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Abstract: This contribution is part of the objective of diligent universal care that ensures the well-
being of a patient. It aims to analyze and propose enriched image-guided procedures for surgical
interventions and restricted delivery of implanted drugs in minimally invasive and non-ionizing
circumstances. This analysis is supported by a literature review conducted in two ways. The first
aims to illustrate the importance of recent research and applications involved in different topics of
the subject; this is mainly the case for the introduction’s literature. The second concerns the literature
dedicated to having more detailed information in context; this mainly concerns the citations in the
different sections of the article. The universal goals of medical treatments are intended to involve the
well-being of the patient and allow medical personnel to test new therapies and carry out therapeutic
training without risk to the patient. First, the various functionalities involved in these procedures and
the concerns of the magnetic resonance imaging technique (MRI) and ultrasound imaging technique
(USI), recent contributions to the subject are reviewed. Second, the intervention procedures guided
by the image and the implemented actions are analyzed. Third, the components of the fields involved
in MRI are examined. Fourth, the MRI control of the treatments, its performance and its compliance
are analyzed. Compatibility with MRI via electromagnetic compatibility (EMC) is conferred and
demonstrated for an actuation example. Fifth, the extension of the concepts mentioned in the article,
in the context of patient comfort and the training of medical staff is proposed. The main contribution
of this article is the identification of the different strategic aids needed in healthcare related to image-
assisted robotics, non-ionized, minimally invasive and locally restrictive means. Furthermore, it
highlights the benefits of using phantoms based on real biological properties of the body, digital
twins under human control, artificial intelligence tools and augmented reality-assisted robotics.

Keywords: MRI-control; surgical interventions; implanted drug delivery; image-guided robotics;
compliant treatment; MRI-compatibility

1. Introduction

Over the past few decades, medical procedures have moved from a direct fully invasive
“hand-eye” pairing process to a minimal invasive (MI) process with robot-imaging pairing
in a closed-loop treatment architecture. Acts related to the invasive nature mainly concern
surgical interventions (Sis) and the restricted dispensing of drugs. Currently, both of these
procedures can use MI image-guided (IG) robotics, which enables patient comfort and
safety, and medical staff accuracy and efficiency. MI surgeries can be performed on most
parts of the body, and the restricted drug delivery (RDD) that can be accomplished by
implanted therapies, helps prevent the generalization of drugs throughout the body. Most
imaging devices can be used in IG procedures. However, different imaging techniques
are each tolerable for a specific situation. For example, those involving ionizing radiation
would not be suitable for long interval exposure actions. In such a case, only the two
imaging techniques exerting non-ionizing (NI) characteristics can be used; namely magnetic
resonance imaging technique (MRI) and ultrasound imaging technique (USI).
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An Imaging device is supposed to provide high-resolution 3D picturing of target con-
figuration and neighboring material, including treatment instruments. Robotic assistance
works normally within the imaging scaffold along with the target throughout imaging,
permitting cooperative tasks to monitor treatment in a closed-loop mode. This can include
pursuing target motion and deformation, localizing robotized equipment, and supervis-
ing therapy release. With the ever-increasing medical use of imaging technique-robot
linked procedures, this presaged a new methodology to aid treatment techniques that
allow medical staff to supervise patients better and more efficiently. Positioning robotic
organizations within the frame of the scanner allows for a synergy of the imaging’s visual
ability and the robotic assistant’s manipulation skill, resulting in closed-loop processing.
With respect to imaging techniques with non-ionizing behavior, both MRI and USI reflect
the characteristics mentioned above regarding imaging devices. Note that both imaging
techniques can work in procedures with MI, IG, and NI for either SI or RDD operations. It
should be noted that the only difference in behavior between these two imaging techniques
is that the USI can only operate in airless and boneless windows. Additionally, operational
precautions are required for MRI, for which the scaffolding environment must be free of
electromagnetic (EM) noise. Nevertheless, MRI seems to be the universal imaging tool
conditional to avoiding EM noise.

Robotic systems mainly contain actuation and sensing components. In the case of MRIs,
the whole system is made of non-magnetic and non-conductive materials. This assumes
that actuators and sensors contain negligible magnetic and conductive materials. Given
that the scanner, is hyper sensitive to electromagnetic disturbances, questions on MRI-IG
robots’ presence in this environment are of concern. Matters that do not disturb the scanner
are called MRI-compatible and those that are disruptive are labelled MRI-incompatible.
The latter produce artifacts deteriorating the images. The scanner compatibility relates to
its functional ability and can be controlled via functional control (FC) analysis. For MRI,
FC analysis is via electromagnetic compatibility (EMC) analysis.

Although SI and RDD robotic actions can behave autonomously, medical staff can
supervise and modify their conducts via remote control of the procedure. In other words,
the robot-imaging duo that replaced the hand-eye one is still mastered in a different way.

