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Abstract: Type 2 Diabetes (T2D) is one of the main epidemics of this century. One of the hypothesis of medical research
is that an important cause of T2D may be the abnormal regulation of intestinal glucose absorption (IGA).
Early detection of IGA disorders, and, more generally, precision medicine, may help to prevent the risk of
T2D. This could be achieved by predictive models of glucose dynamics in blood following an oral ingestion.
Even though many such models have been proposed, they either do not cope with IGA at all, or their calibration
requires the use of complex and invasive tracer protocols that make them clinically unusable on a daily basis.
To overcome this issue, D-xylose may be used as an IGA marker. Indeed, it is a glucose analogue with
similar intestinal absorption mechanisms but, contrary to glucose, its dynamics in blood only results from
gastric emptying, intestinal absorption and elimination by the kidney. In this paper, we investigate, for the
first time, a model-based assessment of IGA based on D-xylose dynamics in blood after oral absorption. We
show that a multi-compartment model of instestinal absorption can fit very well D-xylose data obtained from
different experimental conditions and be a good qualitative estimate of IGA. Additionnally, because gastric
emptying is a possible confounding factor with intestinal absorption, we explore the relative contribution of
both mechanisms to the rate of D-xylose (and thus glucose) appearance in blood.

1 Introduction

Type 2 diabetes (T2D) is a metabolic disease, with a
high prevalence worldwide, that remains a major pub-
lic health issue in all countries. T2D is mainly char-
acterized by a high blood glucose concentration with
an abnormally low concentration of blood insulin, its
down-regulator hormone secreted by the pancreas. It
is commonly admitted that T2D is correlated with a
low pancreatic activity and a reduced ability for the
different tissues to absorb and use the glucose avail-
able in the blood. As it has multifactorial causes, as-
sociated with various comorbidities, such as obesity,
the challenge to develop an actual therapy is still up
to be tackled.

One of the markers of possible risks of T2D in
patients is a change in the glycemic postprandial re-
sponse (Bergman et al., 2018), that is, a modification
of the dynamics over time of glucose concentration in
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the blood after a meal. It has been shown that one of
the major contributors of this postprandial response is
intestinal glucose absorption (IGA) (Tricò et al., 2019;
Baud et al., 2016). Therefore, IGA monitoring would
lead to a better prevention of T2D in patients at risk,
improve the cure of patients affected, and more gener-
ally better understand the physiological mechanisms
at work in this disease.

In this regard, modeling postprandial glucose dy-
namics in blood is crucial to predict how a change of
IGA can affect the concentration of glucose in blood
and to devise new diabetes markers. This requires,
in particular, to model the rate of appearance of ex-
ogenous glucose (RaG), that is, the rate of glucose
coming from the meal. However, calibrating such a
model involves the experimental measure of this rate,
which is a difficult challenge. Indeed, the direct mea-
surement of RaG requires an access to the portal vein,
which is generally hardly feasible and even impossi-
ble on humans. In addition, it cannot be deduced from
other easily observable variables like the concentra-
tion of glucose in blood, because other mechanisms



(a) Glucose/Insulin system (b) D-xylose system
Figure 1: Simplified diagrams of the regulated glucose/insulin system and the unregulated D-xylose system.

occur all the time: glucose excretion (by the kidneys),
glucose production (by the liver) and metabolization
(by the tissues), regulated by insulin, as illustrated in
Figure 1a.

The current approach to experimentally measure
RaG is to perform oral glucose tests with multiple iso-
topic tracers (dual- or triple-tracer) that consist in in-
jesting labelled glucose (Toffolo et al., 2006). They
allow to distinguish between the different fluxes of
glucose in the blood, and to measure the fraction com-
ing from the meal. Nevertheless, these tests are inva-
sive and complex to set up in a clinical or lab routine,
and as such don’t allow to gather data on large cohorts
of patients.

