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Given a rooted, binary phylogenetic network and a rooted, binary phylogenetic tree, can the tree be embedded into the
network? This problem, called TREE CONTAINMENT, arises when validating networks constructed by phylogenetic
inference methods. We present the first algorithm for (rooted) TREE CONTAINMENT using the treewidth t of the input
network N as parameter, showing that the problem can be solved in 2O(t2) · |N | time and space.
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1 Introduction
1.1 Background: phylogenetic trees and networks
Phylogenetic trees and networks are graphs used to represent evolutionary relationships. In particular, a
rooted phylogenetic network is a directed acyclic graph with distinctly labelled leaves, a unique root and
no indegree-1 outdegree-1 vertex. Here, we will only consider rooted binary phylogenetic networks, which
we will call networks for short. The labels of the leaves (indegree-1 outdegree-0 vertices) can, for example,
represent a collection of studied biological species, and the network then describes how they evolved
from a common ancestor (the root, a unique indegree-0 outdegree-2 vertex). Vertices with indegree 2
and outdegree 1 are called reticulations and represent events where lineages combine, for example the
emergence of new hybrid species. All other vertices have indegree 1 and outdegree 2. A network without
reticulations is a phylogenetic tree.

1.2 The TREE CONTAINMENT problem
The evolutionary history of a small unit of hereditary information (for example a gene, a fraction of a
gene or (in linguistics) a word) can often be described by a phylogenetic tree. This is because at each
reticulation, each unit is inherited from only one parent. Hence, if we trace back the evolutionary history
of such a hereditary unit in the network, we see that its phylogenetic tree can be embedded in the network.
This raises the fundamental question: given a phylogenetic network and a phylogenetic tree, can the tree be
embedded into the network? This is called the TREE CONTAINMENT problem (see Fig. 1). To formalize
this problem, we say that a network N displays a tree T if some subgraph of N is a subdivision of T .
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Figure 1: Left: a phylogenetic tree T . Middle: a phylogenetic network N displaying T (solid lines indicate an
embedding of T ; black nodes indicate reticulations). Right: the display graph D(N,T ) of N and T (see Section 1.4)
with the network part drawn on top and the tree part drawn on the bottom. Note that vertices of the display graph are
not labelled. In the figure, the leaves (square vertices) are ordered in the same way as in N .

Input: phylogenetic network NIN and tree TIN, both on the same set of leaf labels
Question: Does NIN display TIN?

TREE CONTAINMENT (TC)

1.2.1 Motivation

Apart from being a natural and perhaps one of the most fundamental questions regarding phylogenetic
networks, the TREE CONTAINMENT problem has direct applications in phylogenetics. The main application
is the validation of phylogenetic network inference methods. After constructing a network, one may want
to verify whether it is consistent with the phylogenetic trees. For example, if a heuristic method is used to
generate a network for a genomic data set, and tree inference methods are used to generate trees for each
gene, then the quality of the produced network can be assessed by computing the fraction of the gene trees
that can be embedded into it. In addition, one may want to find the actual embeddings for visualisation
purposes and/or to assess the importance of each network arc.

However, our main motivation for studying TREE CONTAINMENT is that it is a first step towards the
wider application of treewidth based approaches in phylogenetics (see Sections 1.3 and 1.4). The techniques
we develop are not exclusively designed for TREE CONTAINMENT but intended to be useful also for other
problems such as NETWORK CONTAINMENT [JM21] and HYBRIDIZATION NUMBER [BS07, vIKL+16,
vIKS16, vIL13]. The former is the natural generalization of TREE CONTAINMENT in which we have two
networks as input and want to decide whether one can be embedded into the other. It can, in particular, be
used to decide whether two networks are isomorphic. In the latter problem, HYBRIDIZATION NUMBER,
the input consists of a set of phylogenetic trees, and the aim is to construct a network with at most k
reticulations that embeds each of the input trees. Although this will certainly be non-trivial, we expect that
at least part of the approach we introduce here can be applied to those and other problems in phylogenetics.
We also believe our approach may have application to problems outside of phylogenetics, involving the
reconciliation of multiple related graphs.
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1.3 Treewidth

The parameters that are most heavily used for phylogenetic network problems (see eg. Section 1.5) are the
reticulation number and the level. This is true not only for TREE CONTAINMENT but more generally in the
phylogenetic networks literature. Although these parameters are natural, their downside is that they are not
necessarily much smaller than the input size. This is why we study a different parameter here.

The treewidth of a graph measures its tree-likeness (see definition below), similarly to the reticulation
number and level. In that sense, it is also a natural parameter to consider in phylogenetics, where networks
are often expected to be reasonably tree-like. A major advantage of treewidth is that it is expected to be
much smaller than the reticulation number and level. In particular, there exist classes of networks for which
the treewidth is at most a constant factor times the square-root of the level (see [KSW18] for an example).
Moreover, a broad range of advanced techniques have been developed for designing FPT algorithms
for graph problems when the parameter is the treewidth [Bod88, CNP+11, BCKN15, EGHK21]. For
these reasons, the treewidth has recently been studied for phylogenetics problems [JJK+19, KvSW16,
KSW18, SW21] and related width parameters have been proposed [BSW20]. However, using treewidth as
parameter for phylogenetic problems poses major challenges and, therefore, there are still few algorithms
in phylogenetics that use treewidth as parameter (see Section 1.4).

One of the most famous results in treewidth is Courcelle’s Theorem [Cou90, ALS91], which states,
informally, that graph problems expressible in monadic second-order logic (MSOL) can be solved in linear
time on graphs of bounded treewidth. This makes MSOL formulations a powerful tool for establishing FPT
results. For practical purposes, it is often preferable to establish a concrete algorithm, since the running times
derived via Courcelle’s theorem are dominated by a tower of exponentials of size bounded in the treewidth.

It will be convenient to define a tree decomposition of a graph G = (V,E) as a rooted tree, where
each vertex of the tree is called a bag and is assigned a partition (P, S, F ) of V , where S is a separator
between P and F . We will refer to S as the present of the bag. The set P is equal to the union of the
presents of all descendant bags (minus the elements of S) and we refer to it as the past of the bag. The
set F = V \ (S ∪ P ) is referred to as the future of the bag. For each edge of the graph, there is at least one
bag for which both endpoints of the edge are in the present of the bag. Finally, for each v ∈ V , the bags
that have v in the present form a non-empty connected subtree of the tree decomposition. The width of a
tree decomposition is one less than the maximum size of any bag’s present and the treewidth tw(G) of a
graph G is the minimum width of any tree decomposition of G. The treewidth of a phylogenetic network
or other directed graph is the treewidth of the underlying undirected graph.

Our dynamic programming works with nice tree decompositions, in which the root is assigned (V,∅,∅)
and each bag assigned (P, S, F ) has exactly one of four types: Leaf bags have P = S = ∅ (hence F = V )
and have no child, Introduce bags have a single child assigned (P, S \ {z}, F ∪ {z}) for some z ∈ S,
Forget bags have a single child assigned (P \ {z}, S ∪ {z}, F ) for some z ∈ P , and Join bags have two
children assigned (L, S, F ∪R) and (R,S, F ∪ L) respectively, where (L,R) is a partition of P . When
the treewidth is bounded by a constant, [Bod96] showed that a minimum-width tree decomposition can be
found in linear time and [Klo94] showed that a nice tree decomposition of the same width can be obtained
in linear time. Regarding approximation, it is known that, for all graphs G, tree decompositions of width
O(tw(G)) can be computed in time single-exponential in tw(G) [CFK+15, BDD+16, Kor21] and tree
decompositions of width O(tw(G)

√
log tw(G)) can be computed in polynomial time [FHL08].
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1.4 Challenges
One of the main challenges of using treewidth as parameter in phylogenetics is that the central goal in this
field is to infer phylogenetic networks and, thus, the network is not known a priori so a tree decomposition
cannot be constructed easily. A possible strategy to overcome this problem is to work with the display
graph (see Fig. 1). Consider a problem taking as input a set of trees, such as HYBRIDIZATION NUMBER.
Then, the display graph of the trees is obtained by taking all trees and identifying leaves with the same
label. Now we have a graph in the input and hence we can compute a tree decomposition. Moreover, in
some cases, there is a strong relation between the treewidth of the display graph and the treewidth of an
optimal network [GKL15, KSW18, JJK+19].

A few instances of exploiting (tree decompositions of) the display graph of input networks for algorithm
design have been published. Famously, Bryant and Lagergren [BL06] designed MSOL formulations solving
the TREE CONSISTENCY problem on display graphs, which have been improved by a concrete dynamic
programming on a given tree decomposition of the display graph [BPSC17]. Kelk et al. [KvSW16] also
developed MSOL formulations on display graphs for multiple incongruence measures on trees, based on
so-called “agreement forests”.

For the TREE CONTAINMENT problem, MSOL formulations acting on the display graph have been
used to prove fixed-parameter tractability with respect to the treewidth [JJK+19]. Analogously to the work
of Baste et al. [BPSC17] for TREE CONSISTENCY, we develop in this manuscript a concrete dynamic
programming algorithm for TREE CONTAINMENT acting on display graphs.

TREE CONTAINMENT is conceptually similar to HYBRIDIZATION NUMBER in the sense that the main
challenge is to decide which tree vertices correspond to which vertices of the other trees (for HYBRIDIZA-
TION NUMBER) or network vertices (for TREE CONTAINMENT). However, HYBRIDIZATION NUMBER
is even more challenging since the network may contain vertices that do not correspond to any input ver-
tex [vIKL+16]. Therefore, TREE CONTAINMENT is a natural first problem to develop techniques for, aim-
ing at extending them to HYBRIDIZATION NUMBER and other problems in phylogenetics in the long run.

That being said, solving TREE CONTAINMENT parameterized by treewidth poses major challenges itself.
Even though the general idea of dynamic programming on a tree decomposition is clear, its concrete use
for TREE CONTAINMENT is severely complicated by the fact that the tree decomposition does not know
the correspondence between tree vertices and network vertices. For example, when considering a certain
bag of the tree decomposition, a tree vertex that is in the present of that bag may have to be embedded into
a network vertex that is in the past or in the future. It may also be necessary to map vertices from the future
of the tree to the past of the network and vice versa. Therefore, it will not be possible to “forget the past”
and “not worry about the future”. In particular, this makes it much more challenging to bound the number
of possible assignments for a given bag. We will do this by bounding the number of “time-travelling”
vertices by a function of the treewidth. We will describe these challenges in more detail in Section 2.2.

1.5 Previous work
TREE CONTAINMENT was shown to be NP-hard [KNTX08], even for tree-sibling, time-consistent, regular
networks [ISS10]. On the positive side, polynomial-time algorithms were found for other restricted classes,
including tree-child networks [GGL+15, GGL+18, Gun18, GYZ19, ISS10, Wel18]. The first non-trivial
FPT algorithm for TREE CONTAINMENT on general networks had running time O(2k/2n2), where the
parameter k is the number of reticulations in the network [KNTX08]. Another algorithm was proposed
by [GLZ16] with the same parameter, but it is only shown to be FPT for a restricted class of networks. Since
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the problem can be split into independent subproblems at non-leaf cut-edges [ISS10], the parameterization
can be improved to the largest number of reticulations in any biconnected component (block), also called
the level of the network. Further improving the parameterization, the maximum number t∗ of “unstable
component-roots” per biconnected component was considered and an algorithm (working also in the non-
binary case) was found with running time O(3t

∗ |N ||T |) [Wel18]. Herein, a parameterization “improves”
over another if the first is provably smaller than (a function of) the second in any input network.

Several generalizations and variants of the TREE CONTAINMENT problem have been studied. The more
general NETWORK CONTAINMENT problem asks to embed a network in another and has been shown to
be solvable in polynomial time on a restricted network class [JM21]. When allowing multifurcations and
non-binary reticulations, two variants of TREE CONTAINMENT have been considered: In the FIRM version,
each non-binary node (“polytomy”) of the tree has to be embedded in a polytomy of the network whereas,
in the SOFT version, polytomies may be “resolved” into binary subtrees in any way [BMW18]. Finally,
the unrooted version of TREE CONTAINMENT was also shown to be NP-hard but fixed-parameter tractable
when the parameter is the reticulation number (the number of edges that need to be deleted from the
network to obtain a tree) [IKS+18]. While this version of the problem is also known to be fixed-parameter
tractable with respect to the treewidth of the network [JJK+19], the work does not explicitly describe an
algorithm and the implied running time depends on Courcelle’s theorem [Cou97] which makes practical
implementation virtually impossible.

Since the notion of “display” closely resembles that of “topological minor” (with the added constraint
that the embedding must respect leaf-labels), TREE CONTAINMENT can be understood as a special case of
a variant of the well-known TOPOLOGICAL MINOR CONTAINMENT (TMC) problem for directed graphs.
TMC is known to be NP-complete in general by reduction from HAMILTONIAN CYCLE and previous
algorithmic results focus on the undirected variant, parameterized by the size h of the sought topological
minor H (corresponding to the input tree for TREE CONTAINMENT). In particular, undirected TMC can be
solved in f(h)nO(1) time [GKMW11, FLP+20]. However, the dependency of the function f on h makes
such algorithms impractical for all but small values of h. By contrast, in TREE CONTAINMENT the input tree
may be assumed to typically have a size comparable to the overall input size. In the directed case, even the
definition of “topological minor” has been contested [GHK+16] and we are aware of little to no algorithmic
results. In TREE CONTAINMENT, part of the embedding of the host tree in the guest network is fixed by
the leaf-labeling. If the node-mapping is fixed for all nodes of the host, then directed TMC generalizes
the DISJOINT PATHS problem [FHW80], which is NP-complete for 2 paths or in case the host network
is acyclic. Indeed, one can show TREE CONTAINMENT to be NP-hard in a similar fashion [KNTX08].

1.6 Our contribution

In this paper, we present an FPT-algorithm for TREE CONTAINMENT parameterized by the treewidth
of the input network. Our algorithm is one of the first (constructive) FPT-algorithms for a problem in
phylogenetics parameterized by treewidth. We believe that this is an important development as the treewidth
can be much smaller than other parameters such as reticulation number and level which are easier to work
with. We see this algorithm as an important step towards the wide application of treewidth-based methods
in phylogenetics.
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2 Preliminaries
2.1 Reformulating the problem
A key concept throughout this paper will be display graphs [BL06], which are the graphs formed from
the union of a phylogenetic tree and a phylogenetic network by identifying leaves with the same labels.
Throughout this paper we will let NIN and TIN denote the respective input network and tree in our instance
of TREE CONTAINMENT. The main object of study will be the “display graph” of NIN and TIN. For the
purposes of our dynamic programming algorithm, we will often consider graphs that are not exactly this
display graph, but may be thought of as roughly corresponding to subgraphs of it (though they are not
exactly subgraphs; see Section 3.1). In order to incorporate such graphs as well, we will define display
graphs in a slightly more general way than that usually found in the literature. In particular, we allow for the
two “sides” of a display graph to be disconnected, and for some leaves to belong to one side but not the other.

Definition 1 (display graph). A display graph is a directed acyclic graph D = (V,A), with specified
subsets VT , VN ⊆ V such that VT ∪ VN = V , satisfying the following properties:
• The graph T := D[VT ] is an out-forest;
• Every vertex has in- and out-degree at most 2 and total degree at most 3;
• Any vertex in VN ∩ VT has out-degree 0 and in-degree at most 1 in both T and N := D[VN ].

Herein, we call T the tree side and N the network side of D and we will use the term D(N,T ) to denote a
display graph with network side N and tree side T .

Given a phylogenetic network NIN and phylogenetic tree TIN with the same leaf-label set, we define
DIN(NIN, TIN) to be the display graph formed by taking the disjoint union of NIN and TIN and identifying
pairs of leaves that have the same label. We note that, while the leaves of NIN and TIN were originally
labelled, this labelling does not appear in DIN(NIN, TIN). Labels are used to construct DIN(NIN, TIN), but
in the rest of the paper we will not need to consider them. Indeed, such labels are relevant to the TREE
CONTAINMENT problem only insofar as they establish a relation between the leaves of TIN and NIN, and
this relation is now captured by the structure of DIN(NIN, TIN).

We now reformulate the TREE CONTAINMENT problem in terms of an embedding function on a display
graph. Unlike the standard definition of an embedding function (see, e.g., [ISS10]), which is defined for a
phylogenetic network N and tree T , our definition of an embedding function applies directly to the display
graph D(N,T ). Because of our more general definition of display graphs, our definition of an embedding
function will also be more general than that found in the literature. The key idea of an embedding function
remains the same, however: it shows how a subdivision of T may be viewed as a subgraph of N .

Definition 2 (embedding function). Let D be a display graph with network side N and tree side T ,
and let P(N) denote the set of all directed paths in N . An embedding function on D is a function
φ : V (T ) ∪A(T )→ V (N) ∪ P(N) such that:
(a) for each u∈V (T ), φ(u)∈V (N) and, for each uv∈A(T ), φ(uv) is a directed φ(u)-φ(v)-path in N ;
(b) for any distinct u, v ∈ V (T ), φ(u) 6= φ(v);
(c) for any u ∈ V (T ) ∩ V (N), φ(u) = u;
(d) the paths {φ(uv) | uv ∈ A(T )} are arc-disjoint;
(e) for any distinct p, q ∈ A(T ), φ(p) and φ(q) share a vertex z only if p and q share a vertex w with

z = φ(w);

Note that the standard definition of an embedding of a phylogenetic tree T into a phylogenetic networkN
(see e.g. [ISS10]) coincides with the definition of an embedding function on D(N,T ). Property (e) ensures
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that, while the embeddings of arcs uv, vw1, vw2 can all meet at φ(v), the embeddings of different tree arcs
cannot otherwise meet. (In particular, the path φ(uv) cannot end at a reticulation that is also an internal
vertex of φ(u′v′), something that is otherwise allowed by properties (a)–(d).)

Lemma 1. A phylogenetic networkNIN displays a phylogenetic tree TIN if and only if there is an embedding
function on DIN(NIN, TIN).

Proof: Suppose first that NIN displays TIN, that is, there is a subgraph T ′IN of NIN that is a subdivision
of TIN. Then, every vertex of TIN corresponds to a vertex of T ′IN and every arc uv in TIN corresponds to
a directed path in T ′IN between the vertices corresponding to u and v. Let φ denote this correspondence
relation. Then, (c) of Definition 2 follows from the definition of DIN(NIN, TIN) while the other properties
follow from φ being an isomorphism (of a subdivision of TIN into T ′IN).

Conversely, suppose that there is an embedding function φ on DIN(NIN, TIN) and let T ′IN be the subgraph
formed by the arcs of NIN that are part of some path φ(uv) for an arc uv in T . Then, it can be verified that
T ′IN is a subdivision of TIN.

In light of Lemma 1, we may henceforth view TREE CONTAINMENT as the following problem:

Input: phylogenetic network NIN and phylogenetic tree TIN with the same leaf-label set
Task: Find an embedding function on DIN(NIN, TIN).

TREE CONTAINMENT (TC)

2.2 Overview of our approach
We study TREE CONTAINMENT parameterized by the treewidth of the input network NIN. A key tool will
be the following theorem from [JJK+19]. In this theorem, the display graph DIN(Nu, Tu) for unrooted Nu
and Tu is defined analogously to DIN(NIN, TIN) for rooted NIN, TIN – that is, it is the (undirected) graph
derived from the disjoint union of Nu and Tu by identifying leaves with the same label.

Theorem 1 ([JJK+19]). Let Nu and Tu be an unrooted binary phylogenetic network and tree, respectively,
with the same leaf-label set. If Nu displays Tu then tw(DIN(Nu, Tu)) ≤ 2tw(Nu) + 1.

By Theorem 1, we suppose that the display graph DIN(NIN, TIN) has treewidth at most 2k + 1, where
k is the treewidth of the underlying undirected graph Nu of NIN, as otherwise tw(DIN(NIN, TIN)) =
tw(DIN(Nu, Tu)) > 2k + 1 and Nu does not display the unrooted version Tu of TIN, implying that NIN

does not display TIN.
As is often the case for treewidth parameterizations, we will proceed via a dynamic programming

on a tree decomposition, in this case a tree decomposition of DIN(NIN, TIN). Recall that we view a bag
(P, S, F ) in the tree decomposition as partitioning the vertices of DIN(NIN, TIN) into past, present and
future. A typical dynamic programming approach is to store, for each bag, some set of information about
the present, while forgetting most information about the past, and not yet caring about what happens in
the future. The resulting information is stored in a “signature”, and the algorithm works by calculating
which signatures are possible on each bag, in a bottom-up manner. This approach is complicated by the
fact that the sought-for embedding of TIN into NIN may not map the past/present/future of TIN into the
past/present/future (respectively) of NIN. Vertices from the past of TIN may be embedded in the future of
NIN, or vice versa. Thus, we have to store more information than we might at first think. In particular,
it is not enough to store information about which present vertices of TIN are embedded in which present
vertices of NIN (indeed, depending on the bag, it may be that none of them are). As such, our notion of
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a “signature” has to track how vertices from the past of TIN are embedded in the present and future of NIN,
and which vertices from the past of NIN contain vertices from the present or future of TIN. Vertices of the
past which are mapped to vertices of the past, on the other hand, can mostly be forgotten about.