The different issues related to IG treatments in MI and NI circumstances are widely
covered in the literature, and in particular in recent research and applications in several
medical fields. We have selected a few samples of each item representing different treat-
ments. In the next paragraphs, this recent literature will be presented to show the wealth of
current activity on the subject.

Regarding SI, many contributions have been proposed recently, see examples [1-7].
These selected examples of recent works show different interests of SI using MRI or USI.
Two of them are reviews of state of the art MRI-guided robotic interventions. The other five
concern different applications, myocardial perfusion without exogenous contrast agents,
artificial intelligence-assisted ultrasound-guided robotic trans-carotid revascularization,
MRI safety considerations for MRI-guided radiotherapy, intraoperative transapical cardiac
MRI-guided intervention and MR conditional biopsy, and ablation needle tip artifacts. For
research concerning imaging performance in general, see examples [8-13]. These include
different imaging of metastatic spinal cord compression, pediatric body imaging, MRI
cephalometric, and muscle fatty infiltration. Artifacts in images due to incompatibility of
external insertions were also investigated, see examples [14—-20]. These concern artifacts
mainly in MRI due to metals, MRI artifact, and evaluation of pre examination screening,
effects of metallic biomaterial, metal-artifact reduction, imaging-phantom study, imaging
for periprosthetic joint infection, off-resonance artifact correction, and metal artifacts from
passive implants. Several studies on safety conditions related to imaging techniques are
reported, e.g., [21-24]. These concern safety in radiation therapy, radiofrequency-induced
implant heating, active auditory implants, and metallic implants. New or improved designs
of scanners are given in examples [25-31]. These improvements concern breast intervention
robot, reducing MRI susceptibility artefacts in implants, hip arthroplasty implants with
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metal artifact correction, improving MR image quality in metallic implants, superconduct-
ing magnet designs and MRI accessibility, improved visualization in patients with implants,
and 3D-printing techniques for optimized imaging compatibility. Numerous investigations
have been carried out on MRI-compatible devices; see examples [32—41]. These concern
MRI-compatible devices in cardiac MRI, compatible fiber optic multi sensor, self-supervised
reconstruction of gradient descent, safe robotic manipulator, compatible robots, compat-
ible endonasal surgical robotic system, imaging-enhanced cranial neurosurgery, plastic
piezoelectric motor stator, and compatible piezoelectric motors.

Recent work considering RDD has been reported in the literature; see e.g., [42-50].
These regard USI-guided DD enhancement, microbubble-mediated USI DD, microneedle
patches for DD, DD to cancer cells, spatial, temporal, and dose control of DD, nanoparticles-
based strategies to improve the delivery of therapeutic RNA in precision oncology,
nanoparticle-based delivery systems in pancreatic cancer, and nano-drug delivery sys-
tem for cancer. Contributions on implanted technologies and their concerns could be
found, e.g., in [51-59]. These concern artefacts of biodegradable magnesium-based im-
plants, assessment of implant-related pain and dysfunction, cochlear implant positioning
and MR imaging quality, adverse local tissue reactions near metal implants after total
hip arthroplasty, metal artefact reduction sequences for a piezoelectric bone conduction
implant, image quality and artifact reduction of a cochlear implant, MRI in patients with
cardiac implantable electronic devices, and MRI artifacts caused by auditory implants.
Implanted treatment structures might manage confined conduct MI-imbedded equipment.
These structures employ RDD for nearby tissue containing a specified area. Implanted
treatments designate at best the practice of biodegradable ingredients and at least materials
compatible with the treatment [60-71], as well as wireless operated implanted actuations.

The evolution, described in the above lines, from early hand-eye pairing of SI and
RDD until robot-imaging IG controlled MI- and NI-universal procedure using MRI under
FC (EMC analysis) and hand-eye supervision is schematically summarized (Memento) in
Figure 1.

HAND-EYE PAIRING OF SI & RDD

MI
ROBOT-IMAGING PAIRING
IG - SI & RDD

NI - MRI & USI
USI (AIRLESS and BONELESS WINDOWS)
MRI (MORE UNIVERSAL / COMPATIBILIY?)
FC of MRI - EMC ANALYSIS
SUPERVISION (HAND-EYE)

Figure 1. Summarized (Memento) successive evolution of surgical and pharmacotherapeutic routines
following diligent medical treatment.

This contribution aims to review, analyze, and confer MI and NI procedures of SI and
implanted RDD using IG robotics.

The second section of the paper assesses and analyzes image guided medical pro-
cedures involving surgical interventions and implantable drug delivery schemes as well



Appl. Sci. 2023,13, 13039

4 0f 21

as their functional required specifications. The third section describes and illustrates the
different field components of MRI and discusses safety issues related to these components.
In the fourth section, the MRI-controlled treatments performance and compliance are ana-
lyzed and exhibited. This involves a compatibility compliance check of electromagnetic
field perturbations and EMC conformity control applied to an actuation example. The fifth
section offers a discussion of possible extensions of the different paper concepts from the
perspective of patient well-being, staff training, and task verification.

