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SYSTOLES DES SURFACES PLATES SINGULI ÈRES DE GENRE DEUX

The extremal metrics for the isosystolic problem on surfaces of genus two are studied in this paper. We show that, contrary to Calabi's conjecture in genus three, no flat metric with conical singularities is extremal for this problem in genus two.

Introduction

Soit M une variété riemannienne fermée non simplement connexe munie d'une métrique g. La systole de M , notée sys(M, g), est la borne inférieure des longueurs des courbes fermées non contractiles. Dans le cas où la variété est fermée, elle est atteinte par une géodésique fermée non homotopiquement triviale. Malgré le léger risque de confusion, nous appellerons aussi systoles de M les plus courtes géodésiques fermées non homotopiquement triviales.

La géométrie systolique est née en 1949 lorsque la première inégalité isosystolique du type σ(M, g) :=

Vol(M, g) sys(M, g) n ≥ C où C est une constante strictement positive indépendante de la métrique g, fut établie pour le tore 2-dimensionnel par Loewner dans un travail non publié (voir [START_REF] Berger | Systoles et applications selon Gromov[END_REF] pour une présentation du sujet). Depuis les travaux d'Accola et Blatter en 1960 (voir [START_REF] Accola | Differential and extremal lengths on Riemann surfaces[END_REF] et [START_REF] Blatter | Über extremallängen auf geschlossenen flächen[END_REF]), complétés dans [START_REF] Burago | Geometric inequalities[END_REF]Chap. 5.3], [START_REF] Hebda | Some lower bounds for the area of surfaces[END_REF] et [START_REF] Gromov | Filling Riemannian manifolds[END_REF], nous savons que chaque surface fermée non simplement connexe satisfait une inégalité isosystolique. En dimension supérieure, M. Gromov a montré dans [START_REF] Gromov | Filling Riemannian manifolds[END_REF] que chaque variété essentielle satisfait une inégalité isosystolique. Une réciproque peut être trouvée dans [START_REF] Babenko | Asymptotic invariants of smooth manifolds[END_REF].

L'inégalité de Loewner, Aire(T 2 , g) ≥ √ 3

2 sys(T 2 , g) 2 , est de plus optimale : l'égalité est satisfaite si et seulement si le tore (T 2 , g) est isométrique à un tore plat équilatéral. Hormis cette inégalité, seules deux autres inégalités isosystoliques optimales sont connues à ce jour. Il s'agit des inégalités

σ(RP 2 ) ≥ 2 π et σ(K 2 ) ≥ 2 √ 2
π établies respectivement en 1951 par Pu pour le plan projectif réel (voir [START_REF] Pu | Some inequalities in certains nonorientable manifolds[END_REF]) et en 1986 par C. Bavard pour la bouteille de Klein (voir [START_REF] Bavard | Inégalité isosystolique pour la bouteille de Klein[END_REF], [START_REF] Bavard | Inégalités isosystoliques conformes pour la bouteille de Klein[END_REF] et [START_REF] Sakai | A proof of the isosystolic inequality for the Klein bottle[END_REF]). Le cas d'égalité pour le plan projectif réel est réalisé par la métrique ronde standard. En revanche, le cas d'égalité pour la bouteille de Klein est réalisé par une métrique singulière, l'égalité n'étant atteinte pour aucune métrique lisse. Pour les autres surfaces ainsi que pour les variétés de dimension supérieure, aucune inégalité optimale n'est connue. Pour une notion de systole étendue aux groupes discrets d'isométries de variétés riemanniennes, les métriques extrémales des 17 groupes cristallographiques du plan et des groupes du triangle ont été décrites dans [START_REF] Bavard | L'aire systolique conforme des groupes cristallographiques du plan[END_REF].

