Uniform concentration property for Griffith almost-minimizers

Camille Labourie, Antoine Lemenant

To cite this version:

Camille Labourie, Antoine Lemenant. Uniform concentration property for Griffith almost-minimizers. 2023. hal-04328837v1

HAL Id: hal-04328837
 https://hal.science/hal-04328837v1

Preprint submitted on 7 Dec 2023 (v1), last revised 22 Mar 2024 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

UNIFORM CONCENTRATION PROPERTY FOR GRIFFITH ALMOST-MINIMIZERS

CAMILLE LABOURIE AND ANTOINE LEMENANT

Abstract

We prove that a Hausdorff limit of Griffith almost-minimizers, is still a Griffith almost-minimizer. For that purpose we present a new approach to the uniform concentration property of Dal Maso, Morel and Solimini which avoids the use of the coarea formula, not available for the symmetric gradient. We then obtain several applications, as for instance a general procedure to perform blow-up limits.

Contents

1. Introduction 1
2. Definitions and statement of the main result 4
3. Preliminaries about limits 9
4. Weak limiting properties 12
5. Fine lower density bound for quasiminimizers 18
5.1. Initialization of the jump 18
5.2. Size of holes through a projection. 21
5 5.3. Proof of Proposition 5.1 23
6. Uniform concentration property 25
7. Applications 33
7.1. Existence of blow-up limits 33
7.2. Equivalent definitions of the singular part 35
7.3. Dimension of the singular part 39
Appendices 41
A. Auxiliary lemmas about affine maps 41
Acknowledgements 42
References 42

1. Introduction

In recent years, a lot of attention has been given to the minimizers of the so-called Griffith functional,

$$
G(u, K):=\int_{\Omega \backslash K} \mathbb{C} e(u): e(u) \mathrm{d} x+\mathcal{H}^{N-1}(K)
$$

defined on pairs function-set (u, K), where $K \subset \Omega \subset \mathbb{R}^{N}$ is a relatively closed set and $u: \Omega \backslash K \rightarrow$ \mathbb{R}^{N} a displacement field. Here, $e(u)=\left(\nabla u+\nabla u^{T}\right) / 2$ stands for the symmetrized gradient of u and \mathbb{C} is an elasticity tensor.

Date: December 6, 2023.

Since the functional is related to the variational model of crack propagation in linearized elasticity, it has been the central object of many works in the literature. Besides, the mathematical study of minimizers, that falls into the area of "free-discontinuity problems", brings a lot of technical difficulties compared to the well known scalar analogue, the Mumford-Shah functional.

A powerful approach to study the Griffith functional, which is usually referred to the "weak formulation", is to relax the problem in the $G S B D$ space introduced by Dal Maso in [9], where the pair (u, K) is replaced by $u \in G S B D$ and $K=J_{u}$. Several existence and regularity results have been obtained in the $G S B D$ context in many recent papers (see for instance [5, 7, 6]).

In this paper we shall not work in the $G S B D$ class but work directly on pairs (u, K). Our results apply for instance to the class of topological almost-minimizers for which K may not be represented by the jump set of a GSBD function. In this respect our work is more in the spirit of the approaches introduced for the Mumford-Shah functional by David [11, Bonnet [3] or Dal Maso, Morel and Solimini [8].

The main contribution of the present paper is a limiting result for sequences of Griffith almostminimizers converging with respect to the Hausdorff convergence of sets, see Theorem 2.7. The difficulty in this context is to prove the semicontinuity behavior of the surface term. This issue was already the main subject of previous works on the $G S B D$ space and was the key point in order to get the existence of a minimizer (see for instance [9, (6) but the litterature does not deal with the convergence in the Hausdorff sense. Yet, extracting converging sequences for the Hausdorff distance is instrumental for the regularity theory, as for instance to construct blow-up limits of minimizers, or to perform any argument by contradiction and compactness. We present at the end of the paper, several possible applications.

We shall prove along the way that Griffith almost-minimizers enjoy the so-called uniform concentration property, that was first introduced by Dal Maso, Morel and Solimini in 8, [35] in their work on the Mumford-Shah functional. This property says that every ball contains a smaller ball (but not too much smaller) where the density of the singular set is almost larger than 1 . The point is to guarantee the lower-semicontinuity of the surface area along a converging sequence, similarly as in Golab's theorem. The uniform concentration of Mumford-Shah minimizers was proved in [8] in the plane and in [38], [33] in higher dimension. However, the technique of these papers do not adapt to the symmetric gradient because they are heavily based on the fact that the gradient bound $\int_{B_{r}}|\nabla u|^{2} \mathrm{~d} x \leq C r^{N-1}$ gives a Hölder control on u outside of a suitable neighborhood of the singular set, and also on the co-area formula. Alternatively, Rigot [36] deduced the uniform concentration from the uniform rectifiability of the singular set, but the proof of uniform rectifiability due to David and Semmes [10], [13] relies on the co-area formula as well.

We present a new approach to the uniform concentration which is suitable to the Griffith functional in any dimension and does not rely on the co-area formula. Here is one of our main result (we refer to Section 2 for the Definition of a topological Griffith almost-minimizer).

Theorem 1.1 (Uniform concentration property). For each constant $\varepsilon \in(0,1)$, there exists constants $\varepsilon_{0}>0$ and $C_{0} \geq 1$ (depending on $N, \mathbb{C}, \varepsilon$) such that the following holds. Let (u, K) be a topological Griffith almost-minimizer with any gauge h in Ω. For all $x_{0} \in K$ and for all $r_{0}>0$ such that $B\left(x_{0}, r_{0}\right) \subset \Omega$ and $h\left(r_{0}\right) \leq \varepsilon_{0}$, there exists $x \in B\left(x_{0}, r_{0} / 2\right)$ and $r \in\left(C_{0}^{-1} r_{0}, r_{0} / 2\right)$ such that

$$
\mathcal{H}^{N-1}(K \cap B(x, r)) \geq(1-\varepsilon) \omega_{N-1} r^{N-1},
$$

where ω_{N-1} is the measure of the $(N-1)$-dimensional unit disk.

Notice that using a same approach, one would also obtain a new proof for the uniform concentration property in the scalar context of Mumford-Shah minimizers as well, without using the coarea formula.

We now provide a brief overview of our proof of uniform concentration in order to highlight the distinctive features of our work, for a specialist reader. The principle is to use Carleson estimates to find many balls $B(x, r)$ where the elastic energy of u is very small and to show that in such a ball,

$$
\begin{equation*}
\mathcal{H}^{N-1}(K \cap B(x, r)) \geq(1-\varepsilon) \omega_{N-1} r^{N-1} \tag{1}
\end{equation*}
$$

This latter point is given by Proposition 6.2 and finds its intuition in the fact that the singular set of a Griffith minimizer behaves like a minimal sets (which are known to have density ≥ 1) in regime of low elastic energy.

The proof of Proposition 6.2 is by contradiction. After a suitable rescaling, we assume that there exists a sequence of almost-minimizers $\left(u_{i}, K_{i}\right)_{i}$ in $B(0,1)$ with vanishing elastic energy but with density uniformly bounded from above by $1-\varepsilon$. We extract a subsequence which converges to a pair (u, K) and we aim to show that the limit K is a minimal set and that the area sequence is lower semi-continuous along the sequence.

For this purpose, our starting point is inspired by the work of FANG [22], 21] and a series of works by De Lellis et al [15], [17, [16], [18] on lower semi-continuity for sequence of minimal sets. The key point of these works is to establish the rectifiability of the limit. This is not straightforward as in general, a limit of rectifiable sets may not be rectifiable. Thus, the main difficulty of Proposition 6.2 will be to prove that K is rectifiable and this will enable us to reduce the problem to showing that (11) holds for a Griffith almost-minimizer in $B(x, r)$ in the situation where both the flatness and the elastic energy are small.

In this case, the geometry of K is under control via the flatness and this allows to bound the density by a constructive argument. This is done in Proposition 5.1 and the proof consists in estimating the "size of holes" not directly for K, but for the orthogonal projection of K onto a hyperplane. Since the projection has less area, it is enough to bound from below the projection of K in order to get (11). Then to estimate the projection, we first prove that under a small flatness and normalized energy, the normalized "jump" has to be greater than some threshold $\tau_{0}>0$. This is Lemma 5.3 which is proved using the construction of a suitable competitor. Our notion of normalized jump in $B(x, r)$ is defined by

$$
J(x, r):=\frac{\left|b_{1}-b_{2}\right|+r\left|A_{1}-A_{2}\right|}{\sqrt{r}},
$$

where $b_{1}+A_{1} x$ and $b_{2}+A_{2} x$ are two rigid movements that approximates u above and below the approximative plane P in $B(x, r)$. Then we can estimate the size of holes for the projection of K onto P, in $B(x, r)$, by integrating $u \cdot \nu$ along segments in the direction ν passing "through" the holes, where ν is orthogonal to P. This is done in Lemma 5.4 and explains why we can avoid the use of the coarea formula.

To be more precise, our argument has a degree of subtlety because only one direction ν is admissible as passing "through the holes", and we cannot integrate along an almost vertical family of non colinear directions: therefore, we choose one good almost vertical direction that "represents well" the jump or in other words we slightly turn the plane P on which we project. By doing so, we loose a constant in the estimates, but since we have a universal control on the threshold $\tau_{0}>0$ which initialises the jump, the estimates are flexible enough to get the desired conclusion. This is done in Section 5 in the proof of Proposition 5.1.

With the uniform concentration at hand, we can prove a general principle for limits of sequences of almost minimizers, as stated in a second main result Theorem 2.7. We then use it to
get several applications. The first one is a general strategy to take blow-up limits, and prove that any blow-up sequence must converge to a global minimizer, which is the purpose of Section 7.1. In proposition 7.3 we also prove that any global minimizer in dimension 2 whose singular set is a cone, must be a line, a half-line, or a triple junction. Theorem 2.7 also allows to adapt the approach of Ambrosio, Fusco and Hutchinson [1] to establish the relation between the integrability exponent of the symmetric gradient and the Hausdorff dimension of the singular set.

Let us now introduce some definitions and state our main result more precisely.

2. Definitions and statement of the main result

Our working space is an open set $\Omega \subset \mathbb{R}^{N}$, where $N \geq 2$. We say that a constant is universal when it depends only on N. We define a rigid motion as an affine map $a: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ of the form $a(x)=b+A x$, where $b \in \mathbb{R}^{N}$ and $A \in \mathbb{R}^{N \times N}$ is a skew-symmetric matrix.
Elasticity tensor. Given two matrices $\xi, \eta \in \mathbb{R}^{N \times N}$, the notation $\xi: \eta$ denotes the Frobenius inner product of ξ and η,

$$
\xi: \eta:=\sum_{i j} \xi_{i j} \eta_{i j} .
$$

The Frobenius norm is then given by $|\xi|:=\sqrt{\sum_{i j}\left(\xi_{i j}\right)^{2}}$. We fix for the whole paper a symmetric linear map $\mathbb{C}: \mathbb{R}^{N \times N} \rightarrow \mathbb{R}^{N \times N}$ such that for all $\xi \in \mathbb{R}^{N \times N}$,

$$
\mathbb{C}\left(\xi-\xi^{T}\right)=0 \quad \text { and } \quad \mathbb{C} \xi: \xi \geq c_{0}^{-1}\left|\xi+\xi^{T}\right|^{2}
$$

for some constant $c_{0} \geq 1$. Note that \mathbb{C} defines a scalar product on the space $\mathbb{R}_{\text {sym }}^{N \times N}$ of symmetric matrices.
(Coral) pairs. We define an admissible pair as a pair (u, K) such that K is a relatively closed subset of Ω and $u \in W_{\text {loc }}^{1,2}\left(\Omega \backslash K ; \mathbb{R}^{N}\right)$. We say that a relatively closed set $K \subset \Omega$ is coral if for all $x \in K$, for all $r>0$,

$$
\mathcal{H}^{N-1}(K \cap B(x, r))>0,
$$

where \mathcal{H}^{N-1} is the Hausdorff measure of dimension $N-1$. We also say that a pair (u, K) is coral when K is coral.

Competitors. Let (u, K) be an admissible pair. Let $x \in \Omega$ and $r>0$ be such that $\bar{B}(x, r) \subset \Omega$. A competitor of (u, K) in $B(x, r)$ is an admissible pair (v, L) such that

$$
\begin{equation*}
L \backslash B(x, r)=K \backslash B(x, r) \quad \text { and } \quad v=u \quad \text { a.e. in } \quad \Omega \backslash(K \cup B(x, r)) . \tag{2}
\end{equation*}
$$

Given a relatively closed set $K \subset \Omega$, a topological competitor ${ }^{1}$ of K in $B(x, r)$ is a relatively closed subset $L \subset \Omega$ such that $L \backslash B(x, r)=K \backslash B(x, r)$ and

$$
\begin{equation*}
\text { all points } x, y \in \Omega \backslash(K \cup B) \text { which are separated by } K \text { are also separated by } L \text {. } \tag{3}
\end{equation*}
$$

This means that if $x, y \in \Omega \backslash(K \cup B)$ belongs to different connected component of $\Omega \backslash K$, they also belong to different connected components of $\Omega \backslash L$. We say that a pair (v, L) is a topological competitor of (u, K) if it is a competitor of (u, K) as in (2) and if in addition, L is a topological competitor of K as in (3).

[^0]Remark 2.1. An example of topological competitors are sets of the form $L=f(K)$, where $f: K \rightarrow \mathbb{R}^{N}$ is a continous map such that $f=\mathrm{id}$ in $K \backslash B$ and $f(K \cap B) \subset B$. More precisely, the theory of Borsuk maps ([20, Chap. XVII, 4.3]) shows that if A is a compact set of \mathbb{R}^{N} which separates two points $p, q \in \mathbb{R}^{N} \backslash A$ and if $\phi: A \times[0,1] \rightarrow \mathbb{R}^{N}$ is a continuous map such that

$$
\phi(\cdot, 0)=\mathrm{id} \quad \text { and } \quad p, q \notin \phi(A \times[0,1]),
$$

then p and q are still separated by $\phi(A, 1)$. In our case, we consider two points $p, q \in \Omega \backslash(K \cup B)$ which are separated by K and we proceed by contradiction to show that they are separated by $f(K)$. We consider a continuous path γ connecting p, q in $\Omega \backslash f(K)$ and an open set $V \subset \subset \Omega$ such that $\gamma \cup B \subset V$. We introduce the compact set

$$
A:=(K \cap \bar{V}) \cup \partial V
$$

and we observe that since p, q belong to V and lie in distinct connected components of $\Omega \backslash K$, they also lie in distinct connected components of $\mathbb{R}^{N} \backslash A$. We extend f continuously on A by setting $f=\mathrm{id}$ on ∂V. The function f satisfies $f(A \cap B) \subset B$ and $f=\mathrm{id}$ in $A \backslash B$ so p, q stays outside $\phi(A \times[0,1])$, where $\phi(x, t)=(1-t) x+t f(x)$. The theory of Borsuk map then shows that that p and q lie in distinct connected components of $\mathbb{R}^{N} \backslash f(A)$ but this contredicts the fact that γ is disjoint from $f(A) \subset f(K) \cup \partial V$.

Quasiminimizers. We define a gauge as a non-decreasing function $h:(0,+\infty) \rightarrow[0,+\infty]$. In this paper, gauges are allowed not to go to zero when $r \rightarrow 0$, so for example h might be a small constant.

Definition 2.2 (Quasiminimizers). Let $M \geq 1$ and let h be a gauge. A Griffith local M quasiminimizer with gauge h in Ω is a coral pair (u, K) such that for all $x \in \Omega$, for all $r>0$ with $\bar{B}(x, r) \subset \Omega$ and for all competitor (v, L) of (u, K) in $B(x, r)$, we have

$$
\begin{aligned}
\int_{B(x, r) \backslash K} \mathbb{C} e(u): e(u) \mathrm{d} x+ & M^{-1} \mathcal{H}^{N-1}(K \cap B(x, r)) \\
& \leq \int_{B(x, r) \backslash L} \mathbb{C} e(v): e(v) \mathrm{d} x+M \mathcal{H}^{N-1}(L \cap B(x, r))+h(r) r^{N-1} .
\end{aligned}
$$

Moreover,
(i) a Griffith local minimizer is a pair which satisfies the above definition with $M=1$ and $h=0$;
(ii) a Griffith local almost-minimizer is a pair which satisfies the above definition with $M=1$ and a gauge h such that $\lim _{r \rightarrow 0} h(r)=0$;
(iii) a Griffith local topological M-quasiminimizer (resp. almost-minimizer or minimizer) is a pair which satisfies the above definition but only with respect to topological competitors.

In the following, we omit the word "local" and "Griffith" for convenience. Our terminology follows the spirit [11]. Almost-minimizers look like a minimizer at small scales. They are expected to have fine regularity properties and one may hope to classify their local behaviors. On the other hand, quasiminimizers form a much broader class which has bilipschitz invariant properties. Our main result holds for almost-minimizers but some of our intermediate results hold more generally for quasiminimizers and are of independent interest. Note that our definition of quasiminimizers is easier to satisfy than the one in [11, Definition 7.21], and thus has the advantage to include the minimizers of a large class of functionals, see [30, Remark 1]. The notion of quasiminimizer in the book of Ambrosio, Fusco, Pallara [1] correspond in our paper to an almost-minimizer with gauge $h(r)=h(1) r^{\alpha}$.

Remark 2.3 (Standard rescaling of quasiminimizers). If (u, K) is a (resp. topological) Mquasiminimizer with gauge h in a ball $B\left(x_{0}, r_{0}\right)$, then the pair (v, L) in $B(0,1)$, defined by

$$
v(x):=r_{0}^{-1 / 2} u\left(x_{0}+r_{0} x\right) \quad \text { and } \quad L:=r_{0}^{-1}\left(K-x_{0}\right),
$$

is a (resp. topological) M-quasiminimizer with gauge $\tilde{h}(t)=h\left(r_{0} t\right)$ in $B(0,1)$.
Definition 2.4 (Almost-minimal sets). Let h be a gauge such that $\lim _{r \rightarrow 0} h(r)=0$. An almostminimal set with gauge h in Ω is a relatively closed and coral subset $K \subset \Omega$ such that for all $x \in K$, for all $r>0$ such that $\bar{B}(x, r) \subset \Omega$ and for all topological competitor L of K in $B(x, r)$, we have

$$
\mathcal{H}^{N-1}(K \cap B) \leq \mathcal{H}^{N-1}(L \cap B)+h(r) r^{N-1} .
$$

In the case $h=0$, we say that it is a minimal set.
This property says that a topological competitor L for K cannot decrease the area of K, up to an error term. There are different notions of minimal sets in the litterature such as the Almgren minimal sets which are only minimal under Lipschitz deformations. Definition 2.4 is however more suitable to understand Griffith almost-minimizers as they behave as minimal sets of Definition 2.4 in regime of low elastic energy.
Ahlfors-regularity. For each $M \geq 1$, there exist constants $\varepsilon_{A} \in(0,1)$ and $C \geq 1$ (depending on $N, \mathbb{C}, M)$ such that the following holds. Let (u, K) be a topological quasiminimizer with any gauge h in Ω. Then for all $x \in \Omega \cap K$, for all $r>0$ such that $B(x, r) \subset \Omega$ and $h(r) \leq \varepsilon_{A}$, we have

$$
\begin{equation*}
\mathcal{H}^{N-1}(K \cap B(x, r)) \geq C^{-1} r^{N-1} . \tag{4}
\end{equation*}
$$

For details, we refer to [30] which adapts the method of [5], 7] to topological quasiminimizers. Up to choose C a bit larger (still depending only on N, \mathbb{C}, M), it is standard that we also have that for all $x \in \Omega$ and $r>0$ such that $B(x, r) \subset \Omega$,

$$
\begin{equation*}
\int_{B(x, r)}|e(u)|^{2} \mathrm{~d} x+\mathcal{H}^{N-1}(K \cap B(x, r)) \leq C(1+h(r)) r^{N-1} . \tag{5}
\end{equation*}
$$

When $h(r) \leq \varepsilon_{A}$, we directly assume that the right-hand side of (5) is bounded by $C r^{N-1}$. A reasonnable gauge should satisfy at least $\lim _{r \rightarrow 0} h(r)<\varepsilon_{A}$ so that a quasiminimizer with gauge h is locally Ahlfors-regular. We will frequently refer to ε_{A} in the paper as we will need to assume that gauges are less than ε_{A} to take advantage of (4), (5).

Flatness. Let (u, K) be a pair in Ω. For any $x_{0} \in K$ and $r_{0}>0$ such that $B\left(x_{0}, r_{0}\right) \subset \Omega$, we define the flatness $\beta_{K}\left(x_{0}, r_{0}\right)$ of K in $B\left(x_{0}, r_{0}\right)$ as

$$
\beta_{K}\left(x_{0}, r_{0}\right):=\inf _{P} \sup _{x \in K \cap B\left(x_{0}, r_{0}\right)} \operatorname{dist}(x, P),
$$

where P runs among affine hyperplanes passing through x_{0}. This is equivalently the infimum of all $\varepsilon>0$ for which there exists an hyperplane P through x_{0} such that

$$
K \cap B\left(x_{0}, r_{0}\right) \subset\left\{y \in B\left(x_{0}, r_{0}\right) \mid \operatorname{dist}(y, P) \leq \varepsilon r_{0}\right\} .
$$

There always exists an hyperplane P which achieves the infimum. When there is no ambiguity, we write β instead of β_{K}. We can define similarly the bilateral flatness as

$$
\beta_{K}^{\mathrm{bil}}\left(x_{0}, r_{0}\right):=\inf _{P} \max \left(\sup _{x \in K \cap B\left(x_{0}, r_{0}\right)} \operatorname{dist}(x, P), \sup _{x \in P \cap B\left(x_{0}, r_{0}\right)} \operatorname{dist}(x, K)\right) .
$$

The flatness and the bilateral flatness are invariant under rescaling, see Remark 2.3

Normalized elastic energy. For any $x_{0} \in \Omega$ and $r_{0}>0$ such that $B\left(x_{0}, r_{0}\right) \subset \Omega$, we define the normalized elastic energy of u in $B\left(x_{0}, r_{0}\right)$ as

$$
\omega\left(x_{0}, r_{0}\right):=r_{0}^{1-N} \int_{B\left(x_{0}, r_{0}\right) \backslash K}|e(u)|^{2} \mathrm{~d} x .
$$

More generaly, for $p \geq 1$, we define

$$
\omega_{p}\left(x_{0}, r_{0}\right):=r_{0}^{1-2 N / p}\left(\int_{B\left(x_{0}, r_{0}\right) \backslash K}|e(u)|^{p} \mathrm{~d} x\right)^{\frac{2}{p}}
$$

Here the exponent on the radius is chosen in such a way that ω_{p} is invariant under rescaling, see Remark 2.3. Note that $\omega_{2}=\omega$ and that for $p \in[1,2]$, we have $\omega_{p} \leq \omega$ by Hölder inequality.
Local Hausdorff convergence of sets. We consider a sequence of open sets $\left(\Omega_{i}\right)_{i} \subset \mathbb{R}^{N}$ and an open set Ω such that

$$
\begin{equation*}
\text { for all compact set } H \subset \Omega \text {, we have } H \subset \Omega_{i} \text { for } i \text { large enough. } \tag{6}
\end{equation*}
$$

Definition 2.5. Let $\left(K_{i}\right)_{i}$ be a sequence such that for all i, K_{i} is a relatively closed subset of Ω. We say that $\left(K_{i}\right)_{i}$ converges in local Hausdorff distance to a relatively closed subset $K \subset \Omega$ if for all compact set $H \subset \Omega$,

$$
\lim _{i \rightarrow+\infty}\left(\sup _{x \in K_{i} \cap H} \operatorname{dist}(x, K)+\sup _{x \in K \cap H} \operatorname{dist}\left(x, K_{i}\right)\right)=0 .
$$

This means for all $\varepsilon>0$, there exists an index i_{0} such that for all $i \geq i_{0}$,

$$
K_{i} \cap H \subset\{\operatorname{dist}(\cdot, K) \leq \varepsilon\} \quad \text { and } \quad K \cap H \subset\left\{\operatorname{dist}\left(\cdot, K_{i}\right) \leq \varepsilon\right\} .
$$

One can check that this convergence is equivalent to the two inclusions

$$
\left\{x \in \Omega \mid \liminf _{i \rightarrow+\infty} \operatorname{dist}\left(x, K_{i}\right)=0\right\} \subset K \subset\left\{x \in \Omega \mid \lim _{i \rightarrow+\infty} \operatorname{dist}\left(x, K_{i}\right)=0\right\}
$$

Since the right-hand side is always a subset of the left-hand side, these inclusions are actually equalities and we have

$$
K=\left\{x \in \Omega \mid \lim _{i \rightarrow+\infty} \operatorname{dist}\left(x, K_{i}\right)=0\right\} .
$$

As a consequence of the definition, we see that

$$
\begin{equation*}
\text { for all compact set } H \subset \Omega \backslash K \text {, we have } H \subset \Omega_{i} \backslash K_{i} \text { for } i \text { big enough. } \tag{7}
\end{equation*}
$$

It follows from (7) that
for all compact set $H \subset \Omega \backslash K$ and for all open set $V \subset \Omega$,
if $K \cap H \subset V$, then we have $K_{i} \cap H \subset \Omega_{i} \cap V$ for i big enough.
Convergence of pairs. We consider a sequence of open sets $\left(\Omega_{i}\right)_{i} \subset \mathbb{R}^{N}$ and an open set Ω such that

$$
\text { for all compact set } H \subset \Omega \text {, we have } H \subset \Omega_{i} \text { for } i \text { large enough. }
$$

Definition 2.6. Let $\left(u_{i}, K_{i}\right)_{i}$ be a sequence such that for all $i,\left(u_{i}, K_{i}\right)$ is a pair in Ω_{i}. We say that $\left(u_{i}, K_{i}\right)_{i}$ converges to a pair (u, K) in Ω if
(i) $\left(K_{i}\right)_{i}$ converges to K in local Hausdorff distance;
(ii) for all connected component \mathcal{O} of $\Omega \backslash K$, there exists a sequence of rigid motions $\left(a_{i}\right)_{i}$ such that for all compact set $H \subset \mathcal{O}$,

$$
\lim _{i \rightarrow+\infty} \int_{H}\left|u_{i}-a_{i}-u\right|^{2} \mathrm{~d} x=0
$$

This is the vectorial analogue of the convergence considered by Bonnet [3]. Note that the limit displacement u is only determined up to a rigid motion in each connected component of $\Omega \backslash K$.