2.3 An informal guide to (compact) signatures
Roughly speaking, a signature σ for a bag (P, S, F ) in the tree decomposition of DIN(NIN, TIN) consists of
the following items (see Fig. 3 for an example):

1. a display graphD(N,T ), some of whose vertices correspond (isomorphically) to S ⊆ V (DIN(NIN, TIN)),
and the rest of which are labeled PAST or FUTURE (which we may think of as vertices corresponding
to some vertex of DIN(NIN, TIN) in P or F , respectively). We use a function ι on V (D(N,T )) to
capture both this correspondence and labelling, where ι maps each vertex to an element of S or a
label from {PAST, FUTURE}. We emphasize here that D(N,T ) is distinct from the input display
graph DIN(NIN, TIN).

2. an embedding φ of T in N such that, for no arc uv of T , all of V (φ(uv)) ∪ {u, v} have the same
label y ∈ {PAST, FUTURE} under ι.

Signatures may be seen as “partial embedding functions” on parts of DIN(NIN, TIN) in a straightforward
way. In particular, we call σ valid for (P, S, F ) if, roughly speaking, φ corresponds (via ι) to something that
can be extended to an embedding function on the subgraph of DIN(NIN, TIN) induced by the vertices P ∪ S
introduced below (P, S, F ). In our dynamic programming algorithm, we build valid signatures for a bag x
from valid signatures of the child bag(s) of x (in particular, validity of a signature for x is characterized by
the validity of certain signatures for the child bag(s)).

Since the definition of a signature does not guarantee any bound on the number of vertices labeled PAST
or FUTURE, iterating over all signatures for a bag (P, S, F ) (in order to check their validity) exceeds FPT
time. Therefore we will instead consider “compact” signatures, whose number and size are bounded in
the width |S| of the bag (P, S, F ). If DIN(NIN, TIN) admits an embedding function φ∗, then a compact
signature corresponding to this embedding function exists. In the following, we informally describe
the compaction process for this hypothetical solution φ∗, thus giving a rough idea of the definition of a
“compact” signature. At all times, the (tentative) signature will contain a display graph D(N,T ) (initially
D(N,T ) = DIN(NIN, TIN)), and an embedding function of T into N (initially φ∗). For a more complete
description of our approach, see Section 3 and, for an illustration, see Fig. 2.
Step 1 After initialization with φ∗, we assign a label FUTURE to all vertices of F , and a label PAST to

all vertices in P (Observe that no vertex labeled PAST will be adjacent to a vertex labeled FUTURE,
since S separates P from F in DIN(NIN, TIN)). Then, we “forget” which vertices of DIN(NIN, TIN)
the vertices labelled PAST or FUTURE correspond to. Our preliminary signature now contains
(1) a display graph D(N,T ) whose vertices are either labelled FUTURE or PAST or correspond
(isomorphically) to vertices in S ⊆ V (DIN(NIN, TIN)) (we refer the reader to Section 3.1 for a more
formal description), as well as (2) an embedding function for D(N,T ) into N .

Step 2 We now simplify the structure of the preliminary signature. The main idea is that, if a is an arc of T
with both endpoints labelled PAST and all vertices in the path φ(a) are also labelled PAST, then we can
safely forget a and all the arcs in φ(a). Intuitively, the information that a will be embedded in φ(a)
does not have any effect on the possible solutions one could construct on the part of DIN(NIN, TIN)
that is “above” the bag (P, S, F ). Similarly, we can forget any arc a of T whose endpoints, as well
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F

P

NIN

TIN

FUTURE

FUTURE

PAST

Figure 2: Left: An example of a display graph DIN(NIN, TIN) for which NIN displays TIN as witnessed by the
embedding function φ that is indicated by bold edges. Highlighting with dashed border represents the sets P and F ,
for some bag (P, S, F ) in a tree decomposition of DIN(NIN, TIN). Right: A representation of the (compact) signature
for (P, S, F ) derived from this solution. Vertices labelled PAST or FUTURE are highlighted in gray without border.

as every vertex in φ(a), are assigned the label FUTURE. Intuitively, this is because this information
should have no bearing on whether a solution exists with this signature forDIN(NIN, TIN) restricted to
P ∪S. In a similar way, we forget any vertex u ∈ V (T ) and its embedding φ(u) if they are assigned
the same label, provided that all their incident arcs can also be forgotten. We will call the vertices
and arcs fulfilling these conditions “redundant” and we remove them from our tentative signature.
We can also safely delete the vertices and arcs of N that are labelled y ∈ {PAST, FUTURE} but are
not part of the image of φ. As a result, we now have that for any remaining vertex u ∈ T , either
one of {u, φ(u)} is labelled PAST and the other labelled FUTURE, or some vertex element of S must
appear as either one of {u, φ(u)}, a neighbor of u, or a vertex in the path φ(a) for an incident arc
a of u. Thus, we have “forgotten” all the aspects of the embedding except those that involve vertices
from the present in some way, or those where the embedding “time-travels” between the past and
future (see Section 3.3 for a more formal description of this process).

Step 3 Finally, we may end up with long paths of vertices with in-degree and out-degree 1 that are labelled
PAST or FUTURE in N (for example, if u and v are labelled PAST, then φ(uv) may be a long path
in N with all vertices labelled FUTURE). Such long paths do not contain any useful information to
us, we therefore compress these by suppressing vertices with in-degree and out-degree 1 (This gives
the compact signature, see Section 3.8).

2.4 Bounding the number of signatures

We now outline the main arguments for why the number of possible (compact) signatures for a given
bag (P, S, F ) can be bounded in |S|. Such a bound on the number of signatures ensures that the running
time of the algorithm is FPT, because the number of calculations required for each bag is bounded by a
function of the treewidth.

The main challenge is to bound the size of the display graph D(N,T ) in a given signature for (P, S, F ).
Once such a bound is achieved, this immediately implies upper bounds (albeit quite large) for the number
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NIN

TIN

N

T

ι

φ

PAST

PAST

FUTURE

Figure 3: Example of a signature of a bag (P, S, F ). The S-part of D(NIN, TIN) is solid while the non-S part is faded.
The embedding φ (right, indicated with gray edge-highlight) maps T into N . The dotted arcs labelled ι show the
isomorphism between part of D(N,T ) and S ⊆ V (D(NIN, TIN)). Note that the part of D(N,T ) that is not mapped
to S is not necessarily isomorphic to anything in D(NIN, TIN).

of possible display graphs and the number of possible embeddings, and hence on the number of possible
signatures. We will focus here on bounding the size of the tree part T . Once a bound is found for |T | it is
relatively straightforward to use that to give a bound on |N | (because the arcs of N that are not used by the
embedding of T into N are automatically deleted, unless they are themselves incident to a vertex in S, and
because isolated vertices are deleted and long paths suppressed).

It can be seen that a vertex u ∈ V (T ) is redundant (and so would be deleted from the signature) unless
one of the following properties holds: (1) u ∈ S, (2) φ(u) ∈ S, (3) u is incident to an element of S
(4) for some arc a incident to u, the path φ(a) contains a vertex from S or (5) u and φ(u) have different
labels from {PAST, FUTURE}. Essentially if none of (1)–(4) holds, then all the vertices mentioned in those
properties have the same label as either u or φ(u), using the fact that S separates the vertices labelled PAST
from the vertices labelled FUTURE. If u and φ(u) have the same label, then all these vertices have the same
label, which is enough to show that u is redundant. It remains to bound the number of vertices satisfying
one of these properties. For the first four properties, it is straightforward to find a bound in terms of |S|.
The vertices satisfying the final property are “time-travelling” (in the sense that either u is labelled PAST
and φ(u) FUTURE, or u is labelled FUTURE and φ(u) PAST). Because of the bounds on the other types of
vertices, it is sufficient to provide a bound on the number of lowest time-travelling vertices in T .

To see the intuition why this bound should hold: consider some full solution on the original input,
i.e. an embedding function on DIN(NIN, TIN), and suppose u ∈ V (TIN) is a lowest tree vertex for which
u ∈ P, φ(u) ∈ F (thus in the corresponding signature, u has label PAST and φ(u) has label FUTURE). Let
x ∈ V (NIN) ∩ V (TIN) be some leaf descendant of u. Then there is path in TIN from u to x, and a path
in NIN from φ(u) to φ(x) = x. Thus DIN(NIN, TIN) has an (undirected) path from u to φ(u). As this is a
path between a vertex in P and a vertex in F , some vertex on this path must be in S (since S separates P
from F ). Such a path must exist for every lowest time-travelling vertex u, and these paths are distinct. The
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existence of these paths can then be used to bound the number of lowest time-travelling vertices.

3 Filling in the details
3.1 Tracking the identity of vertices

In the following, consider a bag (P, S, F ) and recall that the sought solution may embed parts of the past
of T in the future of N or vice versa. Thus, as previously indicated, a signature for (P, S, F ) will have to
track information about more vertices than those in S. This leads to the following complexities in how we
talk about the identity of vertices in signatures.

For the display graph D(N,T ) in a signature for (P, S, F ), we want some vertices to correspond to
specific vertices in S ⊆ V (DIN(NIN, TIN)) while, for other vertices we want to express the fact that they
correspond to a vertex of P or F , without specifying which one. Moreover, as our dynamic programming
proceeds up the tree decomposition and we move from one signature to another, vertices will change
between these two states. When we move from a child bag (Pc, Sc, Fc) to a parent bag (Pp, Sp, Fp) and
a vertex x of DIN(NIN, TIN) “leaves the bag” (that is, x ∈ Sc \ Sp) then we want to “forget” that a vertex v
corresponds to x (instead labelling v PAST), while still tracking its adjacencies and embedding information.
Similarly, a vertex labelled FUTURE may, at some point, come to correspond to a particular vertex in S.

In order to keep this information straight, we have to be careful in how we talk about the identity
of these vertices. In particular, the vertices of the display graph D(N,T ) are different from those in
V (DIN(NIN, TIN)) = P ] S ] F , but the signature carries a “correspondence” function ι that, on some
subgraph of D(N,T ), acts as an isomorphism into the “S-part” of DIN(NIN, TIN) while, on other vertices,
acting as a labelling that assigns some vertices the label PAST and others the label FUTURE. As such, we
refer to ι as an “isolabelling”.

In the next definition, we consider an arbitrary set Y of labels, rather than the set {PAST, FUTURE}. While
we will often have Y = {PAST, FUTURE}, we also use isolabelings in other contexts besides signatures.

Definition 3 (isolabelling). Let Y be a set of labels and let S ⊆ V (DIN(NIN, TIN)). An (S,Y)-isolabelling
on a display graph D(N,T ) is a function ι : V (D(N,T ))→ S ∪ Y such that S is a subset of the image
of ι (ι is “surjective onto S”) (i) and, for any u, v ∈ V (D(N,T )) with ι(u), ι(v) ∈ S:
(a) ι(u) ∈ V (NIN) only if u ∈ V (N) and ι(u) ∈ V (TIN) only if u ∈ V (T ),
(b) ι(u) = ι(v) only if u = v, and
(c) the arc uv is in D(N,T ) if and only if ι(u)ι(v) is in DIN(NIN, TIN).

3.2 Signatures and containment structures

Before formally defining a signature for a bag (P, S, F ), let us remark that, later in the paper, we will also
discuss constructs which are similar in construction to signatures, but with slightly different vertex and
label sets (“partial solutions” and “reconciliations”). For this reason, we define a more general structure,
called an (S,Y)-containment structure, that encapsulates all these notions. In the definition that follows, a
signature for a bag (P, S, F ) corresponds to an (S,Y)-containment structure, where S is the present of
the bag (P, S, F ) and Y is the label set {PAST, FUTURE}. For an intuitive understanding of a containment
structure, the most important features are the display graph, embedding function and isolabelling.

(i) Every v ∈ S has a u ∈ V (D(N,T )) with ι(u) = v, but not every y ∈ Y may have a u ∈ V (D(N,T )) with ι(u) = y.
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Definition 4 (containment structure). Let Y be a set of labels and let S ⊆ V (DIN(NIN, TIN)). An (S,Y)-
containment structure is a tuple (D(N,T ), φ, ι) consisting of
• a display graph D(N,T ),
• an embedding function φ on D(N,T ), and
• an (S,Y)-isolabelling ι : V (D(N,T ))→ S ∪ Y .

In addition, each vertex u of D(N,T ) should satisfy the following properties:
(a) if ι(u) ∈ S, then u has the same in- and out-degree in D(N,T ) as ι(u) in DIN(NIN, TIN).
(b) if u ∈ T and ι(u) 6= ι(φ(u)), then u has 2 out-arcs in D(N,T ).

See Fig. 3 for an example of an (S, {PAST, FUTURE})-containment structure (D(N,T ), φ, ι). The last two
properties of Definition 4 are used for bookkeeping, and to help bound the size of the display graph.

Definition 5 (signature). Let (P, S, F ) be a bag in the tree decomposition of DIN(NIN, TIN). Then any
(S, {PAST, FUTURE})-containment structure is called a signature for (P, S, F ).

Through most of the paper, Y = {PAST, FUTURE} and S may be referred to as the “present” of the
bag (P, S, F ). However, our setup also allows us to talk about “partial solutions”, where S is replaced by
P ∪ S (essentially merging the past and the present) and only the label set Y = {FUTURE} (corresponding
to vertices in F ) is used. In some instances, we will use additional auxiliary labels; in particular when
considering Join bags in Section 3.6, we use the labels LEFT and RIGHT to distinguish between the
pasts of different bags. Finally, Definition 4 also allows capturing a solution for an instance of TREE
CONTAINMENT. Indeed, if we replace the set S with V (DIN(NIN, TIN)) and require that no vertex is
mapped to a label of Y , then D(N,T ) is isomorphic to DIN(NIN, TIN) and the embedding function φ of T
into N also describes an embedding of TIN into NIN.

Lemma 2. (NIN, TIN) is a YES-instance of TREE CONTAINMENT if and only if there is a (V (DIN(NIN, TIN)),Y)-
containment structure (D(N,T ), φ, ι) with ι−1(Y) = ∅.

Proof: First, suppose (D(N,T ), φ, ι) is a (V (DIN(NIN, TIN)),Y)-containment structure with ι−1(Y) = ∅.
Then, for every vertex u of D(N,T ), ι(u) is a vertex of DIN(NIN, TIN). Moreover, for every vertex v
of DIN(NIN, TIN), there is u ∈ V (D(N,T )) such that v = ι(u) (see Definition 4). Thus, ι is a bijective
function between V (D(N,T )) and V (DIN(NIN, TIN)) and, by Definition 3(c), uv is an arc in D(N,T )
if and only if ι(u)ι(v) is an arc in DIN(NIN, TIN). Thus, ι is an isomorphism, implying that D(N,T ) is
isomorphic to DIN(NIN, TIN). Moreover N is isomorphic to NIN and T is isomorphic to TIN (as ι maps
vertices of N to vertices of NIN and vertices of T to vertices of TIN by Definition 3(a)). As φ is an
embedding function on D(N,T ), combining ι with φ yields an embedding function on DIN(NIN, TIN).

Conversely, suppose that there is an embedding function φ on DIN(NIN, TIN). Let ι be the identity
function on V (DIN(NIN, TIN)) and note that, by Definition 3, ι is a (V (DIN(NIN, TIN)),Y)-isolabelling on
V (DIN(NIN, TIN)) and ι−1(Y) = ∅. Then, (DIN(NIN, TIN), φ, ι) satisfies the first three conditions of an
(S,Y)-containment structure. The remaining properties, concerning the degrees of vertices, follow from
the fact that NIN and TIN are binary. In particular, for any vertex u in TIN with ι(u) 6= ι(φ(u)), it holds that
u 6= φ(u) and so u is not a leaf of TIN and, thus, has out-degree 2 in DIN(NIN, TIN).

3.3 Formally defining the restriction
While Section 2.3 describes in broad strokes how a signature for a bag (P, S, F ) could be derived from a
solution for an instance of TREE CONTAINMENT, we now make this process more precise. Recall that we
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PAST

PAST

FUTURE

PAST

PAST

FUTURE

N

T

Figure 4: Illustration of Definition 7 (except non-Y parts of ι and ι′). Left: The example containment structure ψ of
Fig. 3. The dashed area indicates S′ and g: for all u in the dashed area, g(ι(u)) = PAST while ι(u) /∈ {PAST, FUTURE}.
Right: The g-restriction of ψ. In accordance with Definition 7, note how (a) arcs in the “PAST”-area of N that are
not mapped to by φ disappear in N ′ while arcs that are mapped by φ persist, (b) many of the arcs in T are in the
“PAST”-area, but embedded by φ into paths of N that live (at least partially) in the “FUTURE”-area of N and, therefore,
also persist, and (c) a common leaf of T and N has been removed since all its incoming arcs have been deleted. Finally,
as will be the case in the dynamic programming later on, the “PAST”- and “FUTURE”-areas never touch in D(N ′, T ′).

first relabelled the vertices in P and F by PAST and FUTURE, respectively, and then, “redundant” parts of
the display graph were removed and the remaining long paths contracted. Exactly which arcs and vertices
should be removed is made precise in the notion of redundancy defined below.

Definition 6 (redundant). Let χ := (D(N,T ), φ, ι) be an (S,Y)-containment structure, and let y ∈ Y .
Then, we define the y-redundant arcs and vertices of D(N,T ) as follows:
• A tree arc uv ∈ A(T ) is y-redundant if ι(u) = ι(v) = y and ι(v′) = y for all vertices v′ in the path
φ(uv).

• A network arc u′v′ ∈ A(N) is y-redundant if ι(u′) = ι(v′) = y and, if u′v′ is in the path φ(uv) for
some tree arc uv ∈ A(T ), uv is y-redundant.

• A tree vertex v in V (T ) is y-redundant if ι(v) = ι(φ(v)) = y, and v and φ(v) are incident only to
y-redundant arcs in D(N,T ).

• A network vertex v′ ∈ V (N) is y-redundant if ι(v′) = y and v′ is incident only to y-redundant arcs
and, if v′ = φ(v) for some v ∈ V (T ), v is y-redundant.

We say that an arc or vertex of D(N,T ) is redundant if it is y-redundant for some y ∈ Y . When it is
important to specify the containment structure χ, we say an arc or vertex is y-redundant with respect to χ.

Just as we derived a signature from a solution in Section 2.3 by restricting our attention to a subset of
vertices (in that case, the set S), we can restrict any (S,Y)-containment structure to an (S′,Y)-containment
structure for any S′ ⊆ S. This will be a useful tool for deriving signatures for one bag from signatures for
another bag, as well as characterizing the “validity” of a signature.
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Definition 7 (restriction, see Fig. 4). Let χ = (D(N,T ), φ, ι) be an (S,Y)-containment structure, let S′ ⊆
S, and let g : S ∪ Y → S′ ∪ Y be some function such that for all v ∈ S ∪ Y , g(v) = v if v ∈ S′ and
g(v) ∈ Y otherwise. Then, we call g a restriction function. Further, the g-restriction of χ is the tuple
(D(N ′, T ′), φ′, ι′) constructed as follows:

With ιg(u) abbreviating g(ι(u)) for all u ∈ V (D(N,T )), let D(N ′, T ′) be the display graph derived
from D(N,T ) by replacing the isolabelling ι with ιg, and then exhaustively deleting redundant arcs and
vertices (with respect to (D(N,T ), φ, ιg)) from D(N,T ). Finally, we define ι′ and φ′ as the respective
restrictions of ιg to D(N ′, T ′) and φ to T ′.

We will sometimes write (S1 → y1, . . . , Sj → yj)-restriction instead of g-restriction, where y1, . . . yj
are labels in Y and g(u) := yi for all u ∈ Si, and g(u) := u for all other u. For example, we may write
(P → PAST)-restriction when g is the function that maps all vertices in P to the label PAST, and leaves
other vertices unchanged. If any Si is a singleton set {z}, we permit ourselves to write z → yi instead of
{z} → yi. In particular, we will see (RIGHT → FUTURE)-restrictions, where the label RIGHT is mapped
to the label FUTURE. Such restrictions may sometimes be used to “merge” labels. Note that Steps 1
and 2 of the process described in Section 2.3 is (roughly analogous to) the process of constructing the
(P → PAST, F → FUTURE)-restriction of some V (DIN(NIN, TIN),∅)-containment structure corresponding
to a solution.

Before proving results relating to g-restrictions, we make the following observations about g-restrictions
and redundant arcs and vertices, which are straightforward consequences of Definition 6 and, thus, we omit
their proofs.

Observation 1. Any arc or vertex a of D(N,T ) is y-redundant with respect to (D(N,T ), φ, ι) if and only
if ι(Qa) = {y} for a set of vertices Qa that depends only on D(N,T ) and φ:
• If a is a tree arc, then Qa = V (a) ∪ V (φ(a)).
• If a is a network arc, then Qa = Qa′ if Qa is part of a path φ(a′), otherwise Qa = V (a).
• If a is a tree vertex, then Qa = a ∪ φ(a) ∪

⋃
uv∈A(D(N,T )):a∈{u,v}Quv .

• If a is a network vertex and a = φ(u′), then Qa = Qu′ ∪
⋃
uv∈A(D(N,T )):a∈{u,v}Quv, otherwise

Qa = a ∪
⋃
uv∈A(D(N,T )):a∈{u,v}Quv .