Une métrique réalisant un minimum local de la fonctionnelle σ est dite extrémale. L'existence de métriques extrémales pour le problème isosystolique sur les surfaces a été démontrée dans [15, theorem 5.6.C']. Les métriques extrémales des surfaces de genre supérieur à deux ont ensuite été étudiées dans [START_REF] Calabi | Extremal isosystolic metrics for compact surfaces, Actes de la Table Ronde de Géométrie Différentielle[END_REF]. Selon [9, p. 309], ces dernières ne sont pas lisses. Dans [START_REF] Calabi | Extremal isosystolic metrics for compact surfaces, Actes de la Table Ronde de Géométrie Différentielle[END_REF], E. Calabi décompose les surfaces en différents domaines sur lesquels les métriques plates sont solutions de l'équation d'Euler-Lagrange d'un problème variationnel associé. De plus, il présente deux exemples de métriques plates à singularités coniques sur la surface orientable de genre trois qu'il conjecture extrémales pour le problème isosystolique. Il montre aussi que les métriques extrémales sont plates au voisinage des points par lesquels passent deux systoles exactement. Poursuivant cette étude, R. Bryant démontre que les surfaces extrémales sont plates sur les ouverts en chaque point desquels passent exactement k systoles avec k ≥ 5 (voir [START_REF] Bryant | On extremals with prescribed lagrangian densities, Manifolds and geometry[END_REF]). Dans [START_REF] Berger | Filling Riemannian manifolds or isosystolic inequalities, Global Riemannian geometry[END_REF], M. Berger reprend un exemple, introduit auparavant dans [15, Example 5.6.B'], de métrique plate à singularités coniques sur la surface orientable de genre deux qu'il conjecture extrémale. Notons que chacune des métriques plates singulières précédemment citées est extrémale pour le problème isosystolique conforme, i.e., lorsque l'on restreint l'espace des métriques à une classe conforme. On se réfèrera à ce propos à [2, Chap. 4] et [START_REF] Bavard | Inégalités isosystoliques conformes[END_REF] pour une description de la méthode des longueurs extrémales.

À la lumière de ces résultats et conjectures, les métriques plates à singularités coniques apparaissent comme une classe de métriques intéressantes à étudier en rapport avec le problème isosystolique sur les surfaces. Une étude attentive du problème sur les surfaces de genre deux permet cependant de montrer le résultat suivant. Théorème 0.1. Aucune métrique plate à singularités coniques n'est extrémale pour le problème isosystolique sur les surfaces fermées orientables de genre deux.

Tout au long de cet article, nous raisonnons par l'absurde en considérant une surface M de genre deux munie d'une métrique plate à singularités coniques, extrémale pour le problème isosystolique. L'idée principale consiste à remarquer (Proposition 2.5 et Proposition 2.7) que les positions relatives de certaines systoles au voisinage des singularités coniques sont déterminées par la forme d'intersection de la surface. En utilisant cette propriété, nous établissons tout d'abord des résultats de finitude sur le nombre de systoles (Lemme 3.1, Lemme 3.3 et Proposition 3.4). Nous décrivons ensuite la combinatoire des systoles autour des singularités coniques (Proposition 4.1) et déduisons des résultats de rigidité sur l'angle de ces singularités (Proposition 4.1 et Proposition 4.3). Nous analysons finalement les conséquences sur la géométrie de la surface et montrons que M est nécéssairement formée de trois cylindres plats identifiés le long de leurs bords. Nous concluons en remarquant que cette construction, étudiée dans l'exemple 1.2, n'est pas extrémale pour le problème isosystolique.

Cet article est composé de cinq sections. Dans la première, nous introduisons quelques généralités et décrivons un exemple. Dans la deuxième section, nous relions la géométrie combinatoire de certaines systoles passant par une singularité conique à la forme d'intersection de la surface M . Dans la troisième section, nous dénombrons les systoles autour des singularités coniques. Dans la quatrième section, nous décrivons les positions relatives des systoles au voisinage des singularités coniques de M et montrons que l'angle de ces dernières vaut 3π. La dernière partie est consacrée à la preuve du théorème, laquelle consiste à ramener le problème à l'exemple étudié dans la première section.