Here, we propose an alternative approach to mea-
sure RaG that uses D-xylose as an IGA marker. As
illustrated in Figure 1b, D-xylose is a sugar absorbed
by the small intestine and eliminated by the kidneys,
in the same way than glucose, but with no signifi-
cant metabolization by any other organs, including the
liver, unlike glucose. Therefore, as it is not stored, re-
leased, or regulated from an endogenous source, we
can assume that monitoring D-xylose concentration
in the blood mainly reflects its gastro-intestinal activ-
ity. Moreover, it is by far simpler to use than iso-
topic tracer methods. Using D-xylose as a quanti-
tative marker of IGA in the clinical and experimen-
tal settings has already been proposed (Fujita et al.,
1998; Baud et al., 2016; Goutchtat et al., 2022). How-
ever, such direct measurement is not perfectly accu-
rate since it ignores the effect of D-xylose elimina-
tion that takes place in addition to intestinal absorp-
tion, and cannot distinguish the respective roles of
gastric emptying and intestinal absorption in the rate
of D-xylose appearance.

Related works So far, no mechanistic model of
D-xylose dynamics has been proposed yet. When it
comes to glucose dynamics, most of the models of
glucose appearance in blood rely on a complex gas-
tric emptying modeling. Historically, Elashoff et al.
proposed the first well-referenced model to describe
gastric emptying (Elashoff et al., 1982). It is based on
a power exponential decrease function that describes
the fraction of the dose D of glucose that remains in
the stomach:

D · (1− e(−kempt ·t)β

)

where kempt is the rate of gastric emptying and β is a
value used to represent the texture of the meal (liquid
or solid).

Later, Dalla Man et al. exposed the limitations of
the previous approach from Elashoff et al., and pro-
posed a complete gastro-intestinal model, not only
describing the gastric emptying, but also the glu-
cose intestinal absorption in post-prandial condition
(Dalla Man et al., 2006). In this model, the intestinal
absorption is reduced to a single flux with constant
rate, whereas the gastric emptying involves a com-
plex equation with 5 parameters. This model (also
defined in section 4, Figure 9) allowed to fit their own
dataset of exogenous glucose, obtained with the iso-
topic triple tracer method, considered as the gold stan-
dard experimental approach to measure RaG.

Salinari et al. proposed a spatial model of intesti-
nal absorption and transit, defined by means of a sys-
tem of partial differential equations, depending on
time and on the position along the intestine (Salinari
et al., 2011). The rate of transit was determined by
their specific data, mainly depending on the length of
the intestine (see Subsection 3.2). More importantly,
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in this spatial model, we can consider a non-uniform
intestinal absorption rate along the intestine. This hy-
pothesis is indeed considered as realistic and the au-
thors show that different spatial distributions of ab-
sorption may result in different glucose appearance
dynamics.

Contribution In this paper, we propose a new
model-based assessment of IGA. More precisely, we
investigate a physiological model of D-xylose dynam-
ics that is composed of multi-compartmental intesti-
nal transit and absorption, and both exponential gas-
tric emptying and D-xylose elimination. This model
can be seen as a simplified and discretized version of
the model of intestinal absorption by Salinari et al.
While being simple, we show that our model can fit
time series of D-xylose data obtained in different ex-
perimental conditions (oral and jejunal administration
of D-Xylose) with a good accuracy and, most impor-
tantly, that it can predict RaG validated with tracer
data. We also show that the rates of gastric empty-
ing and of absorption, in particular, are identifiable.

In addition, to decypher the relative contribu-
tion of gastric emptying and intestinal absorption
to D-xylose dynamics, we show that the alternative
model of Dalla Man et al. (Dalla Man et al., 2006)
emphasizying on gastric emptying cannot fit equally
well our experimental data. Finally, we performed a
sensitivity analysis to decypher which of the rate of
gastric emptying and the rate of intestinal absorption
have the most significant impact on the overall quan-
tity of D-xylose absorbed after 180 minutes. We show
that this quantity is more sensitive to intestinal ab-
sorption and that D-xylose can thus potentially serve
as a marker of IGA that is easy to use in the clinical
setting.

Outline Section 2 presents the experimental
datasets. Section 3 presents the model of D-xylose
dynamics, the results of parameter identification, the
results of the parameter identifiability analysis, and
the fitting of the model with the glucose rate of ab-
sorption obtained by double tracer. In Section 4, we
present the results of the global sensitivity analysis,
and compare our model with Dalla Man’s one in
terms of fitting accuracy. In Section 5, we discuss the
results and present some future work.