Observation 2. If a tree arc uv is y-redundant then so is every arc in φ(uv). A tree vertex u is y-redundant
if and only if φ(u) is y-redundant.

Lemma 3. Let χ be an (S,Y)-containment structure, let S′ ⊆ S, and let χ′ be the g-restriction of χ for
some restriction function g : S ∪ Y → S′ ∪ Y . Then, χ′ is an (S′,Y)-containment structure.

Proof: To show that χ = (D(N,T ), φ, ι) being an (S,Y)-containment structure implies χ′ = (D(N ′, T ′), φ′, ι′)
being an (S′,Y)-containment structure, we verify the five conditions of Definition 4 individually.
D(N ′, T ′) is a display graph. As D(N ′, T ′) was derived from D(N,T ) by deleting a subset of arcs and

vertices, it is clear that D(N ′, T ′) remains a display graph.
φ′ is an embedding function. As φ′ is the restriction of φ to T ′, and no arc in a path φ(uv) was deleted

unless the arc uv was deleted as well (and similarly for vertices φ(u)), φ′ is still a function that maps
vertices of T ′ to vertices of N ′ and arcs of T ′ to directed paths of N ′. The other properties of an
embedding function (such as all paths being arc-disjoint) follow immediately from the fact that these
properties hold for φ. Thus, φ′ is an embedding function on D(N ′, T ′).

ι′ is an (S′,Y)-isolabelling. Note that the properties of an isolabelling follow immediately from construc-
tion of ι′, the fact that g(v) = v for all v ∈ S′ and the fact that ι is an (S,Y)-isolabelling. To see
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that the image of ι′ in DIN(NIN, TIN) contains S′, we prove that, for every z ∈ S′, there is some
u ∈ V (D(N ′, T ′)) for which ι′(u) = z. To see this, consider the vertex u ∈ V (D(N,T )) for
which ι(u) = z. Since z ∈ S′ we then have g(ι(u)) = g(z) = z /∈ Y and, thus, u cannot become
redundant in the construction of χ′. Hence, u is also a vertex of D(N ′, T ′), and ι′(u) = g(ι(u)) = z
as required.

Same degrees in D(N ′, T ′) as in DIN(NIN, TIN). Let u ∈ V (D(N,T )) with ι(u) ∈ S′. Observe that no
arc incident to u is deleted when constructingD(N ′, T ′) and, thus, u has the same in-and out-degrees
in D(N ′, T ′) as it does in D(N,T ), that is, the same in- and out-degrees as ι(u) = ι′(u).

Out-arcs in D(N ′, T ′). Let u ∈ V (T ′) with ι′(u) 6= ι′(φ′(u)). In particular, there is no y ∈ Y with
ι′(u) = ι′(φ′(u)) = y. Then, no arc incident to u was deleted (as for any such arc a the path φ(a)
contains φ(u) by Definition 2(a)) and, so, u has the same out-degree in D(N ′, T ′) as in D(N,T ).
Moreover, u has out-degree 2 in D(N,T ) since ι(u) 6= ι(φ(u)) (otherwise ι′(u) = ι′(φ′(u)) by
construction of φ′ and ι′) and, thus, in D(N ′, T ′).

Lemma 4 (transitivity of restrictions). Let χ be an (S,Y)-containment structure for some S and Y , let
S′′ ⊆ S′ ⊆ S and let g′ : S ∪ Y → S′ ∪ Y and g′′ : S′ ∪ Y → S′′ ∪ Y be restriction functions. Let χ′ be
the g′-restriction of χ and let χ′′ be the g′′-restriction of χ′. Then, χ′′ is the (g′′ ◦ g′)-restriction of χ.

Proof: First, we show that g := g′′ ◦ g′ is a restriction function. To this end, let v ∈ S ∪ Y . If v ∈ S′′,
then v ∈ S′ ∩ S and, thus, g(v) = g′′(g′(v)) = g′′(v) = v since both g′ and g′′ are restriction functions.
Otherwise, v /∈ S′′ and either v ∈ S′, in which case g′(v) = v /∈ S′′, or g′(v) ∈ Y . In either case
g′(v) /∈ S′′ and so g(v) = g′′(g′(v)) ∈ Y .

In the following, let χ′ = (D(N ′, T ′), φ′, ι′), let χ′′ = (D(N ′′, T ′′), φ′′, ι′′) and let ιg′ be as described
in Definition 7, that is, ιg′(u) = g′(ι(u)) for all u ∈ V (D(N,T )) (and analogously for ι′g′′ and ιg). Then,
by Definition 7, ι′ = ιg′ and ι′′ = ι′g′′ . Note that, for any u ∈ V (D(N ′, T ′)),

ι′g′′(u) = g′′(ι′(u)) = g′′(ιg′(u)) = g′′(g′(ι(u))) = g(ι(u)) = ιg(u). (1)

Next, we show that χ′′ equals the g-restriction χ∗ = (D(N∗, T ∗), φ∗, ι∗) of χ. To this end, we first
prove that D(N∗, T ∗) = D(N ′′, T ′′). As both display graphs are subgraphs of D(N,T ), it is enough to
show that any arc or vertex is deleted in the construction of D(N∗, T ∗) from D(N,T ) if and only if it is
deleted in the construction of D(N ′, T ′) from D(N,T ) or of D(N ′′, T ′′) from D(N ′, T ′).
Arcs: Let uv be an arc of D(N,T ). If uv ∈ A(T ), then let Quv := {u, v} ∪ V (φ(uv)) (that is, Quv

contains u, v and all vertices in the path φ(uv)). If uv is an arc of N , then let Quv be the set
containing u and v together with any u′ and v′ for which uv is in the path φ(u′v′) (by Definition 2,
there is at most one such arc u′v′). By Observation 1, uv is deleted in the construction of D(N∗, T ∗)
if and only if there is some y ∈ Y with ιg(Quv) = {y}.
First, assume that uv is in D(N ′′, T ′′) but not in D(N∗, T ∗). Since D(N ′′, T ′′) is a subgraph of
D(N ′, T ′), we know that uv is also inD(N ′, T ′). If uv ∈ A(T ), then all vertices of φ′(uv) = φ(uv)
are still in D(N ′, T ′) as φ′ is an embedding function on D(N ′, T ′). If uv ∈ A(N) and Quv =
{u, v, u′, v′} and any of u′ and v′ is not in D(N ′, T ′), then the arc u′v′ ∈ A(T ) was deleted in the
construction of D(N ′, T ′) and, by Observation 2, so was uv, contradicting uv being in D(N ′, T ′).
Thus, all vertices of Quv are in D(N ′, T ′) and, by (1), ι′g′′(Quv) = ιg(Quv) = {y} for some y ∈ Y .
Then uv is deleted in the construction of D(N ′′, T ′′).
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Second, assume that uv is in D(N∗, T ∗) but not in D(N ′′, T ′′). If uv is in D(N ′, T ′) then uv is
redundant with respect to (D(N ′, T ′), φ′, ι′), that is, Quv ⊆ V (D(N ′, T ′)) and, by Observation 1,
there is some y ∈ Y with {y} = ι′g′′(Quv) = ιg(Quv) (using (1)). But then, uv is also deleted in
the construction of D(N∗, T ∗). If uv is not in D(N ′, T ′), then ιg′(Quv) = {y} for some y ∈ Y ,
implying ιg(Quv) = g(ι(Quv)) = g′′(g′(ι(Quv)) = g′′(ιg′(Quv)) = g′′({y}) = {g′′(y)}. As
y ∈ Y implies g′′(y) ∈ Y , we know that uv is deleted in the construction of D(N∗, T ∗).

Vertices: Since each arc of D(N,T ) is in D(N∗, T ∗) if and only if it is in D(N ′′, T ′′), all vertices with
at least one incident arc in D(N∗, T ∗) are in D(N ′′, T ′′) and vice versa. It remains to consider
the isolated vertices. To this end, let v ∈ V (D(N,T )) with no incident arcs in D(N∗, T ∗) and let
Qv := {v, φ(v)} if v ∈ V (T ) and let Qv be the set containing v and any u such that v = φ(u)
if v ∈ V (N). By definition of redundant vertices, either both vertices of Qv are deleted in the
construction of D(N∗, T ∗) or neither is. As D(N∗, T ∗) and D(N ′′, T ′′) have the same arcs, we
may assume neither element of Qv has any incident arcs. Then, v is deleted in the construction
of D(N∗, T ∗) if and only if ιg(Qv) = {y} for some y ∈ Y . Now, if Qv intersects V (D(N ′, T ′),
then Qv ⊆ V (D(N ′, T ′)). Then, by (1), ι′g′′(Qv) = ιg(Qv) implying that v is in D(N ′′, T ′′) if and
only if it is in D(N∗, T ∗). Otherwise, Qv ∩ V (D(N ′, T ′)) = ∅ (in particular, v /∈ V (D(N ′, T ′))),
implying ιg′(Qv) = {y} for some y ∈ Y . As in the Arc-case, ιg(Qv) = {g′′(y)} = {y′} for some
y′ ∈ Y . Thus, v is neither in D(N∗, T ∗) nor in D(N ′′, T ′′).

Since φ∗ is the restriction of φ to T ∗ and φ′′ is the restriction of φ to T ′′ (via φ′), we also have φ∗ = φ′′. By
(1), ι′g′′(u) = ιg(u) for any vertex u in D(N ′, T ′) and, thus, ι′′(u) = ι∗(u) for any vertex u in D(N ′′, T ′′)
(as ι′′ and ι∗ are just restrictions of ι′g′′ and ιg respectively). Therefore, ι∗ = ι′′ and we have proved that
χ∗ = χ′′, as required.

3.4 Well-behaved containment structures
At this point, we note some additional properties that it will be helpful to assume for (S,Y)-containment
structures. These properties are summarized in the concept of “well-behavedness” and, in what follows, we
will restrict our attention to such containment structures. While not directly implied by the definition of a
containment structure, the properties effectively ensure that containment structures behave “as expected”.
In particular, our dynamic programming algorithm will work with well-behaved signatures.

Definition 8. An (S,Y)-containment structure (D(N,T ), φ, ι) is called well-behaved if
(a) D(N,T ) contains no redundant arcs or vertices;
(b) For all arcs uv in D(N,T ) with ι(u), ι(v) ∈ Y , we have ι(u) = ι(v);
(c) For all u, v ∈ V (D(N,T )) such that ι(u), ι(v) ∈ S and D(N,T ) has a u-v-path, DIN(NIN, TIN) has

an ι(u)-ι(v)-path.

Here we prove a number of properties of well-behaved containment structures, that allow us to focus on
them going forward.

Lemma 5. Let χ := (D(N,T ), φ, ι) be a (V (DIN(NIN, TIN)),Y)-containment structure with ι−1(Y) = ∅.
Then, χ is well-behaved.

Proof: Since ι−1(Y) = ∅ and S = V (DIN(NIN, TIN)), we know that ι is an isomorphism between
D(N,T ) and V (DIN(NIN, TIN)), implying Definition 8(c), while (a) and (b) are direct consequences of
ι−1(Y) = ∅.
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Lemma 6. Let χ = (D(N,T ), φ, ι) be a well-behaved (S,Y)-containment structure and let g be a
restriction function such that, for all arcs uv of D(N,T ) with g(ι(u)), g(ι(v)) ∈ Y , we have g(ι(u)) =
g(ι(v)). Then, the g-restriction σ of χ is also well-behaved.

Essentially, this condition says that relabelling according to g does not immediately create any arcs uv
for which u and v are labelled with different elements of Y .

Proof: We will show that σ = (D(N ′, T ′), φ′, ι′ = ι ◦ g) satisfies Definition 8(a)-(c).
(a) follows by Definition 7, as redundant arcs and vertices are deleted when constructing σ.
(b): Let uv be an arc of D(N ′, T ′) with ι′(u), ι′(v) ∈ Y . Then, by the condition of the lemma, ι′(u) =

ι′(v).
(c): Let u, v ∈ V (D(N ′, T ′)) such that ι′(u), ι′(v) /∈ Y (that is, ι′(u), ι′(v) ∈ S′ for S′ := img(g) \ Y)

and there is a u-v-path p in D(N ′, T ′). Then, by Definition 7, ι(u) = g(ι(u)) = ι′(u) and, similarly,
ι(v) = ι′(v). Moreover, as D(N ′, T ′) is a subgraph of D(N,T ), the latter also contains p. Finally,
since χ is well-behaved, there is a path in DIN(NIN, TIN) from ι(u) = ι′(u) to ι(v) = ι′(v).

3.5 Partial solution and valid signatures
As with any dynamic programming algorithm, we need some way to decide which signatures are “correct”
before we have actually found a solution. As such, we need a notion of a “partial solution”. Much as we may
think of a signature for a bag (P, S, F ) as corresponding to the (P → PAST, F → FUTURE)-restriction
of some solution, we may think of a partial solution as the (F → FUTURE)-restriction of some solution.
That is, a partial solution is a (P ∪ S, {FUTURE})-containment structure that roughly corresponds to what
would happen if we took a solution and “forgot” some of the details about the vertices in F . A partial
solution is then a “witness” for a given signature for (P, S, F ) if that signature can in turn be derived from
the partial solution by “forgetting” details about the vertices in P . In this case we call the signature “valid”.
This is defined precisely below.

Definition 9 (partial solution, signature, valid). Let (P, S, F ) be a bag in the tree decomposition of
DIN(NIN, TIN). Then any (P ∪ S, {FUTURE})-containment structure is called F -partial solution (or
simply partial solution) for (P, S, F ). A well-behaved signature σ for (P, S, F ) is called valid if σ is the
(P → PAST)-restriction of a well-behaved partial solution ψ for (P, S, F ). We call ψ a witness for σ.

Lemma 7. Let (NIN, TIN) be a YES-instance of TREE CONTAINMENT and let (P, S, F ) be a bag in the
tree decomposition of DIN(NIN, TIN). Then, there is a well-behaved F -partial solution ψ, and a valid
signature σ for (P, S, F ).

Proof: By Lemma 5, there is a well-behaved (V (DIN(NIN, TIN)),Y)-containment structure ψ∗ with
ι−1(Y) = ∅. Clearly, ψ∗ is also a (V (DIN(NIN, TIN)),∅)-containment structure. Now, let ψ be the (F →
FUTURE)-restriction of ψ∗ and note that ψ is an F -partial solution. Clearly, x, y ∈ {FUTURE} ⇒ x = y
and, so, Lemma 6 applies, showing that ψ is well-behaved. Finally, let σ be the (P → PAST)-restriction of
ψ which is valid since ψ is well-behaved.

Lemma 8. (NIN, TIN) is a YES-instance of TREE CONTAINMENT if and only if there is a valid signature
σ := (D(N,T ), φ, ι) for (V (DIN(NIN, TIN)),∅,∅) with ι−1(FUTURE) = ∅.

Proof: By Lemma 2 and Lemma 5, (NIN, TIN) is a YES-instance if and only if there is a well-behaved
V (DIN(NIN, TIN)),Y)-containment structure ψ = (D(N,T ), φ, ι) with ι−1({Y}) = ∅, or equivalently a
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well-behaved ∅-partial solution ψ = (D(N,T ), φ, ι) with ι−1({FUTURE}) = ∅. First, suppose such a
partial solution exists and let σ := ((D(N ′, T ′), φ′, ι′) be the (V (DIN(NIN, TIN))→ PAST)-restriction of
ψ. Then, σ is a valid signature for (V (DIN(NIN, TIN)),∅,∅) and, by construction, ι′−1(FUTURE) = ∅.
(In fact D(N ′, T ′) is the empty graph since all arcs and vertices of D(N,T ) become PAST-redundant; but
we do not use that fact here).

For the converse, consider a valid signature σ := (D(N,T ), φ, ι) for (V (DIN(NIN, TIN)),∅,∅) with
ι−1(FUTURE) = ∅. By Definition 9, σ is the (V (DIN(NIN, TIN))→ PAST)-restriction of a well-behaved
∅-partial solution ψ := ((D(N ′, T ′), φ′, ι′). It remains to show that ι′−1(FUTURE) = ∅. Towards a con-
tradiction, assume that D(N ′, T ′) has a vertex u with ι′(u) = FUTURE. Since u /∈ ι−1(FUTURE) = ∅, u
is FUTURE-redundant after applying V (DIN(NIN, TIN))→ PAST. However, applying V (DIN(NIN, TIN))→
PAST cannot make a vertex FUTURE-redundant that was not previously FUTURE-redundant (as no new
vertex gains the label FUTURE). Thus, u is FUTURE-redundant in ψ, contradicting Definition 8(a).

Lemma 6, Lemma 7 and Lemma 8 show that an instance (NIN, TIN) of TREE CONTAINMENT is a YES-
instance if and only if there is a well-behaved valid signature σ := (D(N,T ), φ, ι) for the root bag
(V (DIN(NIN, TIN)),∅,∅) with ι−1(FUTURE) = ∅. Thus in order to solve an instance of TREE CONTAIN-
MENT, it is enough to decide for each bag (P, S, F ) in the tree decomposition of DIN(NIN, TIN), and for
each well-behaved signature σ for (P, S, F ), whether σ is valid.

3.6 Determining valid signatures
With the formal definitions of valid signatures and restrictions in place, we can now show how to determine
whether a well-behaved signature for a bag (P, S, F ) is valid, assuming we know this for all signatures on
the child bag(s). As is common in dynamic programming techniques, we take advantage of the structure
of a nice tree decomposition. The following lemmas describe the exact conditions for Leaf, Forget and
Introduce bags while the additional terminology required for Join bags is deferred to Section 3.7.

Lemma 9. Let (P, S, F ) correspond to a Leaf bag in the tree decomposition i.e. P = S = ∅, F =
V (DIN(NIN, TIN)) and (P, S, F ) has no children. Let σ := (D(N,T ), φ, ι) be a well-behaved signature
for (P, S, F ). Then, σ is valid if and only if ι−1(PAST) = ∅.

Proof: Suppose first that σ is valid. By Definition 9, σ is the (P → PAST)-restriction of a well-behaved
F -partial solution (that is, (P ∪ S, {FUTURE})-containment structure) ψ := D(N ′, T ′), φ′, ι′). Then
ι′(u) 6= PAST for every vertex u in D(N ′, T ′) and, as P = ∅, this remains true after applying P → PAST.
It follows that ι(u) 6= PAST for every vertex u ∈ D(N,T ), as required.

Conversely, suppose ι−1(PAST) = ∅. Since P = ∅, the (S, {PAST, FUTURE})-containment structure
σ is also a (P ∪ S, {FUTURE})-containment structure, that is, σ is an F -partial solution. To show that σ
is valid, we prove that σ is the (P → PAST)-restriction of itself, that is, σ is a witness for σ. To this end,
observe that applying P → PAST does not change the isolabelling and, by Definition 8, σ contains no
redundant arcs or vertices. Thus, applying P → PAST and removing redundant arcs and vertices does not
change σ.

Lemma 10. Let (P, S, F ) correspond to a Forget bag in the tree decomposition with child bag (P ′, S′, F ),
i.e. P = P ′ ∪ {z} and S = S′ \ {z} for some z ∈ S′. Let σ be a well-behaved signature for (P, S, F ).
Then, σ is valid if and only if σ is the (z → PAST)-restriction of a valid signature σ′ for (P ′, S′, F ).
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Figure 5: Illustration of proof for Introduce bags, validity of σ implies validity of σ′. Solid lines are restriction
relations that we may assume; the dashed line shows the construction of ψ′ from ψ; dotted lines are relations we can
infer using transitivity.

Proof: Suppose first that σ is the (z → PAST)-restriction of some valid signature σ′ for (P ′, S′, F ). By
Definition 9, σ′ has a witness ψ′ (that is, ψ′ is a well-behaved F -partial solution for (P ′, S′, F ) whose
P ′ → PAST-restriction is σ′). By Lemma 4, σ is the (P → PAST)-restriction of ψ′, and so σ is valid.

For the converse, suppose that σ is valid and let ψ be a witness of σ (that is, ψ is a well-behaved F -partial
solution for (P, S, F ) and σ is the (P → PAST)-restriction of ψ). Then, the (P ′ → PAST)-restriction
σ′ of ψ is a valid signature for (P ′, S′, F ) and, by Lemma 4, the (z → PAST)-restriction of σ′ is the
(P → PAST)-restriction of ψ, that is, σ.

Lemma 11. Let (P, S, F ) correspond to an Introduce bag in the tree decomposition with child bag (P, S′, F ′),
i.e. S′ = S \ {z} and F ′ = F ∪ {z} for some z ∈ S. Let σ be a well-behaved signature for (P, S, F ).
Then, σ is valid if and only if the (z → FUTURE)-restriction σ′ of σ is a valid signature for (P, S′, F ′).

Proof: Suppose first that σ is a valid signature and let ψ be a witness for σ (that is, ψ is a well-behaved
F -partial solution for which σ is the (P → PAST)-restriction). Let ψ′ be the (z → FUTURE)-restriction
of ψ which, by Lemma 6, is a well-behaved F ′-partial solution. Let σ∗ denote the (P → PAST)-
restriction of ψ′ and note that σ∗ is a valid signature for (P, S′, F ′). By Lemma 4, σ∗ is also the
(P → PAST, {z} → FUTURE)-restriction of ψ and the (z → FUTURE)-restriction σ′ of σ is also the
(P → PAST, {z} → FUTURE)-restriction of ψ. Thus, σ′ = σ∗ and so σ′ is valid, as required (see Fig. 5).

