
sure Rag that uses D-xylose as an IGA marker. As
illustrated in Figure 1b, D-xylose is a sugar absorbed
by the small intestine and eliminated by the kidneys,
in the same way than glucose, but with no signifi-
cant metabolization by any other organs, including the
liver, unlike glucose. Therefore, as it is not stored, re-
leased, or regulated from an endogenous source, we
can assume that monitoring D-xylose concentration
in the blood mainly reflects its gastro-intestinal activ-
ity. Moreover, it is by far of simpler use than iso-
topic tracer methods. Using D-xylose as a quanti-
tative marker of IGA in the clinical and experimen-
tal settings has already been proposed (Fujita et al.,

1998; Baud et al., 2016; Goutchtat et al., 2022). How-
ever, such direct measurement is not perfectly accu-
rate since it ignores the effect of D-xylose elimination
that takes place in addition to intestinal absorption.

Contribution In this paper, we propose a new
model-based assessment of IGA. More precisely, we
investigate a physiological model of D-xylose dynam-
ics that is composed of multi-compartmental intesti-
nal transit and absorption, and both exponential gas-
tric emptying and D-xylose elimination. While being
simple, we show that our model can fit time series
of D-xylose data obtained in different experimental
conditions with a good accuracy and, most impor-
tantly, that it can predict Rag validated with tracer
data. In addition, to decypher the relative contri-
bution of gastric emptying and intestinal absorption
to D-xylose dynamics, we show that an alternative
model based on a complex two-compartement model
of gastric emptying and simple exponential intestinal
absorption cannot fit equally well the experimental
data. Finally, based on our model, we study a pos-
sible marker of glucose absorption independantly of
gastric emptying.

QOutline Section 2 presents the experimental
datasets. Section 3 presents the model of D-xylose
dynamics, the results of parameter identification,
and the fitting of the model with the glucose rate of
absorption obtained by double tracer. In Section 4,
we present the results of parameter identifiability and
sensitivity. In Section 5, we discuss the results and
present some future work.

2 Minipigs Datasets for Parameters
Estimations

For the model calibration, we use experimental data,
provided by our clinical research partner (Goutchtat
et al., 2022), that involves Gottingen minipig datasets.
This species is indeed well adapted for gastrointesti-
nal experiments and has a physiology that is close to
the human one, thus allowing experiments that were
not ethically possible on humans. For our problem-
atic, different experiments have been performed to
monitor sugar in the blood after an intake of a bolus
of sugar using intravenous, intestinal or oral adminis-
tration. This entails several subpopulations of pigs.

e Intravenous bolus subpopulation: in this cohort,
the experiment consists of administrating a single
shot of solution of sugar in the blood, including
30 g of D-xylose. These data allow to estimate



the volume of distribution Vp that is used to con-
vert both the initial amount of sugar into a con-
centration and the rate of exogenous appearance
into the right dimension (see below).

Intestinal (or jejunal) bolus subpopulation: in this
group, the stomach is bypassed and the meal is
directly administrated in the small intestine, and
more precisely in its proximal half, the jejunum.
The blended meal includes 30 g of D-xylose. This
experiment is interesting to study gastric empty-
ing, as the same subpopulation of minipigs that
underwent this experiment also got an oral admin-
istration in a normal state (before experimental
surgery). From a modeling point of view, it con-
solidates the estimated rate k., of gastric empty-
ing (part of the bolus transferred from the stomach
to the intestine).

* Oral bolus subpopulation after intestinal resec-
tion: in this case, about 80% of the mid-part of
the small intestine has been removed, before the
oral administration of the meal (containing 30 g of
D-xylose). This experiment is interesting to com-
pare the rate of appearance of exogenous glucose
(Rag) with the rate of appearance of D-xylose
(Ray) in normal and experimental conditions to
demonstrate the relevance of D-xylose to study
IGA behavior. Indeed, this subpopulation benefits
from a gold standard technique to monitor their
IGA, known as dual-tracer, implying two differ-
ently labeled glucoses to distinguish glucose from
an exogenous source and glucose from an endoge-
nous source (typically produced by the liver).

All these subpopulations also underwent, before
their respective experimental bolus or surgery, an
oral administration of a meal to monitor blood
sugar in the normal state.