Généralités et exemples

Nous commençons par énoncer le résultat suivant dû à E. Calabi (voir [14,Chapître 2]). Ce résultat sera utilisé à plusieurs reprises par la suite.

Lemme 1.1. Soit M une surface fermée extrémale pour le problème isosystolique.

-Au moins deux systoles passent par chaque point de M . -Si deux systoles exactement passent par un point de M , la métrique est plate au voisinage de ce point et les deux systoles sont orthogonales.

Les définitions et généralités suivantes ont été établies dans [START_REF] Troyanov | Les surfaces euclidiennes à singularités coniques[END_REF]. Fixons θ ∈ R. Le quotient de {(r, α) ∈ R + × R/θZ} par {(0, α) | α ∈ R/θZ}, muni de la métrique ds 2 = dr 2 + r 2 dα 2 , représente le cône d'angle θ. Il est noté C θ . Le plan complexe C muni de la métrique ds 2 = |z| 2β |dz| 2 où β = θ 2π -1 est isométrique à C θ . L'origine de C s'identifie au sommet du cône. Une surface possède une métrique plate à singularités coniques (x i ) d'angles (θ i ) si la surface M \ {x i | i ∈ I} est localement euclidienne et s'il existe un voisinage de x i dans M , isométrique à un voisinage du sommet de C θ i pour chaque i ∈ I. Remarquons que si la surface M est fermée, le nombre de singularités coniques est fini. [START_REF] Bavard | Inégalités isosystoliques conformes[END_REF]Sect. 4.4]). Toutefois, elle n'est pas extrémale dans l'ensemble des métriques de M . En effet, un "twist" le long de la géodésique R/Z × { 1 4 } de C 1 ne change pas le taux isosystolique de M . La nouvelle métrique ainsi obtenue n'est pas extrémale puisqu'il existe des points par lesquels ne passe qu'une systole (voir le lemme 1.1). Par conséquent, le taux systolique de M ne réalise pas de minimum local. Plus généralement, aucune systole obtenue en recollant trois cylindres plats rectangles de différentes hauteurs le long d'arcs de leurs bords n'est extrémale.

Exemple 1.2. Soient C 1 , C 2 et C 3 trois copies du cylindre plat R/Z × [0, 1 2 ] muni de la métrique produit. Notons α i , α ′ i , β i et β ′ i les arcs du bord de C i correspondant respectivement à [0, 1 2 ] × {0}, [ 1 2 , 1] × {0}, [0, 1 2 ] × { 1 2 } et [ 1 2 , 1] × {
Les formules de Gauss-Bonnet pour les surfaces compactes plates à singularités coniques et pour les disques polygonaux plats à singularités coniques et arêtes géodésiques s'écrivent respectivement

(2π -θ i ) = 2πχ(M ) (1.1) (2π -θ i ) + (π -α i ) = 2π (1.2)
Les angles des singularités coniques et les angles intérieurs aux coins des disques polygonaux sont représentés par θ i et α i . L'entier χ(M ) désigne la caractéristique d'Euler. On pourra consulter [START_REF] Troyanov | Les surfaces euclidiennes à singularités coniques[END_REF] à ce sujet.

Géométrie des systoles : indices et intersections

Dans la suite de cet article, la surface M est supposée être une surface fermée orientable de genre deux munie d'une métrique plate à singularités coniques, extrémale pour le problème isosystolique. On suppose la métrique normalisée de sorte que la longueur des systoles de M soit égale à 1.

