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Höök10, V. Court11,12,13, C.W. King14, F. Fizaine15, P. Jacques16, M.K. Heun17, A.
Jackson18, C. Guay-Boutet19, E. Aramendia20, J. Wang21,22, Hugo Le Boulzec23,

and CAS Hall24

1Univ. Grenoble Alpes, CNRS, Inria, LJK, STEEP 38000 Grenoble, France
2The Shift Project, 16-18, rue de Budapest - 75009 Paris, France

3Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, ISTerre, 38000 Grenoble,

France
4Univ. Grenoble Alpes, CNRS, INSU, IPAG, CS 40700, 38052 Grenoble, France

5Department of Environmental Studies, St. Lawrence University, 205 Memorial Hall, 23 Romoda Dr., Canton,

NY 13617, United States
6Environmental Engineering & Earth Sciences, Clemson University, Clemson, SC 29634, USA.

7Petroleum Analysis Centre, Staball Hill, Ballydehob, West Cork, Ireland.
8School of Engineering, Computing and Mathematics, Oxford Brookes University, Wheatley, Oxford OX33 1HX,

UK.
9Center for Life Cycle Assessment, Columbia University, New York, NY 10027, USA.

10Department of Earth Science, Uppsala University, Villavägen 16, SE-752 36, Uppsala, Sweden.
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Abstract

Extracting, processing, and delivering energy requires energy itself, which reduces the net energy
available to society and yields considerable socioeconomic implications. Yet, most mitigation
pathways and transition models overlook net energy feedbacks, specifically related to the decline
in the quality of fossil fuel deposits, as well as energy requirements of the energy transition. Here,
we summarize our position across 8 key points that converge to form a prevailing understanding
regarding EROI (Energy Return on Investment), identify areas of investigation for the Net Energy
Analysis community, discuss the consequences of net energy in the context of the energy transition,
and underline the issues of disregarding it. Particularly, we argue that reductions in net energy can
hinder the transition if demand-side measures are not implemented and adopted to limit energy
consumption. We also point out the risks posed for the energy transition in the Global South,
which, while being the least responsible for climate change, may be amongst the most impacted by
both the climate crisis and net energy contraction. Last, we present practical avenues to consider
net energy in mitigation pathways and Integrated Assessment Models (IAMs), emphasizing the
necessity of fostering collaborative efforts among our different research communities.

Broader context

The transition from fossil fuels to low-carbon energy is made difficult by several factors. One of
which is the energy investments required by the transition, often examined through the lens of
the EROI (Energy Return on Investment) metric. Although the concept of EROI is simple, its
application has proven to be challenging due to theoretical and practical difficulties. To address this
situation, we summarize our position with 8 key points, which approximate an emerging consensus
around EROI, and identify key areas under investigation for the Net Energy Analysis research
community. Our summary uncovers how net energy is critical for the assessment of equitable and
feasible transition scenarios, and yet how it remains marginally addressed in the current use of
Integrated Assessment Models. We therefore suggest avenues for improvements to make sure that
energy-economy feedbacks are internally consistent in mitigation pathways

Introduction

On April 4 2022, IPCC Working Group III finalized its contribution to the Sixth Assessment
Report. Reviewing progress and commitments for climate change mitigation, the report calls
for more sustainable consumption habits and a shift away from fossil fuels towards low-carbon
energy systems (IPCC, 2022). This transition nevertheless requires significant energy investments
for the alternative low-carbon energy system, which can be examined through the lens of the
Energy Return on (Energy) Invested or ERO(E)I metric (Hall, 2017; Haberl et al., 2019). Recent
developments in the Net Energy Analysis (NEA) research community have highlighted EROI
implications for socio-economic scenarios (King and van den Bergh, 2018; Capellán-Pérez et al.,
2020; Delannoy et al., 2021a; Jacques et al., 2023; Slameršak et al., 2022), in particular regarding the
practical challenges of the low-carbon transition. Yet, in part due to a lack of formal methodology
prior to the 2010s (White and Kramer, 2019; Rana et al., 2020) and to a delay in the emergence of
robust results, such studies have failed to influence transition scenarios. To remedy this situation,
we provide an overview of the net energy approach, summarize the claimed emerging consensus
around EROI, address how it relates to the low-carbon transition, and suggest ways to better
integrate net energy in Integrated Assessment Models (IAMs).

The Net Energy Analysis approach

Net energy, i.e. the energy supplied to society in the form of energy carriers after subtracting
the energy invested for the production and distribution of those energy carriers, is a fundamental
prerequisite to allow the production and exchange of goods and services. For a given amount of
net energy, a key metric of the energy system is the EROI – defined as the ratio between the total
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energy returned (Ereturned) and the total energy invested to accomplish the conversion (Einvested)
over the entire life cycle of the system under study, i.e. EROI = Ereturned/Einvested.