As stated above, we need to assess the volume of
distribution of D-xylose Vp, . This volume of distri-
bution is the total volume of fluid (mainly blood, but
also interstitial fluids) that D-xylose can occupy once
absorbed by the intestine: it serves as a reference to
compute the concentration of D-xylose in the body. It
is usually normalized by the body weight, so the di-
mension of Vp, is dL/kg. After an intravenous injec-
tion experiment, it is defined by the following equa-
tion:

Dy
- BW-X,
where Dy is the administrated dose of D-xylose (mg),
X, is the concentration of D-xylose in the blood
(mg/dL) when Dy is fully administrated instantly, and
BW is the body weight (kg). To obtain this value, we
perform a simple model fitting from observations of
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Figure 2: Results of the simple intravenous model fitting
the intravenous injection dataset in order to estimate the
volume of distribution Vp,. The estimated parameter is
ketim = 0.00960 with a log-likelihood loss of 29.49956. The
bullets represent the mean values of the dataset, the enve-
lope represents its standard deviation, and the line repre-
sents the model simulation.
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Figure 3: Tracing the significant linear correlation between
the body weight of each individual that underwent intra-
venous injection and their respective volume of distribution.
Pearson coefficient: —0.94725.

D-xylose dynamics after an intravenous injection, re-
ported in Figure 2, which features the curves of the
observed and simulated D-xylose in plasma, X,,, over
time. Given that, in true experimental conditions, the
intravenous injection procedure spreads over 5 min
while the elimination starts immediately, the value
we actually consider for X, is the concentration ob-
tained for the curve extroplated to 0. From this work,
we found a significant linear correlation between the
body weight and the volume of distribution as shown
in Figure 3.  This observation allowed us to infer,
from their body weight BW, the volume of distribu-
tion, denoted Vp, (BW), of the minipigs that did not
underwent an intravenous injection experiment.

All these datasets were used to calibrate the mod-
els presented in the next section.



3 Model

This section presents the main model of this work and
results provided by this model.

3.1 Multi-Compartment model

The model is given in Figure 4 both as a system of or-
dinary differential equations (ODEs) and in the form
of a reaction network (using a Petri net-like graphical
notation). It is composed of:

* one variable X; modeling the stomach,

* one variable X}, modeling plasma,

* n variables X,1,...,X,, modeling the intestinal
tract, where n = 10 for all following numerical
analyses.

The rate keyp: (min~") models gastric emptying,
that is, the emptying of the stomach into the intestine.
This rate is willingly kept simple, as opposed to other
modelings such as (Dalla Man et al., 2006) and as
discussed in Section 4.3.

Intestinal transit is modeled as a flux of D-xylose
between the compartments X, ..., Xg, modeling the
intestine. More precisely, this flux allows D-xylose to
transit from each compartment, X,,, to the next, X,, e
We assume that this flux is uniform with rate ks
(min~"') defined by the following equations:

1 L

klrans = =
T

u-n
where T is the time required for the transit through
one compartment (min), L is the length of the small
intestine (estimated at 1100 cm, the average length
obtained from the resection dataset), and u the speed
of intestinal transit (empirically set to 6 cm/min, an
estimation for the PDE intestinal model of (Salinari
etal.,, 2011)).

The global intestinal absorption, from the gut to
the plasma, is modeled with rate k., (min~"). How-
ever, the distribution of this rate of absorption along
the intestine is supposed non-uniform. For this, for
each variable X, the rate of absorption is modulated
by a strictly positive parameter ;. The sum of all
parameters o, ..., 0, equals 1, so that the global ab-
sorption rate (the sum of the rates from each com-
partment of the intestine) is thus kgs. Note that if
the distribution of these parameters is uniform (that
is, a; = 1/n for all i) then this model is equivalent
to a model where the whole intestine would be repre-
sented by a unique variable X, and an output rate of
kaps- We therefore don’t force any particular distribu-
tion, and the parameters o; are estimated.

Finally, here, “elimination” is a generic term to
designate both D-xylose renal clearance and metabo-
lization, both resulting in D-xylose blood concentra-
tion decrease after a certain time, modeled by a rate
kejim (min~1). It is admitted that metabolization by the
tissue and in the gut can be considered as negligible,
making renal clearance the main factor of D-xylose
elimination; therefore, a single rate of elimination
from the plasma compartment is relevant.