For the converse, let σ =: (D(N,T ), φ, ι) and let σ′ =: (D(N ′, T ′), φ′, ι′) be a valid signature for
(P, S′, F ′). By Definition 9, σ′ is the (P → PAST)-restriction of some well-behaved F ′-partial solution
ψ′ := (D(N ′0, T

′
0), φ

′
0, ι
′
0). In the following, σ, σ′ and ψ′ will guide us in constructing an F -partial

solution ψ of which ψ′ is the (z → FUTURE)-restriction and, more importantly, of which σ is the
(P → PAST)-restriction. Then, this implies that σ is valid.

To begin the construction, let Vz and Az denote the the set of vertices and arcs, respectively, that are
in D(N,T ) but not in D(N ′, T ′) (that is, the vertices and arcs that are deleted when deriving σ′ from σ).
Letting g be the function z → FUTURE, we may assume that g(ι(v)) = FUTURE for all vertices v in Vz
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Figure 6: Illustration of proof for Introduce bags, validity of σ′ implies validity of σ. Solid lines are restriction
relations that we may assume; the dashed lines show the construction of ψ from ψ′ or σ (we do not describe the
construction of φ0 or ι0 in the figure, only the construction of D(N0, T0) by adding arcs and vertices); the dotted line
shows the relation we want to prove, that σ is the {P → PAST}-restriction of ψ.

or V (Az) and g(ι(V (φ(uv)))) = {FUTURE} for any tree arc uv in Az as well. Similarly, let Vp and Ap
be the vertices and arcs, respectively, that are deleted from D(N ′0, T

′
0) in the construction of D(N ′, T ′).

Letting h be the function P → PAST, we may assume that h(ι(v)) = PAST for all vertices v in Vp or
V (Ap), and h(ι(V (φ(uv)))) = {PAST} for any tree arc uv in Ap as well.

We now construct the F -partial solution ψ := (D(N0, T0), φ0, ι0) as follows. First, let D(N0, T0) be
the graph derived from D(N ′0, T

′
0) by adding all vertices and arcs of Vz and Az . Equivalently, we may

say we construct D(N0, T0) by adding the arcs and vertices of Vp and Ap to D(N,T ), or by adding
the arcs and vertices of Vz, Vp, Az, Ap to D(N ′, T ′). Let φ0 be defined as the ’union’ of φ and φ′0 -
that is, φ0(uv) = φ(uv) if uv is an arc in T , and φ0(uv) = φ′0(uv) if uv is an arc in T ′0 (if uv is
an arc of both T and T ′0, then these are the same, as uv is in T ′ and φ(uv) = φ′(uv) = φ′0(uv)).
Similarly φ0(u) = φ(u) if u is a vertex in T , and φ0(u) = φ′0(u) if u is a vertex in T ′0. Finally
let ι0 : V (D(N0, T0)) → P ∪ S ∪ {FUTURE} be defined as follows: ι0(v) = ι(v) if v ∈ Vz or
ι′(v) = FUTURE, ι0(v) = ι′0(v) if v ∈ Vp or ι′(v) = PAST, and ι0(v) = ι′0(v) = ι′(v) = ι(v) otherwise.
(Note that ι0(v) = FUTURE is possible for some vertices, if ι(v) = FUTURE, but ι0(v) = PAST is not
possible as ι′0(v) 6= PAST for any v.)

We note here that for any vertex v in D(N0, T0) with ι0(v) ∈ S ∪ {FUTURE}, v is a vertex of D(N,T )
and ι0(v) = ι(v). Indeed, v cannot be in Vp, nor can it hold that ι′(v) = PAST if v is in D(N ′, T ′), as
both cases would imply ι0(v) = ι′0(v) ∈ P . By construction, in all other cases ι0(v) = ι(v). Furthermore,
for any arc a incident to v in D(N0, T0), a is an arc in D(N,T ) (since a ∈ Ap would imply ι′0(v) ∈ P
and hence either v ∈ Vp or ι′(v) = PAST), and thus φ0(a) = φ(a). A similar argument shows that for any
vertex v in D(N0, T0) with ι(u) ∈ P , v is a vertex of D(N ′0, T

′
0), ι0(v) = ι′0(v), and φ0(a) = φ′0(a) for

any arc a in D(N0, T0) incident to v.
We will now show that ψ is indeed a well-behaved F -partial solution; afterwards we will show that σ is

the {P → PAST}-restriction of ψ, from which it follows that σ is valid. (A similar argument can be used
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to show that ψ′ is the {{z} → FUTURE}-restriction of ψ, but we will not need this fact so we do not prove
it here.)

Claim 1. ψ is a well-behaved F -partial solution.

Proof: We first show that ψ satisfies one of the properties of a well-behaved (P ∪ S, {FUTURE})-
containment structure

• for any u, v ∈ V (D(N0, T0)) with ι0(u), ι0(v) ∈ P ∪ S, if D(N0, T0) has a path from u to v
then there is a path from ι0(u) to ι0(v) in DIN(NIN, TIN): Suppose for a contradiction that this is
not the case, and let u, v ∈ V (D(N0, T0)) be such that ι0(u), ι0(v) ∈ P ∪ S and there is a path
from u to v in D(N0, T0)), but no path from ι0(u) to ι0(v) in DIN(NIN, TIN), choosing uv such that
the length of the u− v path is minimal. If uv is an arc in D(N0, T0), then uv is an arc in D(N,T )
or D(N ′0, T

′
0), and the existence of a path from ι(u) to ι(v) in DIN(NIN, TIN) follows from the fact

that σ or σ′0 is well-behaved. Otherwise, by choice of u, v we may assume all internal vertices u′ on
the path from u to v satisfy ι0(u′) = FUTURE. Then every arc on this path is an arc in D(N,T ) and
so again, we have a path from ι0(u) = ι(u) to ι0(v) = ι(v) in DIN(NIN, TIN) by the fact that σ is
well-behaved.

• D(N0, T0) is a display graph:

– D(N0, T0) is acyclic: Suppose for a contradiction that D(N0, T0) contains a directed cycle.
If ι0(u) ∈ P ∪ S for some vertex u in this cycle, then as shown above the existence of a path
from u to u in D(N0, T0) implies the existence of a path from ι0(u) to ι0(u) in DIN(NIN, TIN),
contradicting the fact that DIN(NIN, TIN) is acyclic.
It remains to consider the case that every vertex z in this cycle has ι0(z) = FUTURE. But in
this case every arc of the cycle is also an arc in D(N,T ), and so D(N,T ) contains a cycle, a
contradiction as D(N,T ) is a display graph.

– T0 is an out-forest: We first observe that for every vertex u inD(N0, T0), either all its incident
arcs in D(N0, T0) are also arcs of D(N,T ), or they are all arcs of D(N ′0, T

′
0). Indeed, suppose

for a contradiction that this is not the case, then there exist arcs a ∈ Ap, a′ ∈ Az that share a
vertex u. But by construction, a ∈ Ap implies that u ∈ Vp or ι′(u) = PAST and so ι0(u) ∈ P ,
while a′ ∈ Az implies ι0(u) ∈ S ∪ {FUTURE}, a contradiction.
Now it remains to observe that every vertex in T0 has in-degree at most 1, as either all its
incident arcs are in T or they are all in T ′0. This, together with the fact that D(N0, T0) is
acyclic, implies that T0 is an out-forest.

– Every vertex inD(N0, T0) has in- and out-degree at most 2 and total degree at most 3: As
argued above, every vertex in D(N0, T0) has all its incident arcs in D(N,T ) or in D(N ′0, T

′
0),

and so this property follows from the fact that it holds for D(N,T ) and D(N ′0, T
′
0)

– Any vertex in V (N0)∩ V (T0) has out-degree 0 and in-degree at most 1 in each of T0 and
N0: Again, this follows from the fact that all incident arcs of a vertex in D(N0, T0) belong to
one of D(N,T ), D(N ′0, T

′
0).

• φ0 is an embedding function on D(N0, T0):
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– For each u ∈ V (T0), φ0(u) ∈ V (N0) and, for each arc uv ∈ A(T0), φ0(uv) is a directed
φ0(u)-φ0(v)-path in N0: This follows immediately from the construction of φ0 and the fact
that φ and φ′0 are embedding functions.

– for any distinct u, v ∈ V (T0), φ0(u) 6= φ0(v): Note that if a tree vertex u is in Vp then,
by definition of PAST-redundant, so is φ′0(u). Similarly if u ∈ Vz then φ(u) ∈ Vz . So
now for two vertices u, v ∈ V (T0), if u ∈ Vp and v ∈ Vz then φ0(u) = φ′0(u) ∈ Vp and
φ0(v) = φ(v) ∈ Vz , and so φ0(u) 6= φ0(v). Otherwise, u, v are either both in D(N,T ) or
both in D(N ′0, T

′
0), and φ0(u) 6= φ0(v) follows from the fact that φ and φ′0 are embedding

functions.

– for any u ∈ V (T0) ∩ V (N0), φ0(u) = u: Follows immediately from the construction of φ0.

– the paths {φ0(uv) | uv ∈ A(T0)} are arc-disjoint: Observe that by construction that if a
tree arc uv is in Ap, then so is every arc in φ0(uv) = φ′0(uv). Similarly if uv is in Az then
so is every arc in φ0(uv) = φ(uv). So consider two distinct tree arcs uv, u′v′ ∈ A(T0). If
uv ∈ Ap, u′v′ ∈ Az then the arcs of the paths φ0(uv), φ0(u′v′) are in Ap, Az respectively, so
φ0(uv), φ0(u

′v′) are arc-disjoint. Otherwise, we may assume both uv and u′v′ are arcs in one
of D(N,T ), D(N ′0, T

′
0), from which the claim follows by the fact that φ and φ′0 are embedding

functions.

– for any distinct p, q ∈ A(T0), φ0(p) and φ0(q) share a vertex z′ only if p and q share a
vertex w with z′ = φ0(w): Suppose φ0(p) and φ0(q) share a vertex z′. As argued previously,
all incident arcs to z′ must be in one ofD(N,T ), D(N ′0, T

′
0). Thus in particular, z′ cannot have

incident arcs from both Ap and Az . Then since φ0(p) and φ0(q) both contain arcs incident to
z′, we must have that p, q /∈ Ap or p, q /∈ Az . Then either φ0(p) = φ(p) and φ0(q) = φ(q), or
φ0(p) = φ′0(p) and φ′0(q). Then the claim follows from the fact that φ and φ′0 are embedding
functions.

• ι0 is a (P ∪ S, {FUTURE})-isolabelling:

– For u ∈ V (D(N0, T0)) with ι0(u) 6= FUTURE, ι0(u) ∈ V (NIN) only if u ∈ V (N0) and
ι0(u) ∈ V (TIN) only if u ∈ V (T0) : Follows immediately from the construction of ι0.

– For u, v ∈ V (D(N0, T0)) with ι0(u), ι0(v) 6= FUTURE, ι0(u) = ι0(v) only if u = v:
Suppose u 6= v and ι0(u), ι0(v) 6= FUTURE; we will show ι0(u) 6= ι0(v). If u ∈ Vp and
v ∈ Vz , then by construction ι0(u) = ι(u) ∈ {z, FUTURE} (and so in fact ι0(u) = z) and
ι0(v) = ι′0(v) ∈ P . Thus ι0(u) 6= ι0(v). Otherwise, we may assume u and v are both vertices
in D(N,T ) or in D(N ′0, T

′
0). Then ι0(u) 6= ι0(v) follows from the fact that ι and ι′0 are

isolabelings.

– For u, v ∈ V (D(N0, T0)) with ι0(u), ι0(v) 6= FUTURE, the arc uv is in D(N0, T0) if and
only if ι0(u)ι0(v) is in DIN(NIN, TIN) : Follows immediately from the construction of ι0 and
the fact that ι, ι′0 are isolabelings.

– ι0 is surjective onto P ∪ S: Consider any w ∈ P ∪ S. If w ∈ P , there is u ∈ V (D(N ′0, T
′
0))

with ι′0(u) = w. For such u we have either u ∈ Vp or ι′(u) = PAST. In either case we have
ι0(u) = ι′0(u) = w. Similarly if w ∈ S, there is u ∈ V (D(N,T )) with ι(u) = w and either
ι′(u) = ι(u) (if w ∈ S′) or u ∈ Vz or ι′(u) = FUTURE (if w = z), and so ι0(u) = ι(u) = w.
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• Each vertex u with ι0(u) ∈ P ∪ S has the same in- and out-degree in D(N0, T0) as ι0(u) in
DIN(NIN, TIN): As previously shown, all incident arcs of u in D(N0, T0) belong to at least one
of D(N,T ), D(N ′0, T

′
0). Moreover if ι0(u) = ι(u) then all incident arcs are in D(N,T ) and if

ι0(u) = ι′0(u) then all incident arcs are in D(N ′0, T
′
0). Then this property follows from the fact that

σ and σ′0 are containment structures.

• Each vertex u of T0 with ι0(u) 6= ι(φ0(u)) has 2 out-arcs in D(N0, T0) : In the case that
ι0(u) ∈ P ∪ S, this follows from previously-shown properties. We may assume u is an internal
vertex of T0 (as otherwise u ∈ V (T0) ∩ V (N0) and φ0(u) = u). Then ι0(u) is also an internal
vertex of TIN, and u has the same in-and out-degree as ι0(u). Thus in particular u has out-degree 2,
as T0 is binary.

For the case that ι0(u) = FUTURE, by construction ι0(u) = ι(u). Furthermore ι(φ(u)) 6= FUTURE
(as this would imply ι0(φ0(u)) = ι(φ(u) = FUTURE = ι0(u), a contradiction). Then as σ is
a (S, {PAST, FUTURE})-containment structure, u has out-degree 2 in D(N,T ), and therefore in
D(N0, T0).

The above conditions show that ψ is a (P ∪ S, {FUTURE})-containment structure, i.e. an F -partial
solution. Next we show that ψ is well-behaved:

• D(N0, T0) contains no redundant arcs or vertices: Suppose for a contradiction that D(N0, T0)
contains a FUTURE-redundant arc or vertex a. We will show that such an arc or vertex is also
redundant w.r.t σ, a contradiction as σ is well-behaved. Consider the case that a is an arc uv
Then ι0(u) = ι0(v) = FUTURE. It follows by construction that u, v are vertices of D(N,T ) and
ι(u) = ι(v) = FUTURE. In addition we have that ι0(u′) = FUTURE for any vertex u′ on the path
φ0(uv) = φ(uv), and hence φ(u′) = FUTURE for such u′. It follows that uv is FUTURE-redundant
w.r.t σ, the desired contradiction. Essentially the same arguments can also be made for redundant
network arcs and redundant tree or network vertices.

• For any y, y′ ∈ {FUTURE} with y 6= y′, there is no arc uv in D(N0, T0) for which ι0(u) = y
and ι0(v) = y′: This follows immediately from the fact that |{FUTURE}| = 1 so there are no such
y, y′.

• For any u, v, in V (D(N0, T0)) with ιp(v), ι0(v) ∈ P ∪ S, if D(N0, T0) has a path from u to v
then DIN(NIN, TIN) has a path from ι0(u) to ι0(v): This has already been shown, at the start of the
proof for this claim. y

We now have that ψ satisfies all the conditions of a well-behaved F -partial solution. Finally we need to
show that σ is the {P → PAST}-restriction of D(N0, T0).

Claim 2. σ is the {P → PAST}-restriction of D(N0, T0)

Proof: Let σ′′ = (D(N ′′, T ′′), φ′′, ι′′) denote the {P → PAST}-restriction of ψ. We show σ = σ′′ for
their three elements individually.

Equality of D(N ′′, T ′′) and D(N,T ): To show this, it is enough to show that that D(N ′′, T ′′) is
D(N0, T0) with the arcs of Ap and vertices of Vp removed, i.e. these arcs and vertices are exactly the ones
that become redundant when constructing the {P → PAST}-restriction of ψ. Since these were exactly
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the arcs and vertices that were added to D(N,T ) to produce D(N0, T0), this is enough to show that
D(N ′′, T ′′) = D(N,T ).

Let g be the restriction function {P → PAST}. We claim that for the isolabelling ιu ◦ g, the redundant
arcs are exactly those of Ap.

Indeed, consider any arc uv in Ap. Since uv ∈ Ap, it must have been made PAST-redundant in the
construction of σ′ from ψ′. So if uv is a tree arc, then ι′0(z) ∈ P for all z in {u, v} ∪ V (φ′0(uv)) (as
all these vertices are labelled PAST after applying {P → PAST}). Then by construction of ψ, we have
φ0(uv) = φ′0(uv), and also ι0(z) = ι′0(z) for all z in {u, v} ∪ V (φ′0(uv)) (since either z ∈ Vp or
ι′(z) = PAST). Thus ι0(z) ∈ P for all z in {u, v} ∪ V (φ0(uv)), and so uv becomes PAST-redundant after
applying {P → PAST}. For a network arc uv in Ap, a similar argument holds, but we need to be careful
if there is a tree arc u′v′ for which uv is in φ(u′v′) (in particular, we would have a problem if u′v′ is not
an arc in D(N ′, T ′), as u′v′ could conceivably prevent uv from becoming PAST-redundant). For such an
arc u′v′, note that u′v′ must also be in Ap (otherwise u′v′ is an arc in D(N ′, T ′) but φ′(uv) = φ0(uv)
is not a path in D(N ′, T ′), a contradiction). It follows then that ι′0(u

′), ι0(v
′) ∈ P . We also have that

ι′0(u), ι0(v) ∈ P . So by a similar argument to tree arcs, we have that uv is redundant after applying
{P → PAST} in ψ, as required.

Conversely consider any redundant arc uv in D(N0, T0) after applying {P → PAST}. As ψ is well-
behaved, we may assume any such arc is PAST-redundant. Then ι0(u), ι0(v) ∈ P . This implies among
other things that uv is not in Az (as that would require ι0(u), ι0(v) ∈ F ∪ {FUTURE}) so uv is also
an arc in D(N ′0, T

′
0). Similarly if uv is a tree arc then all arcs in φ0(uv) as also in D(N ′0, T

′
0), and if

uv is a network arc that is part of a path φ0(u′v′), then u′v′ is also an arc in D(N0, T
′
0). Furthermore

ι′0(z) = ι0(z) for any vertex in one of these arcs (as ι′(z) 6= FUTURE and ι′(z) /∈ Vz). It is then easy to
see that, just as uv is redundant in ψ after applying {P → PAST}, uv is also redundant in ψ′ after applying
{P → PAST}, and so uv is in Ap.

We have now shown thatAp is exactly the set of arcs in ψ that are redundant after applying {P → PAST}.
We now consider the vertices. First consider a vertex v ∈ Vp. Then as Vp is inD(N ′0, T

′
0) but notD(N ′, T ′),

all incident arcs of v are in Ap. Thus v becomes isolated after removing redundant arcs from D(N,T ).
As v ∈ Vp, by construction ι0(v) = ι′0(v) ∈ P . Similarly this holds for any v′ such that φ′0(v

′) = v or
φ′0(v) = v′. As such, v is PAST-redundant after applying {P → PAST}, as required.

Conversely, suppose v is PAST-redundant w.r.t. (D(N0, T0), φ0, ι0 ◦ {P → PAST}). Then v is isolated
after removing Ap, and ι0(v), ι0(v′) ∈ P , for v′ any vertex such that φ0(v) = v′ or φ0(v′) = v. These
vertices are also in D(N ′0, T

′
0) (they cannot be in Vz as that would require them being labelled with

something in {z, FUTURE}). Then by construction ι′0(v) = ι0(v), ι
′
0(v
′) = ι0(v

′) are in P as well, and as
such v is PAST-redundant w.r.t (D(N ′0, T

′
0), φ

′
0, ι
′
0 ◦ g), and so v ∈ Vp, as required.

Equality of φ′′ and φ: Here we use the fact that D(N ′′, T ′′) = D(N,T ). Consider any arc uv in
T ′′ = T . Then by construction, φ′′(uv) = φ0(uv), and furthermore φ0(uv) = φ(uv) as uv is an arc in T .
Thus φ′′(uv) = φ(uv) for all arcs uv in T ′′ = T , and so φ′ = φ.

Equality of ι′′ and ι: Consider any vertex u in D(N ′′, T ′′) = D(N,T ), and suppose first that ι0(u) =
ι(u). Then ι0(u) /∈ P (as ι(u) ∈ S ∪ {PAST, FUTURE}), from which it follows that ι′′(u) = ι0(u) = ι(u).
If on the other hand ι0(u) 6= ι(u), by construction of ι0 this can only happen if ι′(u) = PAST (we do
not need to consider the case u ∈ Vp as we know u is a vertex of D(N,T )). In this case ι0(u) = ι′0(u),
which must be in P (as otherwise ι′(u) = ι′0(u) 6= PAST.) Then by construction ι′′(u) = PAST, and also
ι(u) = ι′(u) = PAST. Thus ι′′(u) = ι(u) for all vertices u in D(N,T ). y
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As we have now shown that ψ is a well-behaved F -partial solution and σ is the {P → PAST}-restriction
of σ, we have that σ is valid, as required.