As with all analyses that can be performed at the macro (economy-wide) and micro (technology-
specific) scales, EROI can have slightly different interpretations (Brandt and Dale, 2011; King et al.,
2015a,b). For example, at the scale of the global economy, the EROI has a minimum of 0 based
on the first law of thermodynamics. When analyzing a single technology or energy subsystem that
produces a final energy carrier, the EROI ratio can be less than one to one (1:1) (e.g., in Figure
1, Einvested,2 is greater than Ereturned,2). Such systems can still be locally or temporarily useful
when they have compelling properties, for example delivering a specific energy carrier that is in
particular demand, e.g., the industrial food system, but they cannot be a main supplier of energy
for society. Although the equations involved are simple, their application entails theoretical and
practical difficulties that call for a rigorous definition of the system’s boundaries (Murphy and
Hall, 2011; Raugei, 2019).

Ereturned,1

Ereturned,2

Einvested,1

Einvested,2

Eextracted,1
Energy system 1

Energy system 2

Eextracted,2

Figure 1: Returned energy as a function of the extracted and the invested energy for two systems.
EROI (global) = (Ereturned,1 + Ereturned,2)/(Einvested,1 + Einvested,2). EROI (energy system 2)
= (Ereturned,2)/(Einvested,2). Energy losses are omitted for clarity.

The “standard” (or primary stage) EROI accounts for the energy used in the extraction
process only. It is useful for studying the energy demand of a primary energy extraction sector or
technology.

The point-of-use (or final stage) EROI includes the energy used in not only extracting, but
also processing and delivering an energy carrier. Therefore, for a given energy carrier, the point-
of-use EROI is substantially lower than the standard EROI since additional energy inputs are
considered. Focusing on the point of use is gaining in importance, as: (i) the energy requirements
of processing, refining and other downstream processes for fossil fuels may be larger than that for
their extraction, and (ii) most renewable energy systems directly deliver final energy carriers, i.e.,
typically electricity, making the analysis at the final energy stage essential to compare renewable
and fossil fuel energy systems like for like1.

The dynamic EROI of the full energy system corresponds to the energy delivered by a country’s
(or the entire world’s) energy system divided by its energy consumption at a given time, and is in
that respect a Power Return on Investment (PROI) as the calculation is performed for a delimited
time interval (one year usually) (King et al., 2015a; Carbajales-Dale, 2019).

1Discussion is still on-going in the research community about some subtle methodological issues on exactly how
EROI at point of use should be formulated, but these do not affect the main argument being made here, i.e., that
in order to be meaningful, all such comparisons should in fact be made at point of use.
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Emerging consensus on net energy

As researchers in the field of NEA, we summarize our position with the following 8 key points,
which approximate an emerging consensus around EROI:

1. The standard EROI of oil is usually lower than that of gas, which is lower than that of most
coal (Court and Fizaine, 2017).

2. Conventional fossil fuels (crude oil, natural gas liquids, etc.) may have lower standard
EROIs than tight gas and oil produced from fracking (Brandt et al., 2015b; Moeller and
Murphy, 2016) but higher than other unconventional fuels (tar sands, mined shale oil, coal
bed methane, etc.) (Brandt et al., 2015a; Delannoy et al., 2021a,b).

3. The standard EROI of new fossil energy resources is expected to improve initially as technology
develops, before decreasing due to a decline in the quality of the extracted resource (Dale,
2011; Masnadi and Brandt, 2017). For instance, the standard EROI of oil sands-derived
crude has been increasing since the first bitumen-producing mines became operational (Guay-
Boutet, 2023). On the contrary, many major conventional oil fields have already seen marked
decreases in their standard EROI due to the requirements for enhanced recovery (Tripathi
and Brandt, 2017) and global resource depletion, as evidenced by the decline in the quantity
of the remaining ”2P” (proven and probable) reserves (The Shift Project, 2020; Laherrère
et al., 2022).

4. The aggregate EROI of fossil fuels at the point of use declines over time, albeit at a slower
pace than at the point of extraction, since the largest investment (at the denominator of the
EROI ratio) is not the energy required for extraction (that increases over time as resource
quality decreases) but the subsequent energy required for processing and delivery (which is
generally not much affected by the quality of the resource over the long-term) (Brockway
et al., 2019).

