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INTRODUCTION

In this presentation, the contributions of high metric resolution hyperspectral images from

the FENIX sensor (2 m) from the CAMCATT airborne campaign (ONERA) covered in June

2021 in Toulouse will be presented to characterise urban generate morpho-social pattern

indicators. These indicators are essential in urban planning to understand the relationships

between urban forms, functions, populations, and uses. The construction of this type of

morpho-social (and morpho-economic) indicators is usually made by integrating socio-

economic and demographic databases with high resolution remote sensing images.

Hyperspectral images make a significant contribution compared with multispectral images,

thanks to their ability to discriminate between urban geographical objects: soils,

vegetation, types of materials, etc.
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Fig. 2 – Urban Land Cover Morphology of Toulouse

Results of processing with the predictive deep-learning model using the Multi-Layer Perceptron algorithm (left) and principal 

component analyses in T-mode (centre) and S-mode eigenvector (right).

Fig. 3 – Extraction of geographic objects in dense urban environments

Identification of the built-up structure (left), water surfaces and humidity (right) using a Support Vector Machine classifier, and 

vegetation (centre) using a Linear Assemblist Transformed into Principal Component Analyses of the green and infrared bands.
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Fig. 4 – Morpho-urban and socio-

demographic/economic model 

Vegetation

Fig. 1 – Overall accuracy of urban land cover mapping with vegetation (left) and built-ups (right) objects.

The level of mapping accuracy is better than that of reference data such as Street Tree Layer (yellow linear) for 

vegetation or Open Street Map (blue linear) for built-ups. 

The methodological approach, which was exploratory and involved testing several

approaches, focused on the individual identification of urban components (spectral

analysis and machine learning extraction) and urban structures/forms: morphologies and

deep learning object recognition, data classification and urban-object data fusion.

• Metric hyperspectral images can be used to better identify the geographical objects

that make up the urban fabric in dense built-up areas. They make it possible to identify

urban objects and environmental indices (trees, buildings, materials, water features,

humidity, etc.) that are absent from geographic databases and more precise spatially.

• The urban morphologies, socio-demographic and economic structures identified are

perfectly spatially correlated.

• The exploratory methodologies show a strong correlation between the results and the

spectral sensitivity of the images. Certain algorithms, whatever the spectral domain

and spatial resolution (2 and 4 meters), such as ACP Tmode and Fuzzy Artmap NNA,

are remarkably consistent in their ability to recognise urban objects and morphologies.
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