2 Minipigs Datasets for Parameters
Estimations

For the model calibration, we use experimental data

that involves Göttingen minipig datasets (Goutch-
tat et al., 2022).

This species is indeed well adapted for gastroin-
testinal experiments and has a physiology that is close
to the human one, thus allowing experiments that
were not ethically possible on humans. For our prob-
lematic, different experiments have been performed to
monitor sugar in the blood after an intake of a bolus
of sugar using intravenous, intestinal or oral adminis-
tration.

This entails two subpopulations of pigs each pro-
ducing several datasets.

• The individuals of the first subpopulation under-
went an oral administration along with two alter-
native administrations: intravenous and jenunal,
thus producing a total of 3 datasets.

– Oral bolus dataset: this dataset allows to to
monitor blood D-xylose in the normal state af-
ter an oral administration of the meal. Addi-
tional individuals from previously existing ex-
periments were also added if they also under-
went the same oral bolus administration in the
same experimental conditions, in order to im-
prove this dataset.

– Intravenous bolus dataset: in this dataset, the
experiment consists of administrating a single
shot of solution of sugar in the blood, includ-
ing 30 g of D-xylose. These data allow to esti-
mate the volume of distribution VD that is used
to convert both the initial amount of sugar into a
concentration and the rate of exogenous appear-
ance into the right dimension (see Section 3.1).

– Intestinal (or jejunal) bolus dataset: for this
dataset, the stomach is bypassed and the meal
is directly administrated in the small intestine,
and more precisely in its proximal half, the je-
junum. The blended meal includes 30 g of
D-xylose. This experiment is interesting to
study gastric emptying, as its results can be
used in conjunction with the oral bolus dataset
for the same subpopulation. From a model-
ing point of view, it consolidates the estimated
rate kempt of gastric emptying (part of the bolus
transferred from the stomach to the intestine,
later presented in Section 3.2).

• The individuals of the second subpopulation un-
derwent a surgical experiment to assess the sugar
response in blood after a change in the absorp-
tion processes. This subpopulation is interest-
ing to compare the rate of appearance of exoge-
nous glucose (RaG) with the rate of appearance of
D-xylose (RaX ) in normal and experimental con-
ditions to demonstrate the relevance of D-xylose

3



Figure 2: Experimental minipigs blood D-xylose concentration datasets, for different experimental conditions.

to study IGA behavior. Indeed, this subpopula-
tion benefitted from a gold standard technique to
monitor their IGA, known as dual-tracer, imply-
ing two differently labeled glucoses to distinguish
glucose from an exogenous source and glucose
from an endogenous source (typically produced
by the liver). This subpopulation thus produced
four datasets: before and after the surgery, both
measuring D-xylose and glucose concentrations
in blod.

– Oral bolus before intestinal resection dataset:
this dataset allows to to monitor blood sugar in
the normal state (before surgery) after an oral
administration of the meal.

– Oral bolus after intestinal resection dataset: in
this dataset, about 80% of the mid-part of the
small intestine has been removed. After a time
of recovery, an oral administration of the meal
is performed.

All these datasets are graphically represented in
Figure 2 and are used to calibrate the models pre-
sented in the next section.

3 Model structure, fitting and
exploitation

This section presents the main model of this work and
results provided by this model. The first step is to es-
timate the volume of distribution of D-xylose, which
is a parameter of the model that can be calculated.

3.1 Volume of distribution of D-xylose

As stated in the previous section, we need to assess
the volume of distribution of D-xylose VDX . This vol-
ume of distribution is the total volume of fluid (mainly
blood, but also interstitial fluids) that D-xylose can
occupy once absorbed by the intestine: it serves as
a reference to compute concentrations of D-xylose in
the body instead of quantities. It is usually normal-
ized by the body weight, so the dimension of VDX is
dL/kg. After an intravenous injection experiment, it
is defined by the following equation:

VDX =
DX

BW ·Xp

where DX is the administrated dose of D-xylose (mg),
Xp is the concentration of D-xylose in the blood
(mg/dL) when DX is fully administrated instantly, and
BW is the body weight (kg). To obtain this value, we
perform a simple model fitting from observations of
D-xylose dynamics after an intravenous injection, re-
ported in Figure 3, which features the curves of the
observed and simulated D-xylose in plasma, Xp, over
time. Given that, in true experimental conditions, the
intravenous injection procedure spreads over 5 min
while the elimination starts immediately, the value
we actually consider for Xp is the concentration ob-
tained for the curve extroplated to 0. From this work,
we found a significant linear correlation between the
body weight and the volume of distribution as shown
in Figure 4. This observation allowed us to infer, from
their body weight BW , the volume of distribution, de-
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Figure 3: Results of the simple intravenous model fitting
the intravenous injection dataset in order to estimate the
volume of distribution VDX . The estimated parameter is
kelim = 0.00960 with a log-likelihood loss of 29.49956. The
bullets represent the mean values of the dataset, the enve-
lope represents its standard deviation, and the line repre-
sents the model simulation.

Figure 4: Tracing the significant linear correlation between
the body weight of each individual that underwent intra-
venous injection and their respective volume of distribution.
Pearson coefficient: −0.94725.

noted VDX (BW ), of the minipigs that did not under-
went an intravenous injection experiment.

3.2 Multi-Compartment model

The model that is used in the rest of this work is given
in Figure 5 both as a system of ordinary differential
equations (ODEs) and in the form of a reaction net-
work (using a Petri net-like graphical notation). It is
composed of:

• one variable Xs modeling the stomach,

• one variable Xp modeling plasma,

• n variables Xg1, . . . ,Xgn modeling the intestinal
tract, where n = 10 for all following numerical
analyses.

The rate kempt (min−1) models gastric emptying,
that is, the emptying of the stomach into the intestine.
This rate is willingly kept simple, as opposed to other
modelings such as (Dalla Man et al., 2006) and as
discussed in Section 4.2.

Intestinal transit is modeled as a flux of D-xylose
between the compartments Xg1, ..., Xgn modeling the
intestine. More precisely, this flux allows D-xylose to
transit from each compartment, Xgi , to the next, Xgi+1 .
We assume that this flux is uniform with rate ktrans
(min−1) defined by the following equations:

ktrans =
1
τ

τ =
L

u ·n
where τ is the time required for the transit through one
compartment (min), L is the length of the small in-
testine (estimated at 1100 cm, the average length ob-
tained from the surgery performed for the oral bolus
after resection dataset), and u the speed of intestinal
transit (empirically set to 6 cm/min, an estimation for
the PDE intestinal model of (Salinari et al., 2011)).

The global intestinal absorption, from the gut to
the plasma, is modeled with rate kabs (min−1). How-
ever, the distribution of this rate of absorption along
the intestine is supposed non-uniform. For this, for
each variable Xgi , the rate of absorption is modulated
by a strictly positive parameter αi. The sum of all
parameters α1, ..., αn equals 1, so that the global ab-
sorption rate (the sum of the rates from each com-
partment of the intestine) is thus kabs. Note that if
the distribution of these parameters is uniform (that
is, αi = 1/n for all i) then this model is equivalent
to a model where the whole intestine would be rep-
resented by a unique variable Xg and an output rate
of kabs. We therefore don’t force any particular dis-
tribution, and the parameters αi are estimated in the
following.

Finally, here, “elimination” is a generic term to
designate both D-xylose renal clearance and metabo-
lization, both resulting in D-xylose blood concentra-
tion decrease after a certain time, modeled by a rate
kelim (min−1). It is admitted that metabolization by the
tissue and in the gut can be considered as negligible,
making renal clearance the main factor of D-xylose
elimination; therefore, a single rate of elimination
from the plasma compartment is relevant.

This model is a discretized variant of the model of
(Salinari et al., 2011), which models the intestine as a
long continuous compartment inside which the meal
bolus moves with a certain speed; the rate of absorp-
tion thus depends on the position of the bolus inside
this unique compartment. In the present work, this
is instead modeled as a series of successive compart-
ments with different absorption factors (α1, ..., αn).
The point is to take into account both the transport
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kempt (min−1) kabs (min−1) kelim (min−1)
0.0379 0.2223 0.007

Table 1: Parameter values estimated by fitting simultane-
ously the oral and jejunal bolus datasets with, respectively,
the model and its jejunal variant. Obtained loss: 44.035.

of D-xylose along the intestinal tract, and the non-
uniform distribution of glucose transporters (proteins
involved in the absorption of glucose from the gut to
the blood) along the intestinal tract.