5. Today, the EROI of fossil-fueled electricity at point of end-use is often found to be lower
than those of PV, wind and hydro electricity, even when the latter include the energy inputs
for short-term (e.g., 8h) storage2 technologies (Raugei et al., 2020; Murphy et al., 2022).
Average EROI values however hide strong regional variability, particularly for solar and
wind technologies (Dupont et al., 2018, 2020).

6. The EROI of nuclear and hydropower have historically been high, however, the former is
constrained by slow deployment times, the latter is limited in terms of availability of suitable
locations, and both face many environmental considerations.

7. The point of use EROI for thermal fuels is usually low, specifically for liquid fuels (gasoline,
biodiesel, bioethanol, etc.) compared to solid (coal, woodchips, etc.) or gaseous fuels (Murphy
et al., 2022).

8. A rapid large-scale deployment of renewable electricity and associated infrastructure will
likely temporarily reduce the dynamic EROI (i.e., PROI) of the energy system as it requires
a significant up-front energy investment embodied in infrastructure (Dale and Benson, 2013;
Sgouridis et al., 2016; Capellán-Pérez et al., 2019; Jacques et al., 2023; Slameršak et al., 2022;
Fabre, 2019).

In parallel to this emerging consensus, several areas are under investigation, such as the
future EROI trends of wind and solar. On one hand, their EROI might be negatively affected
by the increase in energy requirements per unit of valuable mineral extracted due to geological
depletion (Fizaine and Court, 2015), whereby the quality of mineral deposits extracted (e.g.,
in terms of ore grade) decreases as a function of cumulative production. On the other hand,

2The inclusion of storage devices in the system boundary (rather than at the level of an individual power
generation technology), however, is more relevant at the country, regional, or grid level, because each technology,
if deployed in isolation, would require some storage capacity to successfully keep up with the pattern of electricity
demand.
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technological improvements may favorably affect the EROI of wind and solar PV (Steffen et al.,
2018). The same is true for increasing the recycling capacity of renewable energy technologies, but
the delay is significant because of the time required to build up a stock of materials suitable for
recycling.

Another area under scrutiny is the extension of the analysis to the useful stage of energy
use, i.e. at the stage when energy is actually exchanged for energy services (Aramendia et al.,
2021) (see Figure 2) as some energy carriers may be used for similar end-uses with very different
final-to-useful efficiencies (Aramendia, 2023). For example, electricity might fuel a car at a lower
EROIpoint−of−use than gasoline, but an electric vehicle motor has a considerably higher final-to-
useful efficiency in converting its fuel input into mechanical drive when compared to a traditional
internal combustion engine, such that an electric vehicle can have higher EROI at the useful stage.

Of particular interest is the use of net energy analysis at the useful stage for a comprehensive
understanding of the rebound effect at different geographic and time scales. More precisely, this
approach can help explain why global data shows energy use continuing to increase as individual
technologies become more efficient, suggesting it is difficult to disprove that, to date, increased
efficiency has enabled increased energy use. Models that attempt to quantify rebound show large
rebound effects (typical economy-wide estimates are over 50%) (Brockway et al., 2021).

Figure 2: Standard, or primary stage EROI (EROIstandard), point-of-use or final stage EROI
(EROIpoint−of−use) and useful EROI (EROIuseful).

Implications for the low-carbon transition

The net energy approach provides an enhanced understanding of the role of energy in economic
processes, and as such, the EROI concept is increasingly used to model the energy–economy nexus.
This growing modeling effort highlights two main net energy aspects which have implications for
the low-carbon transition. On the one hand, the decline in the standard EROI of oil and gas may
entail a rise in emissions per unit of net energy supplied to society (Manfroni et al., 2021), and
long-term energy price increases (King and Hall, 2011; Heun and de Wit, 2012), leading to periods
of unfavorable growth or recession, especially for slow transition scenarios. On the other hand, the–
perhaps only temporary–reduction in net energy available for society in rapid transition scenarios
may result in a high investment share and employment rate in low-emissions technologies, which
could altogether generate inflation (Režný and Bureš, 2019; Jackson and Jackson, 2021; Jacques
et al., 2023), and thus raise questions of socio-political acceptance.