Now, here is the main result of our paper.
Theorem 2.7. Let $\left(\Omega_{i}\right)_{i}$ and Ω be a sequence of open sets as in (6). Let $\left(u_{i}, K_{i}\right)_{i}$ be a sequence such that for all $i,\left(u_{i}, K_{i}\right)_{i}$ is a topological almost-minimizer with gauge h_{i} in Ω_{i}. We assume that $\left(u_{i}, K_{i}\right)_{i}$ converges to a pair (u, K) in Ω. We define for $r>0$,

$$
h(r)= \begin{cases}\lim _{t \rightarrow r^{+}}\left(\limsup _{i} h_{i}(t)\right) & \text { if this quantity is }<\varepsilon_{A} \\ +\infty & \text { otherwise. }\end{cases}
$$

and we assume that $\lim _{t \rightarrow 0^{+}} \lim \sup _{i} h_{i}(t)=0$. Then (u, K) is a topological almost-minimizer with gauge h in Ω. Moreover, for all $x \in \Omega$ and $r>0$ such that $\bar{B}(x, r) \subset \Omega$, we have

$$
\begin{aligned}
& \liminf _{i \rightarrow+\infty} \int_{B(x, r) \backslash K_{i}} \mathbb{C} e\left(u_{i}\right): e\left(u_{i}\right) \mathrm{d} x \geq \int_{B(x, r) \backslash K} \mathbb{C} e(u): e(u) \mathrm{d} x \\
& \limsup _{i \rightarrow+\infty} \int_{B(x, r) \backslash K_{i}} \mathbb{C} e\left(u_{i}\right): e\left(u_{i}\right) \mathrm{d} x \leq \int_{B(x, r) \backslash K} \mathbb{C} e(u): e(u) \mathrm{d} x+h(r) r^{N-1}
\end{aligned}
$$

and

$$
\begin{aligned}
& \liminf _{i \rightarrow+\infty} \mathcal{H}^{N-1}\left(K_{i} \cap B(x, r)\right) \geq \mathcal{H}^{N-1}(K \cap B(x, r)) \\
& \limsup _{i \rightarrow+\infty} \mathcal{H}^{N-1}\left(K_{i} \cap \bar{B}(x, r)\right) \leq \mathcal{H}^{N-1}(K \cap \bar{B}(x, r))+h(r) r^{N-1} .
\end{aligned}
$$

If furthermore

$$
\lim _{i \rightarrow+\infty} \int_{H}\left|e\left(u_{i}\right)\right| \mathrm{d} x=0 \quad \text { for all compact set } H \subset \Omega \backslash K
$$

then u is a rigid motion in each connected component of $\Omega \backslash K$ and K is an almost-minimal set with gauge h in Ω.

This result generalizes to the Griffith setting the known limiting theorems of the scalar case. The first theorem of this kind was due to Bonnet [3, Theorem 2.2] for blow-up limits of Mumford-Shah minimizers in \mathbb{R}^{2}. It was generalized to Mumford-Shah almost-minimizers in any dimension by Maddalena, Solimini [32, Theorem 11.1] and David [11, Theorem 38.3]. The particular case where the Dirichlet energy goes to zero was also dealt with by Ambrosio, Fusco, Hutchinson [1, Theorem 5.4] and De Lellis, Focardi [14, Theorem 13]. Note that the notion of minimal set with respect to topological competitors (Definition 2.4) is slightly stronger than the notion of Almgren minimal set considered in [1, Theorem 5.4].

The assumption $\lim _{t \rightarrow 0^{+}} \lim \sup _{i} h_{i}(t)=0$ makes sure that that the limit gauge h satisfy $\lim _{r \rightarrow 0} h(r)=0$, as requested in the definition of almost-minimal sets. The properties of the limit are only meaningful in balls $B(x, r)$ such that $\lim \sup _{i} h_{i}(r)<\varepsilon_{A}$ because this guarantees that the sequence $\left(u_{i}, K_{i}\right)_{i}$ is uniformly Ahlfors-regular in $B(x, r)$, see (4) and (5).

Even if all the pairs $\left(u_{i}, K_{i}\right)_{i}$ are plain almost-minimizer (without the topological constraint on competitors), it is unavoidable that the limit may only be minimal with respect to topological competitors. As an example, if one takes a blow-up limit of a Mumford-Shah minimizer (u, K) at a smooth point $x_{0} \in K$, the limit is a pair $\left(u_{\infty}, K_{\infty}\right)$ such that K_{∞} is an hyperplane and u_{∞} is piecewise constant. It is known in this case that (u, K) is not a local minimizer as one can find a better competitor by making a hole with suitable dimensions (see the comment just before [2, Proposition 6.8]). However, (u, K) is a local topological minimizer.

3. Preliminaries about limits

We start this section by observing that the convergence of pairs is preserved under rescaling. We leave the details to the reader.

Remark 3.1. Let $\left(\Omega_{i}\right)_{i}$ and Ω be a sequence of open sets as in (6). Let $\left(u_{i}, K_{i}\right)_{i}$ be a sequence such that for all $i,\left(u_{i}, K_{i}\right)$ is a pair in Ω_{i}. We assume that $\left(u_{i}, K_{i}\right)_{i}$ converges to a pair (u, K) in Ω. Let us fix $x_{0} \in \mathbb{R}^{N}$ and $r_{0}>0$. Then the sequence of pairs $\left(v_{i}, L_{i}\right)_{i}$ in $r_{0}^{-1}\left(\Omega_{i}-x_{0}\right)$ defined by

$$
v_{i}(x)=r_{0}^{-1 / 2} u_{i}\left(x_{0}+r_{0} x\right) \quad \text { and } \quad L_{i}=r_{0}^{-1}\left(K_{i}-x_{0}\right)
$$

converge to (v, L) in $r_{0}^{-1}\left(\Omega-x_{0}\right)$, where

$$
v(x)=r_{0}^{-1 / 2} u\left(x_{0}+r_{0} x\right), \quad \text { and } \quad L:=r_{0}^{-1}\left(K-x_{0}\right) .
$$

We recall a standard compactness principe for the local Hausdorff convergence. This is a minor adaptation of [11, Proposition 34.6] and we omit the proof.

Lemma 3.2. Let $\left(\Omega_{i}\right)_{i}$ and Ω be a sequence of open sets as in (6). Let $\left(K_{i}\right)_{i}$ be a sequence such that for all i, K_{i} is a relatively closed subset of Ω. Then there exists a subsequence which converges to a relatively closed subset K of Ω.

Then, we deduce a compactness principle for pairs.
Lemma 3.3. Let $\left(\Omega_{i}\right)_{i}$ and Ω be a sequence of open sets as in (6). Let $\left(u_{i}, K_{i}\right)_{i}$ be a sequence such that for all $i,\left(u_{i}, K_{i}\right)$ is a pair in Ω_{i} and assume that for all $x \in \Omega$, there exists $r>0$ such that $B(x, r) \subset \Omega$ and

$$
\limsup _{i \rightarrow+\infty} \int_{B(x, r) \backslash K_{i}}\left|e\left(u_{i}\right)\right|^{2}<+\infty .
$$

Then there exists a subsequence of $\left(u_{i}, K_{i}\right)_{i}$ which converges to a pair (u, K) in Ω.
Proof. By Lemma 3.2 , we can first extract a subsequence such that $\left(K_{i}\right)_{i}$ converges to a relatively closed subset $K \subset \Omega$. Now, we turn our attention to the functions $\left(u_{i}\right)_{i}$. We fix a connected component \mathcal{O} of $\Omega \backslash K$. We cover \mathcal{O} by non-empty open balls $\left(B_{n}\right)_{n \geq 0}$ such that $B_{n} \subset \subset O$ and for all $n \geq 0$,

$$
\limsup _{i \rightarrow+\infty} \int_{B_{n}}\left|e\left(u_{i}\right)\right|^{2} \mathrm{~d} x<+\infty
$$

For all n, we have $B_{n} \subset \Omega_{i}$ for i big enough and we observe using the Korn-Poincaré inequality that there exists a rigid motion $a_{n, i}$ such that

$$
\int_{B_{n}}\left|u_{i}-a_{n, i}\right|^{2} \mathrm{~d} x \leq C \operatorname{diam}(B)^{2} \int_{B_{n}}\left|e\left(u_{i}\right)\right|^{2} \mathrm{~d} x .
$$

and

$$
\int_{B_{n}}\left|\nabla u_{i}-\nabla a_{n, i}\right|^{2} \mathrm{~d} x \leq C \int_{B_{n}}\left|e\left(u_{i}\right)\right|^{2} \mathrm{~d} x .
$$

Therefore, we see that for all n, the sequence $\left(u_{i}-a_{n, i}\right)_{i}$ is bounded in $W^{1,2}\left(B_{n} ; \mathbb{R}^{N}\right)$ and by a diagonal extraction argument, we can extract a subsequence of $\left(u_{i}\right)_{i}$ (not relabelled) such that for all n, the sequence $\left(u_{i}-a_{n, i}\right)_{i}$ converges in $L^{2}\left(B_{n}, \mathbb{R}^{N}\right)$ to a function in $W^{1,2}\left(B_{n} ; \mathbb{R}^{N}\right)$. Now we let $a_{i}:=a_{0, i}$ (the rigid motion in the ball B_{0}) and we are going to show that for all $n \geq 0$, the sequence $\left(a_{n}-a_{n, i}\right)_{i}$ converges locally uniformly in \mathbb{R}^{N} to a rigid motion. First we observe that for every $x \in \mathcal{O}$, there exists a finite chain of balls among $\left(B_{n}\right)_{n}$ linking B_{0} to x. More precisely, there exists a finite number of indices $n(1), \ldots, n(l)$ with $n(1)=0$ and $x \in B_{n(l)}$, such
that for all $0 \leq k<l, B_{n(k)} \cap B_{n(k+1)} \neq \emptyset$. This is a consequence of connectedness as the set of points $x \in \mathcal{O}$ satisfying this property is non-empty and is both relatively open and closed in \mathcal{O}. Now, we fix a ball B_{n} and by the above observation we can consider a finite number of indices $n(1), \ldots, n(l)$ with $n(1)=0$ and $n(l)=n$, such that for all $0 \leq k<l, B_{n(k)} \cap B_{n(k+1)} \neq \emptyset$. Since $\left(u_{i}-a_{n(k), i}\right)_{i}$ converges in $L^{2}\left(B_{n(k)} ; \mathbb{R}^{N}\right)$ and $\left(u_{i}-a_{n(k+1), i}\right)_{i}$ converges in $L^{2}\left(B_{n(k+1)} ; \mathbb{R}^{N}\right)$, we deduce that $\left(a_{n(k), i}-a_{n(k+1), i}\right)_{i}$ converges in $L^{2}\left(B_{n(k)} \cap B_{n(k+1)} ; \mathbb{R}^{N}\right)$. As this is a sequence of rigid motions and the intersection $B_{n(k)} \cap B_{n(k+1)}$ is set of positive measure contained in some ball $B(0, R)$ with $R>0$, Lemma A. 1 shows that the sequence converges in the normed space of affine maps. It follows that the sequence $\left(a_{n(k), i}-a_{n(k+1), i}\right)_{i}$ convergess locally uniformly in \mathbb{R}^{N} to a rigid motion. Then, a telescopic argument shows that $\left(a_{i}-a_{n, i}\right)_{i}$ also converges locally uniformly in \mathbb{R}^{N} to a rigid motion. Our claim is proved. We deduce that for all $n \geq 0$, $\left(u_{i}-a_{i}\right)_{i}$ converges in $L^{2}\left(B_{n} ; \mathbb{R}^{N}\right)$ to a function in $W^{1,2}\left(B_{n} ; \mathbb{R}^{N}\right)$. Since the balls $\left(B_{n}\right)_{n}$ cover \mathcal{O}, we finally conclude that there exists a function $u \in W_{\text {loc }}^{1,2}\left(\mathcal{O} ; \mathbb{R}^{N}\right)$ such that for all compact subset $H \subset \mathcal{O}$,

$$
\lim _{i \rightarrow+\infty} \int_{H}\left|u_{i}-a_{i}\right|^{2} \mathrm{~d} x=0
$$

In this procedure, we have extracted a subsequence of $\left(u_{i}\right)_{i}$ which depends on \mathcal{O} but as $\Omega \backslash K$ has countably many connected components, we can do a diagonal extraction again so that an analogue property holds for all connected components of $\Omega \backslash K$.

We now turn our attention to the semi-continuity properties of converging sequence of pairs.
Lemma 3.4 (Lower semicontinuity of the elastic energy). Let $\left(\Omega_{i}\right)_{i}$ and Ω be a sequence of open sets as in (6]). Let $\left(u_{i}, K_{i}\right)_{i}$ be a sequence such that for all $i,\left(u_{i}, K_{i}\right)$ is a pair in Ω_{i}. If $\left(u_{i}, K_{i}\right)_{i}$ converges to a pair (u, K) in Ω, then for all open set $V \subset \Omega$, and for all real number $p \geq 1$,

$$
\int_{V \backslash K}[\mathbb{C} e(u): e(u)]^{p / 2} \mathrm{~d} x \leq \liminf _{i \rightarrow+\infty} \int_{\Omega_{i} \cap V \backslash K_{i}}[\mathbb{C} e(u): e(u)]^{p / 2} \mathrm{~d} x .
$$

Proof. We start with the case where $V \subset \subset \Omega \backslash K$. Observe that the domain $\Omega \backslash K$ can be decomposed as a disjoint union of its connected component and for each component \mathcal{O}, we have $V \cap \mathcal{O} \subset \subset \mathcal{O}$ because $\partial \mathcal{O} \cap \Omega \backslash K=\emptyset$. Therefore, it suffices to deal with the case where there exists an connected component \mathcal{O} of $\Omega \backslash K$ such that $V \subset \subset \mathcal{O}$. We let $\left(a_{i}\right)_{i}$ be a sequence of rigid motions such that for all compact set $H \subset \mathcal{O}$,

$$
\begin{equation*}
\lim _{i \rightarrow+\infty} \int_{H}\left|u_{i}-a_{i}\right| \mathrm{d} x=0 \tag{9}
\end{equation*}
$$

We let $\phi \in C_{c}\left(V ; \mathbb{R}_{\text {sym }}^{N \times N}\right)$ be a smooth test function with compact support in V and which takes its values in $\mathbb{R}_{\text {sym }}^{N \times N}$. By integration by parts and $\sqrt{9}$, one can see that

$$
\int \mathbb{C} e(u): \phi \mathrm{d} x=\lim _{i \rightarrow+\infty} \int \mathbb{C} e\left(u_{i}\right): \phi \mathrm{d} x
$$

Then, Hölder inequality and the dual representation of norms imply

$$
\int_{V}[\mathbb{C} e(u): e(u)]^{p / 2} \mathrm{~d} x \leq \liminf _{i \rightarrow+\infty} \int_{V}\left[\mathbb{C} e\left(u_{i}\right): e\left(u_{i}\right)\right]^{p / 2} \mathrm{~d} x
$$

For a general open set $V \subset \Omega$, we consider an exhaustion of $V \backslash K$ by an increasing sequence of open sets $\left(V^{n}\right)_{n}$ such that $V^{n} \subset \subset V \backslash K$. For each n and for i big enough, we have $V^{n} \subset \Omega_{i} \backslash K_{i}$

SO

$$
\begin{aligned}
\int_{V^{n}}[\mathbb{C} e(u): e(u)]^{p / 2} \mathrm{~d} x & \leq \liminf _{i \rightarrow+\infty} \int_{V^{n}}\left[\mathbb{C} e\left(u_{i}\right): e\left(u_{i}\right)\right]^{p / 2} \mathrm{~d} x \\
& \leq \liminf _{i \rightarrow+\infty} \int_{\Omega_{i} \cap V \backslash K_{i}}\left[\mathbb{C} e\left(u_{i}\right): e\left(u_{i}\right)\right]^{p / 2} \mathrm{~d} x
\end{aligned}
$$

and then by letting $n \rightarrow+\infty$,

$$
\int_{V \backslash K}[\mathbb{C} e(u): e(u)]^{p / 2} \mathrm{~d} x \leq \liminf _{i \rightarrow+\infty} \int_{\Omega_{i} \cap V \backslash K_{i}}\left[\mathbb{C} e\left(u_{i}\right): e\left(u_{i}\right)\right]^{p / 2} \mathrm{~d} x
$$

For a sequence of sets converging in Hausdorff distance, we don't have the lower semicontinuity of the area in general but we have a rough control if the sequence is uniformly Ahlfors-regular. The limit is in particular, coral and Ahlfor-regular as well. We omit the proof, which is standard.

Lemma 3.5. Let us fix an open ball $B \subset \mathbb{R}^{N}$. Let $\left(K_{i}\right)_{i}$ be a sequence of relatively closed subsets of B which converges to a relatively closed subset K of B. We assume that there exists a constant $C_{0} \geq 1$ such that for all i, for all $x \in K_{i}$, for all $r>0$ such that $B(x, r) \subset B$, we have

$$
C_{0}^{-1} r^{N-1} \leq \mathcal{H}^{N-1}\left(K_{i} \cap B(x, r)\right) \leq C_{0} r^{N-1}
$$

Then, for all open set $V \subset B$ and for all compact set $H \subset B$, we have

$$
\begin{aligned}
& \liminf _{i \rightarrow+\infty} \mathcal{H}^{N-1}\left(K_{i} \cap V\right) \geq C^{-1} \mathcal{H}^{N-1}(K \cap V) \\
& \limsup _{i \rightarrow+\infty} \mathcal{H}^{N-1}\left(K_{i} \cap H\right) \leq C \mathcal{H}^{N-1}(K \cap H),
\end{aligned}
$$

for some constant $C \geq 1$ which depends only on C_{0} and N.
The last result of this section is a more precise variant of 77 .
Lemma 3.6. We consider a sequence of open sets $\left(\Omega_{i}\right)_{i} \subset \mathbb{R}^{N}$ and an open set Ω as in (6). We let $\left(K_{i}\right)_{i}$ be a sequence such that for all i, K_{i} is a relatively closed subset of Ω and we assume that $\left(K_{i}\right)_{i}$ converges to a relatively closed subset $K \subset \Omega$. Then if a compact set H is contained in a connected component of $\Omega \backslash K$, it is contained in a connected component of $\Omega_{i} \backslash K_{i}$ for i big enough.

Proof. Let \mathcal{O} be a connected component of $\Omega \backslash K$ and let H be a compact set such that $H \subset \mathcal{O}$. We can cover H by a finite family of balls B_{1}, \ldots, B_{p}, where $B_{h}=B\left(y_{h}, r_{h}\right)$, where $y_{h} \in H$, $r_{h}>0$, such that $\bar{B}_{h} \subset \mathcal{O}$. For all $h_{1} \neq h_{2}$, there exists a continuous path $\gamma \subset \mathcal{O}$ from $y_{h_{1}}$ to $y_{h_{2}}$. Since γ is a compact subset of $\Omega \backslash K$, it is also contained in $\Omega_{i} \backslash K_{i}$ for i big enough. Thus for i big enough (depending on h_{1} and h_{2}), the points $y_{h_{1}}$ and $y_{h_{2}}$ lie in a common connected component of $\Omega_{i} \backslash K_{i}$. If in addition i is also big enough (still depending on h_{1} and h_{2}) such that $\bar{B}_{h_{1}}, \bar{B}_{h_{2}} \subset \Omega_{i} \backslash K_{i}$, we deduce that $B_{h_{1}}$ and $B_{h_{2}}$ lie in a common connected component of $\Omega_{i} \backslash K_{i}$. Since there is only a finite number of indices $h=1, \ldots, p$, we can find i_{0} such that for all $i \geq i_{0}$ and for all $h_{1} \neq h_{2}$, the balls $B_{h_{1}}$ and $B_{h_{2}}$ lie in a common connected component of $\Omega_{i} \backslash K_{i}$. Here we see that this connected component cannot depend on h_{1} and h_{2} so for $i \geq i_{0}$, all the balls B_{h} lie in the same connected component of $\Omega_{i} \backslash K_{i}$ and H as well.

4. Weak limiting properties

Our first step to prove Theorem 2.7 is a partial limiting result, where we don't know if the area is lower semi-continuous along the sequence. The goal of the two subsequent sections will be to complete this results by proving that the area is lower semi-continuous along sequence of almost-minimizers.

Proposition 4.1. Let $\left(\Omega_{i}\right)_{i}$ and Ω be a sequence of open sets as in (6). Let $\left(u_{i}, K_{i}\right)_{i}$ be a sequence such that for all $i,\left(u_{i}, K_{i}\right)$ is a topological almost-minimizer with gauge h_{i} in Ω_{i}. We assume that $\left(u_{i}, K_{i}\right)_{i}$ converges to a pair (u, K) in Ω and we set for $r>0$,

$$
h^{+}(r):=\lim _{t \rightarrow r^{+}} \limsup _{i \rightarrow+\infty} h_{i}(t) .
$$

Then for all $x \in \Omega$, for all $r>0$ with $\bar{B}(x, r) \subset \Omega$ and $h^{+}(r)<\varepsilon_{A}$, for all topological competitor (v, L) of (u, K) in $B(x, r)$, we have

$$
\begin{aligned}
& \limsup _{i \rightarrow+\infty}\left(\int_{B(x, r) \backslash K_{i}} \mathbb{C} e\left(u_{i}\right): e\left(u_{i}\right) \mathrm{d} x+\mathcal{H}^{N-1}\left(K_{i} \cap \bar{B}(x, r)\right)\right. \\
& \leq \int_{B(x, r) \backslash L} \mathbb{C} e(v): e(v) \mathrm{d} x+\mathcal{H}^{N-1}(L \cap \bar{B}(x, r))+h^{+}(r) r^{N-1}
\end{aligned}
$$

If furthermore

$$
\lim _{i \rightarrow+\infty} \int_{H}\left|e\left(u_{i}\right)\right| \mathrm{d} x=0 \quad \text { for all compact set } H \subset \Omega \backslash K,
$$

then u is a rigid motion in each connected component of $\Omega \backslash K$. In this case, for all $x \in \Omega$, for all $r>0$ with $\bar{B}(x, r) \subset \Omega$ and $h^{+}(r)<\varepsilon_{A}$, for all topological competitor L of K in $B(x, r)$, we have

$$
\limsup _{i \rightarrow+\infty} \mathcal{H}^{N-1}\left(K_{i} \cap \bar{B}(x, r)\right) \leq \mathcal{H}^{N-1}(L \cap \bar{B}(x, r))+h^{+}(r) r^{N-1}
$$

The gauge h^{+}is well-defined because the function $\rho \mapsto \lim \sup _{i \rightarrow+\infty} h_{i}(\rho)$ is non-decreasing on $(0,+\infty)$. One can also see that h^{+}is right-continuous. The reason why we work in balls where $h^{+}(r)<\varepsilon_{A}$ is to ensure that the Ahlfors-regularity properties (4), (5) hold along the sequence.

Proof. We start by focusing on the first part of the statement: the limiting minimality property. The general strategy is clear: for a fixed ball $\bar{B}(x, r) \subset \Omega$ and for every topological competitor (v, L) for (u, K) in $B(x, r)$, we need to define a suitable topological competitor $\left(v_{i}, L_{i}\right)$ for $\left(u_{i}, K_{i}\right)$ in a slightly larger ball $B(x, r+\delta)$ in order to exploit the minimality of $\left(u_{i}, K_{i}\right)$ and then pass to the limit. For that purpose we will choose a good radius $\rho \in(r, r+\delta)$ satisfying a series of good properties before defining v_{i} and L_{i}. We now fix a ball $B=B(x, r)$ with $r>0$ such that $\bar{B} \subset \Omega$ and $h(r)<\varepsilon_{A}$.