Nous étudions dans cette section l'intersection des systoles de M . Nous montrons en particulier dans la proposition 2.5 que deux systoles homologues passant par une même singularité sont confondues. Nous montrons aussi dans la proposition 2.7 que la géométrie combinatoire des systoles au voisinage d'une singularité conique est reliée à la forme d'intersection de la surface. 

et γ 2 s'identifient à S 1 × {0} et S 1 × {h}.
Supposons que les courbes non transversales γ 1 et γ 2 ne sont pas disjointes. Elles ont alors une singularité conique x en commun. Dans le cylindre C, le point x induit deux points Soit D un disque adapté à x. Considérons une systole régulière γ ′ passant par un point générique x ′ de D ∩ C et coupant γ 1 dans D ∩ C. La systole γ ′ varie continûment avec x ′ au travers d'une famille γ ′ t de systoles parallèles. L'angle que forment ces systoles avec γ 1 est donc constant non nul. À la limite, quand x ′ tend vers x, on obtient une systole γ issue de x passant par C. Puisque la longueur des arcs γ ′ t ∩ D est constante strictement inférieure à 1, la géodésique γ, issue de

x 0 et x h , où x 0 ∈ S 1 × {0} et x h ∈ S 1 ×
x 0 ∈ S 1 × [0, h], sort du cylindre en coupant γ 2 en un point x ′ 0 différent de x h . Soit α l'arc de γ reliant dans C le point x 0 à x ′ 0 . Soit β = γ \ α l'arc complémentaire dans M . Notons α ′ le plus court arc de γ 2 reliant x h à x ′ 0 . On a L(α ′ ) ≤ 1 2 . Puisque L(α) ≥ h ≥ √ 3
2 , le lacet α ′ ∪ β est de longueur < 1. Les arcs de systoles α ′ et β sont donc homotopes à extrémités fixes. La métrique étant à courbure négative ou nulle au sens d'Alexandrov, les deux arcs α ′ et β coïncident et γ = α ∪ α ′ . Cette dernière courbe peut être raccourcie en lissant dans C l'angle entre α et α ′ . D'où une contradiction.

Le résultat suivant précise l'intersection des systoles de M . Il sera utilisé à de nombreuses reprises par la suite. La courbe a 1 ∪a 2 n'est pas homotopiquement triviale, sinon elle borderait un disque plat à singularités coniques hyperboliques dont le bord, géodésique par morceaux, possède au plus deux angles < π. D'où une contradiction avec la formule de Gauss-Bonnet (1.2). En particulier, L(a 1 ∪ a 2 ) ≥ sys(M ), i.e., L(a 1 ) + L(a 2 ) ≥ 1. Il en va de même en remplaçant a i par b i . En sommant les inégalités L(a

1 )+ L(a 2 ) ≥ 1, L(a i ) + L(b j ) ≥ 1 et L(b 1 ) + L(b 2 ) ≥ 1, on obtient L(a 1 ) + L(a 2 ) + L(b 1 ) + L(b 2 ) ≥ 2.
Puisque l'égalité a lieu dans cette dernière inégalité, les inégalités sommées précédentes sont en fait des égalités. En particulier, les courbes

a 1 ∪ a 2 , a 1 ∪ b 2 , a 2 ∪ b 1 et b 1 ∪ b 2 sont des systoles et L(a i ) = L(b i ) = 1 2 . Ainsi, les courbes c 1 et c 2 s'intersectent en deux points exactement.
Un voisinage tubulaire T suffisamment petit de c 1 ∪ c 2 est homéomorphe à une sphère privée de quatre disques correspondant à quatre des six systoles

a 1 ∪ a 2 , a 1 ∪ b 1 , a 1 ∪ b 2 , a 2 ∪ b 1 , a 2 ∪ b 2 et b 1 ∪ b 2 .
La surface M est de genre deux et les composantes de bord de T sont non contractiles dans M . Par conséquent, deux des quatre composantes de bord de T sont homotopes. Ces deux composantes de bord homotopes ne s'intersectent pas transversalement. D'après le lemme 2.4, elles sont confondues, ce qui est exclu. D'où le point i).

Montrons maintenant le point ii). Supposons qu'une infinité de systoles passe par un point x 0 . Puisque les systoles singulières sont en nombre fini, une infinité de systoles régulières passe par x 0 . En particulier, le point x 0 est régulier et les systoles passant par x 0 s'intersectent transversalement. Puisque les systoles régulières passant par x 0 sont déterminées par leur vecteur tangent, deux d'entre elles sont arbitrairement proches et donc homotopes. Elles admettent alors un deuxième point d'intersection transverse, ce qui contredit le point i).