The pace of transition is bounded at the upper limit by the energy needed to sustain society
without disruption (additional supply bottlenecks aside), and at the lower limit by the minimum
speed required to meet climate targets (see Figure 3). Both limits are expected to move closer to
each other as the transition is delayed, reducing the window of opportunity for a global transition
compatible with ambitious climate targets. On one hand, the upper limit is likely to become more
restrictive over time due to the geological depletion of fossil fuels, the fact that a more rapid low-
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carbon investment consumes a higher proportion of energy, and that more high-carbon investment
needs replacement or becomes stranded. On the other hand, the lower limit will become more
pressing because, trivially, the longer the transition delays, the less likely it is to comply with
ambitious climate targets. The implementation of demand-side policies (Creutzig et al., 2018)
to reduce discretionary energy use, as highlighted by IPCC WG III (IPCC, 2022), is becoming
increasingly relevant in this regard. Moving away from unnecessary uses and switching to more
efficient conversion chains (e.g., from gasoline-powered to electric cars or bicycles) helps reduce
discretionary energy use as long as rebound effects are mitigated. Further, recent research suggests
that a decent life for all can be sustained at much lower levels of final energy use than at present
within wealthy nations (Cullen et al., 2011; Millward-Hopkins et al., 2020; Kikstra et al., 2021).

Time since the start of the transition

The window for a global 
inclusive transition narrows as 

the transition lags

Not enough net 
energy output to 
support society 

without disruption
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Figure 3: Sketch of principle of an evolving window of opportunity for the global inclusive transition
to low-carbon energy as a function of normalized time at the start of the transition. The solid lines
delineate the current window of opportunity. The dashed lines represent a future window in which
action has not been taken quickly enough such that climate and net energy increasingly constrain
the window of opportunity.

The energy transition has implications for equity. In particular, the upcoming reductions in
net energy will necessarily amplify energy transition costs due to fossil fuel inflation and rapid low-
carbon investment. Such reductions will in turn exacerbate competition for the energy and material
resources necessary for the transition, a competition in which low-income countries are already at
a clear disadvantage (Hall et al., 2008). Every Northern country that delays action thus risks
compromising its ability to complete a transition and maintain or achieve high levels of material
well-being, both for itself and other countries. This political situation raises inequity issues as
countries from the Global North are likely to make their transition first. In this context, countries
of the Global South are susceptible to lack access to energy, to the risk of getting slowed down – or
even trapped – in their progress towards modern low-carbon energy, while being among the least
responsible for and most affected by climate change (Oswald et al., 2020; Carley and Konisky,
2020; Hickel et al., 2022b,a; Hickel and Slamersak, 2022). Accelerating the energy transition for
the Global South is therefore a major stumbling block to a ”just” transition, and requires massive
financial support and technology transfers (Cantarero, 2020; Newell et al., 2021; Poblete-Cazenave
et al., 2021; Fanning and Hickel, 2023).
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Proper consideration of net energy is required in mitigation
pathways

While significant progress has been made in research on mitigation pathways, net energy has been
addressed only marginally. The latest IPCC report (IPCC, 2022), for instance, mentions EROI
issues in one paragraph (ch. 6, p. 44) and leaves out the evolution of the related literature, in part
because the 8 key points developed earlier have only recently emerged. This situation results in
insufficient discussion on the consequences of a decrease in the EROI of the energy system. The
overlooking of net energy is also apparent in Integrated Assessment Models (IAMs), the main tools
used to produce global, regionally disaggregated mitigation pathways (van Beek et al., 2020a).

First, most IAMs merely characterize exhaustible fossil fuel resources through cost-supply
curves, whose limitations in terms of modeling and parameterization lead to significant loss of
robustness for mitigation pathways. On one hand, these curves operate under the assumption
that the supply of fossil fuel resources depends purely on economic criteria, which means that
production fluctuates with price, but in reality prices increase also because production does not
increase fast enough. They furthermore assume that the most economically viable reserves will be
exploited first, regardless of the complex interplay of other socio-geopolitical factors that shape the
reality of producing companies (Heede and Oreskes, 2016), countries (Johnsson et al., 2018), and
regions (Verbruggen and de Graaf, 2013; Norouzi et al., 2020). On the other hand, typical upward
sloping cost-supply curves are subject to criticism for potentially outdated, simplistic and over-
optimistic assumptions in the recoverability of fossil resources (Brecha, 2008; Kharecha and Hansen,
2008; Nel and Cooper, 2009; Höök et al., 2010; Verbruggen and Marchohi, 2010; Chiari and Zecca,
2011; Höök, 2011; Dale et al., 2012; Mercure and Salas, 2012; Berg and Boland, 2013; Höök and
Tang, 2013; Murray and Hansen, 2013; Capellán-Pérez et al., 2014; Chapman, 2014; Mohr et al.,
2015; Murray, 2016; Bauer et al., 2016; Capellán-Pérez et al., 2016; Ritchie and Dowlatabadi,
2017; Wang et al., 2017; Capellán-Pérez et al., 2020). For instance, the MESSAGE (IIASA,
2020) and IMACLIM-R (Waisman et al., 2012a) (partly) models continue to depend on the data
provided by Rogner et al.Rogner (1997) for global fossil fuel reserves and resources, while the
EPPA model (Chen et al., 2022) includes simple recursive endogenous resource supply functions.
The use of cost-supply curves also impedes the analysis of the economic consequences of a plateau
or decline in oil production (Bentley et al., 2020)–for example left out in the EMF27 (McCollum
et al., 2013) and RoSE (Bauer et al., 2016; Cherp et al., 2016; De Cian et al., 2016; Kriegler
et al., 2016) intercomparison exercises. The main problem of using technically simplistic and
methodologically questionable cost-supply curves is not only overestimating the plausibility of high-
emission scenarios, but also making fossil fuels more attractive than they would be if depletion
feedback effects were properly considered. This point of view is supported by the evaluation of
AR5 scenarios against consistent growth rates of emissions from the fossil fuels industry (Burgess
et al., 2020; Pielke Jr et al., 2022), and the analysis of the GCAM-MAGICC integrated assessment
model’s sensitivity to revised cost-supply curves (Capellán-Pérez et al., 2016). It is also backed by
the comparison of WoLiM (Capellán-Pérez et al., 2014, 2015) or MEDEAS (Capellán-Pérez et al.,
2020) energy-constrained model results with scenarios from the literature, the incorporation of
thorough oil production profiles in IMACLIM-R (Rozenberg et al., 2010; Waisman et al., 2012b),
and the examination of various fossil resource availabilities in the RoSE exercise.