Step 1. Construction of the annulus. We let $0<\delta \leq r$ be so small that

$$
\bar{B}(x, r+10 \delta) \subset \Omega \quad \text { and } \quad \limsup _{i \rightarrow+\infty} h_{i}(r+10 \delta)<\varepsilon_{A}
$$

and in particular,

$$
\begin{equation*}
\bar{B}(x, r+10 \delta) \subset \Omega_{i} \quad \text { and } \quad h_{i}(r+10 \delta) \leq \varepsilon_{A} \quad \text { for } i \text { big enough. } \tag{10}
\end{equation*}
$$

For convenience, we assume that it holds for all i. One of the consequence of 10) it that it allows to apply (4), (5), that is, for all i, for all open ball $B(y, t) \subset B(x, r+10 \delta)$, we have a
uniform bound

$$
\int_{B(y, t) \backslash K_{i}}\left|e\left(u_{i}\right)\right|^{2} \mathrm{~d} x+\mathcal{H}^{N-1}\left(K_{i} \cap B(y, t)\right) \leq C t^{N-1}
$$

and if $y \in K_{i}$,

$$
\mathcal{H}^{N-1}\left(K_{i} \cap B(y, t)\right) \geq C^{-1} \operatorname{diam}(B)^{N-1}
$$

for some constant $C \geq 1$ which depends on N and \mathbb{C}. According to Lemma 3.5, this implies that for all open ball $B(y, t) \subset B(x, r+5 \delta)$ with $y \in K$, we have

$$
\begin{equation*}
C^{-1} t^{N-1} \mathcal{H}^{N-1}(K \cap B(y, t)) \leq C t^{N-1} \tag{11}
\end{equation*}
$$

We let $\tau \in(0,1)$ be a very small parameter which can depend on r and δ and such that $\tau r \leq \delta$. In what follows, the letter C denotes a generic constant ≥ 1 which is allowed to depend on N, \mathbb{C} and also r, δ. We consider a maximal subset $Y \subset K \cap \bar{B}(x, r+2 \delta)$ of points at mutual distance greater than or equal to τr. Therefore,

$$
\begin{equation*}
K \cap \bar{B}(x, r+2 \delta) \subset \bigcup_{y \in Y} B(y, \tau r) \tag{12}
\end{equation*}
$$

and the balls $B(y, \tau r / 2), y \in Y$ are disjoint. We can use (11) to estimate the number of points of Y, denoted by $|Y|$. More precisely,

$$
\sum_{y \in Y} \mathcal{H}^{N-1}(K \cap B(y, \tau r / 2)) \geq C^{-1}(\tau r)^{N-1}|Y|
$$

and since the balls $B(y, \tau r / 2)$ are disjoint and contained in $B(x, r+3 \delta)$,

$$
\sum_{y \in Y} \mathcal{H}^{N-1}(K \cap B(y, \tau r / 2)) \leq \mathcal{H}^{N-1}(K \cap B(x, r+3 \delta)) \leq C r^{N-1}
$$

Hence, Y has at most $C \tau^{1-N}$ points.
We will choose a suitable annulus of width τr which does not intersect too many balls $B(y, \tau r)$, $y \in Y$. More precisely, for $\rho \in(r, r+\delta)$, we let

$$
Y_{\rho}:=\{y \in Y \mid B(y, \tau r) \cap \bar{B}(x, \rho+\tau r) \backslash B(x, \rho) \neq \emptyset\} .
$$

The condition $y \in Y_{\rho}$ is equivalent to saying that $|y| \in(\rho-\tau r, \rho+2 \tau r)$, or equivalently again, $\rho \in(|y|-2 \tau r,|y|+2 \tau r)$. Then we use Fubini and the fact that Y has at most $C \tau^{1-N}$ points to estimate

$$
\begin{aligned}
\int_{r}^{r+\delta}\left(\sum_{y \in Y_{\rho}} \mathcal{H}^{N-1}(\partial B(y, \tau r))\right) \mathrm{d} \rho & =\sum_{y \in Y} \int_{r}^{r+\delta} \mathcal{H}^{N-1}(\partial B(y, \tau r)) \mathbf{1}_{Y_{\rho}}(y) \mathrm{d} \rho \\
& =\sum_{y \in Y} \int_{r}^{r+\delta} \mathcal{H}^{N-1}(\partial B(y, \tau r)) \mathbf{1}_{(|y|-2 \tau r,|y|+\tau r)}(\rho) \mathrm{d} \rho \\
& \leq C \tau,
\end{aligned}
$$

where we recall that C is allowed to depend on r and δ. This implies that there are many $\rho \in(r, r+\delta)$ such that

$$
\sum_{y \in Y_{\rho}} \mathcal{H}^{N-1}(\partial B(y, \tau r)) \leq C \tau
$$

where C is a bigger constant which is still allowed to depend on r and δ. Let us choose such a radius $\rho \in(r, r+\delta)$ and define

$$
Z:=\bigcup_{y \in Y_{\rho}} B(y, \tau r) .
$$

Then we consider a smooth scalar cut-off function $\xi \in C_{c}^{\infty}\left(\mathbb{R}^{N},[0,1]\right)$ such that $0 \leq \xi \leq 1$,

$$
\xi=1 \text { in } B(x, \rho), \quad \xi=0 \text { in } \mathbb{R}^{N} \backslash B(x, \rho+\tau r / 2),
$$

and

$$
|\nabla \xi| \leq C \tau^{-1} \text { everywhere. }
$$

Let us finally define

$$
Z^{\prime}:=\bigcup_{y \in Y_{\rho}} \partial B(y, \tau r),
$$

so that $\partial Z \subset Z^{\prime}$ and

$$
\mathcal{H}^{N-1}\left(Z^{\prime}\right) \leq C \tau .
$$

By construction, $Z^{\prime} \subset B(x, r+4 \tau r)$.
Step 2. Construction of the competitor. We now proceed to build a competitor $\left(v_{i}, L_{i}\right)$ of $\left(u_{i}, K_{i}\right)$ in $B(x, r+4 \tau r)$ which makes a transition between $\left(u_{i}, K_{i}\right)$ outside of $B(x, \rho+\tau r)$ and (v, L) in $B(x, \rho)$. First of all, we observe that Z covers the sets K, K_{i}, L in the transition area. More precisely, we see from (12) and the definition of Y_{ρ} that

$$
\begin{equation*}
K \cap \bar{B}(x, \rho+\tau r) \backslash B(x, \rho) \subset Z \tag{13}
\end{equation*}
$$

and thus, by convergence of $\left(K_{i}\right)_{i}$ to K,

$$
\begin{equation*}
K_{i} \cap \bar{B}(x, \rho+\tau r) \backslash B(x, \rho) \subset Z \quad \text { for } i \text { big enough. } \tag{14}
\end{equation*}
$$

By the fact that L coincides with K outside of $B(x, r)$, we also have

$$
\begin{equation*}
L \cap \bar{B}(x, \rho+\tau r) \backslash B(x, \rho) \subset Z . \tag{15}
\end{equation*}
$$

For convenience, we assume that (14) holds for all i. We now define

$$
L_{i}:=\left(K_{i} \backslash B(x, \rho)\right) \cup Z^{\prime} \cup(L \cap \bar{B}(x, \rho)),
$$

which is a relatively closed subset of Ω_{i} and coincides with K_{i} in $\Omega_{i} \backslash B(x, r+4 \tau r)$. We then define v_{i} in a pieciewise way. We first set

$$
\begin{equation*}
v=0 \text { in } Z \quad \text { and } \quad v=u_{i} \text { in } \Omega_{i} \backslash\left(B(x, \rho+\tau r) \cup L_{i} \cup \bar{Z}\right) . \tag{16}
\end{equation*}
$$

Then we build a transition between u_{i} and v (up to a suitable rigid motion) in $B(x, \rho+\tau r) \backslash$ $\left(L_{i} \cup \bar{Z}\right)$. By 13) and (14), we see that the annulus

$$
\bar{B}(x, \rho+\tau r) \backslash(B(x, \rho) \cup Z)
$$

is a compact subset of $\Omega \backslash K$ and $\Omega_{i} \backslash K_{i}$ (in particular, u_{i} is well-defined there). By compactness, this annulus is covered by a finite numbers of connected components $\mathcal{O}_{1}, \ldots, \mathcal{O}_{p}$ of $\Omega \backslash K$. For each $\ell=1, \ldots, p$, there exists a sequence of rigid motions $\left(a_{i, \ell}\right)_{i}$ such that for all compact set $H \subset \mathcal{O}_{\ell}$,

$$
\begin{equation*}
\text { the sequence }\left(u_{i}-a_{i, \ell}\right)_{i} \text { converges in } L^{2} \text { norm to } u \text { on } H \text {. } \tag{17}
\end{equation*}
$$

The compact sets we have in mind are the sets

$$
H_{\ell}:=\mathcal{O}_{\ell} \cap \bar{B}(x, \rho+\tau r) \backslash(B(x, \rho) \cup Z) .
$$

Indeed, since $\mathcal{O}_{\ell} \cap \Omega \backslash K=\emptyset$ and $\bar{B}(x, \rho+\tau r) \backslash(B(x, \rho) \cup Z) \subset \Omega \backslash K$, the set H_{ℓ} is a compact subset of \mathcal{O}_{ℓ}.

Let us now consider a connected component V of $B(x, \rho+\tau r) \backslash\left(L_{i} \cup \bar{Z}\right)$. If $V \subset B(x, \rho)$, there is no need to make a transition and we just set $v_{i}=0$. Otherwise, $V \cap B(x, \rho+\tau r) \backslash B(x, \rho)$ is non-empty and we are going to check that there exists a (necessarily unique) $\ell=1, \ldots, p$ such that

$$
\begin{equation*}
V \cap B(x, \rho+\tau r) \backslash B(x, \rho) \subset \mathcal{O}_{\ell} \tag{18}
\end{equation*}
$$

Let $x, y \in V \cap B(x, \rho+\tau r) \backslash B(x, \rho)$. By (15), we have

$$
L \cap B(x, \rho+\tau r) \backslash B(x, \rho) \subset Z
$$

and by definition of L_{i},

$$
L \cap \bar{B}(x, \rho) \subset L_{i}
$$

so V, as a connected component of $B(x, \rho+\tau r) \backslash\left(L_{i} \cup \bar{Z}\right)$, is disjoint from L. This shows that x and y lie in the same connected component of $\Omega \backslash L$ and since L is a topological competitor of K in $B(x, r)$, they also lie in the same connected component of $\Omega \backslash K$. This proves (18) and this leads us to set

$$
\begin{equation*}
v_{i}=\xi\left(v+a_{i, \ell}\right)+(1-\xi) u_{i} \quad \text { in } V . \tag{19}
\end{equation*}
$$

This achieves the definition of v_{i} in $B(x, \rho+\tau r) \backslash\left(L_{i} \cup \bar{Z}\right)$. Combining 16) and 19), we see that

$$
v_{i}=u_{i} \text { in } \Omega_{i} \backslash\left(B(x, \rho+\tau r / 2) \cup L_{i} \cup \bar{Z}\right)
$$

so there is no gluing problem along $\partial B(x, \rho+\tau r) \backslash\left(L_{i} \cup \bar{Z}\right)$. We conclude that $\left(v_{i}, L_{i}\right)$ is a competitor of $\left(u_{i}, K_{i}\right)$ in $B(x, r+4 \tau r)$. We now check that L_{i} is a topological competitor of K_{i} in $B(x, r+4 \tau r)$, for i big enough. First of all, we recall for each $\ell=1, \ldots, p$, the set

$$
H_{\ell}=\mathcal{O}_{\ell} \cap \bar{B}(x, \rho+\tau r) \backslash(B(x, \rho) \cup Z)
$$

is a compact of \mathcal{O}_{ℓ}. Using Lemma 3.6 and since there are only a finite number of indices $\ell=1, \ldots, p$, we can find an index i_{0} such that for all $i \geq i_{0}$ and for all $\ell=1, \ldots, p$,

$$
\begin{equation*}
\text { the set } H_{\ell} \text { is contained in a connected component of } \Omega_{i} \backslash K_{i} \text {. } \tag{20}
\end{equation*}
$$

Let us now consider $i \geq i_{0}$. We fix $y, z \in \Omega_{i} \backslash\left(B(x, r+4 \tau r) \backslash K_{i}\right)$ such that that y, z are connected by a continuous path $\gamma:[0,1] \rightarrow \Omega_{i} \backslash L_{i}$ and we prove that they are connected in $\Omega_{i} \backslash K_{i}$. We proceed by contradiction and assume that y and z lie in distinct connected components of $\Omega_{i} \backslash K_{i}$. We first observe that $y, z \notin \bar{Z}$ since $\bar{Z} \subset B(x, r+4 \tau r)$. As the path γ is disjoint from L_{i}, it is in particular disjoint from Z^{\prime} and therefore it must stay disjoint from \bar{Z}. If γ never meets $B(x, \rho)$, then γ is disjoint from K_{i} because L_{i} coincides with K_{i} outside of $B(x, \rho) \cap \bar{Z}$. In this case, y, z are connected by γ in $\Omega_{i} \backslash K_{i}$ and we reach a contradiction. Next, we assume that γ meets $B(x, \rho)$ and we let y_{1}, z_{1} denote the first and last point point of γ on $\partial B(x, \rho)$. On the portion between y and y_{1}, γ lies in the complement of $B(x, \rho)$ and then one can deduce as before that this portion lies in the complement of K_{i}. Therefore y and y_{1} are connected in the $\Omega_{i} \backslash K_{i}$. Similarly, z and z_{1} are connected in $\Omega_{i} \backslash K_{i}$. It follows that y_{1} and z_{1} lie in distinct connected components of $\Omega_{i} \backslash K_{i}$. The set of points of $\gamma \cap \partial B(x, \rho)$ which do not lie in the connected component of $\Omega_{i} \backslash K_{i}$ containing z_{1} is non-empty (it contains $\left.x_{1}\right)$ and closed. Therefore, there is a last point of γ in this set, and we let it be denoted by y_{2}. Observe that $y_{2} \notin K_{i}$ because γ is disjoint from \bar{Z} and because of (14). Then, we let z_{2} be the first of of $\gamma \cap \partial B$ after y_{2}. Here again, $z_{2} \notin K_{i}$ for the same reason. We deduce that y_{2} and z_{2} lie in distinct connected components of $\Omega_{i} \backslash K_{i}$. The portion of γ between y_{2} and z_{2} does not meet $\partial B(x, \rho)$ to it must be either in $\Omega_{i} \backslash \bar{B}(x, \rho)$ or in $B(x, \rho)$. In the first case, y_{2} and z_{2} are connected in $\Omega_{i} \backslash K_{i}$ so we reach a contradiction. In the second case, y_{2} and z_{2} are connected in $\Omega \backslash L$ and since L is a topological competitor of K in $B(x, r)$, the points y_{2} and z_{2} must also be connected in $\Omega \backslash K$. We deduce that y_{2} and z_{2} lie in a common set H_{ℓ} for some $\ell=1, \ldots, p$ and thus in a common connected component of $\Omega_{i} \backslash K_{i}$ by (20). This is again a contradiction. We have proved that for all $i \geq i_{0}, L_{i}$ is a topological competitor of K_{i} in $B(x, r+4 \tau r)$.

Step 3. Energy comparison. We finally apply the almost minimality property of (u_{i}, K_{i}) and compare its Griffith energy with $\left(v_{i}, L_{i}\right)$,

$$
\begin{aligned}
& \int_{B(x, r+4 \tau r) \backslash K_{i}} \mathbb{C} e\left(u_{i}\right): e\left(u_{i}\right) \mathrm{d} x+\mathcal{H}^{N-1}\left(K_{i} \cap B(x, r+4 \tau r)\right. \\
& \quad \leq \int_{B(x, r+4 \tau r) \backslash L_{i}} \mathbb{C} e\left(v_{i}\right): e\left(v_{i}\right) \mathrm{d} x+\mathcal{H}^{N-1}\left(L_{i} \cap B(x, r+4 \tau r)\right)+h_{i}(r+4 \tau r)(r+4 \tau r)^{N-1} .
\end{aligned}
$$

Using the facts that $L_{i} \backslash B(x, \rho) \subset\left(K_{i} \backslash B(x, \rho)\right) \cup Z^{\prime}$, that $\mathcal{H}^{N-1}\left(Z^{\prime}\right) \leq C \tau$ and that $\left|e\left(v_{i}\right)\right| \leq$ $\left|e\left(u_{i}\right)\right|$ a.e. in $\Omega_{i} \backslash B(x, \rho+\tau r)$, we arrive at

$$
\begin{align*}
& \int_{B(x, \rho+\tau r) \backslash K_{i}} \mathbb{C} e\left(u_{i}\right): e\left(u_{i}\right) \mathrm{d} x+\mathcal{H}^{N-1}\left(K_{i} \cap B(x, \rho)\right) \\
& \leq \int_{B(x, \rho+\tau r) \backslash L_{i}} \mathbb{C} e\left(v_{i}\right): e\left(v_{i}\right) \mathrm{d} x+\mathcal{H}^{N-1}(L \cap B(x, \rho))+C \tau+h_{i}(r+4 \tau r)(r+4 \tau r)^{N-1} . \tag{21}
\end{align*}
$$

We now estimate the contribution of $e\left(v_{i}\right)$ in $B(x, \rho+\tau r) \backslash L_{i}$. The points in $B(x, \rho+\tau r) \backslash L_{i}$ are either contained in Z, where $e\left(v_{i}\right)=0$, or in a connected component V of $B(x, \rho+\tau r) \backslash\left(L_{i} \cup \bar{Z}\right)$ such that

$$
\begin{equation*}
V \cap B(x, \rho+\tau r) \backslash B(x, \rho) \subset \mathcal{O}_{\ell} \tag{22}
\end{equation*}
$$

for some $\ell=1, \ldots, p$ (see (18)), and where

$$
e\left(v_{i}\right)=\xi e(v)+(1-\xi) e\left(u_{i}\right)+\nabla \xi \odot\left(v+a_{i, \ell}-u_{i}\right) .
$$

Here, given $a, b \in \mathbb{R}^{N}$, the notation $a \odot b$ denotes the matrix of coefficients

$$
(a \odot b)_{i j}=\frac{a_{i} b_{j}+a_{j} b_{i}}{2} \in \mathbb{R}^{N \times N} .
$$

Note that one can bound $|a \odot b| \leq|a||b|$. The function $\xi \mapsto \mathbb{C} \xi: \xi$ is a positive definite quadratic form on the space $\mathbb{R}_{\text {sym }}^{N \times N}$ of symmetric matrices and it is temporarily convenient to work with the underlying norm. We set

$$
\|\xi\|:=\sqrt{\mathbb{C} \xi: \xi} \quad \text { for } \xi \in \mathbb{R}_{\mathrm{sym}}^{N \times N}
$$

In a connected component V of $B(x, \rho+\tau r) \backslash\left(L_{i} \cup \bar{Z}\right)$ where 22 holds, we have by triangular inequality

$$
\left\|e\left(v_{i}\right)\right\| \leq \xi\|e(v)\|+(1-\xi)\left\|e\left(u_{i}\right)\right\|+C\left|\nabla \xi \| u_{i}-a_{i, \ell}-v\right|
$$

The function $\nabla \xi$ is supported in $B(x, \rho+\tau r) \backslash B(x, \rho)$, satisfies $|\nabla \xi| \leq C \tau^{-1}$ and we see from (22) that

$$
V \cap B(x, \rho+\tau r) \backslash B(x, \rho) \subset H_{\ell}
$$

where

$$
H_{\ell}=\mathcal{O}_{\ell} \cap \bar{B}(x, \rho+\tau r) \backslash(B(x, \rho) \cup Z)
$$

is a compact subset of \mathcal{O}_{ℓ}. Thus we can bound in $B(x, \rho+\tau r)$,

$$
\begin{equation*}
\left\|e\left(v_{i}\right)\right\| \leq \xi\|e(v)\|+(1-\xi)\left\|e\left(u_{i}\right)\right\|+C \tau^{-1} \sum_{\ell=1, \ldots, p}\left|u_{i}-a_{i, \ell}-v\right| \mathbf{1}_{H_{\ell}} . \tag{23}
\end{equation*}
$$

We will be able to get rid of the last term when $i \rightarrow+\infty$ because we know from (17) that
the sequence $\left(u_{i}-a_{i, \ell}\right)_{i}$ converges in L^{2} norm to v on H_{ℓ}.
Let us estimate the L^{2} norm of $e(v)$ in $B(x, \rho+\tau r)$. We use 23$)$, the elementary inequality

$$
\left(a+b_{1}+\ldots+b_{p}\right)^{2} \leq(1+\varepsilon) a^{2}+p\left(1+\varepsilon^{-1}\right)\left(b_{1}^{2}+\ldots+b_{p}^{2}\right) \quad \text { for all } \varepsilon>0
$$

and the convexity of $t \mapsto t^{2}$ to bound

$$
\begin{aligned}
\int_{B(x, \rho+\tau r)}\left\|e\left(v_{i}\right)\right\|^{2} \mathrm{~d} x \leq & (1+\varepsilon) \int_{B(x, \rho+\tau r)}\left(\xi\|e(v)\|+(1-\xi)\left\|e\left(u_{i}\right)\right\|\right)^{2} \mathrm{~d} x \\
& +C(p) \tau^{-2}\left(1+\varepsilon^{-1}\right) \sum_{\ell=1, \ldots, p} \int_{H_{\ell}}\left|u_{i}-a_{i, \ell}-v\right|^{2} \mathrm{~d} x \\
\leq & (1+\varepsilon) \int_{B(x, \rho+\tau r)} \xi\|e(v)\|^{2}+(1-\xi)\left\|e\left(u_{i}\right)\right\|^{2} \mathrm{~d} x \\
& +C(p) \tau^{-2}\left(1+\varepsilon^{-1}\right) \sum_{\ell=1, \ldots, p} \int_{H_{\ell}}\left|u_{i}-a_{i, \ell}-v\right|^{2} \mathrm{~d} x
\end{aligned}
$$

Plugging this in (21), we arrive at

$$
\begin{align*}
& \int_{B(x, \rho+\tau r) \backslash K_{i}} \xi\left\|e\left(u_{i}\right)\right\|^{2} \mathrm{~d} x+\mathcal{H}^{N-1}\left(K_{i} \cap B(x, \rho)\right) \\
& \leq(1+\varepsilon) \int_{B(x, \rho+\tau r) \backslash L}\|e(v)\|^{2} \mathrm{~d} x+\varepsilon \int_{B(x, \rho+\tau r)}\left\|e\left(u_{i}\right)\right\|^{2} \mathrm{~d} x \\
& \quad+C(p) \tau^{-2}\left(1+\varepsilon^{-1}\right) \sum_{\ell=1, \ldots, p} \int_{H_{\ell}}\left|u_{i}-a_{i, \ell}-v\right|^{2} \mathrm{~d} x \\
& \quad+\mathcal{H}^{N-1}(L \cap B(x, \rho))+C \tau+h_{i}(r+4 \tau r)(r+4 \tau r)^{N-1} . \tag{24}
\end{align*}
$$

We recall that by 10 , we can bound $\int_{B(x, \rho+\tau r)}\left\|e\left(u_{i}\right)\right\|^{2} \mathrm{~d} x \leq C$. We use this bound, we come back to the notation $\mathbb{C} \xi: \xi$ and we pass to the limit $i \rightarrow+\infty$ in (24) to obtain

$$
\begin{aligned}
\limsup _{i \rightarrow+\infty}\left(\int_{B(x, r) \backslash K_{i}} \mathbb{C} e\left(u_{i}\right):\right. & \left.e\left(u_{i}\right) \mathrm{d} x+\mathcal{H}^{N-1}\left(K_{i} \cap \bar{B}(x, r)\right)\right) \\
\leq & (1+\varepsilon) \int_{B(x, \rho+\tau r) \backslash L} \mathbb{C} e(v): e(v) \mathrm{d} x+C \varepsilon \\
& +\mathcal{H}^{N-1}(L \cap B(x, \rho))+C \tau+\limsup _{i \rightarrow+\infty} h_{i}(r+4 \tau r)(r+4 \tau r)^{N-1} .
\end{aligned}
$$

Then we let $\varepsilon \rightarrow 0$ and then $\tau \rightarrow 0$ to conclude

$$
\begin{aligned}
& \limsup _{i \rightarrow+\infty}\left(\int_{B(x, r) \backslash K_{i}} \mathbb{C} e\left(u_{i}\right): e\left(u_{i}\right) \mathrm{d} x+\mathcal{H}^{N-1}\left(K_{i} \cap \bar{B}(x, r)\right)\right) \\
& \leq \int_{B(x, r) \backslash L} \mathbb{C} e(v): e(v) \mathrm{d} x+\mathcal{H}^{N-1}(L \cap \bar{B}(x, r))+h^{+}(r) r^{N-1} .
\end{aligned}
$$

Step 4. The case of a vanishing elastic energy. We pass to the last part of the statement. We assume that

$$
\lim _{i \rightarrow+\infty} \int_{H}\left|e\left(u_{i}\right)\right| \mathrm{d} x=0 \quad \text { for all compact set } H \subset \Omega \text {. }
$$

and we prove that the limit satisfies a simplified minimality condition. By Lemma 3.4, we know that $e(u)=0$ almost-everywhere on Ω. Therefore, for each connected component \mathcal{O}_{ℓ} of $\Omega \backslash K$, there exists a rigid motion a_{ℓ} such that $u=a_{\ell}$ a.e. in \mathcal{O}_{ℓ}. Now, let L be a topological competitor of K in some ball $B(x, r) \subset \subset \Omega$. We are going to define a suitable function $v \in W_{\text {loc }}^{1,2}\left(\Omega \backslash L ; \mathbb{R}^{N}\right)$ such that $v=u$ a.e. in $\Omega \backslash B(x, r)$ For each connected component V of $\Omega \backslash L$, we distinguish two
cases. If $V \backslash \bar{B}(x, r)=0$, then there exists a unique connected component \mathcal{O}_{ℓ} of $\Omega \backslash K$ such that $V \backslash \bar{B}(x, r) \subset \mathcal{O}_{\ell}$. Indeed, the points of $V \backslash \bar{B}(x, r)$ belong to the same connected components of $\Omega \backslash L$, then they also belong to the same connected component of $\Omega \backslash K$. As $V \backslash \bar{B}(x, r)$ is non-empty, this connected component must be unique. In this case, we set $v=a_{\ell}$ in V and we note we have $v=u$ a.e. in $V \backslash \bar{B}(x, r) \subset \mathcal{O}_{\ell}$. If on the other hand, $V \subset \bar{B}(x, r)$, then we just set $v=0$ inside V and this is compatible with the Dirichlet condition on v. Since both u and v are piecewise rigid, only the surface terms are involved in the energy comparison.

