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Abstract— Interictal High Frequency Oscillations (HFOs) 

recorded in intracranial ElectroEncephaloGraphic (iEEG) 

signals are reliable biomarkers for the epileptogenic zone.  

Visual identification of these particular events is manually 

time-consuming, and is subject to clinicians’ expertise. 

Moreover, differentiating them from other transient events 

such as Interictal Epileptic Spikes (IESs) presents a 

considerable challenge. Hence, various approaches have 

been developed with the aim of extracting automatically 

discriminant features for HFOs and IESs events. Typically, 

these approaches are based on machine learning (ML) 

algorithms, but their efficiency strongly depends on the 

computed features. To address this limitation, we explore 

deep learning (DL), as a powerful framework, for the 

classification of HFOs and IESs and propose a novel 

convolutional neural network (CNN) architecture for HFOs 

multi-classification. Time frequency (TF) based images, 

computed using the Stockwell transform of the events of 

interest, are used as inputs to the CNN-based approach. 

Furthermore, data augmentation (DA) is adopted to 

improve the generalization of the proposed CNN model. 

The numerical simulations on epileptic iEEG signals 

demonstrate that the proposed approach yields superior 

results when the DA is employed. Also, our study. 

Keywords — Epilepsy, High Frequency Oscillations, 

Time-Frequency representation, Convolutional neural 

network, Data augmentation. 

I. INTRODUCTION

For patients suffering from drug-resistant epilepsy, 

surgical resection of the epileptogenic regions is a 

solution to limit/avoid the occurrence of epileptic seizures 

[1]. Various low cerebral activities [2] oscillating in the 

human brain such as 𝛿 [0.1,4] Hz, 𝜃 [4,8] Hz, 𝛼 [8,12] Hz 

and 𝛽 [12,30] Hz. In the context of epilepsy, High 

Frequency Oscillations (HFOs), in the range [30,500] Hz, 

are potential biomarkers for estimating the epileptogenic 

zone (EZ) and achieving a good prognosis of such 

pathology [3]. In human brain, HFOs may be observed in 

intracranial ElectroEncephaloGraphic (iEEG) signals as 

non-stationary events with at least four oscillations that 

clearly stand out from the background activity. These 

particular cerebral activities are divided into four 

frequency bands [4]: Gamma (𝛾[30,80] Hz), High-

Gamma (H𝛾[80,120] Hz), Ripples (Rs [120,250] Hz) and 

Fast Ripples (FRs [250,500] Hz). Typical examples of 

such activities are illustrated in Fig. 1. 

A recent investigation [5] has demonstrated that HFOs 

and Interictal Epileptic Spikes (IESs) serve as 

complementary biomarkers for identifying the EZ. 

Commonly, identifying these biomarkers relies on visual 

inspection. But this process remains subjective and highly 

time-consuming. Therefore, to accurately define the EZ 

during presurgical diagnosis, it is crucial to explore an 

automated approach that can extract relevant distinctive 

features and efficiently classify the abovementioned 

biomarkers. Commonly, HFOs detection procedure is 

divided into two stages: detection and classification. In 

the present work, we only focus on the classification of 

HFOs and IESs events. To address this point, numerous 

approaches have been proposed to ensure an automatic 

classification of HFOs and to provide more objective 

analysis for clinicians. Those approaches were based 

essentially on supervised machine learning (ML) 

algorithms such as support vector machine (SVM) [4, 6], 

k-nearest neighbors (KNN) method, linear discriminant

analysis (LDA), and logistic regression [7], or

unsupervised techniques such as k-medoids [8], or

Gaussian mixture model (GMM) [8]. The performance of

the latter methods is subject to the discriminative power

of the extracted features. Conventionally, these features

are extracted either from the time domain [6], the

frequency domain [8, 9] or the time-frequency (TF)

domain [4, 9]. Generally, ML approaches applied to the

problem of HFOs classification have provided prominent

results. However, the design of such approaches is still

based on manually extracted features of HFOs events

which is a subjective process.

Deep learning (DL) classification has gained popularity 

in recent years due to the capability of neural networks to 

automatically extract relevant features from raw data. 