Another critical modeling assumption is the fact that the energy used by the industry for a
given scenario is not calculated in relation to the demand for the raw materials necessary for the
completion of that scenario. To be able to calculate the raw material requirements, IAMs would
have to represent the stocks of all infrastructures, combined with data on lifetimes and material
intensities. The potential inconsistency between the industrial energy calculated from elasticities in
IAMs and the industrial energy that would be calculated using a stock and raw materials approach
adds further uncertainty to the net energy requirements(Edelenbosch et al., 2017; Bataille et al.,
2021).

Moreover, IAMs dismiss comprehensive energy-economic feedbacks. They indeed assume that
decreasing (net) energy supply, or increasing energy costs, do not influence economic growth
whatsoever, as in the IMAGE (Stehfest et al., 2014), GCAM (Calvin et al., 2019) or POLES
(European Commission Joint Research Centre, 2018) models, or have minimal impact when the
output is recursively calculated, for instance using nested constant elasticity of substitution (CES)
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production functions found in models like EPPA, GTEM-C (Cai et al., 2015), REMIND, and
WITCH (Bosetti et al., 2006). These functions have indeed faced criticism for their inability to
accurately align with historically observed patterns in the dynamics of energy transition (Heun
et al., 2017; Kaya et al., 2017). We find this lack of energy-economic feedbacks particularly
troublesome as the decrease in the EROI of the energy system will influence the impact of make
demand-side measures in mitigation scenarios. The lack is even more problematic since some
authors have found that IAMs favor Bioenergy with Carbon Capture and Storage (BECCS) over
the use of renewable energy, notably by underestimating the cost reduction potential of renewables
and especially PV (Creutzig et al., 2017; Victoria et al., 2021; Grant et al., 2021; Wigley et al.,
2021; Xiao et al., 2021; Way et al., 2022), while in fact bioenergy and CCS technologies result in a
significant decline in net energy (Fajardy and Dowell, 2018; Sekera and Lichtenberger, 2020). The
importance of the net energy-economy feedback becomes even more apparent when considering
the substantial energy requirements associated with the deployment of Direct Air Carbon Capture
and Storage (DACCS), which are estimated to consume up to 300 EJ/yr by 2100 in some scenarios
(Realmonte et al., 2019).

A considerable exception to current IAMs is the MEDEAS model(Capellán-Pérez et al., 2020;
Samsó et al., 2020; Solé et al., 2020)—now developed as the WILIAM model in the scope of
the LOCOMOTION project—which appears to be the sole multi-scale3 IAM that explores, from
a heterodox perspective (Nieto et al., 2020), the implications that the energy required for the
transition may have on the energy system and the economy (Hafner et al., 2020). Unlike other
IAMs, MEDEAS includes an energy-economy feedback that allows energy availability to limit
GDP growth in the event that it falls short of demand (Nieto et al., 2020). When compared
with AR5 business-as-usual scenarios, the results obtained with MEDEAS show a larger primary
energy intensity of GDP, as well as lower CO2 intensity of primary energy, GDP per capita,
and temperature change over pre-industrial levels (Capellán-Pérez et al., 2020). Such a modeling
approach not only enables the characterization of the interaction between energy and the economy,
such as the rebound effect (de Blas et al., 2020), in a more historically consistent way (de Blas
et al., 2019), but also allows the user to assess the probability of GHG scenarios taken from other
IAMs (Huard et al., 2022), as well as degrowth scenarios (de Blas et al., 2020; Nieto et al., 2020;
Pulido-Sánchez et al., 2022).

