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Magneto-Mechanical Topology Optimization with Generalized
Optimality Criteria

Alessandro Silvestrini!, Maya Hage Hassan', Xavier Mininger', Guillaume Krebs!, Philippe Dessante'
Université Paris-Saclay, CentraleSupélec, Sorbonne Université, CNRS, Group of electrical engineering-Paris,
Gif-sur-Yvette, France, alessandro.silvestrini@centralesupelec.fr, maya.hage-hassan @centralesupelec.fr

In this article, the design of a synchronous reluctance motor (SynRM) is subjected to a multi-physical topology optimization
(TO) using the Generalized Optimality Criteria (GOC) method. To ensure the structural integrity of the rotor, a two-step magneto-
mechanical optimization approach is employed. The objective functions, focusing on magnetic and mechanical aspects, are formulated
by considering the magnetic energies obtained from d-axis and q-axis stator currents, as well as the mechanical compliance. The
gradients of these objective functions are computed using the adjoint variable method.

Index Terms—Density-based method, magneto-mechanical analysis, synchronous reluctance machines, topology optimization.

I. INTRODUCTION

OPOLOGY optimization (TO) is a design approach that

aims to find the optimal material distribution in a defined
space. It is different from parametric and shape optimization
problems that require an initial design, and this technique also
does not rely on the designer’s experience. Over the past few
decades, TO has been applied in various engineering fields,
including electromagnetics [/1]].

In this study, TO is applied to the design of a synchronous
reluctance motor (SynRM). Generally, TO of these machines
focuses on improving magnetic performances without consid-
ering the mechanical aspects. Recent papers propose to deal
with the magneto-mechanical TO [2]-[4]. In these works, the
objective function for the magnetostatic problem is usually ex-
pressed in terms of average torque. In [5]], the authors propose
a cost-effective solution in terms of computing time using the
ratio of magnetic energies in the d-axis and g-axis to improve
the saliency of the machine, based on a discrete algorithm.
In this paper, a novel formulation of the objective function
based on magnetic energy is proposed, by expressing it as the
difference between the non-linear magnetic energies of d- and
g-axis. It is important to note that this approach eliminates
the need to calculate the average torque, which is typically
obtained by computing its instantaneous values for different
rotor positions. With this objective function, a magnetic TO
is conducted to determine the magnetic optimal geometry.
Subsequently, this geometry is employed in a mechanical TO,
with the objective of minimizing the compliance of the rotor
under a defined rotational speed load, increasing its robustness.
These two TO problems are solved using the Solid Isotropic
Material with Penalization method (SIMP). The algorithm
chosen is the Generalized Optimality Criteria (GOC), which
was initially proposed for structural problems in [[6] and is
applied here, to the best of the authors knowledge, for the first
time to an electromagnetic problem. Furthermore, the gradient
of the objective functions is analytically determined using the
adjoint variable method.
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II. OPTIMIZATION PROBLEMS DESCRIPTION

The design of SynRM poses a major challenge due to the
complexity of their structure. The sizing and optimization
process involves a large number of geometric parameters,
particularly for the rotor geometry [[7]. The rotor is composed
of flux barriers as well as radial and tangential bridges to
enhance mechanical robustness. To obtain the shapes of the
barriers and the arrangement of the bridges, in this study the
topology optimization of the rotor is being conducted.

In this optimization process, the geometry of the stator is
fixed, and the main parameters of the motor are presented in
Table 1. The multi-physical problem is applied specifically to
the design space €) corresponding to the rotor (Fig. 1).

Fig. 1. Geometry and mesh of the motor with the yellow design space 2.