2. Image Guided Medical Procedures

As mentioned earlier, mildly intrusive automated surgical or therapeutic treatments
have emerged as an important tool in current medication. This involves IG robotics of SI
and implanted therapies. It characterizes the advantages of MI treatment, e.g., faster catch-
up intervals for patients, and escapes many of its disadvantages for medical personnel,
e.g., disturbed pointer-vision matching and lack of autonomy within the treatment of
the concerned body portion of the patient. Thus, the automated MI treatment reduces
the body and mental burden after the staff weigh it. Nevertheless, offering personalized
and appropriate support to further improve clinical performance remains a subject of
exploration. Figure 2 illustrates schematics principle of IG medical procedures, involving
medical environment (surgery, implanted therapeutic, etc.), medical tools (surgical needle,
drug source, etc.), and medical data (action, position, etc.).

Medical
environment

Medical
data
Imaging
(Processing)

Tool

Medical tool control

Figure 2. Schematics principle of IG medical treatment.

As mentioned earlier, choosing NI behavior involves using IRM or USI for IG operation
of SI or RDD. As discussed and summarized in Figure 1, MRI appears to be suitable for all
parts of the body without restriction. Due to its universal character, we will focus on MRI
analysis, knowing that the USI can be used if it is suitable for the materials examined. Note
that USI reflects good maneuverability and reasonable cost while MRI, despite producing
soft tissue imaging, is more complicated and expensive. Therefore, from the point of
view of practical use, the choice between the two imaging techniques depends on the
situation. Therefore, the USI must be used whenever possible, even for interventions. Only
in cases involving bone and/or air, such as the brain and many other parts of the body,
should we use MRI. Normally, surgical centers performing MRI-assisted treatments are
expected to have surgical-imaging rooms and do not need to move the scanner. Regarding
imaging costs, if the well-being of the patient is taken into account, the only option for
non-ionizing and minimally invasive treatment regarding a brain intervention, for example,
is an MRI-assisted intervention.

Indeed, MRI can deliver high-grade 3D imagining of object structure, nearby tissue,
and instruments; however, there are substantial challenges in its use for effectually guiding
SI or RDD procedures. These challenges consist of the use of three magnetic fields of
dissimilar natures (as we will see later), allergic reactions to EM noise, and the restrained
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work area inside the imaging scaffold. This last drawback can be overcome by using an
open structure scanner while accepting the disadvantage of a lower field intensity and
therefore slower operation. On the other hand, MRI appears to be superior to other imaging
strategies for different reasons. In addition to its NI behavior, it exhibits exceptional contrast
allowing the visualization of tumors as well as other characters not detectable by other
imaging techniques. It has true 3D-imaging potential, including multimodal detection, e.g.,
blood flow, temperature, biomarker tracking, etc. Under these conditions, the practice of
robotic assistance by an MRI can allow an excellent IS or RDD.

2.1. Image Guided Surgical Interventions

Intraoperative imaging has fashioned a necessity to elaborate medical tools that satisfy
the requests of diverse imaging techniques. Imaging backgrounds are demanding and they
intensely influence the shape of the utensils used there. Advances in image resolution and
disjunction capability have made interventions possible during the imaging procedure.
3D-imaging technique provides actual faithful descriptions of the human tissues while the
instrument is being operated within a specified space, by tracking the coordinates of the
image. In IG intraoperative procedures and MI-NI SI, MRI is increasingly more utilized due
to its consistency, precision, and security. Due to its superior ability to differentiate tumor
tissue from normal tissue, MRI is employed in SI for biopsies or tumor abstractions, for
example [72-78]. The employed tools should be compatible with MRI. This compatibility
has steered advancement of novel materials adapted for such tools. The use of an MRI-
compatible robot to facilitate the approach to the body tissues inside the imaging scaffold
permits the patient to remain within the scaffold during the entire SI time. Such IG
association permits an important reduction of the SI duration, a higher SI accuracy, and
faster recovery progression. Currently, the more accurate the IG association, the more
recognizable the MRI-compatible strategies will be. Figure 3 schematically summarizes the
representation of IG-SI, involving the interventional device in the MRI scaffold, the surgical
data (action and location), the MRI imaging processing, and the device control.

Surgical treatment Surgical

data

MRI
(Processing)
3D positioning

(Imaging scaffold)

Device
control

Interventional
device

Figure 3. Schematics of an MRI IG-SI.