5. Fine lower density bound for quasiminimizers

The main goal of this section is to prove the following proposition. We work in the general setting of quasiminimizers as the statements of this section have an independent interest.

Proposition 5.1. For each $M \geq 1$ and $p \in(2(N-1) / N, 2]$, there exists $\varepsilon_{0}>0$ (depending on N, \mathbb{C}, M, p) and for all $\varepsilon \in(0,1)$, there exists $\varepsilon_{1}>0$ (depending on $N, \mathbb{C}, M, p, \varepsilon$) such that the following holds. Let (u, K) be a topological M-quasiminimizer with gauge h in Ω. For all $x_{0} \in K$, for all $r_{0}>0$ with $B\left(x_{0}, r_{0}\right) \subset \Omega$ and $h\left(r_{0}\right) \leq \varepsilon_{0}$, if

$$
\beta\left(x_{0}, r_{0}\right)+\omega_{p}\left(x_{0}, r_{0}\right) \leq \varepsilon_{1}
$$

then we have

$$
\mathcal{H}^{N-1}\left(K \cap B\left(x_{0}, r_{0}\right)\right) \geq(1-\varepsilon) \omega_{N-1} r_{0}^{N-1},
$$

where ω_{N-1} is the measure of the $(N-1)$-dimensional unit disk.
The proof will need several preliminary lemmas that we write below.
5.1. Initialization of the jump. We define the "normalized jump" similarly to [11]. Let (u, K) be a pair in Ω. Let $x_{0} \in K, r_{0}>0$ such that $B\left(x_{0}, r_{0}\right) \subset \Omega$ and $\beta_{K}\left(x_{0}, r_{0}\right) \leq 1 / 2$. We choose a hyperplane P_{0} which achieves the infimum in the definition of $\beta\left(x_{0}, r_{0}\right)$ and we choose a unit normal ν_{0} to P. We define a_{1}, a_{2} as the two rigid motions that approximate u in the lower and upper part of $B\left(x_{0}, r_{0}\right)$, namely for $i=1,2$,

$$
a_{i}(x)=b_{i}+A_{i}\left(x-x_{0}\right)
$$

where $b_{i} \in \mathbb{R}^{N}$ and $A_{i} \in \mathbb{R}^{N \times N}$ are such that

$$
\begin{equation*}
b_{i}=f_{D_{i}} u(y) \mathrm{d} y, \quad A_{i}=f_{D_{i}} \frac{\nabla u(y)-\nabla u(y)^{T}}{2} \mathrm{~d} y \tag{25}
\end{equation*}
$$

and $D_{i} \subset \subset B\left(x_{0}, r_{0}\right) \backslash K$ is the domain defined by

$$
\begin{equation*}
D_{1}:=B\left(x_{0}+\left(3 r_{0} / 4\right) \nu_{0}, r_{0} / 8\right), \quad D_{2}:=B\left(x_{0}-\left(3 r_{0} / 4\right) \nu_{0}, r_{0} / 8\right) . \tag{26}
\end{equation*}
$$

Then, we define the normalized jump of u in $B\left(x_{0}, r_{0}\right)$ as

$$
J\left(x_{0}, r_{0}\right):=\frac{\left|b_{1}-b_{2}\right|+r_{0}\left|A_{1}-A_{2}\right|}{\sqrt{r_{0}}}
$$

This quantity is invariant under rescaling, see Remark 2.3. We also recall the definition of the p-normalized elastic energy, definned for $p \geq 1$ by

$$
\omega_{p}\left(x_{0}, r_{0}\right):=r_{0}^{1-2 N / p}\left(\int_{B\left(x_{0}, r_{0}\right) \backslash K}|e(u)|^{p} \mathrm{~d} x\right)^{\frac{2}{p}}
$$

A classical argument in [11] says that when β and ω are small enough then J is bounded from below. We are going to adapt the argument to Griffith quasiminimizers. We first recall a
basic estimate about the harmonic extension from a sphere to the ball. The proof is given in [11, Lemma 22.32].

Lemma 5.2. (Estimate about an extension [11, Lemma 22.32]) For each $p \in(2(N-1) / N, 2]$, there is a constant $C \geq 1$ (which depends on N and p) such that if $B=B(x, r)$ is a ball in \mathbb{R}^{N} and $f \in W^{1, p}(\partial B)$ then there is a function $v \in W^{1,2}(B)$ such that

$$
\int_{B}|\nabla v|^{2} \mathrm{~d} x \leq C r^{N-\frac{2 N}{p}+\frac{2}{p}}\left(\int_{\partial B}|\nabla f|^{p}\right)^{\frac{2}{p}}
$$

and v has a trace on ∂B coincide with f almost-everywhere.
Lemma 5.3. (Initialization of the jump) For each $M \geq 1$ and $p \in(2(N-1) / N, 2]$, there exists a constant $\tau_{0}>0$ (depending on N, \mathbb{C}, M and p) such that the following holds. Let (u, K) be a topological M-quasiminimizer with gauge h in Ω. For all $x_{0} \in K$, for all $r_{0}>0$ such that $B\left(x_{0}, r_{0}\right) \subset \Omega$,

$$
\beta_{K}\left(x_{0}, r_{0}\right)+\omega_{p}\left(x_{0}, r_{0}\right)+h\left(r_{0}\right) \leq \tau_{0},
$$

and
K does not separate D_{1} and D_{2}, see (26),
then we have

$$
J\left(x_{0}, r_{0}\right) \geq \tau_{0} .
$$

The proof is similar to that of [11, Proposition 42.10]. We proceed by contradiction and by assuming $\beta+\omega+J^{-1}+h \ll 1$, one build a better competitor of u by removing $K \cap B\left(x_{0}, r_{0}\right)$ and making an interpolation between the two rigid motions a_{1} and a_{2}. The quantity J estimates the cost of such an interpolation. The assumption (27) means that D_{1} and D_{2} lie in the same connected component of $\Omega \backslash K$. This ensures that when one removes a piece of K, we still have a topological competitor. Note that if (u, K) is a plain quasiminimizer (without the topological constraint (3) on competitors), the assumption (27) is not needed.

Proof. We let the letter C denotes a constant ≥ 1 which depends only on N, \mathbb{C}, M and p. Since the statement is invariant under rescaling, we can assume that $B\left(x_{0}, r_{0}\right)=B(0,1)$ and we choose a system of coordinates such that the infimum in the definition of the flatness is achieved for $P_{0}=\left\{x_{N}=0\right\}$. Let (u, K) be a topological M-quasiminimizer with gauge h in $B(0,1)$. We let $\varepsilon_{0}, \varepsilon_{1}, \varepsilon_{2} \in(0,1 / 10)$ be a small parameter such that

$$
\begin{equation*}
\beta_{K}(0,1) \leq \varepsilon_{0}, \quad \omega_{p}(0,1) \leq \varepsilon_{1}, \quad h(1) \leq \varepsilon_{2} . \tag{28}
\end{equation*}
$$

We let $a_{1}(x)=b_{1}+A_{1} x$ and $a_{2}(x)=b_{2}+A_{2} x$ be two rigid motions approximating u in the upper and lower part of $B(0,1)$, as defined in (25). According to Korn-Poincaré inequality in the domains $\left\{x \in B(0,1) \mid \pm x_{N}>\varepsilon_{0}\right\}$ (which are disjoint from K), we have

$$
\begin{equation*}
\int_{B(0,1) \cap\left\{x_{N}>\varepsilon_{0}\right\}}\left|u-a_{1}\right|^{p}+\left|\nabla u-\nabla a_{1}\right|^{p} \mathrm{~d} x \leq C \omega_{p}(0,1)^{p / 2} \tag{29}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
\int_{B(0,1) \cap\left\{x_{N}<-\varepsilon_{0}\right\}}\left|u-a_{2}\right|^{p}+\left|\nabla u-\nabla a_{2}\right|^{p} \mathrm{~d} x \leq C \omega_{p}(0,1)^{p / 2} . \tag{30}
\end{equation*}
$$

Note that the constant C here is independent of $\varepsilon_{0} \in(0,1 / 10)$. We start by building an interpolation of these two rigid motions, we let $\bar{u}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ be defined by

$$
\bar{u}(x)= \begin{cases}a_{1}(x) & \text { in }\left\{x_{N}>\varepsilon_{0}\right\} \\ a_{2}(x) & \text { in }\left\{x_{N}<-\varepsilon_{0}\right\} \\ a_{1}(x)\left(\frac{x_{N}+\varepsilon_{0}}{2 \varepsilon_{0}}\right)-a_{2}(x)\left(\frac{x_{N}-\varepsilon_{0}}{2 \varepsilon_{0}}\right) & \text { in }\left\{-\varepsilon_{0}<x_{N}<\varepsilon_{0}\right\}\end{cases}
$$

We can control the energy of such an interpolation via J, namely,

$$
\int_{B(0,1)}|e(\bar{u})|^{2} \mathrm{~d} x \leq C \varepsilon_{0}^{-2}\left(\left|b_{1}-b_{2}\right|^{2}+\left|A_{1}-A_{2}\right|^{2}\right) \leq C \varepsilon_{0}^{-2} J(0,1)
$$

We can also directly reformulate (29), (30) as

$$
\int_{B(0,1) \cap\left\{\left|x_{N}\right|>\varepsilon_{0}\right\}}|u-\bar{u}|^{p}+|\nabla u-\nabla \bar{u}|^{p} \mathrm{~d} x \leq C \omega_{p}(0,1)^{p / 2} .
$$

We now select a radius $\rho \in(3 / 4,1)$ such that

$$
u-\bar{u} \in W^{1,2}\left(\partial B(0, \rho) \cap\left\{\left|x_{N}\right|>\varepsilon_{0}\right\} ; \mathbb{R}^{N}\right) \text { with }
$$

a tangential derivative given by the restriction of $\nabla u-\nabla \bar{u}$,
and, by the co-area formula,

$$
\begin{equation*}
\int_{\partial B(0, \rho) \cap\left\{\left|x_{N}\right|>\varepsilon_{0}\right\}}|u-\bar{u}|^{p}+|\nabla u-\nabla \bar{u}|^{p} \mathrm{~d} \mathcal{H}^{N-1} \leq C \omega_{p}(0,1)^{p / 2} . \tag{31}
\end{equation*}
$$

Then, we make an extension of $u-\bar{u}$ from $\partial B(0, \rho) \cap\left\{\left|x_{N}\right|>\varepsilon_{0}\right\}$ (away from K) to the whole sphere $\partial B(0, \rho)$. We set $B:=B(0, \rho)$ and we consider a function $\varphi \in C^{1}(\partial B)$ such that $0 \leq \varphi \leq 1$,

$$
\begin{aligned}
& \varphi=1 \text { in }\left\{x \in \partial B\left|\left|x_{N}\right|>3 \varepsilon_{0}\right\}\right. \\
& \varphi=0 \text { in }\left\{x \in \partial B\left|\left|x_{N}\right|<2 \varepsilon_{0}\right\}\right.
\end{aligned}
$$

and $|\nabla \varphi| \leq C \varepsilon_{0}^{-1}$. We finally define $f(x):=\varphi(x)(u(x)-\bar{u}(x)) \in W^{1,2}\left(\partial B ; \mathbb{R}^{N}\right)$. We have

$$
|\nabla f| \leq|\varphi||\nabla u-\nabla \bar{u}|+|\nabla \varphi||u-\bar{u}|
$$

and by (31) and the facts that $|\varphi| \leq 1$ and $|\nabla \varphi| \leq C \varepsilon_{0}^{-1}$, we can estimate

$$
\int_{\partial B}|\nabla f|^{p} \mathrm{~d} \mathcal{H}^{N-1} \leq C \int_{\partial B(0, \rho) \cap\left\{\left|x_{N}\right|>\varepsilon_{0}\right\}}|u-\bar{u}|^{p}+|\nabla u-\nabla \bar{u}|^{p} \mathrm{~d} \mathcal{H}^{N-1} \leq C \varepsilon_{0}^{-p} \omega_{p}(0,1)^{p / 2} .
$$

Then by Lemma 5.2, there exists a function $v \in W^{1,2}\left(B ; \mathbb{R}^{N}\right)$ with a trace which coincides with f almost-everywhere on ∂B such that

$$
\int_{B}|\nabla v|^{2} \mathrm{~d} x \leq C\left(\int_{\partial B}|\nabla f|^{p}\right)^{2 / p} \leq C \varepsilon_{0}^{-2} \omega_{p}(0,1) .
$$

We finally define a competitor $\left(u^{*}, K^{*}\right)$ of (u, K) in $B(0,1)$ by

$$
K^{*}:=(K \backslash B(0, \rho)) \cup Z,
$$

where $Z:=\left\{x \in \partial B(0, \rho)| | x_{N} \mid \leq 3 \varepsilon_{0}\right\}$, and

$$
u^{*}:= \begin{cases}v(y)+\bar{u}(y) & \text { in } B(0, \rho) \\ u(y) & \text { in } \Omega \backslash(B(0, \rho) \cup Z) .\end{cases}
$$

Remember that $f=u(y)-\bar{u}(y)$ on $\partial B(0, \rho) \backslash Z$ so the two functions glue well along $\partial B(0, \rho) \backslash Z$. We also need to check that it satisfies the topological condition (3), i.e., that all $x, y \in \Omega \backslash(K \cup$
$\bar{B}(0, \rho))$ which are not separated by K^{*}, are not separated by K either. So let γ be a continous path connecting x, y in the complement of K^{*}. If γ never meets $\bar{B}(0, \rho)$, then it also connects x, y in the complement of K because K^{*} coincides with K outside of $\bar{B}(0, \rho)$. If γ meets $\bar{B}(0, \rho)$, then it also meets $\partial B(0, \rho)$ and it can only be at a point of $\partial B(0, \rho) \backslash Z$. By considering the first time at which γ meets $\partial B(0, \rho)$, we see that x is connected to $\partial B(0, \rho) \backslash Z$ in the complement of K. The same holds for y. By assumption, there exists a connected component \mathcal{O} of $\Omega \backslash K$ which contains the domains D_{1} and D_{2}, defined in 26). The sets

$$
\left\{x \in B(0,1) \mid x_{N}>3 \varepsilon_{0}\right\} \quad \text { and } \quad\left\{x \in B(0,1) \mid x_{N}<-3 \varepsilon_{0}\right\}
$$

are connected subset of $\Omega \backslash K$ which meet \mathcal{O} (because they contain D_{1} and D_{2}) so they are also contained in \mathcal{O}. As a conclusion, we see that both x and y are connected to $\partial B(0, \rho) \backslash Z$ in the complement of K and $\partial B(0, \rho) \backslash Z \subset \mathcal{O}$ so x and y are connected in the complement of K.

The pair $\left(u^{*}, K^{*}\right)$ is a topological competitor of (u, K) and $\left(u^{*}, K^{*}\right)$ in all balls $B(0, t)$ where $t \in(\rho, 1)$ and we deduce
$\int_{B(0, \rho)} \mathbb{C} e(u): e(u) \mathrm{d} x+M^{-1} \mathcal{H}^{N-1}(K \cap \bar{B}(0, \rho)) \leq \int_{B(0, \rho)} \mathbb{C} e\left(u^{*}\right): e\left(u^{*}\right) \mathrm{d} x+M \mathcal{H}^{N-1}(Z)+h(1)$.
If $\varepsilon_{2} \leq \varepsilon_{A}$, where ε_{A} is the required parameter for the density lower bound (4), then (28) yields $h(1) \leq \varepsilon_{A}$ so

$$
M^{-1} \mathcal{H}^{N-1}(K \cap B(0, \rho)) \geq C^{-1} .
$$

On the other hand, $\mathcal{H}^{N-1}(Z) \leq C \varepsilon_{0}$ and

$$
\begin{aligned}
\int_{B(0, \rho)} \mathbb{C} e\left(u^{*}\right): e\left(u^{*}\right) \mathrm{d} x & \leq C \int_{B(0, \rho)}|\nabla v|^{2} \mathrm{~d} x+C \int_{B(0, \rho)}|e(w)|^{2} \mathrm{~d} x \\
& \leq C \varepsilon_{0}^{-2}\left(\omega_{p}(0,1)+J(0,1)\right)
\end{aligned}
$$

so the energy comparison yields

$$
C^{-1} \leq C\left(\varepsilon_{0}+\varepsilon_{0}^{-2} \varepsilon_{1}+\varepsilon_{0}^{-2} J(0,1)\right)+\varepsilon_{2},
$$

where now $C \geq 1$ is a fixed constant which depends only on N, \mathbb{C}, M, p. We fix ε_{0} and ε_{2} small enough such that $C \varepsilon_{0} \leq C^{-1} / 6$, and $\varepsilon_{2} \leq C^{-1} / 6$. Then we choose ε_{1} small enough such that $C \varepsilon_{0}^{-2} \varepsilon_{1} \leq C^{-1} / 6$. We arrive at $C / 2 \leq C \varepsilon_{0}^{-2} J(0,1)$, which bounds $J(0,1)$ from below by constant which depends only on N, \mathbb{C}, M and p. The statement follows for a suitable choice of τ_{0}.
5.2. Size of holes through a projection. The following Lemma estimates the size of holes through a projection by a slicing technique. Rigot [36] performed a similar argument in the scalar case, but it is more intricate to use it in the Griffith setting. This complexity arises because the estimates involves only the component of the jump in the direction of the slicing.
Lemma 5.4. Let (u, K) be a pair in Ω. Let $x_{0} \in K, r_{0}>0$, and $\varepsilon \in(0,1 / 4)$ be such that $B\left(x_{0}, r_{0}\right) \subset \Omega$ and $\beta_{K}\left(x_{0}, r_{0}\right) \leq \varepsilon$. Let P_{0}, ν_{0} and a_{1}, a_{2} be as in the beginning of Section 5.1. Then for all unit vector $\nu \in \mathbf{S}^{N-1}$ such that $\left|\nu-\nu_{0}\right| \leq \varepsilon$, we have

$$
J(\nu)\left(\frac{\mathcal{H}^{N-1}\left(P \cap B\left(x_{0},(1-4 \varepsilon) r_{0}\right) \backslash \pi_{P}\left(K \cap B\left(x_{0}, r_{0}\right)\right)\right)}{r_{0}^{N-1}}\right)^{2} \leq C \varepsilon^{-1} \omega_{1}\left(x_{0}, r_{0}\right)^{1 / 2}
$$

where $P=x_{0}+\nu^{\perp}, \pi_{P}$ is the orthogonal projection onto P,

$$
J(\nu):=\frac{\left|\left(b_{1}-b_{2}\right) \cdot \nu\right|+r_{0}\left|\left(A_{1}-A_{2}\right) \nu\right|}{\sqrt{r_{0}}}
$$

and $C \geq 1$ is a universal constant.
Proof. The letter C denotes a universal constant ≥ 1 whose value might change from one line to another. Since all the quantities involved in the inequality are invariant under standard rescaling, see Remark 2.3, we can assume that $B\left(x_{0}, r_{0}\right)=B(0,1)$ without loss of generality. We let $\nu \in \mathbf{S}^{N-1}$ be a unit vector such that $\left|\nu-\nu_{0}\right| \leq \varepsilon$. First of all, we observe that since

$$
K \cap B(0,1) \subset\left\{\left|x \cdot \nu_{0}\right| \leq \varepsilon\right\},
$$

and $\left|\nu-\nu_{0}\right| \leq \varepsilon$, we also have

$$
\begin{equation*}
K \cap B(0,1) \subset\{|x \cdot \nu| \leq 2 \varepsilon\} . \tag{32}
\end{equation*}
$$

In what follows, we assume that ν is the last vector of the canonic basis to simplify the notations. We decompose each point $x \in \mathbb{R}^{N}$ as $x=x^{\prime}+x_{N} e_{N}$, where $x^{\prime} \in \mathbb{R}^{N-1}$ and $x_{N}=x \cdot e_{N} \in \mathbb{R}$.

Step 1. Building an auxiliary function. We build a function $v \in W_{\mathrm{loc}}^{1,2}\left(B(0,1) \backslash K ; \mathbb{R}^{N}\right)$ such that

$$
\begin{aligned}
& v(x)=a_{1}(x) \text { in } B(0,1) \cap\left\{x_{N} \geq 4 \varepsilon\right\} \\
& v(x)=a_{2}(x) \text { in } B(0,1) \cap\left\{x_{N} \leq-4 \varepsilon\right\},
\end{aligned}
$$

and the following estimate holds

$$
\int_{B(0,1) \backslash K}|e(v)| \mathrm{d} x \leq C \int_{B(0,1) \backslash K}|e(u)| \mathrm{d} x .
$$

We consider a smooth cut-off function $\varphi_{1}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ equal to 1 on $\left\{x_{N} \geq 4 \varepsilon\right\}$, equal to 0 on $\left\{x_{N} \leq 2 \varepsilon\right\}$, with $0 \leq \varphi_{1} \leq 1$ and $\left|\nabla \varphi_{1}\right| \leq C \varepsilon^{-1}$. We also consider an other cut-off function $\varphi_{-}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ equal to 1 on $\left\{x_{N} \leq-4 \varepsilon\right\}$, equal to 0 on $\left\{x_{N} \geq-2 \varepsilon\right\}$, with $0 \leq \varphi_{2} \leq 1$ and $\left|\nabla \varphi_{2}\right| \leq C \varepsilon^{-1}$. We finally define

$$
v(x):=\varphi_{1}(x) a_{1}(x)+\varphi_{2}(x) a_{2}(x)+\left(1-\varphi_{1}(x)\right)\left(1-\varphi_{2}(x)\right) u(x) .
$$

This function v defined above clearly belongs to $W_{\mathrm{loc}}^{1,2}\left(B(0,1) \backslash K ; \mathbb{R}^{N}\right)$ and satisfies properties (1) and (2) of the statement. Let us estimate the energy of v in the region $B(0,1) \cap\left\{x_{N}>2 \varepsilon\right\} \backslash K$. In this domain, we know that $\varphi_{2}=0$ so that the expression of v reduces to $v=\varphi_{1} a_{1}+\left(1-\varphi_{1}\right) u$ and therefore

$$
\begin{aligned}
|e(v)| & \leq\left|\nabla \varphi_{1}\right|\left|a_{1}-u\right|+\left(1-\varphi_{1}\right)|e(u)| \\
& \leq C \varepsilon^{-1}\left|a_{1}-u\right|+|e(u)| .
\end{aligned}
$$

We recall that the rigid motion a_{1} is the average rigid motion of u in the domain $D_{1}:=$ $B\left((3 / 4) \nu_{0}, 1 / 8\right)$. Since $\left|e_{N}-\nu_{0}\right| \leq \varepsilon$ and $\varepsilon \leq 1 / 4$, we have $e_{N} \cdot \nu_{0} \geq 1-\varepsilon^{2} / 2>5 / 6$ and thus for $x \in D_{1}$,

$$
\begin{equation*}
\left|x_{N}\right| \geq(3 / 4)\left(e_{N} \cdot \nu_{0}\right)-1 / 8>(3 / 4) \cdot(5 / 6)-1 / 8=1 / 2 \tag{33}
\end{equation*}
$$

Hence, D_{1} is contained in $B(0,1) \cap\left\{x_{N}>2 \varepsilon\right\}$, which is a Lipschitz domain disjoint from K by (32). So by Korn-Poincaré inequality, we have

$$
\int_{B(0,1) \cap\left\{x_{N}>2 \varepsilon\right\}}\left|u-a_{1}\right| \mathrm{d} x \leq C \int_{B(0,1)}|e(u)| \mathrm{d} x .
$$

We conclude that

$$
\int_{B(0,1) \cap\left\{x_{N}>2 \varepsilon\right\}}|e(v)| \mathrm{d} x \leq C \varepsilon^{-1} \int_{B(0,1)}|e(u)| \mathrm{d} x .
$$

We can estimate the energy of v in $B(0,1) \cap\left\{x_{N}<-2 \varepsilon\right\}$ in the same way. And in the domain $B(0,1) \cap\left\{-2 \varepsilon<x_{N}<2 \varepsilon\right\} \backslash K$, we have $v=u$ so there is nothing to do.