We also use a “jejunal injection” variant of the
model, that is used to fit the intravenous bolus dataset.
This variant is obtained by removing the variable Xs
from the model and changing the initial value of Xg1

to DX
BW ·VDX (BW ) , in order to model the injection of

D-xylose directly into the intestine.

3.3 Parameter estimation

Using our various available experimental datasets, we
adopt a parameter estimation strategy that minimizes
the risks of non-identifiability. For this, we estimate
parameters using two datasets at the same time: the
oral bolus dataset (on the main model) and the jeju-
nal bolus dataset (on its jejunal variant). The esti-
mated parameters are the rates kempt, kabs and kelim, in
addition to the absorption distribution parameters α1,
..., αn. All these parameters were considered common
to both models, except for kempt that does not exist in
the jejunal variant.

Technically, we fit the mean values of the plasma
D-xylose data Xp (purple bullets in Figure 6) taking
into account the standard deviation (purple shaded
area) to minimize the Negative Log-Likelihood Loss.
This is achieved using the CMA-ES (Covariance ma-
trix adaptation evolution strategy) numerical opti-
mization algorithm (Hansen, 2023). All implemen-
tation steps (data pre-processing, model implemen-
tation and numerical analyses) were made in the Ju-
lia programming language (v1.8.2) with the following
packages: CMAEvolutionStrategy (v0.2.6), Differ-
entialEquations (v7.7.0), DiffEqParamEstim (v2.0.1),
ModelingToolkit (v8.46.1), Catalyst (v12.3.2), Like-
lihoodProfiler (v0.5.0) and Plots (v1.38.5).

The parameter values that are obtained for kempt,
kabs and kelim are reported in Table 1. As can be seen
on Figure 6, the model performs a good fitting of both
the oral and jejunal datasets.

3.4 Practical identifiability analysis

Parameter estimation allows to find one set of param-
eter values that makes a model fit the data. It does not
guarantee that there aren’t any other values that could

Confidence Confidence
interval interval

Parameter lower bound upper bound
kempt 0.03737 0.09202
kabs 0.22197 0.32798
kelim 0.00622 0.00708

Table 2: Practical identifiability analysis table on the gas-
tric emptying rate kempt, the intestinal absorption rate kabs
and the elimination rate kelim for the model. Here, each
value represents a bound that is reached, meaning complete
practical identifiability for the model. Missing values would
have denoted unreached bounds and thus incomplete iden-
tifiability.

equally or satisfyingly fit the data. Indeed, experimen-
tal data are noisy and part of the fitting deviation is to
be attributed to experimental error. Intuitively, assum-
ing acceptable error intervals for the observed vari-
ables, if there is a “unique” set of parameter values
that makes the observed variables fit the data within
these intervals, then the model is said practically
identifiable. However, if non-identifiability can be at-
tributed to the data (e.g., because of limited amount or
too noisy data), it can also be attributed to the model
itself in which changing the values of some parame-
ters can always be compensated by other parameter
values whatever the data. In the latter case, we say
that the model is structurally non-identifiable (Bell-
man and Åström, 1970). Identifiability analysis is an
important step in assessing the quality of a model. In
this paper, we consider practical identifiability based
on the profile likelihood method (Raue et al., 2009).
This method investigates the practical identifiability
locally, that is, near the estimated value of a given
parameter. For this, we used the Julia package Likeli-
hoodProfiler (v0.5.0). This tool locally analyses each
parameter in a given interval to scan, which gives a
confidence interval bound if the parameter is identi-
fiable, or none if the tool has reached the given scan
interval bounds or if no identifiability gain is detected
along this interval. As it is an exploratory step, we
gave a relatively large interval to scan for each pa-
rameter of interest. We set the confidence interval to
95%.