Additionally, DL algorithms have proved their efficacy in 

diverse domains such as image recognition and 
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Fig. 1. HFOs events and IESs in both time domain (up) and TF domain (bottom) (a) Gamma, (b) High-Gamma, (c) Ripples, (d) 

Fast Ripples, (e) Interictal Epileptic Spikes. 

 

classification [10], speech recognition [11] and 

neurological disorders diagnosis [12-16]. However, few 

studies have addressed the classification of HFOs using 

DL. More precisely, Zuo et al. [17] addressed binary 

classification of HFOs (Rs vs FRs) using DL approach. In 

fact, authors in [17] used a convolutional neural network 

(CNN) where a one-dimensional (1D) time signal was 

used at the network input. As CNNs were originally 

tailored for image related application [18], a 2D 

representation of HFOs events for CNNs was proposed in 

several studies [18-20], to cite a few. Lai et al. [18] 

introduced a 2D CNN-based approach for automatic 

classification of HFOs into Rs and FRs. Additionally, 

Zhao et al. [19] investigated the use of scalogram images 

with CNN for a binary classification of HFOs. More 

recently, Nadalin et al. [20] have adopted spectrogram 

images for HFOs binary classification, i.e., IESs 

occurring with and without Rs. It should be noted that 

these DL based-approaches were limited to a binary 

classification (HFOs vs non HFOs. Previous methods for 

HFOs classification are limited in several ways. First, 

most of them have only considered a limited frequency 

range, typically [80,500] Hz. However, recent research 

has shown that HFOs can occur at lower frequencies 

beyond 30 Hz, indicating the need for a wider frequency 

band to be considered. Additionally, previous methods 

have focused on binary classification (i.e., distinguishing 

HFOs from non-HFOs), while in practice there are 

different types of HFOs that can provide additional 

diagnostic information. To address these limitations, a DL 

based multi-classification instead of a binary 

classification of HFOs is considered in the current study. 

Moreover, data augmentation (DA) is introduced as a 

technique to enrich the training dataset and improve the 

robustness of the trained model. The effect of using DA 

on the performance of the proposed CNN-based model is 

also assessed in this study. 

Besides, none of the previous methods considered the 

whole HFOs band [30,500] Hz. To address these 

limitations, a DL based multi-classification instead of a 

binary classification of HFOs is considered in the current 

study. Additionally, we integrate here the use of data 

augmentation as a means to enrich the training dataset. 

The effect of using such technique on the model 

performance is also assessed in this study. 

The remainder of this paper is structured as follows: 

Section II provides information about the clinical dataset. 

Our proposed methodology is explained in Section III. 

Results are discussed in Section IV. Finally, concluding 

remarks are presented in Section V. 

II. CLINICAL DATA 

A dataset of real iEEG signals was used to evaluate the 

performance of the proposed approach. This dataset was 

recorded in the Neurology Department of the University 

Hospital of Rennes, France, from five patients who 

suffered from drug-resistant epilepsy. Our study aligns 

with the valuable insights contributed by earlier research 

in the field, as illustrated by the works of [21] and [22]. 

iEEG signals were recorded using 256-channel Brain 

Quick (Micromed, Italy) recording system with a 

sampling rate of 2048 Hz. Intracerebral electrodes were 

composed of 8 to 18 cylindrical contacts (DIXI 

Microdeep electrodes, length: 2 mm, diameter: 0.8 mm, 

1.5 mm apart, platine–iridium). All patients gave 

informed consent for participation in research studies. 

Visual scoring of HFOs events was done by two reviewers 

independently. From the recorded raw iEEG signals, a 
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total number of 5174 marked events were labeled visually 

and employed in the present study. More precisely, 𝛾, H𝛾, 

Rs, FRs and IESs were considered in the marking 

procedure and annotated as 𝛾 (1015), H𝛾 (1032), Rs 

(1053), FRs (1071), and IESs (1003). The distribution of 

events in the database is uneven among patients, as 

demonstrated in Table 1 To tackle this imbalance, we 

combined all the events across patients to assess the 

effectiveness of the proposed method. For more 

information regarding the clinical and acquisition details 

of the database, please refer to [4]. 