2.2. Implantable Drug Delivery Schemes

Operational drug delivery (DD) devices are able to deliver drugs to the target location
and maintain drug intensity within a curatively relevant range. The dosage provided
should deliver the drug for a specific duration necessary to achieve the greatest positive
effect with the least adverse side consequences to adjacent healthy matters. Classical DD
by means of discontinuous oral or intravenous delivery can result in high and rapid blood
drug intensities soon after administration, thus intolerable harmful consequence may occur
for patients. Another problem with these delivery modes is that they undergo first-pass
metabolic rate, resulting in a significant reduction in drug concentration by the liver before
attaining normal spread and hence often multiple deliveries are needed. DD made locally,
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sustainably, and supervised, can have the least adverse side effects possible. The use of DD
implants enables such behavior.

The most used DD schemes comprise polymer reservoir-based structures, pumps
(peristaltic, infusion, and osmotic), and micro and nano electromechanical structures
(MEMS and NEMS), see e.g., [79-94]. Reservoir structures utilize drug release by dispersion
via a film structure. The different pumps are used according to the type of disorder, the
location of the implant, and the DD permanence. Larger ones are more suited to prolonged
illnesses, while smaller pumps like the osmotic pump will be more suited to local-specific
particular effects using DD of uniform release. Regarding MEMS and NEMS, they behave
at micro and nano levels of DD without any significant danger due to a precipitous onset
of the drug.

Even though implants present sophisticated and effectual ways for controlled DD, all
of them necessitate placing by medical staff. The corresponding Sls differ according to the
implant location and are connected to possible defies and unfavorable outcomes. Even if
side consequences are generally slight, in certain conditions they can be substantial. It may
be noted that the convolution and restrictions of SI for implant placing and withdrawing
have weighty influences on the technology tolerability by the patient. Intrinsically, upcom-
ing mechanism layout should utilize MI methodologies and reduced implant sizes, and
less introduction-withdrawal processes can fully influence their capacity.

Future implants could be mainstream DD methodology, if thoughtfully designed with
miniature size for MI insertion and continuous DD avoiding inclusion-exclusion with ease
of drug filling. In fact, all of the implants described in the last paragraph are made from
non-biodegradable materials and require the disposal of SI. Two next challenges should be
acknowledged: The first concerns the facilitation of self-contained implanted DD systems
addressing simple and spatially homogeneous problems using constant drug release and
biodegradable structures that facilitate disposal of implanted systems [60-71]. The second
concerns the treatment of spatially complicated cases requiring non-uniform DD, focusing
only on diseased areas and avoiding healthy areas. This requires mobile implants with
actions in restricted areas. Such a problem is closely similar to that of a complex SI requiring
precise spatial assistance, as the IG assistance discussed in the last section. This implanted
therapy will be MI-NI-IG-RDD [42-50]. The implant structure may be of non-biodegradable
material but must be MRI-compatible when using such imaging techniques [95,96]. This
procedure is similar to the MI-NI-IG-SI replacing the assisted actuated-robot with an
assisted actuated-RDD implant. Wireless driving and monitoring transmission entails
conveying strength and signals from an outside supply to the embedded device free of
physical connection [95,96]. Figure 4 shows a schematically summarized representation of
an MRI IG-implanted DD, including therapeutic device (DD source) in MRI scaffold, DD
data (treated zone location), MRI processing, and device control.

Implemented therapy

Therapy
data
(Imaging scaffold) | MRI
(Processing)
3D positioning &
action features

Implant device Device

control

Figure 4. Summarized schematics of MRI IG-implanted DD therapeutic.
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2.3. The Necessary Specifications of Surgeries and Drug Deliveries

For the well-being of patient, treatment should be precisely limited to the touched
region in SI and RDD, as described in Sections 2.1 and 2.2. Such precision is associated
with the actuation accuracy of the mechanism and is greatly connected to the correctness of
the space tracing. Consequently, the necessary condition for such high quality topological
following is the image-controlled position localization. The summary of these necessary
specifications are highlighted in Figure 5.

PRECISION OF ACTION - SI & RDD
(MI)
ACCURACY of ACTUATION +
CORRECTNESS of SPACE TRACING =
HIGH QUALITY TOPOLOGICAL FOLLOWING
IMAGE-CONTROLLED POSITION LOCALIZATION
IG - SI & RDD

Figure 5. Summary of requests needed for MI-IG-SI and RDD.

Such a scheme may entail a collaborative arrangement functioning self-sufficiently
as shown for example in the case of RDD in Figure 6. Figure 6a shows a collaborative
self-governed IG-RDD scheme including the scanner, the body troubled zone, the implant,
the control system and the supply. Figure 6b illustrates two scanned brains, a safe brain,
(left) and an affected brain (right) with a troubled indicated zone.

PROCESS
SCANNER
IMPLANT
LOCATION
L TROUBLED,
DRUG SIZE e
POWER /
SUPPLY
» WIRELESS CONTROL IVERANTL

(a)

Figure 6. Cont.
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(b)

Figure 6. Representation of IG-RDD: (a) a collaborative self-governed IG-RDD scheme, (b) scanned
safe brain (left), and affected brain (right) with a troubled indicated zone (the circle on the right side).