Supposons qu'il existe une systole γ homologiquement triviale. Rappelons qu'au moins deux systoles passent par chaque point et que les systoles singulières sont en nombre fini. Il existe une systole régulière γ ′ coupant transversalement γ (en un point régulier). Puisque la courbe γ est homologiquement triviale, il existe un second point d'intersection transverse. Ceci contredit le point i) et prouve le point iii).

Montrons le point iv). Soient γ 1 et γ 2 deux systoles homologues différentes. Découpons la surface M le long de ces deux courbes simples, sans point d'intersection transverse d'après i). On obtient deux composantes connexes dont l'une est homéomorphe à un cylindre, puisque la surface est de genre deux. En particulier, les systoles γ 1 et γ 2 sont homotopes. Le lemme 2.4 fournit alors le résultat.

Nous introduisons maintenant de nouvelles définitions, dont celle importante de systole limite. Soient x 0 une singularité conique de M , D un disque adapté à x 0 et γ une systole passant par un point générique de D. Puisque la métrique est plate au voisinage de γ, il est possible de faire varier par translations la courbe γ au travers d'une famille de géodésiques parallèles. On rapproche ainsi γ de x 0 . À la limite, on obtient une systole singulière passant nécessairement par x 0 , d'après la définition d'un disque adapté. Preuve. Si l'intersection entre γ 1 et γ 2 est transverse en x 0 , on a ind(γ 1 , γ 2 ) = ±1 d'après la proposition 2.5.i). Si l'indice entre γ 1 et γ 2 est non nul, i.e., ind(γ 1 , γ 2 ) = ±1, l'angle entre ces deux géodésiques est minoré par l'angle non nul que forment deux de leurs systoles régulières parallèles. L'intersection entre γ 1 et γ 2 est donc transverse et, d'après la proposition 2.5.i), se réduit à un seul point, ici x 0 .

Dénombrement de systoles

Le but de cette section est de montrer qu'au plus trois systoles passent par chaque point générique au voisinage des singularités coniques de M (Proposition 3.4).

Notons J n ∈ M n (R) la matrice anti-symétrique de dimension n dont la partie triangulaire supérieure ne contient que des 1.

Nous montrons un premier résultat de finitude sur le nombre de systoles autour des singularités de M . Lemme 3.1. Soit D un disque adapté à une singularité conique x 0 de M . Au plus cinq systoles passent par chaque point générique de D.

Preuve. Supposons qu'au moins six systoles passent par un point générique de D. Ces systoles s'intersectent transversalement. Avec des orientations convenables, leur matrice d'intersection est alors donnée par J 6 . Le déterminant de J 6 est égal à 1. Par conséquent, les classes d'homologie de ces six systoles sont linéairement indépendantes dans H 1 (M, Z). Ce qui est impossible car la dimension de H 1 (M, Z) est égale à 4.

Le lemme suivant sera utilisé dans la preuve du lemme 3.3. L'idée de sa preuve, inspirée par celle du lemme 3.1, sera reprise par la suite. Lemme 3.2. Soient (γ i ) 1≤i≤5 cinq systoles limites s'intersectant transversalement en une singularité conique x 0 , de matrice d'intersection J 5 . Soient α et β deux systoles limites différentes des (γ i ) 1≤i≤5 passant par x 0 telles que ind(γ 1 , α) = 1 et ind(γ 2 , β) = 1 (les systoles α et β peuvent être éventuellement confondues). La matrice d'intersection des γ i est égale à