 

TABLE 1: PATIENTS CHARACTERISTICS 

 
Patient Event Event number 

PAQ 

Rs 710 

FRs 418 

IESs 380 

MED H𝛾 1032 

NAP 
FRs 653 

IESs 623 

SAN Rs 343 

LEM 𝛾 1015 

 

III. METHODOLOGY 

In this study, a CNN-based approach is proposed for 

HFOs multi-classification. A flow chart of the proposed 

approach is illustrated in Fig. 2. As clearly described in 

this figure, two main parts are characterizing the proposed 

approach: data preprocessing and CNN-based multi-

classification. 

A. Data preprocessing 

The first step in preprocessing the data involves taking 

each labeled event of interest (EOI) in our dataset and 

reframing it into a 200ms window. This time period (i.e., 

200ms) is the average of all the labeled events in our 

database, and it ensures that each event is adequately 

covered without losing any information. After that, to 

prevent edge effect in the time-frequency representation 

of each EOI, they were all multiplied by a Hanning 

window of 200ms length. The Stockwell transform (S-

transform) was then used to generate a time-frequency 

representation of each windowed EOI. The goal of this 

representation was to capture signal variations in both 

time and frequency domains, simultaneously. 

The Stockwell transform, commonly referred to as S-

transform, is a time-frequency representation proposed by 

Stockwell et al. [23] as a combination of the continuous 

wavelet transform (CWT) and short-time Fourier 

transform (STFT). The S-transform is comparable to the 

STFT except that the width of the windows varies with 

frequency. This makes the S-transform a good time-

frequency representation leading to a high frequency 

resolution. In addition, in contrast to the CWT, the S-

transform has absolute referenced phase information. 

Therefore, in this study, the S-transform is applied to both 

HFOs and IESs signals. Furthermore, previous research 

has shown that the S-transform can differentiate HFOs 

from similar activity [24-26]. 

Let 𝑥[𝑛], 𝑛 = 0,1,2, … , 𝑁 − 1, denote discrete time 

series corresponding to a given continuous time signal, 

where 𝑁 is the number of time samples. The S-transform 

𝑆[𝑘, 𝑚] of 𝑥[𝑛] computed at a given time shift factor 

𝑘 𝜖 {0, … , 𝑀 − 1}, where 𝑀 stands for the number of 

frequency bins, is defined as [24]: 

 𝑆[𝑘, 𝑚] =  ∑ 𝑥[𝑛]𝑁−1
𝑛=0 𝜔[𝑘 − 𝑛, 𝑚]𝑒−𝑖2𝜋

𝑚

𝑀
𝑘

 (1) 

where 𝜔[𝑛, 𝑚] refers to a specific mother wavelet 

function given by: 

 𝜔[𝑛, 𝑚] =  
|𝑚|

𝑀√2𝜋
𝑒

−
𝑛2𝑚2

2𝑀2  (2) 

Since CNNs are particularly well-suited for image 

processing, the time-frequency representation of each 

EOI in our dataset was transformed into an image of size 

410 × 500. This process is further explained in the 

following subsections. 

B. Proposed CNN-based model for HFOs multi-

classification 

The CNN has been found to be the best DL model to 

deal with image classification tasks [27-29] thanks to its 

ability to learn automatically the features from raw data. 

In this study, we propose a deep CNN architecture for 

HFOs and IESs multi-classification. 

Furthermore, data augmentation (DA) being a powerful 

tool for enhancing the classification performance of 

CNNs, especially when the size of the dataset is relatively 

small [30], this technique is also investigated. 

Consequently, two HFOs multi-classification pipelines, 

HFOs multi-classification with and without DA, are 

proposed and illustrated in Fig. 2. Classification results of 

these two pipelines are then evaluated and compared. A 

detailed description of the proposed pipelines is given in 

the following subsections. 

1) Pipeline 1: CNN without DA 

The architecture of the proposed CNN, as shown in Fig. 

3(a), comprises an input layer corresponding to the 3-

channel (RGB) input images which are resized into the  
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Fig. 2. Flowchart of the proposed CNN-based HFO multi-classification: (1) without data augmentation and (2) with data 

augmentation. 
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Fig. 3. CNN model architectures. (a) CNN without data augmentation (b) CNN with data augmentation. 