3. MRI Field Components

The image produced in an MRI is created by signals resulting from the interaction
of magnetic fields and biological tissues. In an imaging progression, three magnetic
fields of different natures are used to form 3D images. The first type is a high static field
generating a magnetization vector in biological tissues aligning the tissue particles (protons)
and measuring their density. The second type corresponds to three low-frequency space
gradient fields locating aligned protons in tissues and forming a 3D spatial reconstruction
of different tissue divisions in images. The third one is a radiofrequency field stimulating
the magnetization vector to permit its detection by the scanner and the conversion of tissue
assets into images [95].

Indeed, MR, in principle, is used to image the nuclei of hydrogen atoms that are
confined within the human body. A nucleus (a proton, for hydrogen), is a positive charge
mass which rotates around an axis on itself. In the body tissues, protons are arbitrarily
oriented and do not spin together. Consequently, they exhibit zero resultant magnetic field
(the human body has no magnetization) and they perform out of phase. Reflecting the
principle of MRI, protons need three essential organizations inside the explored fragment
of the body tissue: to align all the protons in a fixed direction, to rotate them all together
in the tissue, and to localize their distinctive origin in the space. Proton alignment could
be realized by the insertion of the fragment of the body tissue in a high-strength magnet
to drive them together in the axial orientation of its static magnetic field By. In order to
achieve protons spinning together, an excitation by supplying wave radiofrequency By
with a frequency equal to the protons’ rotation natural frequency fi, (Larmor frequency
of protons) could be used allowing such action of resonance. In order to localize protons
distinctive positions in the space, one may use their associated magnetic field’s distinctive
values. For this, a 3D space gradient G(x, y, z) with pulsations of very low-frequency
repetition could be applied to the field By, allowing the position distinctive values of Byq (X,
y, z) = Bp + G(x, y, 2).

The MRI system uses three different fields, By, B, and G(x, y, z), to determine imaging
of the examined fragment of the body in the following way. The value of the Larmor
frequency of protons fi, is dependent of the static field value and equal to 42.5 MHz per
tesla. The corresponding position distinctive values f; 4 (x, y, z) are functions of Byq (x, y,
z). An excitation of protons by radiofrequency (RF) wave energy followed by a relaxation
restoring this energy permit the corresponding signal detection by a suitable tuned RF
antenna coil. These signals correspond to values of By of frequencies of f; 4 (x, y, z), which
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allow coding of a spatial imaging for the concerned body part. Note that the frequency of
By is equal to f;, which is usually tuned to value of f 4 (X, y, z) in the center of the examined
body fragment.

The three different fields employed in the MRI system are very different in nature
with respect to their magnitude, frequency, and existence during system operation: By:
0.2-10T, 0 Hz, always present, gradient: 0-50 mT/m, 0-10 kHz, multiple pulses of few
ms, By: 0-50 uT, 8-300 MHz, (amp. mod. pulses) of few ms. These fields are produced
by the strong magnet, gradient coils, and RF coil, respectively. The most popular RF
coil comes in the form of a birdcage and is used as tuned RF antenna. In conventional
operation of the scanner, its correct operation requires the protection and compensation
of the magnet and gradient fields. The RF field arrangement seems the most exposed and
represents a weakness to noise fields and certain nearby external materials. Figure 7 shows
a representation of the MRI three components and their corresponding fields.

Figure 7. MRI components and fields: (a) electromagnet By, (b) gradient coils (one couple for one
axis), (c) RF coil By.

Safety in MRI

In modern MRI schemes, one looks for briefer cycles with superior chronological and
spatial resolutions. Such features seek mainly optimized performance of the scanner and
comfort of the patient. As mentioned previously, the final image resulting from an MRI is
produced by an interaction between its different fields and the biological tissues subjected
to the imaging process. This interaction is at the origin of the signals converted into an
image. Such an interaction may produce other undesirable effects regarding patient health
or image quality. Due to these effects, understanding their behaviors is necessary for patient
safety and the technical characteristics of scanner signals and images. Thus, the design of
the scanner components and the realization concerns of different patient treatments could
be adapted.

There are possible biological effects due to the interaction of the different magnetic
fields with living tissues. We will discuss these fields successively. Theoretically, the
harmless field is the static one By, as only body-embedded ferromagnetic matters could
produce patient security troubles depending on the field strength. In general, the medical
staff ponder such a problem prior to the imaging procedure. The RF field B; could be the
most menacing for living tissues as the specific absorption rate (SAR) activated is relatively
important depending on field strength and frequency. A high SAR with a long exposure
duration can produce a temperature rise non-tolerated by the body [97,98]. In the case of
MRI, the RF sequences are short enough and respect the limits fixed by the international
safety standards [99,100]. The coils in pulsed low-frequency field gradients in MRI are
constructed in such a way that the 3D gradient is uniform and can be regulated [95]. A
difficult question concerns the output of the gradient involving the field strength and the
rate of change of course. Shorter cycles with less imaging time can be achieved with higher
gradient output. However, higher outputs may lead to disagreeable peripheral nerve
stimulation (PNS) [101]. In general, PNS in this context appears not to worry the patient;
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however, excessive gradient outputs can steer to life-worrying cardiac stimulation [101].
Again, the medical staff can consider such a problematic prior to the imaging procedure.