This model is a discretized variant of the model of
(Salinari et al., 2011), which models the intestine as a
long continuous compartment inside which the meal
bolus moves with a certain speed; the rate of absorp-
tion thus depends on the position of the bolus inside
this unique compartment. In the present work, this
is instead modeled as a series of successive compart-
ments with different absorption factors (o, ..., 0,).
The point is to take into account both the transport
of D-xylose along the intestinal tract, and the non-
uniform distribution of glucose transporters (proteins
involved in the absorption of glucose from the gut to
the blood) along the intestinal tract.

We also use a “jejunal injection” variant of the
model, that is used to fit the data of the individuals
that underwent jejunal injection. This variant is ob-
tained by removing the variable X; from the model

and changing the initial value of X to wav‘,),
X

in order to model the injection of D-xylose directly
into the intestine.

3.2 Parameter estimation

Using our various available experimental datasets, we
adopt a parameter estimation strategy that minimizes
the risks of non-identifiability. For this, we esti-
mate parameters using two datasets at the same time:
the oral dataset (on the main model) and the jejunal
dataset (on its jejunal variant). The estimated param-
eters are the rates kepps, kaps and ki, in addition to
the absorption distribution parameters 0.y, ..., 0. All
these parameters were considered common to both
models, except for ke, that does not exist in the je-
junal variant.

Technically, we fit the mean values of the plasma
D-xylose data X, (purple bullets in Figure 5) taking
into account the standard deviation (purple shaded
area) to minimize the Negative Log-Likelihood Loss.
This is achieved using the CMA-ES (Covariance ma-
trix adaptation evolution strategy) numerical opti-
mization algorithm (Hansen, 2023). All implemen-
tation steps (data pre-processing, model implemen-
tation and numerical analyses) were made in the Ju-
lia programming language (v1.8.2) with the following
packages: CMAEvolutionStrategy (v0.2.6), Differ-
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Figure 4: Multi-compartment model.

kempt (minil) kabs (minil) kelim (minil)
0.0379 0.2223 0.007
Table 1: Parameter values estimated by fitting simultane-

ously the oral and jejunal datasets with, respectively, the
model and its jejunal variant. Obtained loss: 44.035.

entialEquations (v7.7.0), DiffEqParamEstim (v2.0.1),
ModelingToolkit (v8.46.1), Catalyst (v12.3.2), Like-
lihoodProfiler (v0.5.0) and Plots (v1.38.5).

The parameter values that are obtained for ke,
kaps and ke, are reported in Table 1. As can be seen
on Figure 5, the model performs a good fitting of both
the oral and jejunal datasets.

3.3 Prediction of the rate of glucose
absorption from dataset of intestinal
resection

[TODO: Commentaire de Rebecca ci-dessous; j’ai
essayé d’y répondre dans le paragraphe suivant.
Pourquoi avoir fait ca dans un contexte de résection
intestinale et non dans un contexte classique ?
Qu’est-ce que la résection vous apporte ? Est-ce que
ce ne va pas étre confusant ?

Je trouve que votre objectif est peu clair en ef-
fet. Ici vous voulez montrer que le modele de Ra
D-Xylose est proche du modele de RaE Glucose ?

Coté clinique, cela nous intéresse de le faire car
cela soutient le fait qu’on peut substituer la méthode
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(b) Results of the jejunal variant of the model fitting the jeju-

nal dataset

Figure 5: Results of the main model and its jejunal vari-

ant, respectively fitting the oral and jejunal plasma D-xylose

datasets.



double traceur par la méthode D-Xylose. De votre
coté, est-ce que c¢a vous permet réellement de valider
le modele computationnel ? Car vous voulez prédire
des données obtenues par substrat 1 + modele 1 avec
des données obtenues par substrat 2 + modele 2... ]

In order to validate the usefulness of our model,
we test its capability to predict the rate of appearance
of exogenous glucose (Rag) both in normal condition
and after an intestinal resection. Recall that this rate
corresponds to the part of the concentration of glucose
per unit of time appearing in blood that is originating
from the meal. This rate was experimentally moni-
tored using the dual tracer protocol. We show in the
following that the model is able to adapt to data ob-
tained after intestinal resection, which is considered
to experimentally simulate a change in the mecha-
nisms of glucose absorption.