 

TABLE 2 

PARAMETERS USED IN THE PROPOSED CNN MODEL 

Layers No. Layer type Input shape Output shape # Trainable 

parameters 

With BN Activation 

1 Input Layer [224,224,8] [224,224,8] 0  - 

2 Conv2D [224,224,8] [224,224,8] 224 ✓ ReLU 

3 MaxPooling 2D [224,224,8] [112,112,8] 0  - 

4 Conv2D [112,112,8] [112,112,16] 3216 ✓ ReLU 

5 MaxPooling 2D [112,112,16] [56,56,16] 0  - 

6 Conv2D [56,56,16] [56,56,32] 12832 ✓ ReLU 

7 MaxPooling 2D [56,56,32] [28,28,32] 0  - 

8 Conv2D [28,28,32] [26,26,64] 18496 ✓ ReLU 

9 MaxPooling 2D [26,26,64] [13,13,64] 0 ✓ - 

10 Flatten [13,13,64] [10816] 0 ✓ - 

11 FC1 [10816] [25] 270425  ReLU 

12 Dropout [25] [25] 0 ✓ - 

13 FC2 (softmax) [25] [5] 130 ✓ - 

standard size (224 × 224) to speed up the training 

process. The feature extraction process takes place 

automatically in a hierarchical fashion through four 

blocks of convolution layers each of which having a filter 

size 3 × 3.Each block ends with a 2D max pooling layer 

which represents a subsampling process. In fact, no 

strides are used in any of the convolution layers, and they 

all employ the "same padding" configuration. This means 

that the input and output dimensions remain the same after 

each convolution operation. Then, the outputs from all 

these layers are flattened. For the classification part, two 

fully connected (FC) layers contain, respectively, 25 and 

5 nodes. In order to prevent the model overfitting, a 

dropout regularization, with a factor of 0.5, is applied. 

Finally, a Softmax output layer is added to predict the 

final class. A ReLU activation layer is applied in each 

convolution layer. The Max pooling step used after the 

ReLU activation reduces the spatial dimensionality of the 

extracted feature maps and helps in extracting the most 

relevant features. Batch normalization (BN) layer [31] is 

placed between the convolution layer and ReLU layer. 

The role of this BN layer is (i) to normalize the feature 

map so that the CNN model becomes more efficient even 

with a small number of parameters and (ii) to promote a 

fast-training ability. Details on the CNN architecture 

parameters are given in Table 1. 

2) Pipeline 2: CNN with DA 

DA [30] is a technique to increase the size of dataset 

used to train the model. It consists in increasing the size 
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of the data by adding more synthetic patterns produced 

from the original ones by simply applying few 

transformations (flipping, rotation, translation, 

compression, etc.). Recently, several studies have 

reported the efficiency of DA in improving DL-based 

classification [32-34]. In the context of HFOs 

classification, only the study of Nadalin et al. [20] has 

employed the DA procedure to increase the training data. 

Fig. 3(b) illustrates the CNN-based model combined with 

DA. 

In this paper, DA was performed, using 

"ImageDataGenerator" in Keras, by applying some basic 

image processing tool such as flipping [35]. Besides, a 

zero-mean Gaussian noise with standard deviation 𝜎 =
0.05 was also employed to augment our training dataset 

as initially suggested in [36]. In fact, authors in [36] have 

recently shown that adding noise improves the 

performance of the model. Finally, once the data were 

augmented, they were shuffled with the original training 

data and the new training dataset was next introduced, as 

shown in Fig. 3(b), to the CNN model.  

After applying the DA procedure, the new dataset 

contains approximately 2000 images per class compared 

to 1000 images prior to DA. 

IV. NUMERICAL EXPERIMENTS 

This section is devoted to evaluate the performance of 

the proposed HFOs multi-classification approach. The 

clinical database is firstly described. Then, the 

quantitative evaluation and some implementation details 

are given. Finally, classification performance results of 

the proposed framework are presented. 