The confidence intervals found for each parameter
are collected in Table 2. We actually ignore the iden-
tifiability of the speed of intestinal transit and the dis-
tribution of absorption parameters that are irrelevant
for the present work and, hence, set as constants for
this identifiability analysis. These intervals indicate
total identifiability for the three relevant parameters:
kempt, kabs and kelim. The results can be interpreted as
an indication of the good relevance of the collected
datasets and especially the good reliability of the es-
timation of our main parameter of interest, kabs. This
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Xs kempt Xg1 ktrans Xg2 . . . Xgn

α1 · kabs α2 · kabs

. . .
αn · kabs

Xp kelim

(a) Reaction network

Ẋs(t) =−kempt ·Xs(t)

Ẋg1(t) = kempt ·Xs(t)− (α1 · kabs + ktrans) ·Xg1(t)
...

Ẋgn(t) = ktrans ·Xgn−1(t)−αn · kabs ·Xgn(t)

Ẋp(t) = RaX (t)− kelim ·Xp(t)

RaX (t) = kabs · (
n

∑
i=1

αi ·Xgi(t)) and
n

∑
i=1

αi = 1

(b) ODE system

Ẋs(0) =
DX

BW ·VDX (BW )

Ẋg1(0) = 0
...

Ẋgn(0) = 0

Ẋp(0) = 0

(c) Initial conditions

Figure 5: Multi-compartment model.

(a) Results of the model fitting the oral bolus dataset

(b) Results of the jejunal variant of the model fitting the jeju-
nal bolus dataset
Figure 6: Results of the main model and its jejunal vari-
ant, respectively fitting the oral and jejunal bolus datasets
featuring plasma D-xylose.

analysis has been performed in the same setting that
was used for fitting in Section 3.3, that is, on the main
model and its jejunal variant simultaneously.

3.5 Prediction of the rate of glucose
absorption from the dataset of
intestinal resection

In order to validate the usefulness of our model, we
test its capability to predict the rate of appearance
of exogenous glucose (RaG) both in normal condition
and after an intestinal resection. Recall that this rate
corresponds to the part of the concentration of glucose
per unit of time appearing in blood that is originating
from the meal. This rate was experimentally moni-
tored using the dual tracer protocol. We show in the
following that the model is able to adapt to data ob-
tained after intestinal resection, which is considered
to experimentally simulate a change in the mecha-
nisms of glucose absorption. In this study, since the
setting and individuals are different from the datasets
used above, we re-evaluate all parameters (rates and
absorption parameters) except the elimination (con-
sidered untouched by the operation) before and af-
ter intestinal resection. However, since our model
is designed for D-xylose, we do not directly train it
on the available glucose data: instead, we train it on
the available D-xylose datasets (not featuring double-
tracer data, but only D-xylose concentration in blood
over time) and compare the results with the glucose
dynamics form the glucose datasets.
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(a) Results of the model fitting the oral bolus before intesti-
nal resection dataset.

(b) Results of the model fitting the oral bolus after intesti-
nal resection dataset.

Figure 7: Comparing the rate of glucose exogenous appearance (RaG) from double tracer experiment, the gold standard
method, to the generated rate of appearance of D-xylose (RaX ), obtained from parameter estimation on the same population.
The dots represent the mean experimental values, the envelope is the standard deviation, and the lines are the simulations
produced with the model. The top figures represent the plasma D-xylose (used for fitting the parameters). The bottom figures
represent the simulated rate of absorption of D-xylose (RaX ) from the model, and the observed rate of absorption of glucose
(RaG) from double-tracer experiments. In both experimental conditions (pre- and post-resection) we can observe a relatively
good fitting between the glucose and the D-xylose, despite the absence of a glucose model in this work.

Finally, we compare the rate of D-xylose appear-
ance (RaX ) computed using the model (with the for-
mula given in Figure 5b) and compare it with the
RaG experimental data (the rate of appearance of
exogenous glucose) obtained with the double-tracer
method. This result is presented in Figure 7. As
we can see, although the values of the parameters
were estimated on D-xylose plasma measurments, the
model gives a relatively satisfying prediction of the
rate of appearance of exogenous glucose (Figure 7,
lower plots). This tends to indicate that D-xylose
might be an acceptable marker for glucose absorp-
tion. Note that the difference of the rates of appear-
ance between glucose and D-xylose after a resection
might reflect, on the one hand, that Rax is the ex-
clusive reflection of the gastric emptying and the in-
testinal absorption, whereas on the other hand, RaG
reflects these two mechanisms in addition to the in-
evitable hepatic glucose metabolization, despite the
use of the gold standard method.