In this study, since the setting and individuals are
different from the datasets used above, we re-evaluate
all parameters (rates and absorption parameters) ex-
pect the elimination (considered untouched by the op-
eration) before and after intestinal resection. How-
ever, since our model is designed for D-xylose, we do
not directly train it on the available glucose datasets:
instead, we train it on the available D-xylose datasets
(not featuring double-tracer data, but only D-xylose
concentration in blood over time) and compare the
results with the glucose dynamics form the glucose
datasets.

Finally, we compare the rate of D-xylose appear-
ance (Ray) computed using the model (with the for-
mula given in Figure 4b) and compare it with the
Rac experimental data (the rate of appearance of
exogenous glucose) obtained with the double-tracer
method. This result is presented in Figure 6. As
we can see, although the values of the parameters
were estimated on D-xylose plasma measurments, the
model gives a relatively satisfying prediction of the
rate of appearance of exogenous glucose (Figure 6,
lower plots). This tends to indicate that D-xylose
might be an acceptable marker for glucose absorption.

4 Model analyses

In this section, we propose as post-model-fitting as-
sessment: a practical identifiability analysis based on
the profile likelihood method and a global sensitivity
analysis. On the one hand, the profile likelihood as-
sesses the relevance of the estimated parameters val-
ues by the model, beyond the goodness-of-fit on the
dataset. Indeed, it is possible that several parameters
values are allowed by the model. On the other hand,
the global sensitivity analysis is designed to assess the

impact of the model parameters on a chosen model
output. In our case, such analysis would assess which
parameter is the most impactful on the D-xylose ap-
pearance, especially between gastric emptying and in-
testinal absorption. Since is considred D-xylose a rel-
evant biomarker for glucose exogenous appearance, it
is expected that the model is more sensitive to intesti-
nal absorption than gastric emptying. In addition to
the profile likelihood and the sensitivity analysis, we
estimated the parameters on a model inspired by Dalla
Man and colleagues (Dalla Man et al., 2006) charac-
terized by a detailed gastric emptying modeling and a
simplified intestinal modeling.

4.1 Practical identifiability analysis

Confidence Confidence
interval interval
Parameter | lower bound | upper bound
kempt 0.00781 unreachable
kabs 0.02796 unreachable

Table 2: Practical identifiability analysis table on the gas-
tric emptying rate kemp: and the intestinal absorption rate
kaps for the model. Reaching both confidence interval
bounds would mean complete practical identifiability for
the parameter, and no bounds reached would indicate non-
identifiability. Here, only one of the two bounds is reached
for each parameter, meaning partial identifiability.

Parameter estimation allows to find one set of pa-
rameter values that makes a model fit the data. It
does not guarantee that there aren’t any other val-
ues that could equally or satisfyingly fit the data. In-
deed, experimental data are noisy and part of the fit-
ting deviation is to be attributed to experimental er-
ror. Intuitively, assuming acceptable error intervals
for the observed variables, if there is a “unique” set
of parameter values that makes the observed vari-
ables fit the data within these intervals, then the model
is said practically identifiable. However, if non-
identifiability can be attributed to the data (e.g., be-
cause of limited amount or too noisy data), it can also
be attributed to the model itself in which changing
the values of some parameters can always be compen-
sated by other parameter values whatever the data. In
the latter case, we say that the model is structurally
non-identifiable (Bellman and Astrom, 1970). Identi-
fiability analysis is an important step in assessing the
quality of a model. In this paper, we consider practical
identifiability based on the profile likelihood method
(Raue et al., 2009). This method investigates the prac-
tical identifiability locally, that is, near the estimated
value of a given parameter. For this, we used the Julia
package LikelihoodProfiler (v0.5.0). This tool locally



40 +

8
R
\
/

~
=1
e

X (t)(mg/dL)
/

10 +

0 100 200 300 400
Time(min)

Ra (est. from xylose model)
@ Rog (measured glucose)

0 100 200 300 400
Time (min)

(a) Results of the model fitting oral datasets, pre-resection.

50
40 +
<)
=
S or o o
= ~® )
= / [ -
= o0 e
ks / °
o
/
[
0F |f
op8
o 100 200 300 400
Time(min)
8|
h Ray (est. from xylose model)
I @ Ao, (measured glucose)

-

200 300 400
Time (min)

(b) Results of the model fitting oral datasets, post-resection.