A. Quantitative evaluation 

To assess the proposed method, four performance 

metrics are used: sensitivity (SEN), specificity (SPE), 

accuracy (ACC), and F1-score. They are defined as 

follows: 

 𝑆𝐸𝑁 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

 𝑆𝑃𝐸 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (4) 

 𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
 (5) 

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁
 (6) 

where 𝑇𝑃, 𝑇𝑁, 𝐹𝑁, 𝐹𝑃 stand, respectively, for the 

number of true positives, true negatives, false negatives 

and false positives. 

B. Experimental Setup 

The different experiments were conducted with a system 

equipped with 32 GB of memory, using MATLAB 

(R2017a) and Python 3 environments, and powered by an 

Intel® Xeon® 2.7 GHz (with 2 processors) processor. All 

simulations were performed and evaluated on this system. 

The reframing of EOIs and the generation of TF 

representation were accomplished using MATLAB. 

Tensorflow 2.6 and Keras 2.6 libraries were used to 

conduct the ML part. OpenCV 4.5 was employed for the 

image processing part. 

The proposed model employed 

"categorical_crossentropy" as a loss function and 

stochastic gradient descent with momentum (SGDM) as 

the optimizer. The SGDM optimizer had a momentum 

value of 0.9, which is the default parameter in Keras. 

Additionally, the model was trained using a batch size of 

32 for 100 epochs, with 5 steps per epoch. The initial 

learning rate for the model was set to 0.0001. 

Furthermore, to address the issue of overfitting, a 

stratified K-fold (with K=5) cross-validation technique 

was employed. This approach ensures a balanced 

distribution among classes, thus providing an advantage 

in maintaining data integrity. More particularly, the 

dataset was randomly split into five subsets (K1, K2, K3, 

K4 and K5). Hence, four subsets were used to train the 

CNN model while the remaining subset was used as test 

set. Moreover, the latter four subsets were divided into the 

ratio 80:20 for training and validation as recommended in 

[17]. Finally, the results from the 5-fold cross validation 

procedure were averaged to produce single overall 

classification metrics i.e., SEN, SPE, ACC and F1-score 

for each class. It is important to mention that a separate 

test set was created prior to the application of DA. 

C. Training process 

Performance results of the proposed framework during 

the training stage for 100 epochs are illustrated in Fig. 4 

and Fig. 5. 

Fig. 4 shows the loss and accuracy curves during training 

and validation of the CNN-based model without DA. It 

can be seen from this figure that the model does not suffer 

from overfitting. After 100 epochs, as shown in Fig. 4(a), 

the training and validation loss values tend to 0.309 

whereas the training and validation accuracies tend to 

0.897 as depicted in Fig. 4(b). 

Fig. 5(a) shows the loss curves during the training and 

validation steps of the CNN with DA, whereas Fig. 5(b) 

depicts the training and validation accuracy. Similarly, it 

can be seen that there is no overfitting problem. The 

validation loss reaches a value equal to 0.300 on the 58-

th epoch to attain 0.245 in the last epoch. Additionally, 

CNN with DA shows a slight increase in the validation  
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Fig. 4. Training and validation curve of CNN model without DA: (a) loss and (b) accuracy 

 

 

Fig. 5. Training and validation curve of CNN model with DA: (a) loss and (b) accuracy 

 

accuracy (0.931) as illustrated in Fig. 5(b) compared to 

the one without DA (0.897). 

Briefly, loss curves in the two cases (CNN with or 

without DA) decrease along with the epochs. Similarly, 

accuracy curves show an increase along with the epochs. 

Consequently, we can conclude that, in the training phase, 

the proposed CNN performs well on TF images dataset. 

D. Classification results 

This subsection is devoted (i) to evaluate the 

performance of the learned CNN model on the test data 

and (ii) to compare the proposed approach with a previous 

ML-based model [24]. The mean and standard deviation 

of various classification metrics were calculated across 5-

fold cross-validation and reported. 
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1) Classification performance 

Table 3 entails the classification performance of the 

CNN model with DA compared to the CNN without DA, 

for HFOs and IESs classes in terms of SEN, SPE, ACC, 

and F1-score. It can be seen that the proposed CNN shows 

generally a good performance for all classes (i.e. 𝛾, H𝛾, 

Rs, FRs, IESs). 