3.7 Validity for Join bags
In order to characterize validity for Join bags, we need to introduce a third type of (S,Y)-containment
structure. In our notation we may think of a Join bag as being expressed by the tuple (P, S, F ) where P
can be decomposed into L ∪R, such that the “left” child bag is (L, S, F ∪R) and the “right” child bag is
(R,S, F ∪L). We want to characterize the validity of a signature σ for a Join bag in terms of the validity of
signatures for each of the child bags. The main idea is to find two signatures σL and σR (for different child
bags) which are ‘compatible’, in the sense that the two witnesses for these signatures can be combined, and
such that the resulting partial solution is a witness for σ. In order to facilitate this characterization, it will
be useful to define a “3-way” analogue of a signature, called a reconciliation, in which we use the labels
{LEFT, RIGHT, FUTURE} instead of {PAST, FUTURE}. This is defined below.

Definition 10 (reconciliation). Let (L ∪R,S, F ) be a Join bag in the tree decomposition of DIN(NIN, TIN)
with child bags (L, S, F ∪ R) and (R,S, F ∪ L). Then, we call an (S, {LEFT, RIGHT, FUTURE})-
containment structure a reconciliation for (L ∪ R,S, F ). Such a reconciliation µ for (L ∪ R,S, F )
is called valid if it is the (L→ LEFT, R→ RIGHT)-restriction of a well-behaved F -partial solution (i.e. a
(L ∪R ∪ S, {FUTURE})-containment structure).

Lemma 12. Let (L ∪R,S, F ) be a Join bag with child bags (L, S, F ∪R) and (R,S, F ∪ L), and let σ
be a signature for (L∪R,S, F ). Then, σ is valid if and only if there is a reconciliation µ for (L∪R,S, F )
and valid signatures σL and σR for (L, S, F ∪R) and (R,S, F ∪ L), respectively, such that
(a) σ is the ({LEFT, RIGHT} → PAST)-restriction of µ,
(b) σL is the (LEFT → PAST, RIGHT → FUTURE)-restriction of µ, and
(c) σR is the (RIGHT → PAST, LEFT → FUTURE)-restriction of µ.

To prove this lemma, we first show the following.

Lemma 13. Any valid reconciliation is well-behaved.

Proof: Let µ be a valid reconciliation for (L ∪R,S, F ), and let ψ = (D(N,T ), φ, ι) be a well-behaved
F -partial solution for which µ is the g-restriction, where g is the function {L → LEFT, R → RIGHT}.
We first show that there is no arc uv in D(N,T ) with g(ι(u)) = y, g(ι(v)) = y′ for any y, y′ ∈
{LEFT, RIGHT, FUTURE} with y 6= y′. Recall that by properties of a tree decomposition, there are
no arcs between F and L ∪ R in DIN(NIN, TIN), nor between L and R. So now consider a vertex
u ∈ V (D(N,T )); we will show that if g(ι(u)) ∈ {LEFT, RIGHT} then u has no neighbour v with g(ι(v)) ∈
{LEFT, RIGHT, FUTURE} \ {g(ι(u))}, which is enough to show the claim. If ι(u) ∈ L, then all neighbours
of ι(u) in DIN(NIN, TIN) are in L ∪ S. Furthermore as ψ is a well-behaved (L ∪ R ∪ S, {FUTURE})-
containment structure, the degree of u in D(N,T ) is equal to the degree of ι(u) in DIN(NIN, TIN), and
for each neighbour v′ of ι(u) in DIN(NIN, TIN), there is a neighbour v of u in D(N,T ) with ι(v) = v′.
It follows that ι(v) ∈ L ∪ S and thus g(ι(v)) ∈ S ∪ {LEFT} for any neighbour of u in D(N,T ),
while g(ι(u)) = LEFT. A similar argument shows that if ι(u) ∈ R, then g(ι(v)) ∈ S ∪ {RIGHT}
for any neighbour of u in D(N,T ) and g(ι(u)) = RIGHT. Finally if ι(u) ∈ S ∪ {FUTURE}, then
g(ι(u)) = ι(u) /∈ {LEFT, RIGHT}, and we are done.
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As no vertex labelled LEFT or RIGHT by ι◦g has a neighbour with a different label from {LEFT, RIGHT, FUTURE},
there are in fact no arcs uv inD(N,T ) with g(ι(u)) = y, g(ι(v)) = y′ for any y, y′ ∈ {LEFT, RIGHT, FUTURE}
with y 6= y′. We can therefore apply Lemma 6 to see that σ is well-behaved.

We next motivate the definition of a reconciliation by showing that the validity of a signature for
(L ∪R,S, F ) can be characterized by the validity of reconciliations for (L ∪R,S, F ).
Lemma 14. Let (L ∪ R,S, F ) be a Join bag with child bags (L, S, F ∪ R) and (R,S, F ∪ L), and let
σ be a signature for (L ∪ R,S, F ). Then σ is valid if and only if there is a valid reconciliation µ for
(L ∪R,S, F ) such that σ is the {{LEFT, RIGHT} → PAST}-restriction of µ.

Proof: Suppose first that σ is valid. Then there is a well-behaved (L ∪R ∪ S, {FUTURE})-containment
structure ψ (an F -partial solution) such that σ is the {L ∪ R → PAST}-restriction of ψ. Now let µ be
the {L → LEFT, R → RIGHT}-restriction of ψ. By Lemma 3, µ is an (S, {LEFT, RIGHT, FUTURE})-
containment structure, and by construction µ is valid. Now let σ′ be the {{LEFT, RIGHT} → PAST}-
restriction of µ. Then transitivity implies that σ′ is also the {L ∪ R → PAST}-restriction of ψ, that is
σ′ = σ. Thus σ is the {{LEFT, RIGHT} → PAST}-restriction of µ, as required.

Conversely, suppose there is a reconciliation µ for (L ∪R,S, F ) such that σ is the {{LEFT, RIGHT} →
PAST}-restriction of µ. Then as µ is valid, there is a well-behaved F -partial solution ψ such that µ is the
{L → LEFT, R → RIGHT}-restriction of ψ. Then again by transitivity, σ is also the {L ∪ R → PAST}-
restriction of ψ. Thus σ is valid.

Now we show how the validity of a reconciliation µ for (L ∪ R,S, F ) can be characterized by the
validity of signatures for the child bags.

Lemma 15. Let (L ∪R,S, F ) be a Join bag with child bags (L, S, F ∪R) and (R,S, F ∪ L), and let µ
be a well-behaved reconciliation for (L ∪R,S, F ). Let σL be the {LEFT → PAST, RIGHT → FUTURE}-
restriction of µ, and σR the {RIGHT → PAST, LEFT → FUTURE}-restriction of µ. If µ is valid, then σL is
a valid signature for (L, S, F ∪R) and σR is a valid signature for (R,S, F ∪ L).

Proof: Suppose that µ is valid. Then there is a well-behaved F -partial solution ψ such that µ is the
{L→ LEFT, R→ RIGHT}-restriction of µ. By construction and Lemma 3, σL is an (S, {PAST, FUTURE})-
containment structure, and thus a signature for (L, S, F ∪R). By transitivity, σL is the {L→ PAST, R→
FUTURE}-restriction of ψ. We will show that σL is a valid signature for (L, S, F ∪R).

Let ψL be the {R→ FUTURE}-restriction of ψ. By construction, ψL is an F ∪R-partial solution and
by Lemma 6 ψL is well-behaved. Moreover by transitivity, the {L→ PAST}-restriction of ψL is also the
{L→ PAST, R→ FUTURE}-restriction of ψ. That is, the {L→ PAST}-restriction of ψL is σL, and so σL
is valid for (L, S, F ∪R). (See Fig. 7.)

A similar argument shows that σR is a valid signature for (R,S, F ∪R).

Lemma 16. Let (L ∪R,S, F ) be a Join bag with child bags (L, S, F ∪R) and (R,S, F ∪ L), and let µ
be a well-behaved reconciliation for (L ∪R,S, F ). Let σL be the {LEFT → PAST, RIGHT → FUTURE}-
restriction of µ, and σR the {RIGHT → PAST, LEFT → FUTURE}-restriction of µ. If σL is a valid signature
for (L, S, F ∪R) and σR is a valid signature for (R,S, F ∪ L), then µ is valid.

Proof: Let ψL be a well-behaved F ∪R-partial solution for which σL is the (L→ PAST)-restriction, and
similarly let ψR be a well-behaved F ∪ L-partial solution for which σR is the (R → PAST)-restriction.
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 R
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fL � left�

R � rightg
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right � futureg
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fright � p�st�

Figure 7: Illustration of proof for reconciliations on Join bags, validity of µ implies validity of σL and σR. Solid lines
are restriction relations that we may assume; the dashed lines shows the construction of ψL and ψR from ψ; dotted
lines are relations we can infer using (multiple uses of) transitivity.

Our strategy is to combine ψL and ψR into an F -partial solution ψ, and then show that µ is the (L →
LEFT, R→ RIGHT)-restriction of this ψ.

In what follows, for a given containment structure σ, we will write the display graph, embedding
function and isolabelling of σ as D(Nσ, Tσ), φσ and ισ. Thus we have µ = (D(Nµ, Tµ), φµ, ιµ), σL =
(D(NσL

, TσL
), φσL

, ισL
), etc. Recall that by construction, D(NσL

, TσL
) is a subgraph of both D(Nµ, Tµ)

and D(NψL
, TψL

). Similarly, D(NσR
, TσR

) is a subgraph of both D(Nµ, Tµ) and D(NψR
, TψR

).
Now let AL be the set of arcs, and VL the set of vertices, that become redundant and are therefore

deleted from D(NψL
, TψL

) when deriving the {L → PAST}-restriction σL from ψL. That is, AL =
A(D(NψL

, TψL
)) \A(D(NσL

, TσL
)) and VL = V (D(NψL

, TψL
)) \ V (D(NσL

, TσL
)). We note that by

construction, ιψL
(v) ∈ L for any v ∈ VL ∪ V (AL). Similarly, let AR, VR be the sets of arcs and vertices

that are deleted from D(NψR
, TψR

) in the construction of σR from ψR. Let A′R, V
′
R be the set of vertices

that are deleted from D(Nµ, Tµ) in the construction of σL from µ, and let A′L, V
′
L be the set of vertices

that are deleted from D(Nµ, Tµ) in the construction of σR from µ. (See Fig. 8.)
Finally let AS be the arcs of D(Nµ, Tµ) that are not in A′L ∪ A′R, and VS the vertices of D(Nµ, Tµ)

not in V ′L ∪ V ′R. Note that the arcs and vertices of VS , AS appear in all of D(Nµ, Tµ), D(NσL
, TσL

),
D(NσR

, TσR
), D(NψL

, TψL
), D(NψR

, TψR
).

Observe that if v ∈ V ′R ∪ V (A′R) then ιµ(v) ∈ {RIGHT, FUTURE}. Indeed, when deriving σL the
{LEFT → PAST, RIGHT → FUTURE}-restriction of µ, no arcs or vertices will become PAST-redundant,
since they would previously have been LEFT-redundant in µ (here we use the fact that ιµ did not already
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Figure 8: Illustration of proof for reconciliations on Join bags, validity of σL and σR implies validity of µ. Solid lines
are restriction relations that we may assume; the dashed lines show the construction of ψ from ψL or ψR (we do not
describe the construction of φ0 or ι0 in the figure, only the construction of D(N0, T0) by adding arcs and vertices);
the dotted line shows the relation we want to prove, that µ is the {L→ LEFT, R→ RIGHT}-restriction of ψ.

label any vertices PAST, unlike FUTURE.) So the only vertices and arcs that are removed are ones
that become FUTURE-redundant, i.e. previously had their vertices labelled RIGHT or FUTURE. By a
similar argument, if v ∈ V ′L ∪ V (A′L) then ιµ(v) ∈ {LEFT, FUTURE}. Furthermore, we can show that
A′L ∩A′R = ∅ and V ′L ∩ V ′R = ∅. Indeed, recall that for any arc a in D(Nµ, Tµ), there is a set of vertices
Qa such that a is y-redundant w.r.t (D(Nµ, Tµ), φµ, ι

′) if and only if ι(Qa) = {y}, for any isolabelling ι.
Note that we cannot have ιµ(Qa) = {FUTURE}, as this implies that a is redundant w.r.t µ, a contradiction
as µ is well-behaved. So if a is FUTURE-redundant after applying {L → PAST, R → FUTURE} (i.e. if
a ∈ A′R) then there is at least one z ∈ Qa with ιµ(z) ∈ R. But then this implies that a is not FUTURE-
redundant after applying {R→ PAST, L→ FUTURE}, so a is not in A′L. A similar argument shows that
V ′L and V ′R are disjoint.

We now describe the construction of an F -partial solution ψ = (D(N,T ), φ, ι).
Let D(N,T ) be the display graph with vertex set VS ∪V ′L ∪V ′R ∪VL ∪VR and arc set AS ∪A′L ∪A′R ∪

AL ∪AR. (We keep the partition of these sets into network side and tree side the same as before.) That
is, D(N,T ) is D(NψL

, TψL
) with the arcs of AR ∪A′R and vertices of VR ∪ V ′R added; equivalently we

may say D(N,V ) is D(NψR
, TψR

) with the arcs of AL ∪A′L and vertices of VL ∪ V ′L added, or that it is
D(Nµ, Tµ) with the arcs of AL ∪AR and vertices of VL ∪ VR added.

Let the embedding function φ be defined as follows. For a tree vertex u in T , if u ∈ VL then let
φ(u) = φψL

(u), and similarly if u ∈ VR then let φ(u) = φψR
(u). If u ∈ V ′L, let φ(u) = φµ(u) =
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φσL
(u) = φψL

(u) (note that u is a vertex in D(NσL
, TσL

) as v /∈ V ′R, and so these terms are all well-
defined and equal by construction). Similarly if u ∈ V ′R, let φ(u) = φµ(u) = φσR

(u) = φψR
(u). Finally

if u ∈ V ′S , let φ(u) = φµ(u) = φσL
(u) = φσR

(u) = φψL
(u) = φψR

(u).
For a tree arc uv in AL, let φ(uv) = φψL

(uv), and similarly for uv ∈ AR let φ(uv) = φψR
(uv).

For uv ∈ A′L, let φ(uv) = φµ(uv) = φσL
(uv) = φψL

(uv) (note that uv is an arc in D(NσL
, TσL

) as
uv /∈ A′R). Similarly for uv ∈ A′R, let φ(uv) = φµ(uv) = φσR

(uv) = φψR
(uv). Finally for uv ∈ AS , let

φ(uv) = φµ(uv) = φσL
(uv) = φσR

(uv) = φψL
(uv) = φψR

(uv).
Let the (L ∪ R ∪ S, {FUTURE})-isolabelling ι be defined as follows. For a vertex v ∈ VL, let ι(v) =

ιψL
(v). Similarly if v ∈ VR, let ι(v) = ιψR

(v). Otherwise, v is a vertex of D(Nµ, Tµ). If ιµ(v) = LEFT
then let ι(v) = ιψL

(v) (recalling that v /∈ V ′R, so v is a vertex of D(NσL
, TσL

) and thus of D(NψL
, TψL

),
with ισL

(v) = PAST and ιψL
(v) ∈ L). Similarly if ιµ(v) = RIGHT then let ι(v) = ιψR

(v). Finally if
ιµ(v) ∈ S ∪ {FUTURE}, then set ι(v) = ιµ(v).

We will now show that ψ is indeed a well-behaved F -partial solution; afterwards we will show that µ is
the {L→ LEFT, R→ RIGHT}-restriction of ψ, from which it follows that µ is valid. (A similar argument
can be used to show that ψL is the {R → FUTURE}-restriction of ψ and ψR is the {L → FUTURE}-
restriction of ψ, but we will not need these fact so we do not prove them here.)

Claim 3. ψ is a well-behaved F -partial solution.

Proof: We first show that ψ satisfies one of the properties of well-behaved (L ∪ R ∪ S, {FUTURE})-
containment structure.

• For any u, v ∈ V (D(N,T )) with ι(u), ι(v) ∈ L ∪ R ∪ S, if D(N,T ) has a path from u to
v then there is a path from ι(u) to ι(v) in DIN(NIN, TIN): To see this property, first consider
the case that uv is an arc in D(N,T ). In this case it is sufficient to show that ι(u) = ιθ(u) and
ι(v) = ιθ(v) for some θ ∈ {µ, ψL, ψR}, as the property then follows from the fact that µ, ψL, ψR
are all well-behaved.

If uv ∈ AL then u ∈ V (D(NψL
, TψL

)) and either u ∈ VL or ισL
(u) = PAST and ιµ(u) = LEFT; in

either case ι(u) = ιψL
(u), and similarly ι(v) = ιψL

(v), so we let θ = ψL. Similarly if uv ∈ AR
then θ = ψR. For any arc uv in D(Nµ, Tµ), we can let θ = ψL if ιµ(u) = ιµ(v) = LEFT, ψR if
ιµ(u) = ιµ(v) = RIGHT, and µ if ιµ(u), ιµ(v) ∈ P . If ιµ(u) = FUTURE (resp. ιµ(v) = FUTURE)
then ι(u) = FUTURE (ι(v) = FUTURE), so we do not need to consider this case. We also cannot
have {ιµ(u), ιµ(v)} = {LEFT, RIGHT} as µ is well-behaved. It remains to consider the case that
one of ιµ(u), ιµ(v) is LEFT or RIGHT and the other is in S; suppose w.l.o.g. that ιµ(u) = LEFT
and ιµ(v) ∈ S. In this case both u and v are vertices of D(NσL

, TσL
) and therefore D(NψL

, TψL
);

moreover ι(u) = ιψL
(u) and ιψL

(v) = ισL
(v) = ιµ(v) = ι(v). Thus we can let θ = σL.

Now suppose for a contradiction that there exist u, v ∈ V (D(N,T )) with ι(u), ι(v) ∈ L ∪R ∪ S
such that there is a path from u to v inD(N,T ), but no path from ι(u) to ι(v) exists inDIN(NIN, TIN).
By the above discussion uv cannot be an arc. Moreover every internal vertex z on the shortest u− v
path must have ι(z) = FUTURE (otherwise ι(z) ∈ L ∪R ∪ S and u, z forms a shorter path). Note
that any such z is also a vertex in D(Nµ, Tµ) with ιµ(z) = FUTURE (no other possibility leads to
ι(z) = FUTURE; in particular if ιµ(z) = LEFT then ι(z) = ιψL

(z) ∈ L). Any arc incident to z in
D(N,T ) is also an arc in D(Nµ, Tµ) (such arcs cannot be in AL or AR). So it follows that the
path from u to v also exists in D(Nµ, Tµ). Finally, we must have ιµ(u), ιµ(v) ∈ S (they cannot
be in {LEFT, RIGHT} as u, v have neighbours labelled FUTURE by ιµ and µ is well-behaved). So
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it then follows that there is a path from ι(u) = ιµ(u) to ι(v) = ιµ(v) in DIN(NIN, TIN), as µ is
well-behaved.

• D(N,T ) is a display graph:

– D(N,T ) is acyclic: Suppose for a contradiction that D(N,T ) contains a cycle. If ι(u) ∈
L∪R∪S for some vertex u in this cycle, then as shown above the existence of a path from u to
u in D(N,T ) implies the existence of a path from ι(u) to ι(u) in DIN(NIN, TIN), contradicting
the fact that DIN(NIN, TIN) is acyclic.
It remains to consider the case that every vertex z in this cycle has ι(z) = FUTURE. However
as argued previously, any z with ι(z) = FUTURE is also a vertex in D(Nµ, Tµ), and all its
incident arcs in D(N,T ) are also arcs of D(Nµ, Tµ). Then we have that D(Nµ, Tµ) contains
a cycle, a contradiction as D(Nµ, Tµ) is a display graph.

– T is an out-forest: As D(N,T ) is acyclic, it is remains to show that every vertex of T has
in-degree at most 1 in T . To do this, we will show something stronger: that for any vertex v in
D(N,T ), all of its incident arcs in D(N,T ) are arcs in D(Nθ, Tθ), for some θ ∈ {µ, ψL, ψR}.
Then the desired property immediately follows, as every tree vertex has at most one incoming
tree-arc in D(Nθ, Tθ).
So consider any vertex v ∈ D(N,T ). If v ∈ VL, then the only incident arcs of v are in AL,
and therefore all these arcs in D(NψL

, TψL
). Similarly if v ∈ VR then all incident arcs are in

D(NψR
, TψR

). So now we may assume v is a vertex of D(Nµ, Tµ). If ιµ(v) = LEFT then v
can have no incident arcs in A′R or AR (as any vertex incident to such an arc must be in VR or
else have ισR

(u) = PAST and so ιµ(v) = RIGHT). Then all incident arcs of uv in D(N,T ) are
also in D(NψL

, TψL
). Similarly if ιµ(v) = LEFT then all incident arcs are in D(NψR

, TψR
).

Finally if ιµ(v) ∈ S ∪ {FUTURE}, then again none of its incident arcs are in AL or AR (as this
would require ισL

(v) = PAST or ισR
(v) = PAST and so ιµ(v) ∈ {LEFT, RIGHT}), and so so

all incident arcs are in D(Nµ, Tµ).