Step 2. Controling the size of holes in the projection by slicing. This step is based on the elementary observation that

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[v\left(x+t e_{N}\right) \cdot e_{N}\right]=\left(e(v)\left(x+t e_{N}\right) e_{N}\right) \cdot e_{N} .
$$

Let $E:=P \cap B(0,1-4 \varepsilon) \backslash \pi_{P}\left(K \cap B\left(x_{0}, r_{0}\right)\right)$, where we recall that $P=\left\{x_{N}=0\right\}$. Then for all $x^{\prime} \in E$, we can integrate along a vertical segment from $x^{-}=x^{\prime}-4 \varepsilon e_{N}$ to $x^{+}=x^{\prime}+4 \varepsilon e_{N}$. This yields

$$
\left(a_{2}\left(x^{+}\right)-a_{1}\left(x^{-}\right)\right) \cdot e_{N}=\int_{-4 \varepsilon}^{4 \varepsilon}\left(e(v)\left(x^{\prime}+t e_{N}\right) e_{N}\right) \cdot e_{N} \mathrm{~d} t .
$$

Then we apply Fubini and integrate with respect to $x^{\prime} \in E$, namely,

$$
\begin{aligned}
\int_{E}\left|\left(a_{2}\left(x^{+}\right)-a_{1}\left(x^{-}\right)\right) \cdot e_{N}\right| \mathrm{d} x^{\prime} & =\int_{E} \int_{-4 \varepsilon}^{4 \varepsilon}\left(e(v)\left(x^{\prime}+t e_{N}\right) e_{N}\right) \cdot e_{N} \mathrm{~d} t \mathrm{~d} x^{\prime} \\
& \leq \int_{B(0,1)}|e(v)| \mathrm{d} x \\
& \leq C \varepsilon^{-1} \int_{B(0,1)}|e(u)| \mathrm{d} x
\end{aligned}
$$

Now we recall that $a_{i}(x)=b_{i}+A_{i} x$, where A is a skew-symmetric matrix so

$$
\begin{aligned}
a_{i}\left(x^{\prime} \pm 2 \varepsilon e_{N}\right) \cdot e_{N} & =b_{i} \cdot e_{N}+\left(A_{i} x^{\prime}\right) \cdot e_{N} \pm 2 \varepsilon\left(A_{i} e_{N}\right) \cdot e_{N} \\
& =b_{i} \cdot e_{N}-\left(A_{i} e_{N}\right) \cdot x^{\prime}
\end{aligned}
$$

and we arrive at

$$
\int_{E}\left|\left(b_{2}-b_{1}\right) \cdot e_{N}-x^{\prime} \cdot\left(\left(A_{2}-A_{1}\right) e_{N}\right)\right| \mathrm{d} x^{\prime} \leq C \varepsilon^{-1} \int_{B(0,1)}|e(u)| \mathrm{d} x .
$$

In view of Lemma A. 1 in Appendix (applied in \mathbb{R}^{N-1}), this gives finally

$$
\mathcal{H}^{N-1}(E)^{2}\left(\left|\left(b_{2}-b_{1}\right) \cdot e_{N}\right|+\left|\left(A_{2}-A_{1}\right) e_{N}\right|\right) \leq C \varepsilon^{-1} \int_{B(0,1)}|e(u)| \mathrm{d} x,
$$

and the proof is concluded.

5.3. Proof of Proposition 5.1.

Proof of Proposition 5.1. As usual, we let C denote a generic constant ≥ 1 which depends only on N, \mathbb{C}, M and p. We let $P_{0}, \nu_{0}, D_{1}, D_{2}$ and a_{1}, a_{2} be as in the beginning of Section 5.1. We fix $\varepsilon>0$ and we let $\varepsilon_{0}, \varepsilon_{1}, \varepsilon_{2} \in(0,1 / 4)$ be small parameters (they will be chosen small enough depending on ε) such that

$$
\beta\left(x_{0}, r_{0}\right) \leq \varepsilon_{1}, \quad \omega_{p}\left(x_{0}, r_{0}\right) \leq \varepsilon_{2}, \quad h\left(r_{0}\right) \leq \varepsilon_{0} .
$$

We consider a unit vector $\nu \in \mathbf{S}^{N-1}$ such that $\left|\nu-\nu_{0}\right| \leq \varepsilon_{1}$ and we let $P=x_{0}+\nu^{\perp}$ and π_{P} denote the orthogonal projection ont P. Since orthogonal projections are 1-Lipschitz, we can bound the measure of K from below by the measure of its projection

$$
\begin{aligned}
\mathcal{H}^{N-1}\left(K \cap B\left(x_{0}, r_{0}\right)\right) & \geq \mathcal{H}^{N-1}\left(\pi_{P}\left(K \cap B\left(x_{0}, r_{0}\right)\right)\right. \\
& \geq \omega_{N-1} r_{0}^{N-1}-\mathcal{H}^{N-1}\left(P \cap B\left(x_{0}, r_{0}\right) \backslash \pi_{P}\left(K \cap B\left(x_{0}, r_{0}\right)\right) .\right.
\end{aligned}
$$

Now the goal of the proof is to control

$$
\mathcal{H}^{N-1}\left(P \cap B\left(x_{0}, r_{0}\right) \backslash \pi_{P}\left(K \cap B\left(x_{0}, r_{0}\right)\right)\right.
$$

for a suitable choice of vector ν. We can first bound

$$
\mathcal{H}^{N-1}\left(P \cap B\left(x_{0}, r_{0}\right) \backslash B\left(x_{0},\left(1-4 \varepsilon_{1}\right) r_{0}\right)\right) \leq C \varepsilon_{1} r_{0}^{N-1}
$$

and are left to deal with

$$
\mathcal{H}^{N-1}\left(P \cap B\left(x_{0},\left(1-4 \varepsilon_{1}\right) r_{0}\right) \backslash \pi_{P}\left(K \cap B\left(x_{0}, r_{0}\right)\right)\right) .
$$

We focus first on the case where K separates the domain D_{1} and D_{2}. We recall the fact seen just below (33), that D_{1} is contained in $B(0,1) \cap\left\{x \cdot \nu>2 \varepsilon_{1}\right\}$ and D_{2} is contained in $B(0,1) \cap\left\{x \cdot \nu<-2 \varepsilon_{1}\right\}$, which are convex domains disjoint from K. Hence, for all $x \in P \cap$ $B\left(x_{0},\left(1-4 \varepsilon_{1}\right) r_{0}\right)$, the segment $x+\left[-2 \varepsilon_{1}, 2 \varepsilon_{1}\right] \nu$ must meet K otherwise it could be used to connect D_{1} and D_{2}. Thus the projection $\pi_{P}\left(K \cap B\left(x_{0}, r_{0}\right)\right)$ contains $P \cap B\left(x_{0},\left(1-4 \varepsilon_{1}\right) r_{0}\right)$. We conclude in this case that

$$
\mathcal{H}^{N-1}\left(K \cap B\left(x_{0}, r_{0}\right)\right) \geq \mathcal{H}^{N-1}\left(\pi_{P}\left(K \cap B\left(x_{0}, r_{0}\right)\right) \geq \omega_{N-1} r_{0}^{N-1}-C \varepsilon_{1} r_{0}^{N-1} .\right.
$$

It then suffices to choose ε_{1} small enough (depending on N, ε) to conclude the theorem statement.
We now assume that K does not separate the domain D_{1} and D_{2} and this will allow us to use Lemma 5.3. We know by Lemma 5.4 that for all $\nu \in \mathbf{S}^{N-1}$ such that $\left|\nu-\nu_{0}\right| \leq \varepsilon_{1}$, we have

$$
J(\nu)\left(\frac{\mathcal{H}^{N-1}\left(P \cap B\left(x_{0},\left(1-4 \varepsilon_{1}\right) r_{0}\right) \backslash \pi_{P}\left(K \cap B\left(x_{0}, r_{0}\right)\right)\right)}{r_{0}^{N-1}}\right)^{2} \leq C \varepsilon_{1}^{-1} \omega_{1}\left(x_{0}, r_{0}\right)^{1 / 2}
$$

where $P=x_{0}+\nu^{\perp}$. We are then looking for a vector ν close to ν_{0} such that $J(\nu)$ is bounded from below. To simplify the notations, we set $b:=b_{2}-b_{1}$ and $A:=A_{2}-A_{1}$. According to Lemma A.2, we have

$$
\int_{\nu \in \mathbf{S}^{N-1} \cap B\left(\nu_{0}, \varepsilon_{1}\right)}|b \cdot \nu|+|A \nu| \mathrm{d} \mathcal{H}^{N-1}(\nu) \geq C\left(\varepsilon_{1}\right)^{-1}\left(|b|+r_{0}|A|\right)
$$

where $C\left(\varepsilon_{1}\right) \geq 1$ also depends on ε_{1} and is allowed to take a bigger value in the next lines. We can thus find a vector $\nu \in \mathbf{S}^{N-1}$ such that $\left|\nu-\nu_{0}\right| \leq \varepsilon_{1}$ and

$$
J(\nu) \geq C\left(\varepsilon_{1}\right)^{-1} J\left(x_{0}, r_{0}\right)
$$

and for this choice of ν, we have

$$
J\left(x_{0}, r_{0}\right)\left(\frac{\mathcal{H}^{N-1}\left(P \cap B\left(x_{0},\left(1-2 \varepsilon_{1}\right) r_{0}\right) \backslash \pi_{P}\left(K \cap B\left(x_{0}, r_{0}\right)\right)\right)}{r_{0}^{N-1}}\right)^{2} \leq C\left(\varepsilon_{1}\right) \omega_{1}\left(x_{0}, r_{0}\right)^{1 / 2}
$$

Now, we let τ_{0} be the constant of Lemma 5.3 , which depends only on N, \mathbb{C}, M, p, and we take $\varepsilon_{1} \leq \tau_{0} / 3, \varepsilon_{2} \leq \tau_{0} / 2$ and $\varepsilon_{0}=\tau_{0} / 3$ so that $J\left(x_{0}, r_{0}\right) \geq \tau_{0}^{-1}$. Using also the fact that $\omega_{1} \leq \omega_{p}$, we arrive at

$$
\left(\frac{\mathcal{H}^{N-1}\left(P \cap B\left(x_{0},\left(1-2 \varepsilon_{1}\right) r_{0}\right) \backslash \pi_{P}\left(K \cap B\left(x 0, r_{0}\right)\right)\right)}{r_{0}^{N-1}}\right)^{2} \leq C\left(\varepsilon_{1}\right) \varepsilon_{2}^{1 / 2} .
$$

We conclude that

$$
\mathcal{H}^{N-1}\left(K \cap B\left(x_{0}, r_{0}\right)\right) \geq\left(\omega_{N-1}-C \varepsilon_{1}-C\left(\varepsilon_{1}\right) \varepsilon_{2}^{1 / 2}\right) r_{0}^{N-1}
$$

We can first fix ε_{1} such that $\varepsilon_{1} \leq \omega_{N-1} \varepsilon / 2$ and then ε_{2} even smaller such that $C\left(\varepsilon_{1}\right) \varepsilon_{2}^{1 / 2} \leq$ $\omega_{N-1} \varepsilon / 2$, which yields

$$
\mathcal{H}^{N-1}\left(K \cap B\left(x_{0}, r_{0}\right)\right) \geq \omega_{N-1}(1-\varepsilon) r_{0}^{N-1}
$$

and finishes the proof.

6. Uniform Concentration property

In this section we will prove the uniform concentration property that was announced in the introduction, i.e. in Theorem 1.1. We start by recalling the definition of a uniformly concentrated sequence given in [11, Section 35].

Definition 6.1. Let $\left(E_{i}\right)_{i}$ and E be relatively closed subsets of Ω. We say that the sequence $\left(E_{i}\right)_{i}$ is uniformly concentrated with respect to E provided that for all $\varepsilon \in(0,1)$, there exists a constant $C(\varepsilon) \geq 1$ such that the following holds. For all $x \in E$, there exists $r(x)>0$ such that for all $0<r \leq r(x)$, for all i large enough, we can find a ball $B\left(y_{i}, \rho_{i}\right) \subset \Omega \cap B(x, r)$ with $\rho_{i} \geq C(\varepsilon)^{-1} r$ and

$$
\mathcal{H}^{N-1}\left(E_{i} \cap B\left(y_{i}, \rho_{i}\right)\right) \geq(1-\varepsilon) \omega_{N-1} \rho_{i}^{N-1}
$$

where ω_{N-1} is the measure of the $(N-1)$-dimensional unit disk.
As mentionned in introduction, this property implies the lower semi-continuity of the area,

$$
\begin{equation*}
\mathcal{H}^{N-1}(E) \leq \liminf _{i \rightarrow+\infty} \mathcal{H}^{N-1}\left(E_{i}\right) . \tag{34}
\end{equation*}
$$

We refer to [35] or [11, Theorem 35.4] for a proof. We then show that for a Griffith almostminimizers, the density of K is greater than $1-\varepsilon$ when the normalized elastic energy is small. This result improves Proposition 5.1 by removing the flatness assumption and find its intuition in the fact that K behaves like a minimal sets in regime of low elastic energy.

Proposition 6.2. For each $p \in(2(N-1) / N, 2]$ and $\varepsilon>0$, there exist a constant $\varepsilon_{0}>0$ (depending on $N, \mathbb{C}, p, \varepsilon$) such that the following holds. Let (u, K) be a topological almostminimizer with gauge h in Ω. For all $x_{0} \in K$ and for all $r_{0}>0$ such that $B\left(x_{0}, r_{0}\right) \subset \Omega$ and

$$
\begin{equation*}
\omega_{p}\left(x_{0}, r_{0}\right)+h\left(r_{0}\right) \leq \varepsilon_{0}, \tag{35}
\end{equation*}
$$

we have

$$
\mathcal{H}^{N-1}\left(K \cap B\left(x_{0}, r_{0}\right)\right) \geq(1-\varepsilon) \omega_{N-1} r_{0}^{N-1},
$$

where ω_{N-1} is the measure of the unit $(N-1)$-dimensional disk.
Contrary to Proposition 5.1, the statement of Proposition 6.2 does not hold for Griffith quasiminimizers in general. Indeed if K is a Lipschitz graph of codimension 1 in \mathbb{R}^{N}, then $(0, K)$ is a Griffith quasiminimizer (for a suitable constant $M \geq 1$) with gauge $h=0$ and elastic energy $\omega=0$. The pair $(0, K)$ satisfies (35) in all balls centred on K but K may not have not have a density ≥ 1 if $N \geq 3$. The result could be adapted to quasiminimizers in dimension $N=2$, but we don't pursue in that direction.

Proof of Proposition 6.2. As usual, we let $C \geq 1$ denote a generic constant which depends only N, \mathbb{C}, p. By standard rescaling, we assume that $B\left(x_{0}, r_{0}\right)=B(0,1)$ without loss of generality.

Step 1. Contradiction and compactness. We proceed by contradiction and find a parameter $c \in(0,1)$ and sequence of topological almost minimizers $\left(u_{i}, K_{i}\right)$ in $B(0,1)$ such that $0 \in K_{i}$,

$$
\begin{equation*}
\int_{B(0,1)}\left|e\left(u_{i}\right)\right|^{p} \mathrm{~d} x+h_{i}(1) \rightarrow 0 \tag{36}
\end{equation*}
$$

and

$$
\mathcal{H}^{N-1}\left(K_{i} \cap B(0,1)\right)<(1-c) \omega_{N-1} .
$$

Since $h_{i}(1) \rightarrow 0$, we can extract a subsequence (not relabelled) such that for all $i, h_{i}(1) \leq \varepsilon_{A}$, where ε_{A} is the constant needed for (4) and (5). We thus have

$$
\sup _{i} \int_{B(0,1)}|e(u)|^{2} \mathrm{~d} x+\mathcal{H}^{N-1}\left(K_{i} \cap B(0,1)\right)<+\infty,
$$

and we can extract a subsequence such that the measures $\left(\mathcal{H}^{N-1} L K_{i}\right)_{i}$ converges to a measure μ and such that the pairs $\left(u_{i}, K_{i}\right)_{i}$ converges to a pair (u, K) in $B(0,1)$. Since $h_{i}(1) \leq \varepsilon_{A}$ uniformly, there exists a constant $C \geq 1$ (depending only on N, \mathbb{C}) such that for all i, for all $x \in K_{i}$ and for all $r>0$ such that $B\left(x_{i}, r\right) \subset B(0,1)$, we have

$$
C^{-1} r^{N-1} \leq \mathcal{H}^{N-1}\left(K_{i} \cap B(x, r)\right) \leq C r^{N-1}
$$

It follows that for all $x \in K$ and for all $r>0$ such that $B(x, r) \subset B(0,1)$, we have

$$
C^{-1} r^{N-1} \leq \mu(B(x, r)) \leq C r^{N-1}
$$

and

$$
C^{-1} r^{N-1} \mathcal{H}^{N-1}(K \cap B(x, r)) \leq C r^{N-1}
$$

see Lemma 3.5. Moreover, by application of Proposition 4.1 and the fact that

$$
\lim _{i \rightarrow+\infty} \int_{B(0,1)}\left|e\left(u_{i}\right)\right| \mathrm{d} x+h_{i}(1)=0
$$

we know that for all $x \in K$, for all $r>0$ such that $\bar{B}(x, r) \subset B(0,1)$ and for all topological competitor L of K in $B=B(x, r)$, we have

$$
\begin{equation*}
\mu(B(x, r)) \leq \mathcal{H}^{N-1}(L \cap \bar{B}(x, r)) . \tag{37}
\end{equation*}
$$

Step 2. The limit K is rectifiable. It does not hold true in general that a limit of rectifiable sets is rectifiable so we have no other choice than to take advantage of the minimality property (37) satisfied by the limit. For this purpose, we borrow a Federer-Fleming type argument from [27]. Since K is a Borel set with finite measure in $B(0,1)$, it can be decomposed as disjoint union $K=E \cup F$ of two Borel sets with E being rectifiable and F being purely unrectifiable. We also know by standard density theorems [34, Theorem 6.2(2)] that for \mathcal{H}^{N-1}-a.e. $x \in F$, we have

$$
\lim _{r \rightarrow 0} r^{1-N} \mathcal{H}^{N-1}(E \cap B(x, r))=0
$$

Let us fix such a point $x \in K$ and let us consider a radius $r>0$ such that $\bar{B}(x, r) \subset \Omega$. For $z \in B(x, r) \backslash K$, we let $\phi_{z}: \bar{B}(x, r) \backslash\{z\} \rightarrow \mathbb{R}^{N}$ be the radial projection centered at z onto $\partial B(x, r)$. We are going to see that for a suitable choice of center z, the radial projection cancels the purely unrectifiable part of K. For $d=1, \ldots, N-1$, we let $G(N, d)$ denote the Grassmannian manifold of all d-dimensional linear subspace of \mathbb{R}^{N}. We let $\gamma_{N, d}$ denote the canonic probability measure on $G(N, d)$ and we refer to [34, Chapter 3, §3.9] for the definition. We shall know that for all Borel set $\mathcal{S} \subset G(N, d)$,

$$
\gamma_{N, d}(\mathcal{S})=\gamma_{N, N-d}\left(\left\{V^{\perp} \mid V \in \mathcal{S}\right\}\right) .
$$

We shall also know that for all Borel set $S \subset \partial B(0,1)$, we have

$$
\begin{equation*}
\mathcal{H}^{N-1}(S) \leq C \gamma_{N, 1}(\{L \mid L \cap S \neq \emptyset\}) . \tag{38}
\end{equation*}
$$

Let us justify that for all shifted center $x_{0} \in B(0,1 / 2)$ and for all Borel set $S \subset \partial B(0,1)$, we also have

$$
\begin{equation*}
\mathcal{H}^{N-1}(S) \leq C \gamma_{N, 1}\left(\left\{L \mid\left(x_{0}+L\right) \cap S \neq \emptyset\right\}\right) . \tag{39}
\end{equation*}
$$

If we let f denote the radial projection centered at x_{0} onto $\partial B\left(x_{0}, 2\right)$, then the restriction of f on $S \subset \partial B(0,1)$ is C-biLipschitz so $\mathcal{H}^{N-1}(S) \leq C \mathcal{H}^{N-1}(f(S))$. Using a rescaled version of (38) in $B\left(x_{0}, 2\right)$, we can estimate

$$
\mathcal{H}^{N-1}(f(S)) \leq C \gamma_{N, 1}\left(\left\{L \mid\left(x_{0}+L\right) \cap f(S) \neq \emptyset\right\}\right)
$$

and we observe from the definition of f that $\left(x_{0}+L\right) \cap \phi(S) \neq \emptyset$ if and only if $\left(x_{0}+L\right) \cap S \neq \emptyset$. This proves (39). Let us come back to the ball $B(x, r)$ and the radial projection ϕ_{z} centered on z onto $\partial B(x, r)$. Using a rescaled version of (39) in $B(x, r)$, we deduce that for all $z \in B(x, r / 2) \backslash K$, we have

$$
\mathcal{H}^{N-1}\left(\phi_{z}(K \cap \bar{B}(x, r))\right) \leq C r^{N-1} \gamma_{N, 1}(\{L \mid(L+z) \cap K \cap \bar{B}(x, r) \neq \emptyset\}) .
$$

With the help of Fubini, we can estimate that on average

$$
\begin{aligned}
& f_{B(x, r / 2) \backslash K} \mathcal{H}^{N-1}\left(\phi_{z}(K \cap \bar{B}(x, r))\right) \mathrm{d} \mathcal{H}^{N-1}(z) \\
& \quad \leq C r^{-1} \int_{B(x, r / 2) \backslash K} \int_{G(N, 1)} \gamma_{N, 1}\left(\left\{L \mid\left(x_{0}+L\right) \cap K \cap \bar{B}(x, r) \neq \emptyset\right\}\right) \mathrm{d} L \mathrm{~d} \mathcal{H}^{N-1}(z) \\
& \quad \leq C r^{-1} \int_{G(N, 1)}\left|\left\{z \in B(x, r / 2) \mid\left(x_{0}+L\right) \cap K \cap \bar{B}(x, r) \neq \emptyset\right\}\right| \mathrm{d} L \\
& \quad \leq C r^{-1} \int_{G(N, N-1)}\left|\left\{z \in B(x, r / 2) \mid\left(x_{0}+V^{\perp}\right) \cap K \cap \bar{B}(x, r) \neq \emptyset\right\}\right| \mathrm{d} V \\
& \quad \leq C \int_{G(N, N-1)} \mathcal{H}^{N-1}\left(p_{V}(K \cap \bar{B}(x, r)) \mathrm{d} V .\right.
\end{aligned}
$$

According to the Besicovitch-Federer projection Theorem [34, Theorem 18.1], we know that for almost-all hyperplanes $V \in G(N, N-1)$, we have

$$
\mathcal{H}^{N-1}\left(p_{V}(F \cap \bar{B}(x, r))=0\right.
$$

and from the fact that orthogonal projections are 1-Lipschitz, we know that for all $V \in$ $G(N, N-1)$, we have

$$
\mathcal{H}^{N-1}\left(p_{V}(E \cap \bar{B}(x, r)) \leq \mathcal{H}^{N-1}(E \cap \bar{B}(x, r)) .\right.
$$

We thus conclude that

$$
f_{B(x, r / 2) \backslash K} \mathcal{H}^{N-1}\left(\phi_{z}(K \cap \bar{B}(x, r))\right) \mathrm{d} \mathcal{H}^{N-1}(z) \leq C \mathcal{H}^{N-1}(E \cap \bar{B}(x, r)) .
$$

This allows to find a center $z \in B(x, r) \backslash K$ such that

$$
\mathcal{H}^{N-1}\left(\phi_{z}(K \cap \bar{B}(x, r))\right) \leq C \mathcal{H}^{N-1}(E \cap \bar{B}(x, r)) .
$$

We extend ϕ_{z} out of $\bar{B}(x, r)$ by setting $\phi_{z}=$ id and thus $L=\phi_{z}(K)$ is a topological competitor of K in all balls $B(x, t)$ where $t>r$ and $\bar{B}(x, t) \subset \Omega$, see Remark 2.1. We apply (37) and we use $\mu(B(x, r)) \geq C^{-1} r^{N-1}$ to obtain

$$
C^{-1} r^{N-1} \leq \mathcal{H}^{N-1}(E \cap \bar{B}(x, r)) .
$$

Remember that x is a point such that $\lim _{r \rightarrow 0} r^{1-N} \mathcal{H}^{N-1}(E \cap B(x, r))=0$ so we find a contradiction if r is small enough. This proves that we actually have $\mathcal{H}^{N-1}(F)=0$ and thus K is rectifiable. Note that as a standard consequence of rectifiability and Ahlfors-regularity, we have for \mathcal{H}^{N-1}-a.e. $x \in K$,

$$
\lim _{r \rightarrow 0} \beta_{K}(x, r)=0
$$

Step 4. Lower semi-continuity of the area. Our goal now is to prove that for \mathcal{H}^{N-1}-a.e. $x \in K$, we have

$$
\begin{equation*}
\limsup _{r \rightarrow 0} \frac{\mu(B(x, r))}{\omega_{N-1} r^{d}} \geq 1 \tag{40}
\end{equation*}
$$