Particularly, for the CNN-based model, the 𝛾 class 

yields significantly higher performance compared to 

other classes. More precisely, SEN, ACC and F1-score 

are respectively equal to 0.950, 0.959 and 0.959. Besides, 

the highest value of SPE (0.973) is obtained for the IESs 

class. Regarding the average classification performance, 

the proposed CNN-based model achieves 0.814 (0.130) 

0.953 (0.016), 0.925 (0.033) and 0.872 (0.085) for SEN, 

SPE, ACC and F1-score respectively. 

Additionally, we also provide in Table 3 the 

classification results of the proposed CNN-based 

approach with DA in terms of SEN, SPE, ACC and F1-

score. The highest results were obtained with the 𝛾 class 

as it the same case of CNN without DA, equal 

respectively to 0.950, 0.982, 0.970 in terms of SEN, SPE 

and ACC. Concerning the ACC, the best score is achieved 

by IESs class. 

To investigate the global behavior of the proposed 

CNN model with and without DA, the average 

performance of all classes is illustrated in Fig. 6 in terms 

of SEN, SPE, ACC and F1-score. According to this 

figure, it can be noticed that the proposed CNN model 

with DA shows higher multi-classification performance 

in terms of abovementioned metrics compared to the case 

where no DA step was used. Additionally, from the 

results depicted in Fig. 6, a good accuracy (0.978) was 

obtained with DA procedure. Globally, the obtained 

results show the positive impact of DA on the 

classification performance since this procedure enables to 

provide more distinguishable patterns from the original 

data. 

2) Comparison with previous study 

A comparative study between the proposed approach in 

its two versions (i.e., CNN with and without DA) and a 

ML-based method [24], namely Support Vector Machine 

(SVM) was conducted. Various feature extraction 

techniques including TF features and image based-ones 

have been adopted in conjunction with the 

abovementioned ML algorithms. To ensure a fair 

comparison, the same iEEG training dataset was used for 

all methods assessed in this study. The overall SEN, SPE, 

ACC and F1-score for each algorithm were averaged and 

shown in Fig. 7. 

According to this figure, traditional ML method (SVM) 

provided lower classification performance for all criteria 

compared to the proposed CNN-based model in its two 

versions. More precisely, it provided values of 0.765, 

0.941, 0.906 and 0.768 for SEN, SPE, ACC and F1-score 

respectively, as shown in Fig. 7. This can be explained by 

the fact that contrary to CNN models where relevant 

features are automatically extracted, traditional ML 

methods strongly rely on a pre-selection of the relevant 

features in a set of manually predefined ones. 

To sum up, compared to all the considered algorithms, 

the proposed CNN DA-based model achieved the highest 

ACC with a value of 0.978. 

3) Disscussion 

This paper introduces a novel CNN-based approach for 

the multi-classification of HFOs (γ, Hγ, Rs, FRs) and IESs 

events. The CNN-based strategy enables the automatic 

extraction of discriminant features from the TF images 

obtained through the S-transform of these events. These 

features stand as the input of the CNN model for 

classification. 

 

TABLE 3 

CLASSIFICATION PERFORMANCE CRITERIA FOR THE PROPOSED CNN MODEL WITH AND WITHOUT DA, THE MEAN (STD) OF SEN, SPE, 

ACC AND F1-SCORE ARE REPORTED 
Event class SEN SPE ACC F1-score 

CNN CNN+DA CNN CNN+DA CNN CNN+DA CNN CNN+DA 

𝜸 0.950 0.950 0.961 0.990 0.959 0.982 0.956 0.970 

H𝜸 0.883 0.941 0.954 0.968 0.940 0.963 0.917 0.955 

Rs 0.575 0.754 0.951 0.922 0.874 0.888 0.717 0.830 

FRs 0.785 0.738 0.924 0.948 0.895 0.905 0.849 0.830 

IESs 0.880 0.920 0.973 0.992 0.955 0.978 0.924 0.955 

Average 0.814 (0.130) 0.861 (0.092) 0.953 (0.016) 0.964 (0.026) 0.925 (0.033) 0.978 (0.039) 0.872 (0.085) 0.908 (0.063) 
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Fig. 6. Comparaison between CNN with and without DA 

 

 

 

Fig. 7. HFOs and IESs multi-classification performance of the proposed CNN model in its two variants (CNN with and without DA) with 

traditional ML algorithm (SVM) 

 

As shown in Fig. 6, the proposed CNN model 

demonstrates favorable classification performance in 

terms of the different evaluation metrics, such as SEN, 

SPE, ACC, and F1-score. 