From the foregoing analysis, one can notice that optimizing the effectiveness of the
MRI components, even in view of patient well-being, cannot be achieved disregarding
patient security. Indeed, each case could be different and inquiring about personal data
prior to treatment is essential. Note also that the interaction of the patient tissues with
the different fields can cause image artifacts due to, e.g., embedded devices in the body.
Considering inquired personal data, such artifacts can be counterweighed.

4. MRI-Controlled SI and RDD—Performance and Compliance

As mentioned before, the MRI system is very sensitive to EM perturbations under the
form of external field noises or the introduction of certain types of material in imaging scaf-
fold nearby the different MRI three field sources. The magnetic and conductive materials
are of main concern The MRI system is typically shielded against external field noises. Re-
garding external materials inserted in the imaging scaffold, the static field and the gradient
low frequency field are compensated and protected for slight matter introduction. For more
vulnerable RF fields, it is important to control the conformity of such matter insertion.

In the case of MRI-controlled treatments, we are facing a problem relating to external
matter introduction in the imaging scaffold. In such a situation, only non-magnetic and
non-conductor materials can be employed. Nevertheless, in such case, we need an actua-
tion action. Few high-performance actuators are free of non-magnetic and non-conductor
materials. Piezoelectric actuators could be suitable candidates, but they need to be checked
to verify their conformity, i.e., not perturbing the RF field distribution [102-111]. These
actuators are composed of piezo material behaving dielectric and very thin (trivial) elec-
trodes. The dielectric material is not supposed to perturb the field but the electrodes need
to be controlled, even in the case of trivial size conductors.

4.1. Compatibility Compliance Check

We can generally characterize the MRI-compatibility of an external object as being
MRI-safe, not affecting image quality, and working as expected. As mentioned before, MRI
utilizes static field By, field gradients (position conditional field) and RF field B;. A good
MRI needs a constant uniform magnetic field By (by using shimming coils) and uniform
linear controlled field gradients. These fields require adjustments and compensations for
consistent functioning of the scanner. The image feature can be compromised for different
causes. The scanner can be the origin of reduced quality image for e.g., insufficiently
shimmed. Living tissues can also reduce the image feature due to susceptibility variations
e.g., between soft tissues and air holes in the brain. In addition, body embedded matters
e.g., prostheses and particularly metallic ones, can also deteriorate image quality. The
image alteration due to metallic materials, which present susceptibility variations, hang
on the size, shape, and direction with respect to B;. In addition, the induced currents in
metals primarily by the RF field but also low-frequency gradient fields, can affect the image.
The most important cause of image perturbation could be the associated tools involved
in the robotic system. These could interact mainly with the RF field, which is the most
vulnerable among the fields in an MRI. The main robot body and medical tools are actually
constructed of non-magnetic, non-conducting materials. Different solutions are proposed
for the mechatronic part of the robot involving electronics, sensors, actuators, etc., which
represent a challenging compatibility question [37-41,95,96,110,112-121].

Experimental conformity control of MRI-compatibility could be achieved for existing
IG installations by measuring the field perturbations due to the introduction of the tested
tools inside or nearby the imaging scaffold, depending on the use of the tool. This can
be conducted through sensor arrays fixed in specific positions. Such a control procedure,
in the case of MRI systems, is relatively complicated (need of specific shielded chambers)
and generally expensive. The field perturbation measuring tools could perturb themselves;
therefore, the field and the procedure have to be managed to compensate such self-effect.
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In addition, the nature of the tested tools may be unsafe and can cause damages for the
scanner components. Moreover, such experimental control cannot be used in the design of
inexistent installations. Under these conditions, an interesting solution could be a control
by numerical modeling via EMC analysis to verify the MRI compatibility of the different
tools [95-97,122-124].

4.2. Electromagnetic Field Perturbations

The field perturbations in a uniform electromagnetic field (EMF), due to the introduc-
tion of materials with specific characteristics, are governed by their induced EMF. The EMF
equations (see the next section) are function of the next vector variables and parameters: H
and E are the magnetic and electric fields, B and D are the magnetic and electric inductions,
J is the current density, o is the electric material conductivity, and w is the angular fre-
quency pulsation of the source field. The magnetic and electric comportment material laws
between B/H and D/E are represented by the material permeability p and the permittivity e,
respectively. Note that the conductor and dielectric behaviors of non-magnetic matters are
dependent on the frequency following the relative values of o and w.¢ in the relation ] = 0 E
+j w D such that when o >> w.¢, the behavior is mainly a conductor, and for o << w.g, it is
mainly dielectric. In the RF range, the above-mentioned electrodes in piezoelectric actuators
belong to the first category and the piezoelectric material to the second, respectively.