4 Relative roles of gastric emptying
and intestinal absorption

In this section, we propose to compare the relative
roles that gastric emptying and intestinal absorption
play in the appearance of D-xylose in the blood, ac-
cording to our model. For this, we first perform a
global sensitivity analysis, which is designed to assess
the impact of the model parameters on a chosen model
output. In our case, such analysis would assess which
parameter is the most impactful on the D-xylose ap-
pearance, especially between gastric emptying and in-
testinal absorption. Since we considered D-xylose as
a relevant biomarker for glucose exogenous appear-
ance, it is expected that the model is more sensitive
to intestinal absorption than gastric emptying. In ad-
dition to the sensitivity analysis, we estimated the pa-
rameters on a model inspired by Dalla Man and col-
leagues (Dalla Man et al., 2006) characterized by a
detailed gastric emptying modeling and a simplified
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intestinal modeling.

4.1 Global sensitivity analysis

The rate of exogenous sugar appearance (either RaX
for D-xylose or RaG for glucose) depends not only on
the rate of intestinal absorption but also on the rate of
gastric emptying. Hence, both gastric emptying and
intestinal absorption events are potentially contribut-
ing to IGA. As we seek for a model that can assess
the intestinal activity to profile any individual, it is
important to check which factor is the most impactful
on IGA.

Global sensitivity analysis is another process used
to understand how the uncertainty or variability in the
inputs of a mathematical or computational model af-
fects the output or outcome of the model. It helps
identify which input factors or variables have the most
significant impact on the model’s results. In other
words, its goal is to figure out which factors matter
the most and how they contribute to the overall vari-
ability of the model’s predictions or outputs. Sobol
indices are widely used measures in global sensitiv-
ity analysis. They quantify the contribution of each
input factor or variable to the overall variability of
a model’s output. Sobol indices are calculated by
decomposing the total variance of the model output
into different components attributed to individual in-
put factors or combinations of factors. They provide
insights into the relative importance and interactions
of different input variables in influencing the model’s
output (Soboĺ, 1993). In this work, the sensitivity
analysis has been done on the model without the je-
junal variant. For the model’s output we consider the
area under the curve of D-xylose’s rate of appearance,
noted AUCRaX at 180 minutes. AUCRaX , corresponds
to the integration of RaX , that is, to the total quan-
tity of D-xylose that has reached the blood at a given
time t independently from the influence of the rate of
elimination kelim. In the absence of tracer methods (as
it is the case for D-xylose in this work), computing
AUCRaX is of interest to assess D-xylose absorption
because simply observing its concentration in plasma
(Xp) would be also influenced by the elimination rate.
Furthermore, by checking the output’s at the maxi-
mum time monitored (180 min), we wanted to ensure
that the gastric emptying has way less influence on
the rate of appearance than the intestinal absorption,
hence, making sure that D-xylose can potentially be
used as a biomarker to assess RaX (and eventually
RaG).

We use the Julia package GlobalSensitivity
(v2.1.4) to perform this analysis and obtain Firgure 8
for AUCRaX at 180 minutes. This analysis systemat-

Figure 8: Results of the global sensitivity analysis of
AUCRaX at 180 minutes.

ically states the importance of intestinal absorption,
without denying the role of gastric emptying, for both
parameters.

4.2 Model with complex gastric
emptying

To validate furthermore the degree of implication of
intestinal absorption over gastric emptying on the glu-
cose or D-xylose appearance in the blood, we com-
pared our results with another model featuring a more
complex gastric emptying part, inspired from the
works of Dalla Man and colleagues (Dalla Man et al.,
2006). This model is given in Figure 9 and features
two compartments for the stomach contents, the first
(Xs1) representing non-grinded food and the second
(Xs1) representeing grinded food (as opposed to only
one compartment for the model of Figure 5) but only
one compartment (Xg) for the intestine (as opposed
to several compartments for the model of Figure 5).
Moreover, the rate of gastric emptying kempt from Xs2
to Xg is not a constant value but depends on the sum
of the two variables that represent the total content
of the stomach (Xs1 +Xs2), on the initial bolus (DX )
and on other constant parameters (kmin, kmax, a and
b). Intuitively, this rate is U-shaped and reaches its
maximum value (kmax) at the beginning and the end
of the griniding (when the stomach is almost full or
almost empty) and reaches its minimum value (kmin)
in-between.