Recently, DA has become a commonly used method in 

many fields [33, 34]. Its main goal is to cope with the 

issue of limited size datasets. This is henceforth possible 

through the generation of new samples from the original 

ones using different transformations. 
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In this work, two factors (flipping and Gaussian noise 

addition) were used to augment the training TF images. 

Experimental results (see Fig. 6) showed, as expected, 

that the CNN-based model achieved better multi-

classification performance in terms of SEN, SPE, ACC 

and F1-score when DA is employed. 

To prove the effectiveness of the proposed CNN model 

with its two variants, we have compared its classification 

performance with traditional ML algorithm [24] i.e., 

SVM. According to Fig. 7, a good behavior of the 

proposed CNN model in its two variants (CNN with and 

without DA) was observed compared to ML-based one 

[24]. This is probably due to the fact that standard 

classifier was based on manually feature extraction, 

which is a subjective process due to the limited 

knowledge of the mechanism of HFOs. 

The primary contribution of this study is the utilization 

of a CNN-based model for the multi-classification of 

HFOs, which distinguishes it from previous studies that 

were limited to binary classification. Moreover, this 

research highlights the effectiveness of DA in enhancing 

the classification of HFOs and IESs. Typically, training a 

CNN model needs a significant number of samples to get 

good performance. Therefore, DA can be an effective 

approach for augmenting the diversity of the available 

data and, more importantly, addressing the limited size 

issue of clinical datasets. 

When reviewing the findings of our study, it is vital to 

take into account certain limitations that provide valuable 

insights for both the present comprehension and potential 

enhancements. Despite the fact that DA has 

demonstrated, through our study, its relevance in handling 

limited-size database in the context of epilepsy, there is 

still a real need to keep collecting and incorporating more 

diverse and representative datasets. This would increase 

the ability of the employed DA to generate more diverse 

meaningful examples for the model training assessment 

and consequently to fully ensure the applicability of the 

proposed model to real-world scenarios and conditions. 

Furthermore, enhancing the efficiency of our CNN-

based model for HFOs multi-classification by refining 

and optimizing its architecture holds great potential. A 

possible way to processed is by exploring pretrained 

models such as VGG16 through transfer learning. This 

extension can notably expedite the training process, 

leading to faster convergence. Besides, the DL-based 

technique has shown, according to our results, higher 

HFOs multi-classification performance compared to the 

ML-based one. But this was obviously at the expense of 

the model complexity. Thus, it would be interesting to 

consider instead a hybrid model that combines both DL 

and ML techniques. This hybrid model aims to strike the 

optimal balance between complexity and classifier 

performance, thereby offering an enhanced and optimized 

solution for our HFOs multi-classification task. 

V. CONCLUSION 

In this paper, a new deep learning framework based on 

CNN for the multi-classification of HFOs and IESs was 

proposed. This framework was based firstly on 

developing a CNN-based model, and, secondly, on testing 

the impact of the data augmentation step on the HFOs 

multi-classification quality. The results showed that the 

best performance was obtained using CNN with data 

augmentation. The good behavior of the proposed 

framework, in terms of SEN, SPE, ACC and F1-score, 

was confirmed on real iEEG signals. Additionally, a 

comparative study was conducted to test the efficiency of 

our proposed framework compared to previous ML 

method i.e. SVM. Results showed the good behavior of 

our framework compared to the traditional ML method. 

To the best of our knowledge, this is the first study where 

a 2D deep CNN was employed for HFOs multi-

classification. The DA procedure allows to compensate 

for the limited size of our training dataset - as collecting 

new clinical data is not an easy task - and improves the 

HFOs and IESs classification performance. 
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