A =           0 1 1 1 1 1 e -1 0 1 1 1 a 1 -1 -1 0 1 1 b f -1 -1 -1 0 1 c g -1 -1 -1 -1 0 d h -1 -a -b -c -d 0 i -e -1 -f -g -h -i 0          
où le vecteur ξ = (a, b, c, d, e, f, g, h, i) est égal à l'un des 9-uplets suivants ξ 1 = (1, 0, 0, 0, 1, 0, 0, 0, 0) ξ 2 = (0, 0, 0, -1, 1, 0, 0, 0, 1) ξ 3 = (1, 0, 0, 0, 0, 1, 0, 0, 1) ξ 4 = (0, 0, 0, -1, 0, 1, 0, 0, 0) Preuve. Dans la figure ci-dessous, la systole limite γ 1 passe légèrement au dessus de x 0 pour signifier graphiquement que la famille de systoles parallèles à γ 1 se situe au dessus de x 0 . De même pour les autres systoles limites γ i . Considérons la sous-matrice J 5 de A correspondant aux cinq premières coordonnées horizontales et verticales. Les mineurs de J 5 issus des termes de la diagonale sont non nuls. Par conséquent, quatre courbes quelconques parmi les (γ i ) 1≤i≤5 induisent en homologie une base de H 1 (M, Z).

Les coefficients de la matrice A satisfont les conditions suivantes :

• D'après la proposition 2.5.i), les coefficients de A valent -1, 0 ou 1.

• Puisque quatre courbes quelconques parmi les (γ i ) 1≤i≤5 induisent en homologie une base de c,d,e,f,g,h,i) de coefficients de A satisfont les conditions précédentes. Plus précisément, le vecteur ξ est égal à l'un des quatre 9-uplets suivants ξ 1 = (1, 0, 0, 0, 1, 0, 0, 0, 0) ξ 2 = (0, 0, 0, -1, 1, 0, 0, 0, 1) ξ 3 = (1, 0, 0, 0, 0, 1, 0, 0, 1) ξ 4 = (0, 0, 0, -1, 0, 1, 0, 0, 0) Le résultat suivant précise le lemme 3.1.

Lemme 3.3. Soit D un disque adapté à une singularité conique x 0 de M . Au plus quatre systoles passent par chaque point générique de D.

Preuve. Supposons que cinq systoles passent par un point générique de D. Notons (γ i ) 1≤i≤5 les cinq systoles limites passant par x 0 qu'elles induisent. Ces systoles s'intersectent transversalement. Quitte à les renuméroter et à changer leurs orientations, on peut supposer, d'après la proposition 2.5.i), que leur matrice d'intersection est donnée par J 5 . Les systoles γ 1 et γ 2 délimitent ainsi un secteur, en tout point générique duquel passent exactement cinq systoles. De plus, les courbes (γ i ) 1≤i≤4 induisent une base en homologie. Ainsi, d'après la proposition 2.5.iv), deux systoles passant par x 0 ayant des indices identiques avec les (γ i ) 1≤i≤4 sont confondues.

Une famille de systoles non parallèle aux γ i passe par le secteur délimité par γ 5 et -γ 1 , sinon il ne passerait qu'une systole en tout point générique de celui-ci. Cette famille induit par parallélisme une systole limite α passant par x 0 différente des γ i . On oriente α de sorte que l'indice non nul entre γ 1 α soit égal à 1. De manière analogue, il existe une systole limite β passant par x 0 différente des (γ i ) 1≤i≤5 provenant d'une famille de systoles passant par le secteur délimité par -γ 2 et -γ 3 . On l'oriente de sorte que l'indice entre γ 2 et β soit égal à 1. Notons que la systole limite β peut éventuellement coïncider avec α.

Montrons qu'au plus huit systoles limites passent par x 0 . Soit γ une systole limite passant par x 0 différente des (γ i ) 1≤i≤5 . Rappelons que γ ne passe pas par le secteur délimité par γ 1 et γ 2 d'après le lemme 3.1.