4.3. EMC Conformity Control

The EMC analysis aims to control the influence of hosting in the MRI atmosphere
diverse stuffs employed in medical treatments. Intended for EMC analysis, we can reflect
expressions (1)—(4) that give the EMF equations:

V xH=] @
J=cE+jwD+]Je ©)
E=-VV-jwA ®)

B=V X A @)

In the EMF Equations (1)—(4), H, E, B, D, and J have been defined before, A and V
are the magnetic vector and electric scalar potentials. Je the source current density. The
parameters o, w, |, and ¢ have been defined before. The symbol V is a vector of partial
derivative operators, and its three possible implications are gradient (product with a scalar
field), divergence and curl (dot and cross products, respectively, with a vector field). The
Input source term in EMF Equations (1)—(4) is J or its equivalent electric field o Ee.

The ruling Equations (1)—-(4) can be solved locally in the birdcage RF coil-antenna
for reference conditions (without inserted matter) compared to situations involving the
diverse controlled matters. This can be accomplished by means of numerical discretized
methods [125-131] or other techniques allowing local computations.

The magnetic compatibility of a material is characterized by its permeability 1 (=pg. 1)
or the susceptibility x (=p:—1). For a high magnetic material, i >> 1 and u, ~ X. For non-
magnetic material, i = 1 and x = 0. Thus, a magnetic material that is MRI-compatible has
ur ~ 1, or x = 0. In addition, the conductivity o characterizes the electric compatibility of a
material, so an electric conductor that MRI-compatible has o = 0. Therefore, a completely
MRI-compatible material has zero values for both x and o. In practice, a magnetic field
as By could be perturbed by the introduction of a magnetic material with non-zero value
of x and indirectly due to eddy currents induced in a material introduced in the imaging
scaffold having a non-zero value of o.
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Note that these perturbations depend on the size, the shape, and the orientation of
the introduced matter as well as the frequency of the field (as will be demonstrated in the
next example).

4.4. Application Example

Let us consider a simple example illustrating the mentioned methodology for checking
the compliance of the materials inserted into the birdcage coil positioned in the tunnel of
an MRI. The corresponding case geometry involves a 30 cm diameter and 30 cm length
birdcage coil-antenna located in a 60 cm diameter tunnel. The tested matters have a form
of a cube with 5 cm side (125 cm®) embedded in the center of the birdcage coil. A RF field
in the birdcage coil at 63.87 MHz corresponds to the frequency fy, (for a value of By of 1.5 T)
tuned to the value in the center of the considered geometry. The corresponding RF field
distribution in the tunnel can be computed for the reference case (without tested matter)
and for the different cases, involving tested matters in the studied scheme. Computations
are based on 3D discretization of the field E using edge finite elements with appropriate
boundary conditions. Figure 8 illustrates the RF field distribution in the reference case.

v 8x10™

Figure 8. RF magnetic field (vertically directed) distribution in the axial cross section of the birdcage
inside the tunnel. Reference case: no material.

We will illustrate now the case of piezoelectric actuation involving piezo material
coated on two opposite faces by very thin electrodes. The characteristics of the piezo are
ur = 1.0, &r = [450°990°990], 0 = 0 S/m. Note that the relative permittivity is given by an
anisotropic vector where the value in polarization direction is less than in the other two
directions. The electrodes conductors are characterized as p, = 1.0, ¢, = 1.0, 0 = 3.77 X
107 S/m.

Since the currents induced by a field develop in the section of the conductor perpen-
dicular to the direction of the field, we can consider the following two opposite cases. Field
distributions were calculated for both situations of electrodes perpendicular and parallel
to the direction of the field. Figure 9 displays the field distributions for both cases. The
results confirmed that the orientation of the electrodes and hence the actuator (evoked
in Section 4.3) plays an important role. The influence of the conducting electrode can be
considerably reduced if it is parallel to the field. Note that Figure 9c shows almost the same
field distributions as Figure 8.
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Figure 9. Distribution of RF magnetic field (vertical) in piezoelectric coated by thin electrodes case:
(a) structure arrangement, (b) electrodes perpendicular to the field, (c) electrodes parallel to the field.

Notice that the field distributions of Figures 8 and 9 are reached for equal input
conditions; consequently, they can offer a behavioral evocation. At that point, the present
EMC analysis in MRI light up a procedure for checking any disturbs through image-
guided maneuvers.