Figure 6: Comparing the rate of glucose exogenous appearance (Rag) from double tracer experiment, the gold standard
method, to the generated rate of appearance of D-xylose (Ray), obtained from parameter estimation on the same population.
The dots represent the mean experimental values, the envelope is the standard deviation, and the lines are the simulations
produced with the model. The top figures represent the plasma D-xylose (used for fitting the parameters). The bottom figures
represent the simulated rate of absorption of D-xylose (Ray) from the model, and the observed rate of absorption of glucose
(Rag) from double-tracer experiments. In both experimental conditions (pre- and post-resection) we can observe a direct
relatively good fitting between the glucose and the D-xylose, despite the absence of glucose model in this work.

analyses each parameter in a given interval to scan,
which gives a confidence interval bound if the param-
eter is identifiable, or none if the tool has reached the
given scan interval bounds or if no identifiability gain
is detected along this interval. As it is an exploratory
step, we gave a relatively large interval to scan for
each parameter of interest. We set the confidence in-
terval to 95%.

The confidence intervals found for each parameter
are collected in Table 2. We actually ignore the iden-
tifiability of the speed of intestinal transit and the dis-
tribution of absorption parameters that are irrelevant
for the present work, hence, set as constants. These
intervals indicate total identifiability for k., whereas
partial identifiability is found for k., and kqps. The
results can be interpreted as an indication of the good
relevance of the collected datasets and the relatively
good reliability of the estimation of our main param-
eter of interest k ;. This analysis has been performed
on the oral model.

4.2 Global sensitivity analysis

[TODO: Commentaire de Rebecca, non traité pour le
moment : Je pense que pour quelqu’un qui ne connait
pas le sujet, la nuance n’est pas claire.

Essayer peut-étre de dire un truc du genre : IGA,
et par conséquent I’apparition du glucose/D-Xylose
systémique dépendent a la fois de la vidange gas-
trique et de facteurs propres a I’intestin (transporteurs
du glucose par exemple). L’'idée ici de voir s’il est
possible de déterminer si de potentielles variations
de I'IGA proviennent de variations de la vitesse de
la vidange gastrique ou bien de variations propres a
I’intestin (nombre et/ou efficacité des transporteurs
du glucose).

Pour moi, il s’agit plus d’un exemple pour il-
lustrer I'intérét de votre modele que d’une étape de
sa validation. Peut-étre serait-il utile de le préciser ?]

The rate of exogenous sugar appearance (either



Ray for D-xylose or Rag for glucose) depends not
only on the rate of intestinal absorption but also on
the rate of gastric emptying. Indeed, if several factors,
such as the number of sugar transporters in the intes-
tine cells, have a direct influence on intestinal absorp-
tion, this absorption is still dependent on the quan-
tity of sugar that the stomach delivers to the intestine.
Hence, both gastric emptying and intestinal absorp-
tion events are potentially contributing to IGA. As we
seek for a model that can assess the intestinal activ-
ity to profile any individual, it is important to check
which factor is the most impactful on IGA.

Global sensitivity analysis is another process used
to understand how the uncertainty or variability in the
inputs of a mathematical or computational model af-
fects the output or outcome of the model. It helps
identify which input factors or variables have the most
significant impact on the model’s results. In other
words, its goal is to figure out which factors matter
the most and how they contribute to the overall vari-
ability of the model’s predictions or outputs. Sobol
indices are widely used measures in global sensitiv-
ity analysis. They quantify the contribution of each
input factor or variable to the overall variability of
a model’s output. Sobol indices are calculated by
decomposing the total variance of the model output
into different components attributed to individual in-
put factors or combinations of factors. They provide
insights into the relative importance and interactions
of different input variables in influencing the model’s
output (Sobol, 1993). In this work, the sensitivity
analysis has been done on the model without the je-
junal variant. For the model’s output we separately
consider the mean of D-xylose, X, and the area un-
der the curve of its rate of appearance, noted AU Cg,, .
AUCRqy, corresponds to the integration of Ray, that
is, to the total quantity of D-xylose that has reached
the blood at a given time ¢ independently from the
influence of the rate of elimination k,j;,,. In the ab-
sence of tracer methods (as it is the case for D-xylose
in this work), computing AUCgy, is of interest to as-
sess D-xylose absorption because simply observing
its concentration in plasma (X)) would be also influ-
enced by the elimination rate.