The reasons why net energy is not comprehensively accounted for in IAMs are multiple and, in
our view, fall primarily into three categories.

First, most IAMs lack proper representation of the energy and material flows of the goods and
services provided(Pauliuk et al., 2017; Pedersen et al., 2022b; Desing et al., 2023; Aramendia, 2023),
making them structurally unable to consider the industrial energy embodied in the infrastructures,
and thus the energy-economy linkages brought to the fore by net energy analysis. Overlooking these
flows may lead to an overestimation of the potential for reducing energy intensity (thus assuming
possibly unrealistic decoupling rates between GHG and energy/material use), a greater focus on
supply-side solutions for mitigating climate change(Scott et al., 2022), and underestimating the
impact of rebound effects on energy demand(Brockway et al., 2021; Andrieu et al., 2022; de Blas
et al., 2020; Semieniuk et al., 2021; Gambhir et al., 2017).

Second, most IAMs – either energy system models coupled with macroeconomic growth models
or multi-sectorial Computable General Equilibrium (CGE) models – still utilize optimal growth
theory from neoclassical economics. However, in these models, increases in energy costs cannot
significantly affect GDP growth, either because GDP or technological change are assumed to be
exogenous, or because the cost share of energy (as a percentage of GDP) is assumed to have
negligible feedback on GDP. Thus, the current crop of IAMs not only downplays the contribution
of energy and exergy in economic processes (Kümmel and Lindenberger, 2014; Santos et al., 2018;
Spangenberg and Polotzek, 2019), but also sets aside its interaction with money and the financial
sector, as these are both largely unmodeled in IAMs (Pollitt and Mercure, 2017; Espagne, 2018;
Sanders et al., 2022; Giraud and Valcke, 2023). This omission further precludes any attempt to

2In this regard, it is worth noting that it has been estimated that, due to residual fossil emissions, 640–950
GtCO2 carbon dioxide removal (CDR), i.e., BECCS, DACCS and afforestation, will be required for a likely chance
of limiting end-of-century warming to 1.5○C, when strengthened pre-2030 mitigation action is combined with very
stringent long-term policies(Luderer et al., 2018).

3The SFCIO-IAM (Sers, 2022) and WORLD7 (Sverdrup et al., 2021) are for instance only global models.
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understand how high levels of debt, which can increase financial instability risks, can be associated
with net energy constraints or high energy costs (e.g. the global financial crisis of 2007-2008)
(Svartzman et al., 2019).

Third, the current climate change scenarios framework (illustrated by the Shared Socioeconomic
Pathways, SSP(Riahi et al., 2017)) nurtures a simplistic and technocratic vision of the economy,
that assumes little in the way of interdependence among population, economic growth, and other
socio-economic parameters such as net-energy(Kuhnhenn, 2018; Buhaug and Vestby, 2019; Asefi-
Najafabady et al., 2020; Purvis, 2021; Court and McIsaac, 2020; Pielke and Ritchie, 2021a,b).
This lack of explicit interdependence hinders existing climate mitigation scenarios from adequately
assessing societal transformations(Trutnevyte et al., 2019), (in)justice(Rao et al., 2019; Rivadeneira
and Carton, 2022; Pachauri et al., 2022) including large-scale shifts in energy use between Global
North and South(Hickel and Slamersak, 2022), and systemic risks (Rising et al., 2022). The roots
of the aforementioned limitations can be found in a lack of reflexivity, imaginative flexibility,
plurality, transparency and transdisciplinarity within the IAM community, as acknowledged by
some of its own members(Doukas et al., 2018; Anderson and Jewell, 2019; Foster, 2020; Hirt et al.,
2020; O’Neill et al., 2020; Raskin and Swart, 2020; Robertson, 2020; Skea et al., 2021; Sgouridis
et al., 2022; Pedersen et al., 2022b; Koasidis et al., 2023), but also in the gradual erosion of
IAMs’ neutrality(Ellenbeck and Lilliestam, 2019; van Beek et al., 2022) due to political influence,
and the community’s interest in playing an increasingly normative role in climate governance and
policy-making(Beck and Mahony, 2018; van Beek et al., 2020b; Beck and Oomen, 2021).