Les indices de γ avec γ 1 et γ 2 ne sont pas simultanément nuls. En effet, dans le cas contraire, la systole γ est située "au dessous" de γ 1 et "au dessus" de γ 2 dans la figure précédente. Elle ne coupe donc aucune courbe (γ i ) 1≤i≤4 transversalement en x 0 . D'après la proposition 2.7, les indices de γ dans la base homologique induite par (γ i ) 1≤i≤4 sont nuls. Par conséquent, la systole γ est homologiquement triviale, ce qui est exclu d'après la proposition 2.5.iii).

Nous pouvons donc appliquer le lemme 3.2 à (γ i ) 1≤i≤5 , α et γ ou à (γ i ) 1≤i≤5 , γ et β selon que l'indice de γ avec γ 1 est nul ou non. Nous remarquons alors qu'au plus huit systoles limites (γ i ) 1≤i≤8 passent par x 0 . Remarquons aussi que les indices de ces systoles, et donc leurs positions relatives, sont entièrement déterminés. Les systoles γ 6 , γ 7 et γ 8 correspondent à des courbes d'indices (1, 0, 0, 0, -1), (1, 1, 0, 0, 0) et (0, 1, 1, 0, 0) par rapport aux (γ i ) 1≤i≤5 . Preuve. Supposons que quatre systoles passent par un point générique de D. Notons (γ i ) 1≤i≤4 les quatre systoles limites passant par x 0 qu'elles induisent.

On peut supposer que leur matrice d'intersection est donnée par J 4 . Les courbes γ i induisent une base de H 1 (M, Z).

Montrons qu'au plus neuf systoles limites passent par x 0 .

Les indices de γ 1 et γ 2 avec une systole limite passant par x 0 différente des γ i ne sont pas simultanément nuls, sinon les indices de cette systole dans la base homologique induite par les γ i seraient nuls, contredisant la proposition 2.5.iii).

Soit γ une systole limite passant par x 0 , différente des γ i , telle que ind(γ 1 , γ) = 1. La matrice d'intersection des γ i est égale à

C =       0 1 1 1 1 -1 0 1 1 a -1 -1 0 1 b -1 -1 -1 0 c -1 -a -b -c 0      
Les coefficients de la matrice C satisfont les conditions suivantes :

• Les coefficients de C valent -1, 0 ou 1.

• L'étude des positions relatives des courbes γ i montre que 1 ≥ a ≥ b ≥ c ≥ -1.

• Le coefficient a vérifie a = -1 puisque seulement quatre familles de systoles passent par le secteur délimité par γ 1 et γ 2 .

• Le vecteur (1, a, b, c) est différent des vecteurs colonnes de ±J 4 car γ n'est homologue à aucune courbe (±γ i ) 1≤i≤4 . • Le rang de la matrice d'intersection C n'excède pas dim H 1 (M, Z) = 4.

Seules trois combinaisons ξ = (a, b, c) de coefficients de C satisfont ces conditions. Elles sont données par les trois triplets ξ 1 = (0, 0, -1), ξ 2 = (0, 0, 0) et

ξ 3 = (1, 0, 0). Soit γ ′ une systole limite passant par x 0 , différente des γ i , telle que ind(γ 2 , γ ′ ) = -1. Par symétrie, le vecteur ξ ′ = (ind(γ 1 , γ ′ ), ind(γ 3 , γ ′ ), ind(γ 4 , γ ′ )) est égal à un des trois triplets ξ ′ 1 = (0, -1, 0), ξ ′ 2 = (0, 0, 0) ou ξ ′ 3 = (-1, 0, 0).
D'après la proposition 2.5.iv), deux systoles passant par x 0 ayant des indices identiques avec les courbes (γ i ) 1≤i≤4 sont confondues. Par conséquent, au plus neuf systoles limites passent par x 0 . Leurs positions relatives au voisinage de x 0 , dans le cas où ces systoles existent, sont données par la figure suivante. Les courbes γ 5 , γ 6 et γ