It will follow from standard density theorems [34, Theorem 6.9(2)] that $\mu \geq \mathcal{H}^{N-1}\llcorner K$. Let us fix $x \in K$ such that $\lim _{r \rightarrow 0} \beta_{K}(x, r)=0$. By convergence in Hausdorff distance, there exists a sequence of points $x_{i} \in K_{i}$ such that $x_{i} \rightarrow x$. For $\varepsilon>0$, we let $\varepsilon_{0}, \varepsilon_{1} \in(0,1)$ be the associated constant given by Proposition 5.1. There exists a small radius $r(x)>0$ such that $\bar{B}(x, r(x)) \subset B(0,1)$ and for all $0<r \leq r(x)$, it holds $\beta_{K}(x, 2 r)<\varepsilon_{1} / 8$. The radius r being fixed, let us check that for i big enough, we have $\beta_{K_{i}}\left(x_{i}, r\right) \leq \varepsilon_{1} / 2$. There exists an hyperplane P passing through x such that

$$
K \cap B(x, 2 r) \subset\{y: \operatorname{dist}(y, P)<\varepsilon r / 4\} .
$$

As $x_{i} \rightarrow x$ and $K_{i} \rightarrow K$, more precisely using (8), we see that for i big enough

$$
K_{i} \cap B\left(x_{i}, r\right) \subset K_{i} \cap \bar{B}(x, 3 r / 2) \subset\left\{\operatorname{dist}(\cdot, P)<\varepsilon_{1} r / 4\right\} .
$$

Let P_{i} be the hyperplane parallel to P passing through x_{i}. For i big enough, we have $\left|x_{i}-x\right| \leq$ $\varepsilon_{1} r / 4$ and in particular P_{i} is a distance $\leq \varepsilon_{1} r / 4$ from P so

$$
K_{i} \cap B\left(x_{i}, r\right) \subset\left\{\operatorname{dist}\left(\cdot, P_{i}\right)<\varepsilon_{1} r / 2\right\}
$$

and this justifies that $\beta_{K_{i}}\left(x_{i}, r\right) \leq \varepsilon_{1} / 2$. For i big enough, we also have

$$
r^{1-2 N / p}\left(\int_{B\left(x_{i}, r\right)}\left|e\left(u_{i}\right)\right|^{p} \mathrm{~d} x\right)^{2 / p} \leq \varepsilon_{1} / 2
$$

and $h_{i}(r) \leq \varepsilon_{0}$ because of the initial assumption (36). We can then apply Proposition 5.1 in $B\left(x_{i}, r\right)$ for i big enough, which shows that

$$
\mathcal{H}^{N-1}\left(K_{i} \cap B\left(x_{i}, r\right)\right) \geq \omega_{N-1}(1-\varepsilon) r^{N-1} .
$$

Passing to the limit, we arrive at

$$
\mu(\bar{B}(x, r)) \geq \omega_{N-1}(1-\varepsilon) r^{N-1} .
$$

From the fact that this holds for $\mu(\bar{B}(x, r))$ for all $0<r \leq r(x)$, one can also deduce that this holds for $\mu(B(x, r))$ for all $0<r \leq r(x)$. We conclude

$$
\liminf _{r \rightarrow 0} \frac{\mu(B(x, r))}{\omega_{N-1} r^{N-1}} \geq 1-\varepsilon
$$

and we finally let $\varepsilon \rightarrow 0$ to prove our claim (40).
Step 5. Conclusion. Given that $\mu \geq \mathcal{H}^{N-1}\llcorner K$, the minimality condition (37) actually yields that for all $x \in K$, for all $r>0$ such that $\bar{B}(x, r) \subset B(0,1)$ and for all topological competitor L of K in $B(x, r)$, we have

$$
\mathcal{H}^{N-1}(K \cap B(x, r)) \leq \mathcal{H}^{N-1}(L \cap \bar{B}(x, r)) .
$$

In fact, it is possible to remove the closure of the ball at the right-hand side. Here are more details. For small $t>r$ such that $\bar{B}(x, t) \subset B(0,1)$, the set L is a topological competitor of K in $B(x, t)$ so we can replace $B(x, r)$ by $B(x, t)$ in the above inequality. Then we let $t \rightarrow r^{+}$to obtain $\mathcal{H}^{N-1}(K \cap \bar{B}(x, r)) \leq \mathcal{H}^{N-1}(L \cap \bar{B}(x, r))$ and we use the fact that K coincides with L on $\partial B(x, r)$ to recover

$$
\mathcal{H}^{N-1}(K \cap B(x, r)) \leq \mathcal{H}^{N-1}(L \cap B(x, r)) .
$$

This means that K is a minimal set, see Definition 2.4, and in particular, it has a minimal area under continous deformation, see Remark 2.1. These sets have monotone densities ([12, Proposition 5.16] or [37, Chapter $3 \S 17$]), i.e., for all $x \in K$ and for all $0<r<R$ such that $B(x, R) \subset B(0,1)$, we have

$$
r^{1-N} \mathcal{H}^{N-1}(K \cap B(x, r)) \leq R^{1-N} \mathcal{H}^{N-1}(K \cap B(x, R))
$$

As a consequence, the limit

$$
\theta(x):=\lim _{r \rightarrow 0} r^{1-N} \mathcal{H}^{N-1}(K \cap B(x, r))
$$

exists and is finite at all points $x \in E$. We also know by rectifiability that for \mathcal{H}^{N-1}-a.e. $x \in K$, we have $\theta(x)=\omega_{N-1}$. As K is coral and contains 0 , we have $\mathcal{H}^{N-1}(K \cap B(0, \varepsilon))>0$ for all $\varepsilon \in(0,1)$ and therefore we can find $x \in E \cap B(0, \varepsilon))$ such that $\theta(x)=\omega_{n-1}$. Then, we estimate by monotonicity

$$
\begin{aligned}
\omega_{N-1} & \leq(1-\varepsilon)^{1-N} \mathcal{H}^{N-1}(K \cap B(x, 1-\varepsilon)) \\
& \leq(1-\varepsilon)^{1-N} \mathcal{H}^{N-1}(K \cap B(0,1))
\end{aligned}
$$

and letting $\varepsilon \rightarrow 0$ yields

$$
\omega_{N-1} \leq \mathcal{H}^{N-1}(K \cap B(0,1))
$$

This contradicts the fact that $\mu \geq \mathcal{H}^{N-1}\left\llcorner K\right.$ and the initial assumption that $\mathcal{H}^{N-1}\left(K_{i} \cap\right.$ $B(0,1)) \leq \omega_{N-1}(1-c)$.

We are now ready to prove the concentration property stated in Theorem 1.1. Notice that in the Mumford-Shah setting, uniform concentration is also known to hold for quasiminimizers. We expect that this should also be the case in the Griffith setting but our approach, which relies on Proposition 6.2, is not suitable for quasiminimizers. Nevertheless, Theorem 1.1 will be sufficient to deduce our main limiting theorem for almost-minimizers, i.e. Theorem 2.7 .
Proof of Theorem 1.1. The letter C denotes a generic constant ≥ 1 which depends only on N and \mathbb{C}. Let us fix an exponent $p \in(2(N-1) / N, 2]$, say the middle point in the interval so that it depends only on N. Let us fix $\varepsilon>0$ and let ε_{0} be the associated constant given by Proposition 6.2. We want to find a smaller shifted ball where Proposition 6.2 applies and for this, we recall the Carleson estimate proved in [11. It says that for all $x \in K$, for all $r>0$ such that $B(x, 2 r) \subset \Omega$ and $h(2 r) \leq \varepsilon_{A}$, we have

$$
\int_{y \in K \cap B(x, r)} \int_{0}^{r} \omega_{p}(y, t) \frac{\mathrm{d} t}{t} \mathrm{~d} \mathcal{H}^{1}(y) \leq C r^{N-1} .
$$

The proof in [11] is performed with $|\nabla u|^{2}$ but readily applies with $|e(u)|^{2}$ since it only uses the Ahlfors-regularity properties (4), (5). We are going to use this inequality to find a constant $C_{0} \geq 1$ (depending on $N, \mathbb{C}, \varepsilon_{0}$) such that the following holds: for all $x \in K$, for all $r>0$ such that $B(x, r) \subset \Omega$ and $h(r) \leq \varepsilon_{A}$, there exists $y \in K \cap B(x, r / 2)$ and $t \in\left(C_{0}^{-1} r, r / 2\right)$ such that $\omega_{p}(y, t) \leq \varepsilon_{0} / 2$. Indeed, if this is not the case for a given constant $C_{0} \geq 1$, then

$$
\begin{aligned}
C r^{N-1} \geq \int_{y \in K \cap B(x, r / 2)} \int_{0}^{r / 2} \omega_{p}(y, t) \frac{\mathrm{d} t}{t} \mathrm{~d} \mathcal{H}^{1}(y) & \geq \int_{y \in K \cap B(x, r / 2)} \int_{C_{0}^{-1} r}^{r / 2} \omega_{p}(y, t) \frac{\mathrm{d} t}{t} \mathrm{~d} \mathcal{H}^{1}(y) \\
& \geq \frac{\varepsilon_{0}}{2} \mathcal{H}^{N-1}(K \cap B(x, r / 2)) \ln \left(\frac{C_{0}}{2}\right) \\
& \geq C^{-1} \varepsilon_{0} \ln \left(\frac{C_{0}}{2}\right) .
\end{aligned}
$$

We reach a contradiction if C_{0} is too big (depending on $\left.N, \mathbb{C}, \varepsilon_{0}\right)$. We conclude that for all $x \in K$, for all $r>0$ such that $B(x, r) \subset \Omega$ and $h(r) \leq \varepsilon_{A}$, there exists $y \in K \cap B(x, r / 2)$ and $t \in\left(C_{0}^{-1} r, r / 2\right)$ such that $\omega_{p}(y, t) \leq \varepsilon_{0} / 2$. Assuming furthermore $h(r) \leq \min \left(\varepsilon_{0} / 2, \varepsilon_{A}\right)$, we can apply Proposition 6.2 in $B(y, t)$ which yields

$$
\mathcal{H}^{N-1}(K \cap B(y, t)) \geq \omega_{N-1}(1-\varepsilon) r^{N-1} .
$$

We are going to deduce that the area is lower-semicontinuous along sequence of almostminimizers.

Corollary 6.3 (Lower semicontinuity of the area). Let $\left(\Omega_{i}\right)_{i}$ and Ω be a sequence of open sets as in (6). Let $\left(u_{i}, K_{i}\right)_{i}$ be a sequence such that for all i, $\left(u_{i}, K_{i}\right)$ is an almost-minimizer with gauge h_{i} in Ω_{i}. If $\left(u_{i}, K_{i}\right)_{i}$ converges to a pair (u, K) in Ω and

$$
\lim _{r \rightarrow 0} \limsup _{i \rightarrow+\infty} h_{i}(r)=0,
$$

then for all open set $V \subset \Omega$, we have

$$
\mathcal{H}^{N-1}(K \cap V) \leq \liminf _{i \rightarrow+\infty} \mathcal{H}^{N-1}\left(K_{i} \cap V\right) .
$$

Proof. We first deal with the case where $V \subset \subset \Omega$, in particular $V \subset \Omega_{i}$ for i big enough. We show that the sequence $\left(K_{i} \cap V\right)_{i}$ is uniformly concentrated with respect to $K \cap V$ in the ambient space V. Let $\varepsilon \in(0,1)$ and let $\varepsilon_{0}>0$ and $C_{0} \geq 1$ be the associated constant given by Theorem 1.1. Let $x \in E \cap V$ and let us fix a radius $r(x)$ such that $B(x, 2 r(x)) \subset V$ and $\limsup { }_{i \rightarrow+\infty} h_{i}(r(x))<\varepsilon_{0}$. In particular, for i big enough $V \subset \Omega_{i}$ and $h_{i}(r(x)) \leq \varepsilon_{0}$. For $0<r \leq r(x)$ and for i big enough, there exists $x_{i} \in K_{i}$ such that $\left|x_{i}-x\right| \leq r / 2$ and thus $B\left(x_{i}, r / 2\right) \subset B(x, r) \subset V \subset \Omega_{i}$. Since $h_{i}(r / 2) \leq \varepsilon_{0}$, Theorem 1.1 applied in $B\left(x_{i}, r / 2\right) \subset \Omega_{i}$ shows that there exists $y_{i} \in K_{i} \cap B\left(x_{i}, r / 4\right)$ and $t_{i} \in\left(C_{0}^{-1} r, r / 4\right)$ such that

$$
\mathcal{H}^{N-1}\left(K_{i} \cap B\left(y_{i}, t_{i}\right)\right) \geq \omega_{N-1}(1-\varepsilon) t_{i}^{N-1} .
$$

We also clearly have $B\left(y_{i}, t_{i}\right) \subset B\left(x_{i}, r / 2\right) \subset B(x, r) \cap V$. By (34), we deduce that

$$
\mathcal{H}^{N-1}(K \cap V) \leq \liminf _{i \rightarrow+\infty} \mathcal{H}^{N-1}\left(K_{i} \cap V\right)
$$

For a general open set $V \subset \Omega$, we consider an exhaustion of V by open sets $\left(V^{n}\right)_{n}$ such that $V^{n} \subset \subset V$. Thus, for all n,

$$
\mathcal{H}^{N-1}\left(K \cap V^{n}\right) \leq \liminf _{i \rightarrow+\infty} \mathcal{H}^{N-1}\left(K_{i} \cap V^{n}\right) \leq \liminf _{i \rightarrow+\infty} \mathcal{H}^{N-1}\left(K_{i} \cap V\right)
$$

whence by letting $n \rightarrow+\infty$,

$$
\mathcal{H}^{N-1}(K \cap V) \leq \liminf _{i \rightarrow+\infty} \mathcal{H}^{N-1}\left(K_{i} \cap V\right)
$$

We finally prove Theorem 2.7 .
Proof of Theorem 2.7. We let $\left(u_{i}, K_{i}\right)_{i}$ be a sequence such that for all $i,\left(u_{i}, K_{i}\right)$ is a topological almost-minimizer with gauge in Ω_{i}. We assume that $\left(u_{i}, K_{i}\right)_{i}$ converges to a pair (u, K) in Ω and that

$$
\lim _{t \rightarrow 0^{+}} \limsup _{i \rightarrow+\infty} h_{i}(t)=0
$$

This assumption implies by Lemma 3.5 that K is coral and it will also allow us to apply Corollary 6.3. We know by Proposition 4.1 that for all open ball $B(x, r) \subset \subset \Omega$ such that $h^{+}(r)<\varepsilon_{A}$ and for all topological competitor (v, L) of (u, K) in $B(x, r)$, we have

$$
\begin{align*}
\limsup _{i \rightarrow+\infty}\left(\int_{B(x, r) \backslash K_{i}} \mathbb{C} e\left(u_{i}\right)\right. & \left.: e\left(u_{i}\right) \mathrm{d} x+\mathcal{H}^{N-1}\left(K_{i} \cap \bar{B}(x, r)\right)\right) \\
& \leq \int_{B(x, r) \backslash L} \mathbb{C} e(v): e(v) \mathrm{d} x+\mathcal{H}^{N-1}(L \cap \bar{B}(x, r))+h^{+}(r) r^{N-1} \tag{41}
\end{align*}
$$

where $h^{+}(r):=\lim _{t \rightarrow r}+\limsup \operatorname{sut}_{i \rightarrow+\infty} h_{i}(t)$. As the elastic energy and the area are lower semicontinuous by Lemma 3.4 and Corollary 6.3, we have in particular

$$
\begin{align*}
\int_{B(x, r) \backslash K} \mathbb{C} e(u): e(u) \mathrm{d} x & +\mathcal{H}^{N-1}(K \cap B(x, r)) \\
& \leq \int_{B(x, r) \backslash L} \mathbb{C} e(v): e(v) \mathrm{d} x+\mathcal{H}^{N-1}(L \cap \bar{B}(x, r))+h^{+}(r) r^{N-1} . \tag{42}
\end{align*}
$$

Here, it is in fact possible to remove the closure $\bar{B}(x, r)$ at the right-hand side. Indeed, for all small $t>r$ such that $h^{+}(t)<\varepsilon_{A}$, the pair (v, L) is still a topological competitor of (u, K) in $B(x, t)$ so the energy comparison (42) holds when one replaces $B(x, r)$ by $B(x, t)$. Then one can let $t \rightarrow r^{+}$and use the fact that $K \cap \partial B(x, r)=L \cap \partial B(x, r)$ to deduce the inequality with $B(x, r)$ on both sides (without closure). Here we have also used the fact that h^{+}is rightcontinuous. It is clear that if we set $h(r)=h^{+}(r)$ when $h^{+}(r)<\varepsilon$ and $h(r)=+\infty$ otherwise, then (u, K) is an almost-minimizer in Ω with gauge h.

It is left to check that for all open ball $B(x, r) \subset \subset \Omega$, we have

$$
\limsup _{i \rightarrow+\infty} \int_{B(x, r) \backslash K_{i}} \mathbb{C} e\left(u_{i}\right): e\left(u_{i}\right) \mathrm{d} x \leq \int_{B(x, r) \backslash K} \mathbb{C} e(u): e(u) \mathrm{d} x+h(r) r^{N-1}
$$

and

$$
\limsup _{i \rightarrow+\infty} \mathcal{H}^{N-1}\left(K_{i} \cap \bar{B}(x, r)\right) \leq \mathcal{H}^{N-1}(K \cap \bar{B}(x, r))+h(r) r^{N-1} .
$$

We can directly assume that $h^{+}(r)<\varepsilon_{A}$ so that $h(r)=h^{+}(r)$. Observe that for $t>r$ slightly bigger than r such that $\bar{B}(x, t) \subset \Omega$ and $h^{+}(t)<\varepsilon$, we have $B(x, t) \subset \Omega_{i}$ and $h_{i}(t) \leq \varepsilon_{A}$ for i big enough and this implies a uniform bound by (5),

$$
\int_{B(x, t) \backslash K_{i}}\left|e\left(u_{i}\right)\right|^{2} \mathrm{~d} x+\mathcal{H}^{N-1}\left(K_{i} \cap B(x, t)\right) \leq C t^{N-1}
$$

This makes sure that we will always deal with finite quantities in the argument below. We apply (41) with (u, K) being a competitor of itself in $B(x, r)$, and we obtain,

$$
\begin{align*}
& \limsup _{i \rightarrow+\infty}\left(\int_{B(x, r) \backslash K_{i}} \mathbb{C} e\left(u_{i}\right): e\left(u_{i}\right) \mathrm{d} x+\mathcal{H}^{N-1}\left(K_{i} \cap \bar{B}(x, r)\right)\right) \\
& \leq \int_{B(x, r) \backslash K} \mathbb{C} e(u): e(u) \mathrm{d} x+\mathcal{H}^{N-1}(K \cap \bar{B}(x, r))+h^{+}(r) r^{N-1} . \tag{43}
\end{align*}
$$

We first deal with the limit superior of $\mathcal{H}^{N-1}\left(K_{i} \cap \bar{B}(x, r)\right)$. It follows from (43) that

$$
\begin{aligned}
&\left(\liminf _{i \rightarrow+\infty} \int_{B(x, r) \backslash K_{i}} \mathbb{C} e\left(u_{i}\right): e\left(u_{i}\right) \mathrm{d} x\right)+\left(\limsup _{i \rightarrow+\infty} \mathcal{H}^{N-1}\left(K_{i} \cap \bar{B}(x, r)\right)\right) \\
& \leq \int_{B(x, r) \backslash K} \mathbb{C} e(u): e(u) \mathrm{d} x+\mathcal{H}^{N-1}(K \cap \bar{B}(x, r))+h^{+}(r) r^{N-1},
\end{aligned}
$$

and we know by lower semicontinuity of the energy that

$$
\liminf _{i \rightarrow+\infty} \int_{B(x, r) \backslash K_{i}} \mathbb{C} e\left(u_{i}\right): e\left(u_{i}\right) \mathrm{d} x \geq \int_{B(x, r) \backslash K} \mathbb{C} e(u): e(u) \mathrm{d} x
$$

so we deduce that

$$
\limsup _{i \rightarrow+\infty} \mathcal{H}^{N-1}\left(K_{i} \cap \bar{B}(x, r)\right) \leq \mathcal{H}^{N-1}(K \cap \bar{B}(x, r))+h^{+}(r) r^{N-1} .
$$

We pass to the limit superior of $\int_{B(x, r) \backslash K_{i}} \mathbb{C} e\left(u_{i}\right): e\left(u_{i}\right) \mathrm{d} x$. It follows from 43) that

$$
\begin{aligned}
\left(\limsup _{i \rightarrow+\infty} \int_{B(x, r) \backslash K_{i}} \mathbb{C} e\left(u_{i}\right):\right. & \left.e\left(u_{i}\right) \mathrm{d} x\right)+\left(\liminf _{i \rightarrow+\infty} \mathcal{H}^{N-1}\left(K_{i} \cap \bar{B}(x, r)\right)\right) \\
& \leq \int_{B(x, r) \backslash K} \mathbb{C} e(u): e(u) \mathrm{d} x+\mathcal{H}^{N-1}(K \cap \bar{B}(x, r))+h^{+}(r) r^{N-1} .
\end{aligned}
$$

By an argument which is now usual, this also holds when one replaces $B(x, r)$ by balls $B(x, t)$ where t is a radius slightly bigger than r such that $\bar{B}(x, t) \subset \Omega$ and $h^{+}(t)<\varepsilon_{A}$. We know by lower semicontinuity of the area that

$$
\liminf _{i \rightarrow+\infty} \mathcal{H}^{N-1}\left(K_{i} \cap \bar{B}(x, t)\right) \geq \mathcal{H}^{N-1}(K \cap B(x, t))
$$

so we deduce that

$$
\begin{aligned}
& \left(\limsup _{i \rightarrow+\infty} \int_{B(x, t) \backslash K_{i}} \mathbb{C} e\left(u_{i}\right): e\left(u_{i}\right) \mathrm{d} x\right)+\mathcal{H}^{N-1}(K \cap B(x, t)) \\
& \quad \leq \int_{B(x, t) \backslash K} \mathbb{C} e(u): e(u) \mathrm{d} x+\mathcal{H}^{N-1}(K \cap \bar{B}(x, t))+h^{+}(t) t^{N-1}
\end{aligned}
$$

and in particular

$$
\begin{aligned}
&\left(\limsup _{i \rightarrow+\infty} \int_{B(x, r) \backslash K_{i}} \mathbb{C} e\left(u_{i}\right): e\left(u_{i}\right) \mathrm{d} x\right)+\mathcal{H}^{N-1}(K \cap \bar{B}(x, r)) \\
& \leq \int_{B(x, t) \backslash K} \mathbb{C} e(u): e(u) \mathrm{d} x+\mathcal{H}^{N-1}(K \cap \bar{B}(x, t))+h^{+}(t) t^{N-1} .
\end{aligned}
$$

Then one can let $t \rightarrow r^{+}$and use $K \cap \partial B(x, r)=L \cap \partial B(x, r)$ to deduce

$$
\limsup _{i \rightarrow+\infty} \int_{B(x, r) \backslash K_{i}} \mathbb{C} e\left(u_{i}\right): e\left(u_{i}\right) \mathrm{d} x \leq \int_{B(x, r) \backslash K} \mathbb{C} e(u): e(u) \mathrm{d} x+h^{+}(r) r^{N-1} .
$$

7. Applications

7.1. Existence of blow-up limits. We adapt the notion of global minimizers introduced by Bonnet [3] from the Mumford-Shah to the Griffith setting.
Definition 7.1. A Griffith global minimizer in \mathbb{R}^{N} is a coral pair (u, K) such that for all $x \in K$, for all $r>0$ and for all topological competitor (v, L) of (u, K) in $B=B(x, r)$, we have

$$
\int_{B} \mathbb{C} e(u): e(u) \mathrm{d} x+\mathcal{H}^{N-1}(K \cap B) \leq \int_{B} \mathbb{C} e(v): e(v) \mathrm{d} x+\mathcal{H}^{N-1}(L \cap B) .
$$

This notion draw its importance from the fact that blow-up limits of Griffith minimizer are global minimizers. We will justify this soon but let us first describe the known (or expected) global minimizers. The first example of global minimizers are those for which u is piecewise rigid and K is a minimal set. In dimension $N=2$, there are exactly two kinds of minimal sets: the lines and the triple junctions (three half lines meeting with an angle $2 \pi / 3$). In dimension $N=3$, there are exactly three kinds of minimal sets (of codimension 1): the hyperplanes, the \mathbb{Y} cones (three half-planes meeting with an angle $2 \pi / 3$) and the \mathbb{T} cones (the cover over the edges of a regular tetrahedron). We refer to TAYLOR [39] or David [12, Theorem 1.9] for a proof. As soon as $N \geq 4$, we know a few minimal sets of codimension 1 but not the full classification. There is for example the cone over the $(N-2)$-skeleton of a cube [4] and the cone over the ($N-2$)-skeleton of a regular simplex [28]. What about the global minimizers for which u is not piecewise rigid and K is not a minimal set, the main example is the crack-tip (K is half-line) in dimension $N=2$. There is an analogue of the crack-tip in higher dimension called crackfront (K is a half-hyperplane), see [29]. It is not known if there could be other kind of global minimizers.