Avenues of improvement to consider net energy in IAMs

Several initiatives are underway to better account for industrial energy, and represent the interactions
between energy and the economy in macroeconomic models and/or IAMs (Keppo et al., 2021).
Some IAMs, for instance, have adopted the use of more reliable data pertaining to fossil fuel
energy resources, as exemplified by the incorporation of a comprehensive bottom-up dataset
from Rystad Energy in E3ME-FTT-GENIE(Mercure et al., 2021; Semieniuk et al., 2022) or the
construction of detailed field-level analysis supply curves in TIAM-UCL(Welsby et al., 2021).
Dynamic constraints on extraction rates have also been introduced, as in REMIND(Baumstark
et al., 2021) or TIAM-UCL(Pye et al., 2020b) models, as well as specific rules trying to mimic the
behavior of swing producers, as in IMACLIM-R or IMAGE, albeit in a very simplified way and
mostly for the oil market(Faehn et al., 2020; Foure et al., 2020). In an attempt to bridge the gap
with Industrial Ecology (IE), several IAMs (notably REMIND and MESSAGE) have explored the
implications of incorporating life cycle assessment coefficients from input–output (I–O) tables such
as THEMIS(Pehl et al., 2017; Arvesen et al., 2018; Luderer et al., 2019) or EXIOBASE(Budzinski
et al., 2023), highlighting the potential for sustainability research areas such as the energy-industry
nexus and post-growth scenarios(Lefèvre, 2023). Efforts are also underway for examining the
contribution of improved Energy System Models (ESM)(Huang and Eckelman, 2020; Kullmann
et al., 2021). Still, most IAMs operate within the neoclassical equilibrium framework, and thus do
not properly capture the feedback from the energy system on the economy. For instance, Pehl et al.
(2017)(Pehl et al., 2017) integrate a life-cycle assessment perspective in the REMIND model, and
find that “fully considering life-cycle greenhouse gas emissions has only modest effects on the scale
and structure of power production in cost-optimal mitigation scenarios”. However, the authors rely
on a model that uses a CES production function, with limited feedback from the energy system
(including its energy requirements) on the economy, and focus exclusively on the power sector.

In an attempt to remedy this situation, we highlight six avenues for improving IAMs:

1. the integration of Industrial Ecology methods (e.g. Material Flow Analysis) or modules such
as DyMEMDS(Vidal et al., 2021; Le Boulzec et al., 2022; Boulzec et al., 2023), ODYM-
RECC(Pauliuk and Heeren, 2019; Pauliuk et al., 2020), or QTDIAN(Süsser et al., 2021), in
order to better capture stocks and flows of energy and materials associated with the industrial
subsector;

2. the adoption of a multi-sectoral energy framework, for instance relying on primary-final-
useful (PFU) energy databases (Heun et al., 2020; Steenwyk et al., 2022; Pinto et al., 2023;
Marshall et al., 2023) and consistent energy services narratives;
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3. the use of an ecological macroeconomic framework (as in HARMONEY(King, 2020, 2021) or
TranSim(Jackson and Jackson, 2021)) or ESM which deal with environmental and biophysical
indicators(Sherwood et al., 2020) in a more comprehensive way, such as ENBIOS(Martin
et al., 2022), EnergyScope (Limpens et al., 2019) or the one developed by Crownshaw
(Crownshaw, 2023);

4. a common reporting template to include the energy consumption of the energy sector as
well as useful energy in mitigation scenarios(Neumeyer and Goldston, 2016; Palmer, 2018;
Slameršak et al., 2022);

5. an explicit modelling of energy-economy feedbacks (including rebound effects) using net
energy, at least with the aim of understanding how a net energy feedback would affect IAMs
results to assess to what extent energy and economic feedbacks are internally (in)consistent
across mitigation pathways(Palmer, 2018);

6. the exploration of new mitigation pathways achieving high wellbeing levels with low resource
use(Wilson et al., 2023), limiting the deployment of energy intensive carbon dioxide removal(van
Vuuren et al., 2018; Pye et al., 2020a; Diesendorf, 2022; Hollnaicher, 2022; Sers, 2022), and
equitable low-growth(Burgess et al., 2023) and post-growth scenarios(Floyd et al., 2020; Otero
et al., 2020; Keyßer and Lenzen, 2021; Warszawski et al., 2021; Hickel et al., 2021; Kikstra
et al., 2023; Li et al., 2023; Moyer, 2023).

However, if these measures are to be properly implemented, they must be carried out simultaneously
and without neoclassical economics theories(Brand-Correa et al., 2022; Stern et al., 2022), which we
see as incompatible. This point particularly addresses the IAM community’s appeal that “further
studies should at least aim at better reflecting the plurality of the visions of the economy”(Keppo
et al., 2021) and take advantage of the robust development of heterodox economics(Proctor, 2023),
especially ecological macroeconomics(Cattan and McIsaac, 2021; Althouse, 2022).