To tackle the multi-physical problem, a two-step approach
is adopted. Firstly, a magnetic TO is conducted over the
entire domain ). Subsequently, the obtained magnetic optimal
topology is used as the starting point for further mechanical
optimization to ensure a structurally feasible design. For this
second step, only the flux barriers composed of air domains
constitute the new design domain. This two-step approach has
the advantage of simplifying the design process and serves as
an initial analysis of the multiphysics problem. The proposed
flowchart depicted in Fig. 2 is detailed in the next parts. Both
optimization problems are solved using the GOC algorithm,
which has several advantages: it is easy to implement, capable
of handling multiple constraints, and faster than the commonly
used method of moving asymptotes (MMA).
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TABLE I
SYNRM PARAMETERS
Parameter Unit Value
Phases number 3
Poles number 4
Slots number 36
Stator outer diameter mm 130
Rotor outer diameter mm 78.75
Rotor inner diameter mm 25
Airgap mm 1
Machine length mm 120
Current density A/mm? 10
Rated speed rpm 10000
Electrical steel Young’s module GPa 200
Electrical steel yield strength MPa 400
Electrical steel density kg/m3 7800
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Fig. 2. Flowchart of the proposed two-step optimization procedure.

A

III. GENERALIZED OPTIMALITY CRITERIA ALGORITHM

Since the 99-line Matlab code for topology optimization has
been published [8]], the Optimality Criteria (OC) method has
been popular. However, the OC method has some limitations,
as it only works by minimizing the compliance with a volume
fraction constraint. The GOC for TO extends the capability
of the OC to multiple inequality constraints and it allows
to consider a general objective function. Considering the
flowchart in Fig. 2, after the computation of the sensitivity
of the objective function and constraints, the design variables
p are updated at the k*” iteration by the following formulation:

k.
pk—f-l — kal/(ﬂ co) (1)

where D is the scale factor, 8 and ¢y two acceleration
parameters. In order to consider the general objective function
f and multiple constraints g;, the scale factor is calculated
based on the sign of the sensitivities. The numerator consists
of all terms with negative sensitivities, while the denominator
has all terms with positive sensitivities. Consequently, the scale
factor is computed as follows:

NC 89
@9_+§}”<4>_
= @

(8, +2n(5),

D=-—

0gi
dp

where NC'is the number of constraints and p; the Lagrange
multiplier corresponding to constraint g;. The negative and
positive sensitivities are taken as (a)_ = min(0,a) and
(a), = maz(0,a). If the numerator and/or the denominator
are zero, the scale factor needs to be modified and limited
so that it stays close to one. The Lagrange multipliers are
iteratively determined during the optimization process to find
a value that satisfies the constraints. The method for updating
the Lagrange multipliers can vary depending on the specific
algorithm and problem formulation. In this case, a bisection
method is employed.

IV. TWO-STEP TOPOLOGY OPTIMIZATION PROBLEMS
A. Magnetostatic optimization problem

The magnetic optimization problem is formulated as fol-

lows:
mpin f(p) = =Walp) — Wy(p))

Netem
S.t. Z peVe = Vmax_mag 3)
e=1
0.001 < p, < 1

where p represents the design variables, p. and V. are the
elementary density and volume of the mesh element e, N¢jen,
the total number of mesh elements (8712), and V00 mag 18
the maximum material volume fixed here at 55%. Typically,
the rotor core of a SynRM is made up of laminated iron
sheets that occupy between 50% and 80% of the rotor volume,
depending on the specific motor design and application. In this
study,volume constraints are then chosen to achieve a light
motor design with a total volume of 60%.

The objective function is expressed as the difference be-
tween the magnetic energies Wy and W,. To determine the
two magnetic energies, windings are fed respectively by a
d-axis and g-axis current with a density of 10 A/mm? and
a respective current angle of 0° and 90°. By formulating
the objective function in terms of energy difference, due to
the correlation between magnetic energy and inductance, the
mean torque T, is obtained ({@). This eliminates the need for
numerous calculations required if the objective function was
formulated in terms of average torque.

2W, 2W,
Ld ~ Td Lq ~ .2q
K i @)
3 o
T, = ip(Ld — Lg)igiq

where p is the number of pole pairs, Lg, 74 and L, i, are the
d- and g-axis inductance and current respectively.