We use the Julia package GlobalSensitivity
(v2.1.4) to perform this analysis and obtain Figures 7
for X,,, and Firgure 8 for AUCRqy. This analysis sys-
tematically states the importance of intestinal absorp-
tion, without denying the role of gastric emptying, for
both variables.
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Figure 7: Results of the global sensitivity analysis of the
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Figure 8: Results of the global sensitivity analysis of
AUCRg, over time.

4.3 Model with complex gastric
emptying

To validate furthermore the degree of implication of
intestinal absorption over gastric emptying on the glu-
cose or D-xylose appearance in the blood, we com-
pared our results with another model featuring a more
complex gastric emptying part, inspired from the
works of Dalla Man and colleagues (Dalla Man et al.,
2006). This model is given in Figure 9 and features
two compartments for the stomach contents, the first
(X;1) representing non-grinded food and the second
(X;1) representeing grinded food (as opposed to only
one compartment for the model of Figure 4) but only
one compartment (X,) for the intestine (as opposed
to several compartments for the model of Figure 4).
Moreover, the rate of gastric emptying kemp, from X,
to X, is not a constant value but depends on the sum of
the two variables that represent the total content of the
stomach: X;; + X, on the initial bolus (Dx) and on
other constant parameters (Kyin, Kinax, @ and b). Intu-
itively, this rate is U-shaped and reaches its maximum
value (k) at the beginning and the end of the grinid-



ing (when the stomach is almost full or almost empty)
and reaches its minimum value (k,,;,) in-between.

The values of all constant parameters in the model
of Figure 9 were obtained with the same data and
the same fitting method than the model of Section
3.As a reminder, the experimental dataset features the
D-xylose concentration over time, measured in the pe-
ripheral blood, both after an oral bolus and after a bo-
lus directly injected in the jejunum, and the fitting of
the parameters is performed using both experimental
conditions at once. The idea is to check if a model
with a more complex stomach and gastric emptying
coupled with a simpler intestine modeled as a single
compartment is able to fit this dataset as efficiently as
the model of Figure 4. The result of this experiment
is given in the simulation of Figure 10, showing that
the more complex gastric part of the model is not able
to fit the data as well as the model of Figure 4. Hence,
combined with the sensitivity analysis on the multi-
compartment model, we demonstrate the necessity to
use the model of Figure 4 to reflect D-xylose appear-
ance.

S Conclusions and Perspectives

In this work, we propose a multi-compartment model
of postprandial D-xylose dynamics as a first step to-
wards a predictive model of intestinal glucose absorp-
tion. This model is based on three major parameters
representing the (linear) rates of gastric emptying, in-
testinal absorption and elimination, and models the
intestine as a succession of compartments, thus intro-
ducing a delay that models the intestinal transit. We
calibrated the model using a tailored dataset from sev-
eral minipig populations that underwent oral, intra-
venous or jejunal administration of D-xylose, as well
as intestinal resection. We studied the identifiability
and the sensitivity of its parameters.

This model presents good performances in terms
of goodness-of-fit, even with the data of jejunal injec-
tion, especially when compared with another model
where the gastric part is more complex but the intesti-
nal part is simplified, and which does not fit the data
of jejunal injection data as well. This suggests that
the chosen multi-compartment modeling of the intes-
tine is relevant, and emphasizes the important role of
intestinal absorption. On the downside, the rates of
gastric emptying and of intestinal absorption of our
model are only partially identifiable.

Finally, we also compared the rate of appearance
of D-xylose predicted by the model with the actual
rate of appearance of exogenous glucose (Rag) that
is, glucose only coming from the meal and not from

kidney storage, for instance. These results are very in-
teresting as they corroborate that D-xylose could be a
valuable marker of intestinal absorption. It reinforces
the fact that our model is a good candidate to predict
Rag, at least qualitatively.

Besides of experimental investigations, further
work is necessary to improve, or better take advantage
of, the ability of the model to predict Rag. In partic-
ular, we need to understand to reasons for the partial
identifiability of the parameters which could be ad-
dressed with a finer analysis of the profile likelihood
and new experimental plans. Also, we plan to pro-
pose a simplified model of the glucose-insulin regula-
tion system based on the minimal-model of (Bergman
et al., 1979) with an accurate D-xylose-based model
of IGA. In the long term, it is hoped that this model
could be applied to humans and could help in a medi-
cal setting to diagnose patients with abnormal intesti-
nal glucose absorption.
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