As countries seek to develop new nationally determined contributions (NDCs) and the IPCC
currently considers reforming itself to produce more relevant knowledge for climate action(Asayama
et al., 2023; Hermansen et al., 2023; Noy, 2023), current momentum is towards the development of
a new generation of IAMs and scenarios(Pedersen et al., 2020; Gambhir et al., 2022; Pedersen et al.,
2022a; Ranjan et al., 2023; Savin and van den Bergh, 2022; Meinshausen et al., 2023; Peters et al.,
2023; Szetey et al., 2023). In this regard, we believe that fostering collaborative efforts among our
different research communities is timely, and could help improve integrated assessment modeling,
with these dynamics being all the more supported by the convergence of views on demand-side
measures and alternative economic pathways.

Conclusion

Consideration of net energy is crucial to assess and design comprehensive and coherent climate
mitigation scenarios. Yet, in part due to the late emergence of robust results in the EROI literature,
such consideration has not yet spread beyond the Net Energy Analysis community. Here we
try to address this issue by outlining the emerging EROI consensus, exploring key areas under
investigation, and identifying further work.

Our summary underlines that, in a fossil fuel dominated world, the initial energy investment
to power the transition to a low-carbon future will inevitably come from fossil fuels. This does
not mean, though, that renewables cannot eventually support themselves. However, net energy
constraints may still limit the energy available to invest in energy infrastructure and the energy
available for discretionary uses, absent more sustainable production and consumption habits. This
situation may be particularly destabilizing for industrializing countries, which might stay at the
doorstep of the energy transition, unable to increase their reliance on modern low-carbon energy,
while being among the least responsible and among the most impacted by climate change. These
dynamics should not be ignored in transition scenarios, and we therefore call on fellow researchers to
integrate net energy into Integrated Assessment Models using theories outside of the neoclassical
economics paradigm. In this respect, we believe that fostering collaborative efforts among our
different research communities could prove decisive.
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We also thank Iñigo Capellán-Pérez for comments on a previous version of the manuscript. Louis
Delannoy, Pierre-Yves Longaretti and Emmanuel Prados acknowledge the support of the French
National Institute for Research in Digital Science and Technology (INRIA). Victor Court acknowledges
the support of the Chair Energy and Prosperity, under the aegis of La Fondation du Risque.

Author Contributions

Louis Delannoy: Conceptualization, Writing - Original Draft, Writing - Review & Editing,
Visualization, Project administrationMatthieu Auzanneau: Conceptualization, Writing - Review
& Editing Baptiste Andrieu: Writing - Review & Editing Olivier Vidal: Writing - Review &
Editing Pierre-Yves Longaretti: Writing - Review & Editing, Supervision, Funding acquisition
Emmanuel Prados: Writing - Review & Editing, Supervision, Funding acquisition David J.
Murphy: Writing - Review & Editing Roger W. Bentley: Writing - Review & Editing,
Supervision Michael Carbajales-Dale: Writing - Review & Editing Marco Raugei: Writing -
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Vorsatz, D. Ürge (2021). Urgent need for post-growth climate mitigation scenarios. Nature
Energy 6: 766–768, doi:10.1038/s41560-021-00884-9.

Hickel, J., Dorninger, C., Wieland, H. and Suwandi, I. (2022a). Imperialist appropriation in the
world economy: Drain from the global south through unequal exchange, 1990–2015. Global
Environmental Change 73: 102467, doi:10.1016/j.gloenvcha.2022.102467.

16



Hickel, J., O’Neill, D. W., Fanning, A. L. and Zoomkawala, H. (2022b). National responsibility for
ecological breakdown: a fair-shares assessment of resource use, 1970–2017. The Lancet Planetary
Health 6: e342–e349, doi:10.1016/s2542-5196(22)00044-4.

Hickel, J. and Slamersak, A. (2022). Existing climate mitigation scenarios perpetuate colonial
inequalities. The Lancet Planetary Health 6: e628–e631, doi:10.1016/s2542-5196(22)00092-4.

Hirt, L. F., Schell, G., Sahakian, M. and Trutnevyte, E. (2020). A review of linking models and
socio-technical transitions theories for energy and climate solutions. Environmental Innovation
and Societal Transitions 35: 162–179, doi:10.1016/j.eist.2020.03.002.

Hollnaicher, S. (2022). On economic modeling of carbon dioxide removal: values, bias, and norms
for good policy-advising modeling. Global Sustainability 5, doi:10.1017/sus.2022.16.
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