5. Discussion

In this manuscript, the analysis and evaluation carried out on image-guided proce-
dures of surgical interventions and restricted delivery of implanted drugs under minimally
invasive and non-ionizing circumstances have illustrated that such a topic is totally benefi-
cial. At this stage, various questions deserve to be raised:

To know how to go further in the well-being of the patient and allow the medical team
to verify new therapies and even to carry out treatment training without risk for the patient,
we can use physical copies of the real patient. This helps elucidate the treatment most
suited to the actual patient. This can be conducted on different levels. The use of a physical
phantom built of materials corresponding to the real body biological properties in the IG,
SI, and RDD automated procedures (see Figures 3, 4 and 6) reflects the simplest level.

A more sophisticated level corresponds to the practice of a matching process of the
physical phantom treatment process and a virtual replica of such process. Such a twin
of real-virtual procedure permits a self-corrected behavior. The real part delivers sensor-
processed data to the virtual side and the last forward-control instructions issued from
the mathematical model of the real part. This matching procedure allows mastering all
undesired and hazarded functioning phenomena. The matching real-virtual twin uses
the concept of digital twin (DT), [132]. Such a concept exists and is practiced in different
industrial fields [133-135]. Figure 10 illustrates schematically the DT concept in the case of
medical procedures assisted by imaging IG. The real part includes the complex medical
procedure involving the scanner, the robot, and body phantom. The virtual side comprises
the digital procedure model involving the digital body phantom. The matching link in
between these two sides include sensing, control, and processes.
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Figure 10. Schematic representation of the DT concept for IG medical treatments.

The superior level of using IG medical treatments regards real procedures of DT
involving the real patient. Moreover, this matching twin could be amended with “Human-
in-the-loop” approaches permitting the supervision, the control, and the correction of its
functioning; we will call such twins HDTs.

The DT concept is gradually entering the healthcare field using virtual replicas of
physical individuals that go beyond a static image integrating the dynamic behavior of
a real living individual [136-146]. Human-robot interaction associated with DT allows
higher control of IG, SI, and RDD, minimizing risk for the patient [147-149]. The quality of
the body model plays an important role in matching behavior; see for example [150-153].
One of the important challenges is real-time modeling of tissues, with distortion and
development that resemble reality. DT and HDT potentially revolutionize the treatment,
investigation and training of IG, SI, and RDD. Despite its capabilities, medical treatment is
still in its beginning in terms of its ability to represent human tissue in a living, real-time
digital replica.

Furthermore, to go beyond, the involvement of artificial intelligence (Al) practices in
these medical treatments contributes to reducing the complexity of information acquisition
and post-processing in MRI through the use of strategy acceleration and offering faster
analysis times with easier image processing [145,154]. Al can be used also to execute planed
recurrent training jobs in IG robots.

This can be profusely enlarged by using increased interaction of human and robot
advancing the global system performing through augmented reality (AR)-assisted robotic
operations. AR associated to IG-MRI in complex procedures can allow significant reduction
of hazards like tissue damage, bleeding, post-operative trauma, etc. In addition, DT can play
an important role in AR-assisted robotic operations regarding patient-adapted treatment.
This permits determination of precisely the disorder source and required action utilizing
patient individual modeling from deep learning databases. Moreover, the association
AR-DT allows an important accuracy in the domain of suturing, tying, and placement
contrasted to hand operations [155-159].

6. Conclusions

In this paper, the assessment of image-guided procedures of surgical interventions
and implanted restricted drug delivery under minimally invasive and non-ionizing cir-
cumstances has been realized. Analysis of the different concerns confronted in this review
has revealed that there is an incessant progress in this domain. The matters of significance
erected by this topic are various, the most significant of which are summarized as follows.

The universal goals of medical treatments could be to go further in the well-being of
the patient and to allow medical personnel to test new therapies and carry out therapeutic
training without risk to the patient. Due to these purposes, different strategic aids can be
requested in healthcare:
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Image-assisted robotics, non-ionized, minimally invasive, and locally restrictive means;
Physical phantoms based on the actual biological properties of the body;

Digital twins under human control;

Artificial intelligence tools and robotics assisted by augmented reality.

The specific challenges on this topic fall into two categories. The first is linked to the
operation of the robotic assistance by the scanner, which can be improved using augmented
reality and artificial intelligence tools. The second concerns the complete automation,
conditioned on patient safety, of image-guided procedures, which can be carried out by
digital twins controlled by humans in real time. This may enable more precise, minimally
invasive restrictive actions with the possibility of strict human observational control.

One of the most difficult problems concerns the behavior of tissues in real time in
virtual simulations, which is needed among others in matching of real-virtual twins. This
problem faces different difficulties, computational complexities, tedious tasks relating to the
calculation time and real-time matching speed required. The main cause of these difficulties
is the non-linearity of biological tissues reflecting complex constitutive laws representing
the deformation and displacement behaviors of elastic tissues. Either approximate constitu-
tive laws, adapted computational techniques, or a combined methodology could address
this open research problem.
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