Let us describe now the blow-up limit procedure. Let (u, K) be a topological almost-minimizer in Ω with a gauge h. In particular, we recall in this case that the gauge satisfy $\lim _{r \rightarrow 0} h(r)=0$, see Definition 2.2. We fix $x_{0} \in K$. We consider a sequence of radii $\left(r_{i}\right)_{i}$ such that $r_{i} \rightarrow 0$ and for each i, we consider the the pair $\left(u_{i}, K_{i}\right)_{i}$ defined by

$$
u_{i}(x)=r_{i}^{-1 / 2} u\left(x_{0}+r_{i} x\right) \quad \text { and } \quad K_{i}:=r_{i}^{-1}\left(K-x_{0}\right)
$$

in the domain $\Omega_{i}=r_{i}^{-1}\left(\Omega-x_{0}\right)$. This is a topological almost-minimizer in Ω_{i} with gauge $h_{i}(t)=h\left(r_{i} t\right)$. Since Ω is an open set, one can see that

$$
\text { for all compact set } H \subset \mathbb{R}^{N} \text {, we have } H \subset \Omega_{i} \text { for } i \text { large enough. }
$$

If the sequence $\left(u_{i}, K_{i}\right)_{i}$ converges to a pair $\left(u_{\infty}, K_{\infty}\right)$ in \mathbb{R}^{N}, then we call $\left(u_{\infty}, K_{\infty}\right)$ a blow-up limit of (u, K) at x_{0}. One can also see that the limit gauge is identically zero because $h_{i}(t) \rightarrow 0$ for all $t \geq 0$. Therefore, a blow-up limit is a global minimizer in \mathbb{R}^{N} by Theorem 2.7.

Note that we can always extract a subsequence such that the pairs $\left(u_{i}, K_{i}\right)_{i}$ above converge. Indeed, for all $R>0$ and for i big enough such that $B(0, R) \subset \Omega_{i}$ and $h\left(r_{i} R\right) \leq \varepsilon_{A}$, we have by Ahlfors-regularity (5)

$$
\int_{B(0, R)}\left|e\left(u_{i}\right)\right|^{2} \mathrm{~d} x=r_{i}^{1-N} \int_{B\left(x_{0}, r_{i} R\right)}|e(u)|^{2} \mathrm{~d} x \leq C R^{N-1}
$$

Therefore, we can apply Lemma 3.3 to extract a convergent subsequence. This shows that every point has blow-up limits but we don't know if there is uniqueness of the blow-up crack-set.

We observe that if $\left(u_{\infty}, K_{\infty}\right)$ is a blow-up limit of (u, K) at x_{0}, then for all $r>0$, the rescaled pair $\left(v_{\infty}, L_{\infty}\right)$ defined by

$$
\begin{equation*}
v_{\infty}(x)=r^{-1 / 2} u_{\infty}(r x) \quad \text { and } \quad L_{\infty}=r^{-1} K_{\infty} \tag{44}
\end{equation*}
$$

is also a blow-up limit of (u, K) at x_{0}. This is a direct application of Remark 3.1. If there exists a unique blow-up crack-set K_{∞} at x_{0}, it must therefore be a cone centred at 0 . In Proposition 7.3 we will classify the possible global minimizers whose crack set is a cone when $N=2$.
Proposition 7.2. Let (u, K) be a topological almost-minimizer in Ω with gauge h. Let $x_{0} \in K$ and let a sequence $\left(r_{i}\right)_{i}$ such that $r_{i} \rightarrow 0$ and such that the pairs

$$
u_{i}(x)=r_{i}^{-1 / 2} u\left(x_{0}+r_{i} x\right) \quad \text { and } \quad K_{i}:=r_{i}^{-1}\left(K-x_{0}\right)
$$

converges to a pair $\left(u_{\infty}, K_{\infty}\right)$ in \mathbb{R}^{N}. Then $\left(u_{\infty}, K_{\infty}\right)$ is a global minimizer in \mathbb{R}^{N}. Moreover, for all open ball $B=B(y, t) \subset \mathbb{R}^{N}$, we have

$$
\begin{equation*}
\int_{B(y, t)} \mathbb{C} e\left(u_{\infty}\right): e\left(u_{\infty}\right) \mathrm{d} x=\lim _{i \rightarrow+\infty} r_{i}^{1-N} \int_{B\left(x_{0}+r_{i} y, r_{i} t\right)} \mathbb{C} e(u): e(u) \mathrm{d} x \tag{45}
\end{equation*}
$$

and

$$
\begin{aligned}
& \mathcal{H}^{N-1}\left(K_{\infty} \cap B(y, t)\right) \leq \liminf _{i \rightarrow+\infty} r_{i}^{1-N} \mathcal{H}^{N-1}\left(K_{i} \cap B\left(x_{0}+r_{i} y, r_{i} t\right)\right) \\
& \mathcal{H}^{N-1}\left(K_{\infty} \cap \bar{B}(y, t)\right) \geq \limsup _{i \rightarrow+\infty} r_{i}^{1-N} \mathcal{H}^{N-1}\left(K_{i} \cap B\left(x_{0}+r_{i} y, r_{i} t\right)\right) .
\end{aligned}
$$

If in addition $\lim _{r \rightarrow 0} \omega_{2}\left(x_{0}, r\right)=0$, then u is piecewise rigid and K is a minimal set in \mathbb{R}^{N}.
Proof. This is a direct application of Theorem 2.7.
We investigate the possible global minimizers (u, K) in the plane when K is a cone. As mentionned above, this naturally happens if there is uniqueness of the blow-up crack-set. In the setting of Mumford-Shah global minimizers, a similar classification holds under the more general assumption that K is connected. However, this is not yet available for Griffith due to the lack of Bonnet monotonicity formula.
Proposition 7.3. Assume that $\mathbb{C} e=\lambda \operatorname{tr}(e) I d+2 \mu e$ where $\lambda>0$ and $\mu>0$ are the Lamé coefficients. Let (u, K) be a global minimizer in \mathbb{R}^{2} and assume that K is a cone centred at 0 . Then, either K is empty, a line, a triple junction or a half-line (crack-tip).
Proof. Let (u, K) be a global minimizer in \mathbb{R}^{2} and assume that K is a cone centred at 0 . Since the density of K at 0 is bounded by Ahlfors-regularity, this cone can only be composed of a finite number of half-lines. We can directly assume that K is composed of at least two half line, as the other cases are already described in the conclusion of the proposition. Thus, $\mathbb{R}^{2} \backslash K$ is composed of infinite angular sectors with aperture in $(0,2 \pi)$. It is standard that by taking outer variations, one obtains that u is a weak solution of the Lamé system: denoting the strain by $\sigma:=\mathbb{C} e(u)=\lambda \operatorname{tr}(e(u)) I d+2 \mu e(u)$, then in each connected component Ω of $\mathbb{R}^{2} \backslash K$, we have in a weak sense

$$
\left\{\begin{array}{cc}
\operatorname{div}(\sigma)=0 & \text { in } \Omega \\
\sigma \cdot \nu=0 & \text { on } \partial \Omega .
\end{array}\right.
$$

In each angular domain of $\mathbb{R}^{2} \backslash K$, we invoque the regularity theory for the Lamé system in polygonal domains. More precisely we shall use [23, Theorem 3.11 (Decay Estimate I)]) and deduce that there exists $C_{0}, \alpha>0$ for which the following decay property holds:

$$
\begin{equation*}
\int_{B(0, r) \backslash K}|\nabla u|^{2} \mathrm{~d} x \leq C_{0} r^{1+\alpha} \int_{B(0,1) \backslash K}\left(|u|^{2}+|\nabla u|^{2}\right) \mathrm{d} x, \quad \forall 0<r<1 . \tag{46}
\end{equation*}
$$

Note that from the definition of pairs, we just have $u \in W_{\text {loc }}^{1,2}\left(\mathbb{R}^{2} \backslash K ; \mathbb{R}^{N}\right)$ but since each connected component of $B(0,1) \backslash K$ is a Lipschitz domain, the Korn-Poincaré inequality shows
that we actually have $u \in W^{1,2}\left(B(0,1) \backslash K ; \mathbb{R}^{N}\right)$. Therefore the constant

$$
C_{1}:=C_{0} \int_{B(0,1)}\left(|u|^{2}+|\nabla u|^{2}\right) \mathrm{d} x
$$

is finite and we can reformulate (46) as

$$
\begin{equation*}
\int_{B(0, r) \backslash K}|\nabla u|^{2} \mathrm{~d} x \leq C_{1} r^{1+\alpha}, \quad \forall 0<r<1 \tag{47}
\end{equation*}
$$

Now we proceed to a blow-up procedure: from the pair (u, K) we define $\left(u_{n}, K_{n}\right)_{n}$ as being the blow-up sequence

$$
K_{n}:=\frac{1}{r_{n}} K \quad \text { and } \quad u_{n}(x)=r_{n}^{-1 / 2} u\left(r_{n} x\right)
$$

with $r_{n}=1 / n \rightarrow 0$. We can extract a subsequence which converges to a pair $\left(u_{\infty}, K_{\infty}\right)$ and from Proposition 7.2 , we know that $\left(u_{\infty}, K_{\infty}\right)$ is still a global minimizer in the plane. Of course since K is assumed to be a cone, it holds $K_{\infty}=K$. Now we want to prove that $e\left(u_{\infty}\right)=0$. For that purpose, we apply 47 and (45) from Proposition 7.2 to deduce that for any given $a>0$,

$$
\int_{B(0, a) \backslash K}\left|e\left(u_{\infty}\right)\right|^{2} d x=\lim _{n \rightarrow+\infty} \frac{1}{r_{n}} \int_{B\left(0, r_{n} a\right) \backslash K}|e(u)|^{2} \mathrm{~d} x \leq C_{1} a^{1+\alpha} \lim _{n \rightarrow+\infty} r_{n}^{\alpha}=0
$$

thus $e\left(u_{\infty}\right)=0$ in $B(0, a)$. Since $a>0$ is arbitrary, this shows that $e\left(u_{\infty}\right)=0$ everywhere in $\mathbb{R}^{2} \backslash K$. But then $\left(u_{\infty}, K_{\infty}\right)$ is a global minimizer with $e\left(u_{\infty}\right)=0$, so K_{∞} is a minimal set in \mathbb{R}^{2}. In virtue of [12, Theorem 10.1], we conclude that K must be a line or a triple junction.
7.2. Equivalent definitions of the singular part. We consider topological almost-minimizer (u, K) in Ω with gauge h. We define the regular part of K as the set of points $x \in K$ for which there exists a sequence $\left(r_{i}\right)_{i}$ going to 0 and an hyperplane P passing through x such that

$$
\lim _{i \rightarrow+\infty} r_{i}^{-1}\left(\sup _{y \in P \cap B\left(x, r_{i}\right)} \operatorname{dist}(y, K)+\sup _{y \in K \cap B\left(x, r_{i}\right)} \operatorname{dist}(y, P)\right)=0
$$

We define the singular part of as the set of non-regular points of K, denoted by the symbol $\Sigma(K)$.

This definition of a regular point is quite weak but is well suited for Proposition 7.7, where we will establish a relation between the dimension of the singular part by the integrability exponent of $e(u)$. This relation was first observed in the Mumford-Shah context in [1]. If the gauge h is decaying as power, we expect that regular points are equivalently characterized as points $x \in K$ in the neighborhood of which K is a smooth hypersurface. This is however still unknown for Griffith almost-minimizers.

We now investigate different equivalent characterisation of regular points. One can already see that regular points are characterized by the condition

$$
\liminf _{r \rightarrow 0} \beta^{\mathrm{bil}}(x, r)=0
$$

The goal of the rest of this section is to justify that they are also characterized by the condition

$$
\liminf _{r \rightarrow 0} \beta(x, r)+\omega(x, r)=0
$$

We see first that the bilateral flatness is controlled by the flatness and the normalized elastic energy.

Proposition 7.4. There exists a constant $\varepsilon_{0}>0$ (which depends only on N and \mathbb{C}) such that the following holds. Let (u, K) be a topological almost-minimizer with gauge h in an open set Ω. Then for all $x_{0} \in K$ and $r_{0}>0$ such that $B\left(x_{0}, r_{0}\right) \subset \Omega$ and $h\left(r_{0}\right) \leq \varepsilon_{0}$, we have

$$
\beta^{\mathrm{bil}}\left(x_{0}, r_{0} / 2\right) \leq C\left(\beta\left(x_{0}, r_{0}\right)+\omega_{2}\left(x_{0}, r_{0}\right)^{1 /(6 m)}\right)
$$

where $m=N-1$ and $C \geq 1$ is some constant which depends only on N and \mathbb{C}.
Proof. The letter C denotes a generic constant ≥ 1 which depends only on N and \mathbb{C}. As usual, we assume that $B\left(x_{0}, r_{0}\right)=B(0,1)$. We let $\tau_{0} \in(0,1 / 8)$ denote the constant of Lemma 5.3 for $p=2$ and $M=1$ (it depends only on N and \mathbb{C}). If $\beta(0,1) \geq 1 / 8$, the inequality holds trivially because we always have $\beta^{\text {bil }}(0,1 / 2) \leq 1$. Otherwise, we let P_{0} denote an hyperplane which achieves the infimum in the definition of $\beta(0,1)$ and we choose a unit normal ν_{0} to P_{0}. We let a_{1}, a_{2} be defined as in the beginning of Section 5.1 Then we apply Lemma 5.4 with $\varepsilon=1 / 8$ and this shows that for all unit vector $\nu \in \mathbf{S}^{N-1}$ such that $\left|\nu-\nu_{0}\right| \leq 1 / 8$, we have

$$
J(\nu) \mathcal{H}^{N-1}\left(P \cap B(0,1 / 2) \backslash \pi_{P}(K \cap B(0,1))\right)^{2} \leq C \omega_{1}(0,1)^{1 / 2}
$$

where $P:=x_{0}+\nu^{\perp}, \pi_{P}$ is the orthogonal projection onto $P, J(\nu):=|b \cdot \nu|+|A \nu|$, and $b:=b_{1}-b_{2}$, $A:=A_{1}-A_{2}$. For any parameter $\varepsilon \in(\beta(0,1), 1 / 8)$, Lemma A. 2 shows that

$$
\int_{\nu \in \mathbf{S}^{N-1} \cap B\left(\nu_{0}, \varepsilon\right)}|b \cdot x|+|A x| \mathrm{d} \mathcal{H}^{N-1}(x) \geq C^{-1} \varepsilon^{N-1}(|b|+|A|) .
$$

This allows to find a vector $\nu \in \mathbf{S}^{N-1}$ such that $\left|\nu-\nu_{0}\right| \leq \varepsilon$ and $J(\nu) \geq C^{-1} \varepsilon^{N-1} J(0,1)$, and thus

$$
\begin{equation*}
\mathcal{H}^{N-1}\left(P \cap B(0,1 / 2) \backslash \pi_{P}(K \cap B(0,1))\right)^{2} \leq C \varepsilon^{1-N} \omega_{2}(0,1)^{1 / 2} \tag{48}
\end{equation*}
$$

where $P=x_{0}+\nu^{\perp}$. Note that since

$$
K \cap B(0,1) \subset\left\{\left|x \cdot \nu_{0}\right| \leq \beta(0,1)\right\}
$$

and $\beta(0,1) \leq \varepsilon$ as well as $\left|\nu-\nu_{0}\right| \leq \varepsilon$, we have

$$
\begin{equation*}
K \cap B(0,1) \subset\{|x \cdot \nu| \leq 2 \varepsilon\} . \tag{49}
\end{equation*}
$$

so the points of $K \cap B(0,1)$ are at distance $\leq 2 \varepsilon$ from P. Then we use (48) to evaluate how far are the points of $P \cap B(0,1 / 2)$ from K. For $x \in P \cap B(0,1 / 2)$, we are going to prove that

$$
\begin{equation*}
\operatorname{dist}(x, K) \leq \max \left(4 \varepsilon, C \varepsilon^{-1 / 2} \omega_{2}(0,1)^{1 /(4 m)}\right) \tag{50}
\end{equation*}
$$

where $m=N-1$. For this we consider a radius $t>0$ such that $B(x, t) \cap K \neq \emptyset$. We want to bound t from above by the right-hand side of (50) and for this we can directly assume that $t>4 \varepsilon$. We see that $K \cap B(0,1) \subset\{|x \cdot \nu| \leq t / 2\}$ so it is not possible for $P \cap B(x, t / 2)$ to contain a point of $\pi_{P}(K \cap B(0,1))$ and therefore

$$
\mathcal{H}^{N-1}(P \cap B(0,1 / 2) \cap B(x, t / 2))^{2} \leq C \varepsilon^{1-N} \omega_{2}(0,1)^{1 / 2} .
$$

On the other hand, since $0 \in K$ and $B(x, t) \cap K=\emptyset$, we have at most $t \leq 1 / 2$ so we can bound from below

$$
\mathcal{H}^{N-1}(P \cap B(0,1 / 2) \cap B(x, t / 2)) \geq C^{-1} t^{N-1} .
$$

This proves our claim. In view of (49) and (50), we conclude that for all $\varepsilon \in(\beta(0,1), 1 / 8)$, we have

$$
\beta^{\mathrm{bil}}(0,1 / 2) \leq C \max \left(\varepsilon, \varepsilon^{-1 / 2} \omega_{2}(0,1)^{1 /(4 m)}\right) .
$$

If $\beta(0,1) \leq \omega^{1 /(6 m)}$, we take $\varepsilon=\omega^{1 /(6 m)}$ and otherwise we take $\varepsilon=\beta(0,1)$. In both case, this shows that

$$
\beta^{\mathrm{bil}}(0,1 / 2) \leq C\left(\beta(0,1)+\omega_{2}(0,1)^{1 /(6 m)}\right)
$$

as desired.
Reciprocally, a blow-up type argument shows that the bilateral flatness controls the flatness and the normalized elastic energy.

Proposition 7.5. For all $\varepsilon>0$, there exists $\varepsilon_{0}>0$ and $\gamma \in(0,1)$ (depending on N, \mathbb{C} and ε) such that the following holds. Let (u, K) be a topological almost-minimizer with gauge h in an open set Ω. If $x_{0} \in K$ and $r_{0}>0$ are such that $B\left(x_{0}, r_{0}\right) \subset \Omega$ and

$$
\beta^{\mathrm{bil}}\left(x_{0}, r_{0}\right)+h\left(r_{0}\right) \leq \varepsilon_{0}
$$

then

$$
\beta\left(x_{0}, \gamma r_{0}\right)+\omega\left(x_{0}, \gamma r_{0}\right) \leq \varepsilon
$$

Proof. We let $C \geq 1$ denote a generic constant which depends only on N and \mathbb{C}. As usual, we assume that $B\left(x_{0}, r_{0}\right)=B(0,1)$. We consider a fixed $\varepsilon>0$ and we assume the statement does not hold for all choice of constant $\varepsilon_{0}>0$. Therefore, we can find a sequence $\left(r_{i}\right)_{i} \in(0,1)$ going to 0 and sequence of topological almost-minimizers $\left(u_{i}, K_{i}\right)_{i}$ with gauge h_{i} in $B(0,1)$ such that for all i,

$$
\lim _{i \rightarrow+\infty} \beta_{K_{i}}^{\mathrm{bil}}(0,1)+h_{i}(1) \leq r_{i}^{2}
$$

but

$$
\beta\left(0, r_{i}\right)+r_{i}^{1-N} \int_{B\left(0, r_{i}\right)}\left|e\left(u_{i}\right)\right|^{2} \mathrm{~d} x \geq \varepsilon
$$

Note that by the scaling property of the flatness and the fact that $\beta_{K_{i}}(0,1) \leq \beta_{K_{i}}^{\mathrm{bil}}(0,1) \leq r_{i}^{2}$, we have

$$
\beta_{K_{i}}\left(0, r_{i}\right) \leq r_{i}^{-1} \beta_{K_{i}}(0,1) \leq r_{i}
$$

We extract a subsequence such that for all $i, \beta\left(0, r_{i}\right) \leq \varepsilon / 2$ and thus we have to contredict the fact that for all $i, \omega\left(0, r_{i}\right) \geq \varepsilon / 2$. We also extract a subsequence such that for all $i, h_{i}(1) \leq \varepsilon_{A}$ and thus by (5), for all ball $B(x, r) \subset B(0,1)$,

$$
\begin{equation*}
\sup _{i}\left(\int_{B(x, r)}\left|e\left(u_{i}\right)\right|^{2} \mathrm{~d} x+\mathcal{H}^{N-1}\left(K_{i} \cap B(x, r)\right)\right) \leq C r^{N-1} \tag{51}
\end{equation*}
$$

We define a pair $\left(v_{i}, L_{i}\right)$ in $B\left(0, r_{i}^{-1}\right)$ by

$$
v_{i}(x):=r_{i}^{-1 / 2} u_{i}\left(r_{i} x\right) \quad \text { and } \quad L_{i}:=r_{i}^{-1} K_{i}
$$

We observe that $\left(v_{i}, L_{i}\right)$ is a topological almost-minimizer in $B\left(0, r_{i}^{-1}\right)$ with gauge $\tilde{h}_{i}(t)=h_{i}\left(r_{i} t\right)$. We also observe that for all $R>0$ and for i big enouch such that $B(0, R) \subset B\left(0, r_{i}^{-1}\right)$, we have by (51),

$$
\int_{B(0, R)}\left|e\left(v_{i}\right)\right|^{2} \mathrm{~d} x=r_{i}^{1-N} \int_{B\left(0, r_{i} R\right)}\left|e\left(u_{i}\right)\right|^{2} \mathrm{~d} x \leq C R^{N-1}
$$

which is bounded. It follows that we can extract a subsequence of $\left(v_{i}, L_{i}\right)_{i}$ which converges to a pair $\left(v_{\infty}, L_{\infty}\right)$ in \mathbb{R}^{N}. As $h_{i}(1) \rightarrow 0$, we have $\tilde{h}_{i}(t) \rightarrow 0$ for all $t \geq 0$ and thus the limit gauge
h is identically zero. By application of Theorem 2.7, the pair $\left(v_{\infty}, L_{\infty}\right)$ is a global minimizer in \mathbb{R}^{N} and we have for all $R>0$,

$$
\begin{equation*}
\int_{B(0, R)} \mathbb{C} e\left(v_{\infty}\right): e\left(v_{\infty}\right) \mathrm{d} x=\lim _{i \rightarrow+\infty} r_{i}^{1-N} \int_{B\left(0, r_{i} R\right)} \mathbb{C} e\left(u_{i}\right): e\left(u_{i}\right) \mathrm{d} x \tag{52}
\end{equation*}
$$

We also observe that for all $R>0$ and for all i big enough such that $B(0, R) \subset B\left(0, r_{i}^{-1}\right)$,

$$
\beta_{L_{i}}^{\mathrm{bil}}(0, R)=\beta_{K_{i}}^{\mathrm{bil}}\left(0, r_{i} R\right) \leq\left(r_{i} R\right)^{-1} \beta_{K_{i}}^{\mathrm{bil}}(0,1) \leq r_{i} R^{-1}
$$

whence $\beta_{L_{\infty}}^{\text {bil }}(0, R)=0$. This means that L_{∞} coincides with an hyperplane in $B(0, R)$ and as R is arbitrary big, we deduce that that L_{∞} coincides with an hyperplane in \mathbb{R}^{N}. By testing the minimality condition of $\left(v_{\infty}, L_{\infty}\right)$ with outer variations of the form $\left(v_{\infty}+\varepsilon \varphi, L_{\infty}\right)$, where $\varphi \in C_{c}^{1}\left(\mathbb{R}^{N} ; \mathbb{R}^{N}\right)$, we see that v_{∞} solves in a weak sense the elliptic $\operatorname{PDE} \operatorname{div}\left(\mathbb{C e}\left(v_{\infty}\right)\right)=0$ in the complement of L_{∞} with a Neumann boundary condition $\mathbb{C} e\left(v_{\infty}\right) \cdot e_{N}=0$ on each side of L_{∞}. By elliptic regularity, it follows that there exists a constant $C \geq 1$ such that for all $R>1$,

$$
\int_{B(0,1)}\left|e\left(v_{\infty}\right)\right|^{2} \mathrm{~d} x \leq C\left(\frac{r}{R}\right)^{N} \int_{B(0, R)}\left|e\left(v_{\infty}\right)\right|^{2} \mathrm{~d} x
$$

But by (52),

$$
\int_{B(0, R)} \mathbb{C} e\left(v_{\infty}\right): e\left(v_{\infty}\right) \mathrm{d} x=\lim _{i \rightarrow+\infty} r_{i}^{1-N} \int_{B\left(0, r_{i} R\right)} \mathbb{C} e\left(u_{i}\right): e\left(u_{i}\right) \mathrm{d} x \leq C R^{N-1}
$$

so

$$
\int_{B(0,1)}\left|e\left(v_{\infty}\right)\right|^{2} \mathrm{~d} x \leq C R^{-1} r^{N}
$$

and since $R>0$ is arbitrary big, we arrive at $\int_{B(0,1)}\left|e\left(v_{\infty}\right)\right|^{2} \mathrm{~d} x=0$. Using 52 again, this gives

$$
\lim _{i \rightarrow+\infty} r_{i}^{1-N} \int_{B\left(0, r_{i}\right)} \mathbb{C} e\left(u_{i}\right): e\left(u_{i}\right) \mathrm{d} x=0
$$

and contredicts the assumption.
Corollary 7.6. Let (u, K) be an almost-minimizer in Ω with gauge h. For all $x \in K, x$ is a regular point of K if and only if

$$
\begin{equation*}
\liminf _{r \rightarrow 0} \beta(x, r)+\omega(x, r)=0 \tag{53}
\end{equation*}
$$

Proof. Let $x \in K$ be a regular point, i.e., there exists a sequence $\left(r_{i}\right)_{i}$ going to 0 such that $\lim _{r \rightarrow 0} \beta^{\text {bil }}\left(x, r_{i}\right)=0$. For all $k \geq 0$, Proposition (7.5) shows that there exist $\varepsilon_{k}>0$ and $c_{k} \in(0,1)$ such that for all $r>0$ with $B(x, r) \subset \Omega$, if $\beta^{\mathrm{bil}}(x, r)+h(r) \leq \varepsilon_{k}$, then $\beta\left(x, c_{k} r\right)+$ $\omega\left(x, c_{k} r\right) \leq 2^{-k}$. But for all $k \geq 0$, we always have $\beta^{\text {bil }}\left(x, r_{i}\right)+h\left(r_{i}\right) \leq \varepsilon_{k}$ for i big enough and thus $\beta\left(x, c_{k} r_{i}\right)+\omega\left(c_{k} r_{i}\right) \leq 2^{-k}$ for i big enough. We deduce that

$$
\liminf _{r \rightarrow 0} \beta(x, r)+\omega(x, r) \leq 2^{-k},
$$

but since k is arbitrary large, $\lim _{\inf }^{r \rightarrow 0} 3(x, r)+\omega(x, r)=0$. Reciprocally, it directly follows from Proposition 7.4 that the condition (53) implies $\lim _{\inf }{ }_{r \rightarrow 0} \beta^{\text {bil }}(x, r)=0$.
7.3. Dimension of the singular part. We finally show that when $e(u)$ is integrable with an exponent $p>2$, the dimension of the singular part is controlled by $\max (N-2, N-p / 2)$. This result is minor adaptation of [1, Corollary 5.7] to the Griffith setting, with our definition of $\Sigma(K)$ and to the presence of a gauge. The existence of such an exponent $p>2$ has been establish in [31, Theorem 2.4] for Griffith minimizers in the plane, following the method of [19]. Similarly as in the scalar case, we can conjecture that $e(u) \in L^{4, \infty}$.