The values of all constant parameters in the model
of Figure 9 were obtained with the same data (oral
bolus dataset and jejunal bolus dataset) and the
same fitting method than the model of Section 3.
As a reminder, the experimental dataset features the
D-xylose concentration over time, measured in the pe-
ripheral blood, both after an oral bolus and after a bo-
lus directly injected in the jejunum, and the fitting of
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Xs1 kgri Xs2 kempt Xg kabs Xp kelim

Gastric grinding Gastric emptying Intestinal absorption Elimination
(a) Reaction network

Ẋs1(t) =−kgri ·Xs1(t)

Ẋs2(t) = kgri ·Xs1(t)− kempt ·Xs2(t)

Ẋg(t) = kempt ·Xs2(t)− kabs ·Xg(t)

Ẋp(t) = kabs ·Xg(t)− kelim ·Xp(t)

(b) ODE system

Xs1(0) =
DX

BW ·VDX

Xs2(0) = 0
Xg(0) = 0
Xp(0) = 0

(c) Initial conditions

kempt = kmin +
kmax − kmin

2

(
2− tanh

(
5(Xs1(t)+Xs2(t)−b ·DX )

2 ·b ·DX

)
+ tanh

(
5(Xs1(t)+Xs2(t)−a ·DX )

2 · (1−a) ·DX

))
(d) Expression of kempt

Figure 9: Model with complex gastric emptying

(a) Xp from oral bolus.

(b) Xp from jejunal bolus.
Figure 10: Results of parameter estimations of the model
inspired from Dalla Man et al. on the oral and jejunal bolus
datasets.

the parameters is performed using both experimental
conditions at once. The idea is to check if a model
with a more complex stomach and gastric emptying
coupled with a simpler intestine modeled as a single
compartment is able to fit this dataset as efficiently as
the model of Figure 5. The result of this experiment
is given in the simulation of Figure 10, showing that
the more complex gastric part of the model is not able
to fit the data as well as the model of Figure 5. Hence,
combined with the sensitivity analysis on the multi-
compartment model, we demonstrate the necessity to
use the model of Figure 5 to reflect D-xylose appear-
ance.

5 Conclusions and Perspectives

In this work, we propose a multi-compartment model
of postprandial D-xylose dynamics as a first step to-
wards a predictive model of intestinal glucose absorp-
tion. This model is based on three major parameters
representing the (linear) rates of gastric emptying, in-
testinal absorption and elimination, and models the
intestine as a succession of compartments, thus intro-
ducing a delay that models the intestinal transit. We
calibrated the model using a tailored dataset from sev-
eral minipig populations that underwent oral, intra-
venous or jejunal administration of D-xylose, as well
as intestinal resection. We studied the identifiability
and the sensitivity of its parameters.

This model presents good performances in terms
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of goodness-of-fit, even with the data of jejunal injec-
tion, especially when compared with another model
where the gastric part is more complex but the intesti-
nal part is simplified, and which does not fit the data
of jejunal injection data as well. This suggests that the
chosen multi-compartment modeling of the intestine
is relevant, and emphasizes the important role of in-
testinal absorption. Furthermore, the model appeared
to be identifiable for all relevant parameters.

Finally, we also compared the rate of appearance
of D-xylose predicted by the model with the actual
rate of appearance of exogenous glucose (RaG), that
is, glucose only coming from the meal and not from
kidney storage, for instance. These results are very in-
teresting as they corroborate that D-xylose could be a
valuable marker of intestinal absorption. It reinforces
the fact that our model is a good candidate to predict
RaG, at least qualitatively.

Besides of experimental investigations, further
work is necessary to improve, or better take advan-
tage of, the ability of the model to predict RaG. Also,
we plan to propose a simplified model of the glucose-
insulin regulation system based on the minimal-
model of (Bergman et al., 1979) with an accurate
D-xylose-based model of IGA. Finally, datasets on
humans that underwent glucose and D-xylose bolus
administrations could help translate this model to hu-
mans. In the long term, it is hoped that this model
could be applied to humans and could help in a medi-
cal setting to diagnose patients with abnormal intesti-
nal glucose absorption.
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