The two-dimensional magnetostatic problem (3)) is formu-
lated in terms of magnetic vector potential A and solved
on Matlab by a finite element analysis. The non-linear B-H
behavior is approximated by Marrocco’s expression.

Kn(A)A =J (5)
where K, is the magnetic stiffness matrix that contains the

magnetic non-linearity of the material and J is the current
density vector.
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Since the design variable p. varies in a continuous interval,
the reluctivity in the design domain material is interpolated

such that:
Ve = o+ (Vf(be) — 10)pe (6)

where v, 19, and vy are respectively the element reluctivity,
the reluctivity of air and reluctivity of non-linear electrical
steel, b, the elementary magnetic flux density. The non-linear
magnetic energy W is expressed by the formulation:

2

b
W = Z [VO — VoPe + 2Vf<be)pe}*e - peWco(be) @)

2
where W, is the non-linear magnetic co-energy. To update the
design, the gradient of the objective function is necessary. In
this study, using the Adjoint Variable Method (AVM) [9] the
derivative of magnetic energy with respect the design variables
is analytically evaluated. Once solved (9, the sensitivities are
computed using the adjoint state A, which is determined as the
solution of the following linear system, in both d- and g-axis:

(8(Km(glle - J)>T \

ow

0A
Then the sensitivities of the non-linear magnetic energy with
respect to each design variable p can be finally calculated with:

®)

0f(p) _O(Walp) — Wy(p))
dp dp A
O(Kn(Ad)Ad — Ja)
+Ad 9 ) ©)
+ )\Ta(Km(Aq)Aq — Jq)
q dp ,

B. Mechanical optimization problem

Next, the optimal geometry resulting from the magnetic
optimization (Fig. 4a) is considered as the initial design for the
mechanical TO. Note that no symmetry was imposed, in order
to give maximum freedom to the topological optimization. The
new optimization space is formed by the air regions of flux
barriers, highlighted in yellow in Fig. 3. In this step, to achieve
a robust rotor geometry, a mechanical analysis is conducted.
Subsequently, the compliance C' is evaluated as follows:

Clp) =F(p)Tu=u"K(p)u (10)

where K is the global structural stiffness matrix, u the global
vector of nodal displacements, and F'(p) the mechanical load-
ing corresponding to the global inertial forces. These forces
depend on the density p and act along the radial direction.
Considering one single element, the force is evaluated as:

(1)

where m, is the mass of the element, r. its distance from the
center of rotation, and w the angular speed of the rotor, equal
to 10000 rpm. Similar to the previous problem, p. is taken
from a continuous interval. The constitutive equation of the
material is expressed by interpolating Young’s modulus:

2
Fe = pemerew

12)

where E. is the Young’s modulus of electrical steel, E,y,;, an
imposed Young’s modulus minimum value, and ¢ the SIMP
penalization factor, here equal to 3. The optimization problem
is then formulated as:

min  C(p) = v’ Kqu

p
Nair

S.t. Z peve - Vmar_mec (13)
e=1
0.001 < p < 1

where N,;, is the total number of air mesh elements (4099),
and Vinaz mec 18 the maximum additional material volume,
fixed here at 10% to obtain a final rotor structure of 60% of
total iron volume. The gradient of the objective function is
also obtained using the AVM, it is calculated considering the
structural compliance that has design-dependents loads and it
is formulated as follows:

aC(p)

= —uT oK, u+ 2uT8—F
op op op
Once the gradient is computed, a sensitivity filter is applied
to ensure a feasible solution and to avoid the formation of
checkerboard patterns that are present for mechanical TO. The
formulation of the filtered gradient is given by:
0C(p)  Lien, w(@i)pigs [vi
= 15)
Ope Pe/Ve ZiENe w(w;)
where N, represents the neighborhood of the element e, p;
the density of the neighbor element ¢, v; the volume of the
element 4, and w(x;) a weighting function that depends on
the distance between the neighboring element ¢ and the target
element e. The function w(x;) is defined as follows:

(14)

w(x;) =1—||a; — x|/ fitter (16)

where 77 is a parameter, chosen here to be equal to 3 mm,
which defines the neighborhood size, and ||z;; — .|| represents
the distance between the center of the ¢th element and the
center of the eth element. Therefore, the size of the set N,
depends on the parameter 7 f¢c,. This radius should be chosen
based on the mesh size.