– Every vertex in D(N,T ) has in- and out-degree at most 2 and total degree at most 3:
This follows immediately from the previously-shown property that every vertex in D(N,T )
has all its incident arcs in one of D(Nµ, Tµ), D(NψL

, TψL
), D(NψR

, TψR
), and the fact that

this constraint holds for each of these graphs.

– Any vertex in V (N) ∩ V (T ) has out-degree 0 and in-degree at most 1 in each of T0 and
N0: Again this follows from the fact that every vertex in D(N,T ) has all its incident arcs in
one of D(Nµ, Tµ), D(NψL

, TψL
), D(NψR

, TψR
).

• φ is an embedding function on D(N,T ):

– For each u ∈ V (T ), φ(u) ∈ V (N) and, for each arc uv ∈ A(T ), φ(uv) is a directed
φ(u)-φ(v)-path in N :
The fact that φ(u) ∈ V (N) follows immediately from the fact that φ(u) = φθ(u) for some
θ ∈ {µ, ψL, ψR}, and so φ(u) is a network vertex.
To see that φ(uv) is a path from φ(u) to φ(v), we will show that there is θ ∈ {µ, ψL, ψR} such
that φ(uv) = φθ(uv), φ(u) = φθ(u) and φ(v) = φθ(v). The result then follows from the fact
that φθ is an embedding function.
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If uv ∈ AL, then neither u nor v can be in VR, nor can they be in V ′R (note that u ∈ V ′R
requires ιµ(u) ∈ {RIGHT, FUTURE}, but uv ∈ AL implies either u ∈ VL or ισL

(u) = PAST
and thus ιµ(u) = LEFT). It follows by construction of φ that φ(u) = φψL

(u), φ(v) = φψL
(u),

and φ(uv) = φψL
(uv), so we can let θ = ψL. Similarly if uv ∈ AR we can let θ = ψR. For

uv ∈ A′L ∪A′R ∪AS , we have that u, v are vertices in D(Nµ, Tµ), and therefore not in VL or
VR. It follows by construction that φ(u) = φµ(u), φ(v) = φµ(u), and φ(uv) = φµ(uv), so
we let θ = µ.

– for any distinct u, v ∈ V (T ), φ(u) 6= φ(v): We first show that for any u ∈ V (T ), u ∈ VL if
and only if φ(u) ∈ VL. Recall that VL is the set of vertices in D(NψL

, TψL
) that become PAST-

redundant after applying {L → PAST}, and observe that by the definition of y-redundancy,
a tree vertex u is y-redundant with respect to some containment structure (D(N ′, T ′), φ′, ι′)
if and only if φ′(u) is y-redundant. Thus u ∈ VL if and only if φ(u) ∈ VL. By a similar
argument, u ∈ VR if and only if φ(u) ∈ VR.
Now suppose for a contradiction that there exist distinct u, v ∈ V (T ) with φ(u) = φ(v). If
φ(u) = φ(v) ∈ VL, then also u, v ∈ VL. Thus u, v are distinct vertices in D(NψL

, TψL
) with

φψL
(u) = φ(u) = φ(v) = φψR

(v), a contradiction as φψL
is an embedding function. We get

a similar contradiction if φ(u) ∈ VR. Finally if φ(u) /∈ VL ∪ VR, then also u, v /∈ VL ∪ VR.
Thus u, v are distinct vertices in D(Nµ, Tµ) with φµ(u) = φ(u) = φ(v) = φµ(v), again a
contradiction as φµ is an embedding function.

– for any u ∈ V (T ) ∩ V (N), φ(u) = u: This follows immediately from the fact that u is a
vertex in V (Tθ) ∩ V (Nθ) for some θ ∈ {µ, ψL, ψR}, and for such a θ φ(u) = φθ(u) = u.

– the paths {φ(uv) | uv ∈ A(T )} are arc-disjoint:
Similar to the proof that φ(u) 6= φ(v) for u 6= v, we observe that if an arc uv is y-redundant
with respect to some (D(N ′, T ′), φ′, ι′), then so are all the arcs of φ′(uv). It follows by
construction that if uv ∈ AL (resp. AR, AL′, A′R, AS) then so are all arcs of φ(uv). So now
suppose for a contradiction that there exist distinct tree arcs uv, u′v′ such that φ(uv), φ(u′v′)
share an arc. Then uv and u′v′ are both in the same set from {AL, AR, A′L, A′R, AS}, and so
in particular they are both in D(Nθ, Tθ) for some θ ∈ {µ, ψL, ψR}, with φ(uv) = φθ(uv),
φ(u′v′) = φθ(u

′v′). Then φθ(uv), φθ(u′v′) share an arc, a contradiction as φθ is an embedding
function.

– for any distinct p, q ∈ A(T ), φ(p) and φ(q) share a vertex z only if p and q share a vertex
w with z = φ(w): Here we use a couple of properties that have been proved earlier. Recall
from the proof that T is an out-forest, that for any vertex v in D(N,T ), all its incident arcs in
D(N,T ) are arcs in D(Nθ, Tθ) for some θ ∈ {µ, ψL, ψR}. Recall also, from the proof that the
paths {φ(uv)|uv ∈ A(T )} are arc disjoint, that a tree arc uv is in AL (resp. AR, A′L, A

′
R, AS)

then so are all arcs in φ(uv).
So now consider distinct arcs p, q ∈ A(T ) and suppose φ(p) and φ(q) share a vertex z. Suppose
all incdent arcs of z are in D(Nµ, Tµ) (the cases where all incident arcs are in D(NψL

, TψL
) or

D(NψR
, TψR

) are similar). Then all incident arcs of z from φ(p) and φ(q) are inA′L∪A′R∪AS ,
which implies that p, q are in A′L ∪ A′R ∪ AS as well. Thus p, q are both arcs in D(Nµ, Tµ).
It follows that φ(p) = φµ(p) and φ(q) = φµ(q) also share the vertex z, which implies that
p, q share a vertex w with z = φµ(w), as φµ is an embedding function. Finally observe that
w ∈ V ′L ∪ V ′R ∪ VS (as w is in D(Nµ, Tµ)) so φ(w) = φµ(v) = z, as required.
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• ι is a (L ∪R ∪ S, {FUTURE})-isolabelling:

– For u ∈ V (D(N,T )) with ι(u) 6= FUTURE, ι(u) ∈ V (NIN) only if u ∈ V (N) and ι(u) ∈
V (TIN) only if u ∈ V (T ) : This follows from the fact that ι(u) = ιθ(u) for some θ ∈
{µ, ψL, ψR}.

– For u, v ∈ V (D(N,T )) with ι(u), ι(v) 6= FUTURE, ι(u) = ι(v) only if u = v :
Consider some u, v ∈ V (D(N,T )) with ι(u) = ι(v) 6= FUTURE. If ι(u) ∈ L, then ι(u) =
ιψL

(u), and ι(v) = ιψL
(v), as of the isolabelings ιψL

, ιψR
, ιµ, only ιψL

maps anything to L.
Thus ιψL

(u) = ιψL
(v) ∈ L, from which it follows that u = v since ψL is an isolabelling.

Similarly, if ι(u) ∈ R then ιψR
(u) = ιψR

(v) ∈ R and so u = v. If ι(u) ∈ S, then u and v
must be vertices of D(Nµ, Tµ) with ι(u) = ιµ(u) and ι(v) = ιµ(v) (other possibilities, such
as u ∈ VL or ιµ(u) = RIGHT, imply ι(u) or ι(v) are in in L ∪ R). Then again as ιµ is an
isolabelling, we have u = v.

– For u, v ∈ V (D(N,T )) with ι(u), ι(v) 6= FUTURE, the arc uv is in D(N,T ) if and only if
ι(u)ι(v) is in DIN(NIN, TIN) :
First suppose that uv is an arc in D(N,T ), for ι(u), ι(v) 6= FUTURE. We aim to show that
there is θ ∈ {ψL, ψR, µ} such that uv is an arc in D(Nθ, Tθ) and ι(u) = ιθ(u), ι(v) = ιθ(v).
Then ι(u)ι(v) ∈ A(DIN(NIN, TIN)) follows from the fact that θ is well-behaved.
If uv ∈ AL then uv is an arc of D(NψL

, TψL
), and either u ∈ VL or ιµ(u) = LEFT, which

implies ι(u) = ιψL
(u). Similarly ι(v) = ιψL

(v), so we can let θ = ψL. By a similar argument,
if uv ∈ AR then we let θ = ψR. For uv ∈ A′L, we again have that uv is an arc ofD(NψL

, TψL
),

and ιµ(u) = LEFT, which implies ι(u) = ιψL
(u). Similarly ι(v) = ιψL

(v), so we can let
θ = ψL. By a similar argument, if uv ∈ A′R then we let θ = ψR. For uv ∈ AS , we make use
of the fact that {ιµ(u), ιµ(v)} 6= {LEFT, RIGHT} (as µ is well-behaved). So suppose w.l.o.g
that ιµ(u), ιµ(v) 6= RIGHT. Then either ιµ(u) ∈ S, in which case ιψL

(u) = ιµ(u) = ι(u), or
ιµ(u) = LEFT, in which case ι(u) = ιψL

(u). Thus in either case ι(u) = ιψL
(u), and similarly

ι(v) = ιψL
(v). Note also that uv ∈ A(D(NψL

, TψL
)). Thus we can let θ = ψL, as required.

For the converse, suppose that ι(u)ι(v) is an arc in DIN(NIN, TIN). By the properties of a tree
decomposition, we cannot have ι(u) ∈ L and ι(v) ∈ R (or vice-versa). If ι(u), ι(v) ∈ L then
it must hold that ι(u) = ιψL

(u) and ι(v) = ιψL
(v). Then as ψL is well-behaved, uv is an

arc in D(NψL
, TψL

), which also implies that uv is an arc in D(N,T ). A similar argument
holds if ι(u), ι(v) ∈ R. If ι(u), ι(v) ∈ S then it must hold that ι(u) = ιµ(u) and ι(v) = ιµ(v).
Then again as µ is well-behaved, uv is an arc in D(Nµ, Tµ) and thus D(N,T ). It remains to
consider the case where one of ι(u), ι(v) is in S and the other is in L orR. Suppose w.l.o.g. that
ι(u) ∈ L, ι(v) ∈ S. Then ι(u) = ιψL

(u), and ι(v) = ιµ(v), seemingly a problem. However,
notice that as ιµ(v) ∈ S, we also have that v is a vertex of D(NσL

, TσL
) and D(NψL

, TψL
),

with ιψL
(v) = ισL

(v) = ιµ(v) = ι(v). Thus ιψL
(u)ιψ(v) is an arc in DIN(NIN, TIN), from

which it follows that uv is an arc in D(NψL
, TψL

) and thus D(N,T ).

– ι(V (D(N,T ))) ∩ V (DIN(NIN, TIN)) = L ∪ R ∪ S : By construction, ι(v) ∈ L ∪ R ∪ S ∪
{FUTURE} for any v ∈ V (D,T ), so ι(V (D(N,T ))) ∩ V (DIN(NIN, TIN)) ⊆ L ∪ R ∪ S. It
remains to show that for any z ∈ L ∪R ∪ S, there is v ∈ V (D(N,T )) for which ι(v) = z. If
z ∈ L, then as ιψL

is a (L ∪ S, {FUTURE})-isolabelling, there is v ∈ V (D(NψL
, TψL

)) such
that ιψL

(v) = z. Then either v ∈ VL, or v is a vertex of D(NσL
, TσL

) and D(Nµ, Tµ) with
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ισL
(v) = PAST, ιµ(v) = LEFT (since σL is the {L→ PAST}-restriction of ψL). In either case

ψ(v) = ψL(v), and so ψ(v) = z as required. By a similar argument, if z ∈ R then there is
v ∈ V (D(N,T )) with ι(v) = ιψL

(v) = z. Finally if z ∈ S, there is a vertex v in D(Nµ, Tµ)
with ιµ(v) = z. As ιµ(v) /∈ {LEFT, RIGHT}, by construction we have ι(v) = ιµ(v) = z, as
required.

• Each vertex u with ι(u) ∈ L ∪ R ∪ S has the same in- and out-degree in D(N,T ) as ι(u)
in DIN(NIN, TIN): Recall, from the proof that T is an out-forest, that any vertex v in D(N,T )
has all its incident vertices contained in D(Nθ, Tθ), for some θ ∈ {ψL, ψR, µ}. Moreover if
u ∈ VL or ιµ(u) = LEFT (in which case ψ(u) = ψL(u) by construction) then all incident arcs
of u are in D(NψL

, TψL
). Thus u has the same in- and out-degree in D(N,T ) as ι(u) = ιψL

(u)
in DIN(NIN, TIN), since ψL is a containment structure. A similar argument holds if u ∈ VR or
ιµ(u) = RIGHT. Finally if ιµ(u) ∈ S, then all incident arcs of u are in D(Nµ, Tµ), and so u has the
same degree in D(N,T ) as ι(u) = ιµ(u) does in DIN(NIN, TIN).

• Each vertex u of T with ι(u) 6= ι(φ(u)) has 2 out-arcs in D(N,T ) :
In the case that ι(u) ∈ L ∪R ∪ S, this follows from previously-shown properties. In particular, u
is not in V (T ) ∩ V (N), as this would imply φ(u) = u (because φ is an embedding function) and
thus ι(u) = ι(φ(u)). Then u /∈ V (N), which implies ι(u) /∈ V (NIN) as ι is an isolabelling. Thus
we may assume ι(u) is an internal vertex of TIN, which has out-degree 2 as TIN is binary. As we have
just shown that u with ι(u) ∈ L ∪ R ∪ S has the same in- and out-degree in D(N,T ) as ι(u) in
DIN(NIN, TIN), this implies that u has out-degree 2 in D(N,T ), as required.

For the case that ι(u) = FUTURE, we observe that by construction, ι(u) = ιµ(u). Furthermore
ιµ(φµ(u)) 6= FUTURE (as φµ(u) ∈ V ′L ∪V ′R ∪VS and so φ(u) = φµ(u), and ιµ(φµ(u)) = FUTURE
would imply ι(φ(u)) = ιµ(φµ(u)) = FUTURE = ι(φ(u)), a contradiction). Thus as µ is a
containment structure, we also have that u has out-degree 2 in D(Nµ, Tµ) and so u has out-degree 2
in D(N,T ) as well.

The above conditions show that ψ is a (L ∪ R ∪ S, {FUTURE})-containment structure, i.e. an
F -partial solution. Next we show that ψ is well-behaved:

• D(N,T ) contains no redundant arcs or vertices: Suppose for a contradiction that there is a
redundant arc or vertex w.r.t. ψ. We will show that such an arc or vertex is also redundant w.r.t µ, a
contradiction as µ is well-behaved.

Consider the case where a tree arc uv is redundant w.r.t ψ. Then uv is necessarily FUTURE-redundant,
which implies that ι(u) = ι(v) = FUTURE. It follows by construction of ι that u, v are vertices
of D(Nµ, Tµ) with ιµ(u) = ιµ(v) = FUTURE. In addition, we have that ι(z) = FUTURE for any
z ∈ V (φ(uv)), which again implies ιµ(v) = FUTURE for any such edge. Finally φ(uv) = φψ(uv)
(as the arc uv is in one of A′L, A

′
R, AS) , and so ιµ(z) = FUTURE for all z ∈ {u, v, } ∪ V (φµ(uv)).

It follows that uv is FUTURE-redundant w.r.t µ, the desired contradiction.

Essentially the same arguments can also be used for redundant network arcs and redundant tree or
network vertices.

• For any y, y′ ∈ {FUTURE} with y 6= y, there is no arc uv in D(N,T ) for which ι(u) = y and
ι(v) = y′: This follows immediately from the fact that |{FUTURE}| = 1, so there are no such y, y′.
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• For any u, v, in V (D(N,T )) with ι(v), ι(v) ∈ L ∪ R ∪ S, if D(N,T ) has a path from u to v
then DIN(NIN, TIN) has a path from ι(u) to ι(v): This has already been shown, at the start of the
proof for this claim. y

We now have that ψ satisfies all the conditions of a well-behaved F -partial solution. Finally we need to
show that µ is the {L→ LEFT, R→ RIGHT}-restriction of ψ.

Claim 4. µ is the {L→ LEFT, R→ RIGHT}-restriction of ψ.

Proof: Let µ′ = (D(Nµ′ , Tµ′), φµ′ , ιµ′) denote the {L→ LEFT, R→ RIGHT}-restriction of ψ. Then our
aim is to show that µ = µ′.

• D(Nµ, Tµ) = D(Nµ′ , Tµ′): To show this, it is enough to show that that D(Nµ′ , Tµ′) is D(N,T )
with the arcs of AL ∪ AR and vertices of VL ∪ VR removed. To do this, we will show that after
applying {L→ LEFT, R→ RIGHT}, the LEFT-redundant arcs (resp. vertices) are exactly AL (VL)
and the RIGHT-redundant arcs (vertices) are exactly AR (VR).

Recall that for any arc or vertex a in D(N,T ), a is y-redundant w.r.t (D(N,T ), φ, ι′) if and only
if ι(Qa) = {y}, for some set Qa of vertices that depends only on D(N,T ) and φ. Note that Qa
always contains a itself, if a is a vertex, or the vertices of a, if a is an arc

So now let Qa be the set of vertices that determines whether a is y-redundant for (D(N,T ), φ), and
let Q′a denote the set of vertices that determine whether a is y-redundant for (D(NψL

, TψL
), φψL

),
where a is any arc or vertex that in D(NψL

, TψL
). Note that Q′a ⊆ Qa. We will show first that

ι(Qa) ⊆ L if and only if ιψL
(Q′a) ⊆ L.

Indeed, since ι(u) ∈ L implies ιψL
(u) = ι(u), if ι(Qa) ⊆ L then ιψL

(Q′a) ⊆ ι(Qa) ⊆ L.
For the converse, if ιψL

(u) ∈ L then we also have ι(u) = ιψL
(u), so ιψL

(Q′a) ⊆ L implies
ι(Q′a) ⊆ L. It remains to consider the vertices of Qa \ Q′a. If a = uv is a network arc, then
Qa = {u, v}∪Qa′ : a ∈ A(φ(a′) andQ′a = {u, v}∪Q′a′ : a ∈ A(φψL

(a′)). ThenQa = Q′a, unless
there is an arc a′ in D(N,T ) with a ∈ A(φ(a′)) and a′ not in D(NψL

, TψL
). Note however that this

requires that a′ ∈ A′R ∪AR, which as argued previously would imply that A(φ(a′)) ⊆ A′R ∪AR,
a contradiction to the fact that ι(u), ι(v) ∈ L. If a is a vertex, a similar argument applies: with
Qa = Q′a unless D(N,T ) has arcs in AR ∪A′R incident to a or a′ (with a′ a possible vertex such
that φ(a) = a′ or φ(a′) = a). But as ι(a), ι(a′) ∈ L, this cannot happen. Thus in either case we
have Q′a = Qa ⊆ L.

We can now show that an arc or vertex a in D(N,T ) is LEFT-redundant w.r.t (D(N,T ), φ, ι ◦ g)
if and only if a is in D(NψL

, TψL
) and a is PAST-redundant w.r.t. (D(NψL

, TψL
), φψL

, ιψL
◦ g′),

where g is the function {L → LEFT, R → RIGHT}, g′ is the function {L → PAST}. Indeed
we may assume that all vertices in a are mapped to elements of L, as otherwise neither side
holds. Then it remains to observe that a is LEFT-redundant w.r.t (D(N,T ), φ, ι ◦ g) if and only
if g(ι(Qa)) = {LEFT} ⇔ ι(Qa) ⊆ L ⇔ ιψL

(Q′a) ⊆ L ⇔ g′(ιψL
(Q′a)) = PAST ⇔ a is PAST-

redundant w.r.t. (D(NψL
, TψL

), φψL
, ιψL

◦ g′).
As such, after applying g = {L → LEFT, R → RIGHT} the LEFT-redundant arcs and vertices in
D(N,T ) are exactly AL, VL. A similar argument shows that the RIGHT-redundant arcs and vertices
are AR, VR. It follows that D(Nµ′ , Tµ′) is exactly D(N,T ) with AL, VL, AR, VR removed, that is,
D(Nµ′ , Tµ′) = D(Nµ, Tµ).
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• φµ = φµ′ : Here we use the fact that D(Nµ, Tµ) = D(Nµ′ , Tµ′). Thus every tree arc uv of
D(Nµ′ , Tµ′) is in A′L ∪ A′R ∪ AS , from which it follows by construction that φ(uv) = φµ(uv).
Similarly as tree every vertex u of D(Nµ′ , Tµ′) is in V ′L ∪ V ′R ∪ VS , we have φ(u) = φµ(u). Then
as φµ′ is the restriction of µ to the tree vertices of V ′L ∪ V ′R ∪ VS and the tree arcs of A′L ∪A′R ∪AS ,
we have φµ′ = φµ, as required.

• ιµ = ιµ′ : Consider any vertex u inD(Nµ, Tµ) = D(Nµ, Tµ). If ιµ(u) = LEFT, then by construction
ι(u) = ιψL

(u), which is in L (as ισL
(u) = PAST). Then by construction of µ′, ιµ′(u) = LEFT

as well. A similar argument shows that ιµ′(u) = RIGHT if ιµ(u) = RIGHT. Finally if ιµ(u) ∈
S ∪ FUTURE, then by construction ι(u) = ιµ(u), and since ι(u) /∈ L∪R, we have ιµ′(u) = ι(u) =
ιµ(u). Thus in all case ιµ′(u) = ιµ(u), and so µ = µ, as required. y

As we have now shown that ψ is a well-behaved F -partial solution and µ is the {L → LEFT, R →
RIGHT}-restriction of ψ, we have that µ is valid, as required.