Proposition 7.7. Let (u, K) be an almost-minimizer in Ω with gauge h. If there exists $p>2$ such that $e(u) \in L_{\mathrm{loc}}^{p}\left(\Omega ; \mathbb{R}^{N \times N}\right)$, then

$$
\operatorname{dim}_{\mathcal{H}}(\Sigma(K)) \leq \max (N-2, N-p / 2) .
$$

Proof. Step 1. We show that

$$
\text { the set }\left\{x \in K \mid \limsup _{r \rightarrow 0} \omega(x, r)>0\right\} \text { has a dimension } \leq N-p / 2 \text {, }
$$

where in the case $N-p / 2<0$, this means that the set is empty. We start with a general fact about locally integrable function which is that if $v \in L_{\mathrm{loc}}^{p}(\Omega)$ for some $p \geq 1$, then for all real number $s<N$, we have for $\mathcal{H}^{N-p(N-s)}$-a.e. $x \in \Omega$,

$$
\lim _{r \rightarrow 0} r^{-s} \int_{B(x, r)} v \mathrm{~d} y=0
$$

where in the case $N-p(N-s)<0$, this means that the limit holds everywhere. Applying this in particular to $v=|e(u)|^{2} \in L_{\mathrm{loc}}^{p / 2}(\Omega)$ and $s=N-1$, we see that for $\mathcal{H}^{N-p / 2}$-a.e. $x \in \Omega$, we have

$$
\lim _{r \rightarrow 0} r^{1-N} \int_{B(x, r)}|e(u)|^{2} \mathrm{~d} x=0
$$

This proves step 1.
Step 2. We show that

$$
\text { the set }\left\{x \in \Sigma(K) \mid \lim _{r \rightarrow 0} \omega(x, r)=0\right\} \text { has a dimension } \leq N-2 \text {. }
$$

Since

$$
\Sigma(K)=\left\{x \in K \mid \liminf _{r \rightarrow 0} \beta_{K}(x, r)+\omega(x, r)>0\right\}
$$

we see that

$$
\left\{x \in \Sigma(K) \mid \lim _{r \rightarrow 0} \omega(x, r)=0\right\}=\left\{x \in K \mid \liminf _{r \rightarrow 0} \beta_{K}(x, r)>0, \lim _{r \rightarrow 0} \omega(x, r)=0\right\}
$$

and it can be decomposed as a countable union of sets of the form

$$
\Sigma^{\prime}=\left\{x \in K \mid B\left(0, R_{0}\right) \subset \Omega, \forall r \in\left(0, R_{0}\right), \beta_{K}(x, r)>\varepsilon_{0} \text { and } \lim _{r \rightarrow 0} \omega(x, r)=0\right\},
$$

where $R_{0}>0$ and $\varepsilon_{0}>0$. So let us show that such a set Σ^{\prime} has a dimension $\leq N-2$. We let $s \in(N-2, N-1)$ and we proceed by contradiction by assuming that $\mathcal{H}^{s}\left(\Sigma^{\prime}\right)>0$. By [34, Lemma 4.6], we have $\mathcal{H}_{\infty}^{s}\left(\Sigma^{\prime}\right)=0$ and by [37, Theorem 3.6 (2)], we have

$$
\begin{equation*}
\limsup _{r \rightarrow 0} r^{-s} \mathcal{H}_{\infty}^{s}\left(\Sigma^{\prime} \cap B(x, r)\right)>C^{-1} \quad \text { for } \mathcal{H}^{s} \text {-a.e. } x \in \Sigma^{\prime} \tag{54}
\end{equation*}
$$

for some constant $C \geq 1$ which depends only on N.
Let us now fix a point $x_{0} \in \Sigma^{\prime}$ such that (54) holds and let $\left(r_{i}\right)_{i} \rightarrow 0$ be a sequence such $\left(r_{i}\right)_{i} \rightarrow 0$ and that for all i,

$$
r_{i}^{-s} \mathcal{H}_{\infty}^{s}\left(\Sigma^{\prime} \cap B\left(x_{0}, r_{i}\right)\right) \geq C^{-1}
$$

We consider the blow-up sequence $\left(u_{i}, K_{i}\right)_{i}$ given by

$$
u_{i}(x)=r_{i}^{-1 / 2} u_{i}\left(x_{0}+r_{i} x\right) \quad \text { and } \quad K_{i}=r_{i}^{-1}\left(K-x_{0}\right) .
$$

Since $\lim _{r \rightarrow 0} h(r)=0$, we can extract a subsequence (not relabelled) such that ($\left.u_{i}, K_{i}\right)_{i}$ converges to a global minimiser $\left(u_{\infty}, K_{\infty}\right)$ in \mathbb{R}^{N}, see Section 7.1. Moreover,

$$
\lim _{r \rightarrow 0} r^{1-N} \int_{B(x, r)}|e(u)|^{2} \mathrm{~d} x=0
$$

so K_{∞} is a minimal set in \mathbb{R}^{N}. Now, we introduce $\Sigma\left(K_{\infty}\right)$, the singular part of K_{∞}, i.e., the set of points $x \in K_{\infty}$ such that $\liminf _{r \rightarrow 0} \beta_{K_{\infty}}(x, r)>0$. By Allard ε-regularity theorem, there exists a universal ε_{1} such that for all $x \in K_{\infty}$, for all $r>0$, if $\beta_{K}(x, r) \leq \varepsilon_{1}$, then K_{∞} is a C^{1} surface in the neighborhood of x. This shows that at all points $x \in K_{\infty} \backslash \Sigma\left(K_{\infty}\right)$, the set K is C^{1} in a neighborhood of x and thus, $\lim _{r \rightarrow 0} \beta_{K_{\infty}}(x, r)=0$. We also note that according to the regularity theory of minimal sets [1, Theorem 4.3], we have

$$
\operatorname{dim}\left(\Sigma\left(K_{\infty}\right)\right) \leq N-2
$$

and thus, since $s>N-2$,

$$
\begin{equation*}
\mathcal{H}^{s}\left(\Sigma\left(K_{\infty}\right)=0\right. \tag{55}
\end{equation*}
$$

Next, for all i, we set $\Sigma_{i}^{\prime}:=r_{i}^{-1}\left(\Sigma^{\prime}-x_{0}\right) \subset K_{i}$. As the flatness is invariant under rescaling, let us note that from the definition of Σ^{\prime} we have

$$
\begin{equation*}
\text { for all } x \in \Sigma_{i}^{\prime} \text {, for all } r \in\left(0, r_{i}^{-1} R_{0}\right) \text {, we have } \beta_{K_{i}}(x, r) \geq \varepsilon_{0} \text {. } \tag{56}
\end{equation*}
$$

We then check that Σ_{i}^{\prime} converges to $\Sigma(K)$ in the sense that for all open set $V \subset \mathbb{R}^{N}$ containing $\Sigma\left(K_{\infty}\right) \cap \bar{B}(0,1)$, we have

$$
\begin{equation*}
\Sigma_{i}^{\prime} \cap \bar{B}(0,1) \subset V \quad \text { for } i \text { big enough. } \tag{57}
\end{equation*}
$$

If (57) does not hold true, we can find a sequence of points $x_{i} \in \Sigma_{i}^{\prime} \cap \bar{B}(0,1)$ such that for all i, $x_{i} \notin V$. By extracting a subsequence again, we can assume that $\left(x_{i}\right)_{i}$ converges to some point $x \in \bar{B}(0,1) \backslash V$, which also necessarily belongs to K_{∞} by convergence of $\left(K_{i}\right)_{i}$ to K_{∞}. Since $x \in K_{\infty} \cap \bar{B}(0,1) \backslash V \subset K_{\infty} \backslash \Sigma\left(K_{\infty}\right)$ is a regular point of K_{∞}, there exists $\rho>0$ such that $\beta_{K_{\infty}}(x, 2 \rho)<\varepsilon_{0} / 8$. By convergence of $\left(K_{i}\right)_{i}$ to K and $\left(x_{i}\right)_{i}$ to x, one can deduce that for i big enough,

$$
\beta_{K_{i}}\left(x_{i}, \rho\right) \leq \varepsilon_{0} / 2,
$$

which contredicts (56). This proves (57).
Using the fact that

$$
C^{-1} \leq r_{i}^{-s} \mathcal{H}_{\infty}^{s}\left(\Sigma^{\prime} \cap B\left(x_{0}, r_{i}\right)\right)=\mathcal{H}_{\infty}^{s}\left(\Sigma_{i}^{\prime} \cap B(0,1)\right)
$$

and (57), we see that for all open set V containing $\Sigma\left(K_{\infty}\right) \cap \bar{B}(0,1)$, we have $\mathcal{H}_{\infty}^{s}(V) \geq C^{-1}$. From the definition of \mathcal{H}_{∞}^{s}, one can deduce that

$$
\mathcal{H}_{\infty}^{s}\left(\Sigma\left(K_{\infty}\right) \cap \bar{B}(0,1)\right) \geq C^{-1}
$$

We finally arrive at

$$
\mathcal{H}^{s}\left(\Sigma\left(K_{\infty}\right) \cap \bar{B}(0,1)\right) \geq \mathcal{H}_{\infty}^{s}\left(\Sigma\left(K_{\infty}\right) \cap \bar{B}(0,1)\right) \geq C^{-1}
$$

which contredicts (55). We conclude that for all $s \in(N-2, N-1)$, we have $\mathcal{H}^{s}\left(\Sigma^{\prime}\right)=0$ and thus $\operatorname{dim}\left(\Sigma^{\prime}\right) \leq N-2$.

Appendices

A. Auxiliary lemmas about affine maps

This section is devoted to justifying a few elementary properties of affine maps. Our first result controls the L^{∞} norm of an affine map on $B(0, R)$ by its average value on a subset $E \subset B(0, R)$. Similar and more general estimates of this kind are also proved in [26, Lemma 3.4], [24], [25].
Lemma A.1. For all real number $p \geq 1$, for all constant $c \in \mathbb{R}$ and vector $v \in \mathbb{R}^{N}$, for all radius $R>0$ and for all Borel set $E \subset B(0, R) \subset \mathbb{R}^{N}$, we have

$$
f_{E}|c+v \cdot x|^{p} \mathrm{~d} x \geq C^{-1}\left(|c|^{p}+R^{p}|v|^{p}\right)\left(\frac{|E|}{R^{N}}\right)^{p}
$$

where $C \geq 1$ depends on N and p.
Proof. In view of the homogeneity of the inequality, we can assume $R=1$ without loss of generality. We start by proving a simpler inequality, namely, that there exists a constant $C \geq 1$ (depending on N and p) such that

$$
\begin{equation*}
\int_{E}|c+v \cdot x|^{p} \mathrm{~d} x \geq C^{-1}|v|^{p}|E|^{p+1} \tag{58}
\end{equation*}
$$

Without loss of generality, we can assume $v \neq 0$. For $\delta>0$, the inequality $|c+v \cdot x| \leq \delta$ defines a $\delta|v|^{-1}$-neighborhood of some affine hyperplane so there exists a constant $C>0$ (depending on N) such that for all $\delta>0$

$$
|B(0,1) \cap\{|c+v \cdot x| \leq \delta\}| \leq C|v|^{-1} \delta
$$

Therefore we can estimate for $\delta>0$,

$$
\begin{aligned}
|E| & \leq|E \cap\{|c+v \cdot x| \leq \delta\}|+|E \cap\{|c+v \cdot x| \geq \delta\}| \\
& \leq C|v|^{-1} \delta+|E \cap\{|c+v \cdot x| \geq \delta\}| .
\end{aligned}
$$

We choose $\delta:=(2 C)^{-1}|v||E|$ so that

$$
|E \cap\{|c+v \cdot x| \geq \delta\}| \geq \frac{1}{2}|E| .
$$

Then we have

$$
\begin{aligned}
\int_{E}|c+v \cdot x|^{p} \mathrm{~d} x & \geq \int_{E \cap\{|c+v \cdot x| \geq \delta\}}|c+v \cdot x|^{p} \mathrm{~d} x \\
& \geq 2^{-1} \delta^{p}|E| \\
& \geq 2^{-p-1} C^{-p}|v|^{p}|E|^{p+1}
\end{aligned}
$$

which proves our claim. Now, we pass to the proof of the general inequality. If $c \geq 2|v|$, then for all $x \in E \subset B(0,1)$, we have $|c+v \cdot x| \geq c / 2$ so

$$
\begin{aligned}
\int_{E}|c+v \cdot x|^{p} \mathrm{~d} x & \geq 2^{-p} c^{p}|E| \\
& \geq 2^{-p}\left(\frac{c^{p}+\left(2^{-1} c\right)^{p}}{1+2^{-p}}\right)|E| \\
& \geq 2^{-p}\left(\frac{c^{p}+|v|^{p}}{1+2^{-p}}\right)|E| .
\end{aligned}
$$

Note that we can also bound from below $|E| \geq|B(0,1)|^{-p}|E|^{p+1}$ since $E \subset B(0,1)$. If $c \leq 2|v|$, we use (58), which gives

$$
\begin{aligned}
\int_{E}|c+v \cdot x|^{p} \mathrm{~d} x & \geq C^{-1}|v|^{p}|E|^{p+1} \\
& \geq C^{-1}\left(\frac{(2|v|)^{p}+|v|^{p}}{1+2^{p}}\right)|E|^{p+1} \\
& \geq C^{-1}\left(\frac{|c|^{p}+|v|^{p}}{1+2^{p}}\right)|E|^{p+1} .
\end{aligned}
$$

We shall need an analogue inequality on the unit sphere.
Lemma A.2. For all real number $p \geq 1$, for all Borel set $E \subset \partial B(0,1)$, for all vector $b \in \mathbb{R}^{N}$ and matrix $A \in \mathbb{R}^{N \times N}$, we have

$$
f_{E}|b \cdot x|^{p}+|A x|^{p} \mathrm{~d} \mathcal{H}^{N-1}(x) \geq C^{-1}\left(|b|^{p}+|A|^{p}\right) \mathcal{H}^{N-1}(E)^{p},
$$

for some constant $C \geq 1$ which depends on N and p.
Proof. In the case $A=0$, the proof is exactly like Lemma A. 1 with $B(0,1)$ replaced by $\partial B(0,1)$. We then pass to the case $b=0$. We observe that for $x \in \mathbb{R}^{N}$

$$
|A x|=\sqrt{\sum_{i}\left(A_{i} \cdot x\right)^{2}},
$$

where A_{i} denote the i-th column of A^{T}. We see in particular that

$$
\max _{i}\left|A_{i} \cdot x\right| \leq|A x| \leq \sqrt{\sum_{i}\left|A_{i}\right|^{2}|x|^{2}} \leq\left(\max _{i}\left|A_{i}\right|\right)|x|,
$$

so $|A|=\max _{i}\left|A_{i}\right|$. Let us fix an index k for which $|A|=\left|A_{k}\right|$. For $x \in \mathbb{R}^{N}$, we have

$$
|A x| \geq\left|A_{k} \cdot x\right|=\left|A_{k}\right||b \cdot x|
$$

where $b \in \mathbb{R}^{N}$ is some unit vector. An application of the first step concludes that

$$
f_{E}|A x|^{p} \mathrm{~d} \mathcal{H}^{N-1} \geq C^{-1}|A|^{p} \mathcal{H}^{N-1}(E)^{p} .
$$

Acknowledgements

C. Labourie was funded by the French National Research Agency (ANR) under grant ANR-21-CE40- 0013-01 (project GeMfaceT).

References

[1] Luigi Ambrosio, Nicola Fusco, and John E. Hutchinson. Higher integrability of the gradient and dimension of the singular set for minimisers of the Mumford-Shah functional. Calc. Var. Partial Differential Equations, 16(2):187-215, 2003.
[2] Luigi Ambrosio, Nicola Fusco, and Diego Pallara. Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000.
[3] A. Bonnet. On the regularity of edges in image segmentation. Ann. Inst. H. Poincaré Anal. Non Linéaire, 13(4):485-528, 1996.
[4] Kenneth A. Brakke. Minimal cones on hypercubes. J. Geom. Anal., 1(4):329-338, 1991.
[5] Antonin Chambolle, Sergio Conti, and Flaviana Iurlano. Approximation of functions with small jump sets and existence of strong minimizers of Griffith's energy. J. Math. Pures Appl. (9), 128:119-139, 2019.
[6] Antonin Chambolle and Vito Crismale. Existence of strong solutions to the Dirichlet problem for the Griffith energy. Calc. Var. Partial Differential Equations, 58(4):Paper No. 136, 27, 2019.
[7] Sergio Conti, Matteo Focardi, and Flaviana Iurlano. Existence of strong minimizers for the Griffith static fracture model in dimension two. Ann. Inst. H. Poincaré Anal. Non Linéaire, 36(2):455-474, 2019.
[8] G. Dal Maso, J.-M. Morel, and S. Solimini. A variational method in image segmentation: existence and approximation results. Acta Math., 168(1-2):89-151, 1992.
[9] Gianni Dal Maso. Generalised functions of bounded deformation. J. Eur. Math. Soc. (JEMS), 15(5):19431997, 2013.
[10] G. David and S. Semmes. On the singular sets of minimizers of the Mumford-Shah functional. J. Math. Pures Appl. (9), 75(4):299-342, 1996.
[11] Guy David. Singular sets of minimizers for the Mumford-Shah functional, volume 233 of Progress in Mathematics. Birkhäuser Verlag, Basel, 2005.
[12] Guy David. Hölder regularity of two-dimensional almost-minimal sets in \mathbb{R}^{n}. Ann. Fac. Sci. Toulouse Math. (6), 18(1):65-246, 2009.
[13] Guy David and Stephen Semmes. Uniform rectifiability and singular sets. Ann. Inst. H. Poincaré Anal. Non Linéaire, 13(4):383-443, 1996.
[14] C. De Lellis and M. Focardi. Higher integrability of the gradient for minimizers of the $2 d$ Mumford-Shah energy. J. Math. Pures Appl. (9), 100(3):391-409, 2013.
[15] C. De Lellis, F. Ghiraldin, and F. Maggi. A direct approach to Plateau's problem. J. Eur. Math. Soc. (JEMS), 19(8):2219-2240, 2017.
[16] Camillo De Lellis, Antonio De Rosa, and Francesco Ghiraldin. A direct approach to the anisotropic Plateau problem. Adv. Calc. Var., 12(2):211-223, 2019.
[17] G. De Philippis, A. De Rosa, and F. Ghiraldin. A direct approach to Plateau's problem in any codimension. Adv. Math., 288:59-80, 2016.
[18] Guido De Philippis, Antonio De Rosa, and Francesco Ghiraldin. Existence results for minimizers of parametric elliptic functionals. J. Geom. Anal., 30(2):1450-1465, 2020.
[19] Guido De Philippis and Alessio Figalli. Higher integrability for minimizers of the Mumford-Shah functional. Arch. Ration. Mech. Anal., 213(2):491-502, 2014.
[20] James Dugundji. Topology. Allyn and Bacon, Inc., Boston, Mass., 1966.
[21] Yangqin Fang. Minimal sets, existence and regularity. Thesis Université Paris Sud XI, Orsay, 2015.
[22] Yangqin Fang. Existence of minimizers for the Reifenberg plateau problem. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 16(3):817-844, 2016.
[23] I. Fonseca, N. Fusco, G. Leoni, and M. Morini. Equilibrium configurations of epitaxially strained crystalline films: Existence and regularity results. Arch. Ration. Mech. Anal., 186(3):477-537, 2007.
[24] Manuel Friedrich. A piecewise Korn inequality in $S B D$ and applications to embedding and density results. SIAM J. Math. Anal., 50(4):3842-3918, 2018.
[25] Manuel Friedrich and Francesco Solombrino. Quasistatic crack growth in 2d-linearized elasticity. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 35(1):27-64, 2018.
[26] Manuel Friedrich and Francesco Solombrino. Functionals defined on piecewise rigid functions: integral representation and Γ-convergence. Arch. Ration. Mech. Anal., 236(3):1325-1387, 2020.
[27] Camille Labourie. Weak limits of quasiminimizing sequences. J. Geom. Anal., 31(10):10024-10135, 2021.
[28] Gary Lawlor and Frank Morgan. Paired calibrations applied to soap films, immiscible fluids, and surfaces or networks minimizing other norms. Pacific J. Math., 166(1):55-83, 1994.
[29] Antoine Lemenant and Hayk Mikayelyan. Stationarity of the crack-front for the Mumford-Shah problem in 3D. J. Math. Anal. Appl., 462(2):1555-1569, 2018.
[30] C. Labourie M. Friedrich and K. Stinson. Ahlfors-regularity for griffith quasiminimizers. preprint, 2023.
[31] C. Labourie M. Friedrich and K. Stinson. On regularity for griffith almost-minimizers in the plane. preprint, 2023.
[32] Francesco Maddalena and Sergio Solimini. Blow-up techniques and regularity near the boundary for free discontinuity problems. Adv. Nonlinear Stud., 1(2):1-41, 2001.
[33] Francesco Maddalena and Sergio Solimini. Concentration and flatness properties of the singular set of bisected balls. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 30(3-4):623-659, 2001.
[34] Pertti Mattila. Geometry of sets and measures in Euclidean spaces, volume 44 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1995. Fractals and rectifiability.
[35] Jean-Michel Morel and Sergio Solimini. Variational methods in image segmentation. Progress in Nonlinear Differential Equations and their Applications, 14. Birkhäuser Boston, Inc., Boston, MA, 1995. With seven image processing experiments.
[36] Séverine Rigot. Big pieces of $C^{1, \alpha}$-graphs for minimizers of the Mumford-Shah functional. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 29(2):329-349, 2000.
[37] Leon Simon. Lectures on geometric measure theory, volume 3 of Proceedings of the Centre for Mathematical Analysis, Australian National University. Australian National University, Centre for Mathematical Analysis, Canberra, 1983.
[38] Sergio Solimini. Simplified excision techniques for free discontinuity problems in several variables. J. Funct. Anal., 151(1):1-34, 1997.
[39] Jean E. Taylor. The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces. Ann. of Math. (2), 103(3):489-539, 1976.
(C. Labourie) Université Paris-Saclay, CNRS, Laboratoire de mathématiques d'Orsay, 91405, Orsay, France.

Email address: camille.labourie@universite-paris-saclay.fr
(A. Lemenant) Institut universitaire de France and Université de Lorraine - CNRS, UMR 7502 IECL, BP 7023954506 Vandoeuvre-lès-Nancy, France

Email address: antoine.lemenant@univ-lorraine.fr

[^0]: ${ }^{1}$ We follow the terminology in 11 for topological competitors. Theses were first introduced by Bonnet [3] and are also called $M S$-competitors in [12] or separation competitors in [30].