> o

L A

Fig. 3. Rotor domain (in yellow) for the mechanical optimization.

V. RESULTS AND DISCUSSION

Final optimized designs are given in Fig. 4, with the mag-
netic optimization design (a) and the mechanical optimization
design (b) showing iron bridges. To analyze the magnetic
behavior of the machines, the average torque is determined
in post-processing by the average of its instantaneous values,
calculated using Arkkio’s method [10]. An optimal current
angle has been determined after the optimization process. The
mechanical displacement of the geometry obtained in Fig.
4b is given in Fig. 5a, obtained with a zero-displacement
boundary condition applied on the rotor shaft.
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Fig. 4. Magnetic (a) and mechanical (b) optimization result.

TABLE I
MAGNETIC AND MECHANICAL RESULTS

S Average . Max.
Optimization Wq - Wy torque Compliance displacement
problem [J] [N.m] [J] [m]
Magnetostatic 0.0366 25.6 - -
Mechanical (10%) 0.0301 18.2 0.42 1.62e-6
Mechanical (7%) 0.0315 20.3 0.52 2.55e-6

To analyze the impact of bridges, another mechanical TO is
performed with the constraint V45 mec fixed at 7%. As ex-
pected, the average torque has increased, while the mechanical
displacement has almost doubled, as in Fig. 5b. The results
are summarized in Table II, allowing a comparison of average
torque and compliance. The bridges reduce the compliance of
the rotor and limit the maximum deformation in the air gap
due to centrifugal forces, as shown in Fig. 5. Furthermore,
considering the material yield strength and a safety factor of
2, the resulting admissible Von Mises stress is 200 MPa. In
Fig. 6, it can be observed that the target stress value is never
reached, with a maximum stress of 26 MPa (Fig. 6a) and 28.6

MPa (Fig. 6b).
(b) | »

0 3e-06
-_— ]
Displacement [m]

(@)
1.5e-06

Fig. 5. Rotor displacement [m] with Vinaz_mec 10% (a) and 7% (b).

oe

0 1.5e+07 3e+07
-— —
Von Mises stress [Pa]

Fig. 6. Von Mises stress distribution with Vinae_mee 10% (a) and 7% (b).

A relationship has also been observed between the volume
constraint, the compliance, and the average torque. The results
of this analysis are shown in Fig. 7. We varied the volume
constraint from 3% to 15%, and processed each resulting
geometry with the proposed TO, calculating the average torque

—o— Average torque
—o—Siffness

25

Average torque [N.m]
Stiffness (1/Compliance)

. . . . los
3 4 6 8 10 12 14 15
Mechanical volume constraint V/

max-mec

Fig. 7. Relationship between mechanical volume constraint, average torque
and compliance.

with the optimal current angle. These results highlight the
inverse correlation between compliance and average torque
with a quasi-linear evolution vs V42 mec. Indeed, compliance
is the inverse of stiffness, as the volume constraint increases,
the structure becomes more rigid but at the disadvantage of
torque.

VI. CONCLUSION

In this article, the GOC algorithm is used to solve a
magneto-mechanical TO problem applied to a SynRM. A
novel formulation of the magnetic objective function is pro-
posed and the utilised two-step approach simplifies the design
process of the rotor and determines the optimal position of
both flux barriers and iron bridges. After further investigations,
a trade-off must be considered between the magnetic perfor-
mance and the rotor’s mechanical integrity. The proposed algo-
rithm will be extended to a simultaneous magneto-mechanical
optimization, and compared to the approach presented in this

paper.
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