From the three previous lemmas we immediately have Lemma 12.

3.8 Compressing signatures
So far, we have shown relations between valid signatures such that the validity of any signature σ for a
bag (P, S, F ) in the tree decomposition of DIN(NIN, TIN) is determined by the validity of all signatures for
the child bags of (P, S, F ). The final step is to contract certain long paths that may occur in the signature.
This is necessary in order to bound the size, and thus the number of possible signatures, for a given bag.
This is summarized by the notion of compact signatures, described below.

All our results relating the validity of well-behaved signatures also hold for compact signatures, that is,
whether a compact signature is compact-valid can be determined by looking at the compact signatures for
the child bags. (See Lemmas 23 to 26.)

Definition 11 (compact form). Let ψ = (D(N,T ), φ, ι) be a well-behaved (S,Y)-containment structure.
Then the compact form of ψ, denoted c(ψ), is the (S,Y)-containment signature derived from ψ as follows:

For y ∈ Y:

• if there is a path x1, x2, x3 inN with x2 having in-degree 1 and out-degree 1 inN , and ι({x1, x2, x3}) =
{y}, and φ(u) 6= x2 for any vertex u in T , then delete vertex x2 and arcs x1x2, x2x3 from N , and
add the arc x1x3. For the arc uv in T for which x1x2x3 is part of the path φ(uv), replace x1x2x3
in φ(uv) with x1x3.

That is, we suppress a vertex x in N (and adjust φ as necessary), if x has a single in-neighbour and
out-neighbour, and all three are mapped to a label y ∈ Y by ι, and no vertex of T is mapped to x by φ.

We call such a path a long y-path and refer to the above process as suppressing long y-paths.
If c(ψ) = ψ then we say ψ is a compact (S,Y)-containment structure.
We call a compact signature σ for (P, S, F ) compact-valid if there is a compact F -partial solution ψ

such that σ = c(σ′) for σ′ is the (P → PAST)-restriction of ψ.

Note that by definition, any compact (S,Y)-containment structure is also a well-behaved (S,Y)-
containment structure.

Lemma 17. Ifψ is a well-behaved (S,Y)-containment structure, then c(ψ) is a compact (S,Y)-containment
structure.
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Proof: Let ψ = (D(N,T ), φ, ι) and let c(ψ) = (D′(N ′, T ′), φ′, ι′). It is clear from the construction of
c(ψ) that D′(N ′, T ′) is a display graph and that φ′ is an embedding of T ′ into N ′. Moreover ι′(u) = ι(u)
for each vertex u in D′(N ′, T ′), and the only vertices of D(N,T ) that were suppressed in the construction
of D′(N,T ′)′ were vertices v for which ι(v) ∈ {PAST, FUTURE}. As such ι′ satisfies all the requirements
for the isolabelling function in a (S,Y)-containment structure, and so (D′(N ′, T ′), φ′, ι′) is a (S,Y)-
containment structure.

It is also clear that c(ψ) is well-behaved, by construction and the fact that ψ is well-behaved.
Finally observe that D(N ′, T ′) contains no long y-paths for any y ∈ Y , a all such paths are suppressed

in the construction of ψ′.

We will now show that for the purposes of our dynamic programming algorithm, it is enough to restrict
our attention to compact signatures. This allows us to get an FPT bound on the number of signatures we
have to consider. In order to do this, we define an analogue of “restriction” that allows us to derive compact
(S′,Y)-containment structures from (S,Y)-containment structures.

Definition 12 (compact restriction). Let ψ = (D(N,T ), φ, ι) be an (S,Y)-containment structure, let S′ ⊆
S, and let g : S ∪ Y → S′ ∪ Y be a restriction function (i.e. such that for all v ∈ S ∪ Y , g(v) = v if
v ∈ S′ and g(v) ∈ Y otherwise). Then we define the compact-g-restriction of ψ to be the compact form of
the g-restriction of ψ.

When σ is a compact signature for (P, S, F ), we say that σ is compact-valid if there is a compact
F -partial solution ψ such that σ is the compact-{P → PAST}-restriction of ψ.

Similarly, when µ is a compact reconciliation for (L ∪R,S, F ), we say µ is compact-valid if there is a
compact F -partial solution ψ such that µ is the compact-{L→ LEFT, R→ RIGHT}-restriction of ψ.

Definition 13. Let σ = (D(N,T ), φ, ι) and σ0 = (D(N0, T0), φ0, ι0) be (S,Y)-containment structures.
We say σ0 is a subdivision of σ if σ0 can be derived from σ as follows:

• For each network arc uv in D(N,T ) with ι(u) = ι(v) = y ∈ Y , replace uv with a path u1 =
u, u2, . . . , uj = v for some j ≥ 2, where ui is a new vertex for each 1 < i < j.

• For any new path u1 = u, . . . , uj = v created this way, if uv is part of the path φ(u′v′) for a tree
arc u′v′ then replace uv in this path with u1, . . . uj .

• For any new path u1 = u, . . . , uj = v created this way, set ι(ui) = ι(u) for each 1 < i < j.

Observe that σ = c(σ0) if and only if σ is compact and σ0 is a subdivision of σ.
Observe also that for any σ, σ0 such that σ0 is a subdivision of σ, c(σ) = c(σ0).

Lemma 18. Let σ0 = (D(N0, T0), φ0, ι0) be a subdivision of σ = (D(N,T ), φ, ι), and for each arc uv
in A(D(N,T )) let Puv denote the set of arcs in D(N0, T0) on the path from u to v corresponding to the
subdivision of uv. (Taking Puv = {uv} if uv was not subdivided.)

Let σ′0 = (D(N ′0, T
′
0), φ

′
0, ι
′
0) be the g-restriction of σ0 and let σ′ = (D(N ′, T ′), φ′, ι′) be the g-

restriction of σ, for some restriction function g.
Then A(D(N ′0, T

′
0)) =

⋃
uv∈A(D(N ′,T ′)) Puv . Thus, σ′0 is a subdivision of σ′.

Proof: It is sufficient to show that for each a ∈ A(D(N,T )), any arc or internal vertex of Pa in σ0 is
y-redundant w.r.t. (D(N0, T0), φ0, ι0 ◦ g) if and only if a is y-redundant w.r.t. (D(N,T ), φ, ι ◦ g)
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This can be seen by construction of σ0, in particular the fact that Pa is part of the path φ0(u′v′) if and
only if a is part of the path φ(u′v′), and the fact that ι0(z) = ι(u) = ι(v) (and thus g(ι(u))) = g(ι(u)) =
g(ι(v))) for every vertex in Pa.

Lemma 19. Let σ0 be a (S,Y)-containment structure, let σ = c(σ0), and let σ′0 be the g-restriction of σ0
for some restriction function g : S ∪ Y → S′ ∪ Y . Then c(σ′0) is the compact-g-restriction of σ.

Proof: Let σ′ be the g-restriction of σ. As σ0 is a subdivision of σ and σ′0 is the g-restriction of σ0,
Lemma 18 implies that σ′0 is a subdivision of σ′. It follows that c(σ′0) = c(σ′), which is the compact-g-
restriction of σ by construction.

Lemma 20. Let σ be a well-behaved signature for a bag (P, S, F ). If σ is valid then c(σ) is compact-valid.
Similarly if µ is a well-behaved reconciliation for a Join bag (L ∪R,S, F ) and µ is valid, then c(µ) is

compact-valid.

Proof: Suppose a signature σ is valid and let ψ be the F -partial solution such that σ is the {P → PAST}-
restriction of ψ. Then c(ψ) is compact F -partial solution, and by Lemma 19, c(σ) is the compact-
{P → PAST}-restriction of c(ψ). Thus c(ψ) is compact-valid, as required.

For the case that a reconciliation µ is valid, a similar argument holds, using the restriction function
{L→ LEFT, R→ RIGHT} instead of {P → PAST}.

Lemma 21. Let σ be a compact signature for a bag (P, S, F ). If σ is compact-valid then there is a valid
signature σ0 for (P, S, F ) such that σ = c(σ0) is compact-valid.

Similarly if µ is a compact reconciliation for a Join bag (L ∪ R,S, F ) and µ is compact-valid, then
there is a valid reconciliation µ0 for(L ∪R,S, F ) such that µ = c(µ0).

Proof: Suppose a compact signature σ is compact-valid and let ψ be the compact F -partial solution such
that σ is the compact-{P → PAST}-restriction of ψ. Let σ0 be the {P → PAST}-restriction of ψ. Then σ0
is a valid signature for (P, S, F ), and by construction σ = c(σ0).

For the case that a compact reconciliation µ is compact-valid, a similar argument holds.

Lemma 22. Let σ′ be the (S1 → y1, . . . , Sj → yj)-restriction of some (S,Y)-containment structure σ. If
σ is compact, then σ′ has a long y-path only if y ∈ {y1, . . . , yj}.

Proof: Let σ = (D(N,T ), φ, ι) and σ′ = D(N ′, T ′), φ′, ι′). Suppose for a contradiction that σ has a
long y-path for some y /∈ {y1, . . . , yj}. Thus in particular, there is a path x1, x2, x3 in N ′ with x2 having
in-degree and out-degree 1, and ι′(x1) = ι(x2) = ι′(x3) = y. Then by construction, x1, x2, x3 is also
a path in N , and ι(x1) = ι(x2) = ι(x3) = y (since the restriction function (S1 → y1, . . . , Sj → yj)
does not assign y to any vertex that was not already labelled y by ι). Furthermore x2 cannot have any
other incident arcs beside x1x2 and x2x3, as such arcs would not become redundant after applying
(S1 → y1, . . . , Sj → yj), and so such arcs would be in N ′ as well. It follows that σ has a long y-path,
contradicting the assumption that σ is compact.

Corollary 1. (NIN, TIN) is a YES-instance of TREE CONTAINMENT if and only if there is a compact-valid
signature σ = (D(N,T ), φ, ι) for (V (DIN(NIN, TIN)),∅,∅) with ι−1(FUTURE) = ∅.
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Proof: By Lemma 8, we have that (NIN, TIN) is a YES-instance of TREE CONTAINMENT if and only if there
is a valid signature σ0 = (D(N0, T0), φ0, ι0) for (V (DIN(NIN, TIN)),∅,∅) with ι0−1(FUTURE) = ∅.

So suppose that such a signature σ0 exists. Let σ = c(σ0), and observe that σ also satisfies ι−1(FUTURE) =
∅. Furthermore by Lemma 20, σ is compact-valid.

Conversely suppose there is a compact-valid signature σ = (D(N,T ), φ, ι) for (V (DIN(NIN, TIN)),∅,∅)
with ι−1(FUTURE) = ∅. Then by Lemma 21 there is a valid signature σ0 for (V (DIN(NIN, TIN)),∅,∅)
with σ = c(σ0). Then as σ0 is a subdivision of σ, we also have ι0−1(FUTURE) = ∅. Thus by Lemma 8,
(NIN, TIN) is a YES-instance of TREE CONTAINMENT.

We are now ready to prove the compact equivalents of the main lemmas for Forget, Introduce and Join
bags

Lemma 23 (Leaf bag). Let (P, S, F ) correspond to a Leaf bag in the tree decomposition i.e. P = S =
∅, F = V (DIN(NIN, TIN)) and (P, S, F ) has no children. Then a compact signature σ = (D(N,T ), φ, ι)
for (P, S, F ) is compact-valid if and only if ι−1(PAST) = ∅.

Proof: Similar to the proof of Lemma 9, we have that if ψ = (D(N ′, T ′), φ′, ι′) is a compact F -partial
solution and σ is the compact-{P → PAST}-restriction of ψ, then because P = ∅ we must have
ι(u) 6= PAST for all u ∈ V (D(N,T )). Conversely if ι−1(PAST) = ∅ then σ is a compact F -partial
solution and also the compact-{P → PAST}-restriction of itself.

Lemma 24 (Forget bag). Let (P, S, F ) correspond to a Forget bag in the tree decomposition with child
bag (P ′, S′, F ′), i.e. P = P ′ ∪ {z}, S = S′ \ {z} and F = F ′.

Then a compact signature σ for (P, S, F ) is compact-valid if and only if there is a compact-valid
signature σ′ for (P ′, S′, F ′) such that σ is the compact-{{z} → PAST}-restriction of σ′.

c.f. Lemma 10

Proof: Suppose first that σ is compact-valid. Then exists a valid signature σ0 for (P, S, F ) with c(σ0) = σ
(Lemma 21). Then by Lemma 10, there is a valid signature σ′0 for (P ′, S′, F ′) such that σ0 is the
{{z} → PAST}-restriction of σ′0. Then let σ′ = c(σ′0) and observe that σ′ is compact-valid (Lemma 20).
Furthermore by Lemma 19, σ is the compact-{{z} → PAST}-restriction of σ′, as required.

Conversely, suppose there is a compact-valid signature σ′ for (P ′, S′, F ′) such that σ is the compact-
{{z} → PAST}-restriction of σ′. Then there is a valid signature σ′0 for (P ′, S′, F ′) with σ′ = c(σ′0)
(Lemma 21). Let σ0 be the {{z} → PAST}-restriction of σ′0. Then by Lemma 10, σ0 is valid. Furthermore
by Lemma 19, c(σ0) is the compact-{{z} → PAST}-restriction of c(σ′0) = σ′. That is c(σ0) = σ. Then as
σ0 is valid, σ is compact-valid (Lemma 20).

Lemma 25. Let (P, S, F ) correspond to an Introduce bag in the tree decomposition with child bag
(P ′, S′, F ′), i.e. P ′ = P , S′ = S \ {z} and F ′ = F ∪ {z}.

Then a compact signature σ for (P, S, F ) is valid if and only if σ′ is a compact-valid signature for
(P ′, S′, F ′), where σ′ is the compact-{{z} → FUTURE}-restriction of σ.

c.f. Lemma 11

Proof: Suppose first that σ is compact-valid. Then there is a valid signature σ0 for (P, S, F ) such that
c(σ0) = σ (Lemma 21). Then let σ′0 be the {{z} → FUTURE}-restriction of σ0, and observe that σ′0
is valid by Lemma 11. Then c(σ′0) is compact-valid (Lemma 20). Furthermore by Lemma 19, c(σ′0) is
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Figure 9: Illustration of proof for Introduce bags, compact-validity of σ′ implies compact-validity of σ′. Solid lines
are relations that we may assume; the dashed line shows the construction of σ∗, ψ∗ and σ′0; dotted lines are restriction
relations we can show using Lemma 18.

the compact-{{z} → FUTURE}-restriction of c(σ0) = σ. Then letting σ′ = c(σ′0) we have that σ′ is
compact-valid and the compact-{{z} → FUTURE}-restriction restriction of σ, as required.

For the converse, assume σ′ = (D(N ′, T ), φ′, ι′) is compact-valid, and let ψ′ be the compact F ′-partial
solution such that σ′ is the compact-{P → PAST}-restriction of ψ′. Let σ′0 be the {P ′ → PAST}-restriction
of ψ′, so σ′0 is a subdivision of σ′. In addition let σ′′ be the {{z} → FUTURE}-restriction of σ, so σ′′ is
also a subdivision of σ′. Let Ap be the subset of arcs in N ′ that are subdivided by one or more additional
vertices to produce σ′0. Similarly let Af be the subset of arcs in N ′ that are subdivided by one or more
additional vertices to produce σ′′.

By Lemma 22, σ′′ has no long PAST-paths and σ′0 has no long FUTURE-paths. Thus the sets of arcs
Ap and Af are disjoint (as ι′(u) = ι′(v) = PAST for any uv ∈ Ap, and ι′(u) = ι′(v) = FUTURE for any
uv ∈ Af ). So now for each arc uv in N ′, define Puv to be the path corresponding to uv in σ′0 if uv ∈ Ap,
let Puv be the path corresponding to uv in σ′′ if uv ∈ Af , and let Puv be the single arc uv otherwise.

Now define σ∗ to be the subdivision of σ′ derived by replacing every arc uv in N by Puv . Now we have
that σ∗ is also a subdivision of σ′0 (by subdividing arcs of Ap) and also of σ′′ (by subdividing arcs of Af ,
and also that σ′ = c(σ∗) (as σ′ is compact). (See Fig. 9.)

We now claim that σ∗ is a valid signature for (P ′, S′, F ′). To see this, Let ψ∗ be the subdivision of
ψ′ derived by replacing uv with Puv for any uv ∈ Af (observe that all arcs of Af appear in the display
graph of ψ, as they are all arcs in σ′ and were not subdivided to create σ′0). Then ψ∗ is also a well-behaved
F ′-partial solution. Then using Lemma 18 and the fact that σ′0 is the {P ′ → PAST}-restriction of ψ′, we
have that the {P ′ → PAST}-restriction ψ∗ can be derived from σ′0 by replacing the uv with Puv for all
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uv ∈ Af . That is, the {P ′ → PAST}-restriction ψ∗ is exactly σ∗. Thus σ∗ is indeed valid.
Next, let σ∗0 be the subdivision of σ derived by replacing uv with Puv for any uv ∈ Ap. Similar to the

case with ψ∗, we can show using Lemma 18 that the {{z} → FUTURE}-restriction of σ∗0 is σ′′ with uv
replaced by Puv for all uv ∈ Ap, i.e. σ∗. So we now have that σ∗ is the {{z} → FUTURE}-restriction of
σ∗0 and also a valid signature for (P ′, S′, F ′). By Lemma 11, this implies that σ∗0 is valid. Then σ, which
is the compact version of σ∗0 , is compact-valid by Lemma 20.

Lemma 26. Let (L ∪R,S, F ) be a Join bag with child bags (L, S, F ∪R) and (R,S, F ∪ L) and let σ
be a compact signature for (L ∪R,S, F ). Then, σ is compact-valid if and only if there is a compact-valid
reconciliation µ for (L ∪R,S, F ) such that σ is the compact-{{LEFT, RIGHT} → PAST}-restriction of µ.

c.f. Lemma 14.

Proof: Suppose first that σ is compact-valid. Then there is a valid signature σ0 for (L ∪ R,S, F ) such
that σ = c(σ0) (Lemma 21.) By Lemma 14, there is a valid reconciliation µ0 for (L ∪ R,S, F ) such
that σ0 is the {{LEFT, RIGHT} → PAST}-restriction of µ0. Then let µ = c(µ0), so µ is a compact-
valid reconciliation (Lemma 20). By Lemma 19, the compact-{{LEFT, RIGHT} → PAST}-restriction of
µ = c(µ0) is c(σ0) = σ, as required.

Conversely, suppose that µ is a compact reconciliation for (L ∪ R,S, F ) such that σ is the compact-
{{LEFT, RIGHT} → PAST}-restriction of µ. As µ is compact-valid, there is a valid reconciliation µ0 for
(L ∪ R,S, F ) such that µ = c(µ0) (Lemma 21). Let σ0 be the {{LEFT, RIGHT} → PAST}-restriction of
µ. Then by Lemma 14, σ0 is a valid signature for (L ∪ R,S, F ). Moreover by Lemma 19, c(σ0) is the
compact-{{LEFT, RIGHT} → PAST}-restriction of µ = c(µ0), i.e. c(σ0) = σ. Then as σ0 is valid, σ is
compact-valid (Lemma 20).

Lemma 27. Let (L∪R,S, F ) be a Join bag with child bags (L, S, F ∪R) and (R,S, F ∪L), and let µ be
a compact reconciliation for (L ∪R,S, F ). Let σL be the compact-{LEFT → PAST, RIGHT → FUTURE}-
restriction of µ, and σR the compact-{RIGHT → PAST, LEFT → FUTURE}-restriction of µ. If µ is
compact-valid, then σL is a compact-valid signature for (L, S, F ∪R) and σR is a compact-valid signature
for (R,S, F ∪ L).

c.f. Lemma 15

Proof: Suppose µ is compact-valid. Then there is a valid reconciliation µ0 for (L ∪ R,S, F ) such that
µ = c(µ0) (Lemma 21). Now let σ′L be the {LEFT → PAST, RIGHT → FUTURE}-restriction of µ0.
Then by Lemma 15, σ′L is a valid signature for (L, S, F ∪ R). Furthermore by Lemma 19, c(σ′L) is the
compact-{LEFT → PAST, RIGHT → FUTURE}-restriction of c(µ0) = µ. That is, c(σL) = σL. It follows
by Lemma 20 that σL is compact-valid, as required. As similar argument shows that σR is a compact-valid
signature for (R,S, F ∪ L).

Lemma 28. Let (L∪R,S, F ) be a Join bag with child bags (L, S, F ∪R) and (R,S, F ∪L), and let µ be
a compact reconciliation for (L ∪R,S, F ). Let σL be the compact-{LEFT → PAST, RIGHT → FUTURE}-
restriction of µ, and σR the compact-{RIGHT → PAST, LEFT → FUTURE}-restriction of µ. If σL is a
compact-valid signature for (L, S, F ∪R) and σR is a compact-valid signature for (R,S, F ∪ L), then µ
is compact-valid.

c.f. Lemma 16



Embedding phylogenetic trees in networks of low treewidth 41

Proof: In what follows, let σ = (D(Nσ, Tσ), φσ, ισ), for any given containment structure σ.
The proof is along similar lines to Lemma 25, but with more containment structures. Before we

can proceed, we first show that the the {LEFT → PAST, RIGHT → FUTURE}-restriction of µ is in fact
compact, and therefore σL is the {LEFT → PAST, RIGHT → FUTURE}-restriction of µ, as well as the
compact-{LEFT → PAST, RIGHT → FUTURE}-restriction of µ.

Indeed, let σ′′L denote the {LEFT → PAST, RIGHT → FUTURE}-restriction of µ, and suppose for a
contradiction that σ′′L contains a long y-path for some y ∈ {PAST, FUTURE}. Thus there is a path x1, x2, x3
in Nσ′′L where x2 has in-degree and out-degree 1 and ισ′′L(x1) = ισ′′L(x2) = ισ′′L(x3) = y. If y = PAST
then ιµ(x1) = ιµ(x2) = ιµ(x3) = LEFT. Otherwise y = FUTURE, and ιµ(x1), ιµ(x2), ιµ(x3) are all in
{RIGHT, FUTURE}. But note that all three of ιµ(x1), ιµ(x2), ιµ(x3) must be the same value, otherwise µ
has an arc uv with ιµ({u, v}) = {RIGHT, FUTURE} and µ is not well-behaved. So if x2 has in-degree and
out-degree 1 in Nµ, then µ has a long y-path for y = ιµ(u), a contradiction as µ is compact. Otherwise,
suppose x2 has an incident arc x2z for z 6= x3 (the case of an incident arc zx2 is similar). As x2z is not an
arc in Nσ′′L , it must hold that ιµ(z) = ιµ(x2) (otherwise the arc would not become redundant or µ is not
well-behaved). Then since x2z is not redundant w.r.t µ, there is some tree arc uv in Tµ such that x2z is an
arc of φµ(uv). But this implies also that x1x2 is also arc of φµ(uv), as x2 6= ιµ(u). Thus x2z is deleted in
the construction of σ′′L only if uv is, which would in turn imply that x1x2 is deleted, again a contradiction.

So we may assume that σ′′L is compact and thus σ′′L = c(σ′′L) = σL, so σL is the {LEFT → PAST, RIGHT →
FUTURE}-restriction of µ. A similar argument shows that σR is the {RIGHT → PAST, LEFT → FUTURE}-
restriction of µ.

So now assume that σL and σR are both compact-valid. Let ψL denote the compact F ∪ R-partial
solution for which σL is the compact {L→ PAST}-restriction, and let σ′L be the {L→ PAST}-restriction
of ψL, so that σL = c(σ′L). Similarly let ψR denote the compact F ∪L-partial solution for which σR is the
compact {R→ PAST}-restriction, and let σ′R be the {R→ PAST}-restriction of ψR, so that σR = c(σ′R).
(See Fig. 10)

By Lemma 22, the only long-y-paths in σ′L are for y = PAST. So σ′L is a subdivision of σL in which the
only subdivided arc are those uv for which ισL

(u) = ισL
(v) = PAST. So let AL the set of these arcs, and

for each uv ∈ AL let Puv be the corresponding path in Nσ′L . Similarly let AR be the set of arcs in NσR

that are subdivided to produce σ′R from σR (noting that ισR
(u) = ισR

(v) = PAST for any uv ∈ AR), and
let Puv be the corresponding path in Nσ′R for each uv ∈ AR. Observe that since ισL

(u) = PAST implies
ιµ(u) = LEFT and ισR

(u) = PAST implies ιµ(u) = RIGHT, the arc sets AL and AR are disjoint.
Now let σ∗L be the subdivision of σ′L (not σL) by replacing uv with Puv for all uv ∈ AR ∩ A(Nσ′L).

Equivalently, σ∗L is the subdivision of σL derived by replacing uv with Puv for all arcs uv in AL ∪ (AR ∩
A(NσL

)). Thus c(σ∗L) = σL. Define σ∗R analogously.
We claim that σ∗L is a valid signature for (L, S,R ∪ F ). To see this, let ψ∗L be the subdivision of ψL

derived by replacing uv with Puv for every uv in AL ∪ (AR ∩A(NψL
)). Then by Lemma 18 and the fact

that σ′L is the {L→ PAST}-restriction of ψL, we have that σ∗L is the {L→ PAST}-restriction of ψ∗L. Thus
ψ∗L is valid, and a similar argument shows that ψ∗R is valid.

Now let µ∗ (respectively µ∗L, µ
∗
R) be the subdivision of µ derived by replacing uv with Puv for all uv in

AL ∪AR (respectively AL, AR). Note that µ∗ is also a subdivision of both µ∗L and µ∗R.
Using a similar approach to before, by Lemma 18 and the fact that σL is the {LEFT → PAST, RIGHT →

FUTURE}-restriction of µ, we can show that σ′L is the {LEFT → PAST, RIGHT → FUTURE}-restriction of
µ∗L. Using this fact in turn together with Lemma 18, we can show that σ∗L is the {LEFT → PAST, RIGHT →
FUTURE}-restriction of µ∗. Similarly we can show that σ∗R is the {RIGHT → PAST, LEFT → FUTURE}-
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restriction of µ∗.
If σ∗L is a valid signature for (L, S, F ∪R) which is the {LEFT → PAST, RIGHT → FUTURE}-restriction

of µ∗, and σ∗R is a valid signature for (R,S, F ∪ L) which is the {RIGHT → PAST, LEFT → FUTURE}-
restriction of µ∗, we can now apply Lemma 14 to see that µ∗ is a valid reconciliation for (L ∪R,S, F ).

It remains to observe that as µ∗ is valid and µ = c(µ∗), Lemma 20 implies that µ∗ is compact-valid.

From Lemmas 26 to 28 we have the following:

Corollary 2. Let (L ∪ R,S, F ) be a Join bag with child bags (L, S, F ∪ R) and (R,S, F ∪ L), and let
σ be a compact signature for (L ∪ R,S, F ). Then σ is compact-valid if and only if there is a compact
reconciliation µ for (L ∪ R,S, F ), and compact-valid signatures σL for (L, S, F ∪ R) and σR for
(R,S, F ∪ L), such that σ is the compact-{{LEFT, RIGHT} → PAST}-restriction of µ, σL is the compact-
{LEFT → PAST, RIGHT → FUTURE}-restriction of µ, and σR is the compact-{RIGHT → PAST, LEFT →
FUTURE}-restriction of µ.

4 Algorithm and running time
Algorithm 1 gives a summary of our algorithm for TREE CONTAINMENT. To summarise: we compute for
each bag x = (P, S, F ) in the tree decomposition, a set CVx of compact-valid signatures for x - that is,
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Algorithm 1: Tree Containment (DIN(NIN, TIN))

1 Compute tw(NIN);
2 if tw(DIN(NIN, TIN)) > 2tw(NIN) + 1 then return FALSE;
3 Compute a nice minimum-width tree decomposition T of DIN(NIN, TIN);
4 foreach bag x = (P, S, F ) of T in a bottom-up traversal do
5 if x is a Leaf bag then
6 CVx ← set of all compact signatures σ = (D(N,T ), φ, ι) for x with ι−1(PAST) = ∅;

7 else if x is a Forget bag with child y = (P \ {z}, S ∪ {z}, F ) in T then
8 foreach σ ∈ CVy do
9 add the compact-{z → PAST}-restriction of σ to CVx

10 else if x is an Introduce bag with child y = (P, S \ {z}, F ∪ {z}) in T then
11 foreach compact signature σ of x do
12 if CVy contains the compact-{z → FUTURE}-restriction of σ then
13 add σ to CVx;

14 else if x is a Join bag with children yL = (L, S,R ∪ F ) & yR = (R,S, L ∪ F ) then
15 foreach compact reconciliation µ for x do
16 σL ← the compact-{LEFT → PAST, RIGHT → FUTURE}-restriction of µ;
17 σR ← the compact-{RIGHT → PAST, LEFT → FUTURE}-restriction of µ;
18 if σL ∈ CVyL and σR ∈ CVyR then
19 add the compact-{{LEFT, RIGHT} → PAST}-restriction of µ to CVx;

20 foreach (D(N,T ), φ, ι) ∈ CVroot(T ) do
21 if ι−1(FUTURE) = ∅ then return TRUE;

22 return FALSE

compact signatures for which there exists a corresponding F -partial solution. The algorithm uses compact-
restrictions to convert a compact signature of one bag into a compact signature for a different bag. Recall
that such a restriction works by mapping certain vertices to a label PAST or FUTURE, removing redundant
parts of the display graph and collapsing long paths, similarly to the process described in Section 2.3.
See Sections 3.3 and 3.8 for the formal definitions. For join bags, the algorithm uses reconciliations,
3-way analogues of signatures, using labels {LEFT, RIGHT, FUTURE} instead of {PAST, FUTURE}, see
Section 3.7.

The correctness of the computation of the sets CVx follows from Lemmas 23 to 25 and Corollary 2. The
correctness of the last three lines, in which we return TRUE if and only if there is a compact-valid signature
(D(N,T ), φ, ι) for the root bag with ι−1(FUTURE) = ∅, is a consequence of Corollary 1.

To show that the running time is bounded in a function in the treewidth of N , the main challenge is to
bound the number of compact signatures for a bag (P, S, F ) by a function of |S| (which, by Theorem 1,
we may assume is at most 2tw(N) + 1). In order to do this, we first bound the size of the display graph
D(N,T ) in a signature by a function of |S|. We will then use this to bound the number of possible display
graphs, embedding functions and isolabellings, and thus the number of compact signatures.
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Lemma 29. Any compact signature σ = (D(N,T ), φ, ι) for a bag (P, S, F ) satisfies
|V (D(N,T )))| ∈ O(|S|). Any compact reconciliation µ = (D(N,T ), φ, ι) satisfies
|V (D(N,T )))| ∈ O(|S|).

Proof: Let σ = (D(N,T ), φ, ι) be a compact signature for (P, S, F ).
We first bound the number of arcs in D(N,T ). To do this, let AS denote the subset of arcs in D(N,T )

incident to a vertex in ι−1(S). As there is only one vertex u with ι(u) = s for each s ∈ S and every vertex
in D(N,T ) has total degree at most 3, we have that |AS | ≤ 3|S|. As φ(uv) and φ(u′v′) are arc-disjoint
for any distinct tree arcs uv, u′v′, it follows that there are at most |AS ∩ A(N)| arcs uv of T for which
φ(uv) contains an arc from AS . There are at most |AS ∩A(T )| arcs in T incident to a vertex from ι−1(S).
Thus there are at most |AS | arcs uv in T for which {u, v} ∪ V (φ(uv)) contains a vertex from ι−1(S).

Every remaining arc uv in T has ι({u, v} ∪ V (φ(uv))) ⊆ {PAST, FUTURE}. Furthermore as σ is
well-behaved, we must have that ι(u) = ι(v), and ι(u′) = ι(v′) for every arc u′v′ in the path φ(uv).
It follows that for all but at most |AS | ≤ 3|S| arcs of T , we have ι(u) = ι(v) ∈ {PAST, FUTURE} and
ι(V (φ(uv))) = {PAST} or ι(V (φ(uv))) = {FUTURE}.

If ι(u) = ι(v) = PAST and ι(V (φ(uv))) = {PAST}, then uv is redundant w.r.t {PAST}, a contradiction
as we may assume no valid signature has a {PAST}-redundant arc. Similarly we have a contradiction if
ι(u) = ι(v) = FUTURE and ι(V (φ(uv))) = {FUTURE}. So it must be the case that for all but at most
3|S| tree arcs uv, either ι(u) = ι(v) = PAST and ι(φ(uv)) = {FUTURE}, or ι(u) = ι(v) = FUTURE and
ι(φ(uv)) = {PAST}. In particular, we have that ι(φ(v)) 6= ι(v) and, so v has out-degree 2

It follows any lowest arc uv in T is one of the at most |AS | arcs {u, v} ∪ V (φ(uv)) that contains a
vertex from ι−1(S). Thus in total T has at most 2|AS | ≤ 6|S| arcs.

To bound the arcs of N , observe that any arc uv ∈ A(N) not in AS satisfies ι(u) = ι(v) = PAST or
ι(u) = ι(v) = FUTURE (it cannot be that {ι(u), ι(v)} = {PAST, FUTURE} as σ is well-behaved). Then uv
must be part of the path φ(u′v′) for some tree arc u′v′ (otherwise uv is redundant w.r.t σ, a contradiction).
So now let A′N denote the set of arcs in N that are part of a path φ(uv) for some tree arc uv (note that A′N
and AS are not necessarily disjoint but A(N) ⊆ A′N ∪AS).

For any internal vertex z on a path φ(uv), we must have that z is incident to an arc from AS . Indeed
suppose this is not the case, then z and its neighbours in φ(uv) form a path x1, x2, x3 with ι(x1) = ι(x2) =
ι(x3) = y ∈ {PAST, FUTURE}. This forms a long-y-path (contradicting the fact that σ is compact), unless
z = x2 is incident to another arc in A(N). But such an arc cannot be in AS by assumption, and also cannot
be part of a path φ(u′v′) for any tree arc u′v′ (as φ(uv) and φ(u′v′) share a vertex z only if uv, u′v′ share
a vertex w with φ(w) = z). Thus there is no other arc incident to z, and we have that σ is not compact, a
contradiction.

Thus we now have that every internal vertex of a a path φ(uv) is incident to an arc from AS , and thus
there are at most 2|AS | ≤ 6|S| such vertices. As there at most |A(T )| ≤ 2|AS | paths φ(uv), we have that
|A′N | ≤ 2|AS |+ 2|AS | ≤ 12|S|.

Thus in total, the number of arcs inD(N,T ) is at most |A(T )|+|AS |+|A′N | ≤ 2|AS |+|AS |+2|AS | =
5|AS | ≤ 15|S|. It follows that the number of non-isolated vertices in D(N,T ) is at most 30|S|. It remains
to bound the number of isolated vertices.

There are at most |S| isolated vertices u in V (D(N,T )) for which ι(u) ∈ S. For the rest, If u ∈ V (T )
and φ(u) ∈ V (N) are both isolated vertices then we have ι(u) = ι(φ(u) ∈ {PAST, FUTURE} (as
ι(u) 6= ι(φ(u)) would imply u has out-degree 2 and so u and φ(u) are both redundant w.r.t σ. Similarly
if v is an isolated network vertex with no u ∈ V (T ) for which φ(u) = v, then v is redundant w.r.t σ. As
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σ has no redundant vertices (since σ is well-behaved), it follows that every isolated vertex in D(N,T )
is either a tree vertex u with φ(u) not isolated, a network vertex v = φ(u) for which u is not isolated,
or a vertex of ι−1(S). As there are at most 30|S| non-isolated vertices, it follows that there are at most
30|S|+ |S| isolated vertices.

Thus in total, |V (D(N,T ))| ≤ 30|S|+ 30|S|+ |S| = 61|S| ∈ O(|S|).
An identical argument holds for a reconciliation µ.

Lemma 30. Let k be the width of the tree decomposition of DIN(NIN, TIN). Then, the number of compact
signatures for a bag (P, S, F ) and the number of compact reconciliations for a Join bag can be upper-
bounded by 2O(k2).

Proof: Let σ = (D(N,T ), φ, ι) denote a compact signature for (P, S, F ) (The arguments for a reconcilia-
tion µ are similar). By Lemma 29, |V (D(N,T ))| ∈ O(|S|) and, by the properties of a tree decomposition,
|S| ≤ k + 1, implying |V (D(N,T ))| ∈ O(k). As such, an upper bound for the number of possible graphs
D(N,T ) is 2O(k2) =: f1(k).

For each vertex u ∈ V (D(N,T )), there are at most (|S| − 1) + 2 ≤ k + 2 possibilities for ι(u), as ι(u)
is either a vertex in S other than u or one of the labels PAST and FUTURE (LEFT, RIGHT, and FUTURE
for a reconciliations). Thus, the number of possible isolabelings for a given display graph D(N,T ) is
(k + 3)O(k) =: f2(k)

Now, to bound the number of possible embedding functions φ, observe that φ is fixed by (a) specifying
φ(u) for every tree vertex u (|V (N)||V (T )| ∈ kO(k) possibilities) and (b) the set of arcs in N that appear
in some path φ(uv) (2|A(N)| ∈ 2O(k2) possibilities) – indeed, if this set of arcs is chosen correctly, then
it contains only one path from φ(u) to φ(v), which must be the path φ(uv). Thus, for any fixed display
graph D(N,T ), the number of possible embedding functions is upper-bounded by 2O(k2) =: f3(k).

Now, for any bag (P, S, F ), the number of possible choices for σ = (D(N,T ), φ, ι) is bounded by
f(k) := f1(k)f2(k)f3(k) = 2O(k2) · 2O(k log k) · 2O(k2) = 2O(k2).

Lemma 31. Algorithm 1 is correct and runs in 2O(k2) · |A(NIN)| time, where k = tw(NIN).

Proof: First, note that, by Theorem 1, NIN does not display TIN unless tw(DIN(NIN, TIN)) ≤ 2k + 1, so
we are safe to return FALSE if tw(DIN(NIN, TIN)) ≤ 2tw(NIN) + 1 in line 2 of Algorithm 1. Otherwise,
for each bag x in a nice tree decomposition of DIN(NIN, TIN), Algorithm 1 calculates the set CVx of
compact-valid signatures for x. In each case the set CVx is calculated using the previously-calculated set
CVy for each child y of x. The correctness of this construction follows from Lemma 23 (for the Leaf bags),
Lemma 24 (for Forget bags), Lemma 25 (for Introduce bags), and Corollary 2 (for Join bags). Finally, the
algorithm returns TRUE if and only if there is a valid compact signature (D(N,T ), φ, ι) for the root bag of
the tree decomposition, such that ι−1(FUTURE) = ∅. The correctness of this follows from Corollary 1.

To see the running time, first note that a nice, minimum-width tree decomposition of DIN(NIN, TIN)

with O(|V (DIN(NIN, TIN))|) = O(|A(NIN)|) bags can be found in 2O(tw(DIN(NIN,TIN))
2)|A(NIN)|, that is,

2O(k2)|A(NIN)| time [Bod96, Klo94]. By Theorem 1, we may assume DIN(NIN, TIN) has treewidth at most
2k + 1 and, thus, |S| ≤ 2k + 1 for every bag (P, S, F ) in the decomposition. Note that, computing any
compact restriction of a signature σ can be done in polynomial time and, by Lemma 30, the number of
such signatures |CVx| for a bag x is bounded by 2O(k2). It is, thus, evident that, for any bag x = (P, S, F ),
the set CVx can be computed in 2O(k2) · kO(1) =2O(k2) time (see Algorithm 1).
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Lemma 31 immediately implies the following theorem.

Theorem 2. TREE CONTAINMENT can be solved in 2O(tw(NIN)
2) · |A(NIN)| time.

5 Future work
Before implementing our dynamic programming algorithm, one should first try to reduce the constant in
the bound on the number of possible signatures as much as possible. Such reductions may be possible for
instance by imposing further structural constraints on the signatures that need to be considered. It would
also be important to find ways of generating valid signatures for one bag directly from the valid signatures
if its child bag(s), rather than generating all possible signatures and then removing the invalid ones.

From a theoretical point of view, there are many opportunities for future work. First, there are multiple
variants and generalizations of TREE CONTAINMENT that deserve attention, including non-binary inputs,
and inputs consisting of two networks (i.e. where the task is to decide if a network is contained in a
second network). For the latter problem our approach would have to be extensively modified, since our
size-bound on the signatures heavily relies on TIN being a tree. In the case of non-binary inputs, it is likely
that a similar approach to the one in this paper would allow us to get a size-bound on the tree side of each
signature. However, more work would be needed in order to prove a bound on the network side, and the
number of possible embeddings. Note in particular that, under our current approach for deriving signatures
from (partial) solutions, all neighbours of S are preserved. Without a bound on the degrees, the number of
such vertices can be much larger than the treewidth of DIN(NIN, TIN)). This can lead to an explosion in
the length of ‘compact’ paths and the number of possible embeddings that one may need to consider for
a single bag. Such explosions may be avoidable through clever bookkeeping, or it may be that they are
unavoidable and can be used to force a W [1]-hardness reduction.

Second, a major open problem is whether the HYBRIDIZATION NUMBER problem is FPT with respect
to the treewidth of the output network. Again there are different variants: rooted and unrooted, binary
and non-binary, a fixed or unbounded number of input trees. For some applications, the definition of an
embedding has to be relaxed (allowing, for example, multiple tree arcs embedded into the same network
arc) [HMSW16, HLM21]. Other interesting candidate problems for treewidth-based algorithms include
phylogenetic network drawing [KS20], orienting phylogenetic networks [HvIJ+19] and phylogenetic tree
inference with duplications [vIJJ+19].

Finally, we believe that the approach taken in this paper (applying dynamic programming techniques
on a tree decomposition of single graph representing all the input data, with careful attention given to the
interaction between past and future) could potentially have applications outside of phylogenetics, in any
context where the input to a problem consists of two or more distinct partially-labelled graphs that need to
be reconciled.
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