7 correspondent à ξ = ξ 1 , ξ = ξ 2 et ξ = ξ 3 . Les courbes γ 9 , γ 8 et -γ 7 correspondent à ξ ′ = ξ ′ 1 , ξ ′ = ξ ′ 2 et ξ ′ = ξ ′ 3 .
Remarquons que les systoles limites correspondant à γ 6 , γ 7 et γ 9 ne peuvent exister en même temps. En effet, les trois systoles γ 3 , γ 6 et γ 9 ne s'intersectant pas transversalement, l'angle θ de la singularité conique x 0 est supérieur à 3π. Or les trois systoles limites γ 1 , γ 2 et γ 7 s'intersectent transversalement deux à deux. Donc l'angle θ est strictement inférieur à 3π. D'où une contradiction. Preuve. Soit D un disque adapté à x 0 . Nous envisageons deux cas.

Cas 1 : Supposons qu'exactement deux systoles passent par un point de D.

En utilisant le lemme 1.1 et la proposition 3.4, on montre que deux systoles orthogonales passent par chaque point de D. D'après la proposition 3.4, on montre aussi que l'angle de la singularité conique x 0 est un multiple de π 2 . Les feuilletages systoliques orthogonaux se "referment" donc bien en faisant le tour de x 0 .

Il existe donc quatre systoles limites γ 1 , γ 2 , γ 3 et γ 4 passant par x 0 telles que la systole γ 1 est orthogonale à γ 2 et γ 3 , et partiellement parallèle à γ 4 et telles que la systole γ 3 est orthogonale à γ 1 et γ 4 , et partiellement parallèle à γ 2 . Leurs indices satisfont ind(γ 1 , γ 2 ) = 1, ind(γ 1 , γ 3 ) = 1, ind(γ 1 , γ 4 ) = 0, ind(γ 2 , γ 3 ) = 0, ind(γ 2 , γ 4 ) = 0 et ind(γ 3 , γ 4 ) = 1. La matrice d'intersection des courbes γ i est inversible. Par conséquent, ces courbes induisent une base de H 1 (M, Z).

Si l'angle de la singularité conique est ≥ 7π 2 , il existe une systole limite γ passant par x 0 partiellement parallèle à γ 4 qui ne coupe transversalement aucune systole γ i en x 0 . D'après la proposition 2.7, la courbe γ est homologiquement triviale, ce qui contredit la proposition 2.5.iii). Par conséquent, l'angle de la singularité conique x 0 est égal à 5π 2 ou 3π.

Si l'angle de x 0 vaut 5π 2 , il existe cinq systoles limites (γ i ) 1≤i≤5 comme dans l'énonçé du point i). De plus, il n'existe pas d'autre systole limite passant par x 0 admettant des systoles limites orthogonales, sinon quatre familles de systoles passeraient au voisinage de x 0 dans un secteur issu de x 0 , contredisant la proposition 3.4. Si l'angle de x 0 vaut 3π, il existe six systoles limites (γ i ) 1≤i≤6 comme dans l'énonçé du point ii). De plus, il n'existe pas d'autre systole limite passant par x 0 , sinon la matrice d'intersection des sept systoles en question serait de rang six.

Cas 2 : Supposons que trois systoles exactement passent par chaque point générique de D.

Chaque systole limite admet ainsi une systole limite partiellement parallèle. Soient γ 1 , γ 2 et γ 3 trois systoles limites passant par x 0 , induites par trois systoles passant par un même point générique de D. On peut supposer que leur matrice d'intersection est donnée par J 3 et que γ i (0) = x 0 . Sur un voisinage à droite de 0, les courbes γ 1 , γ 2 et γ 3 sont partiellement parallèles à des systoles limites γ 7 , γ 4 et γ 5 . La courbe γ 1 est aussi partiellement parallèle, sur un voisinage à gauche de 0, à une systole γ 6 , orientée de sorte que ind(γ 5 , γ 6 ) = 1. Puisque trois systoles exactement passent par le secteur délimité par -γ 3 et γ 1 (resp. γ 6 et -γ 4 ), on a ind(γ 3 , γ 6 ) = 0 (resp. ind(γ 4 , γ 7 ) = 0). La matrice d'intersection des γ i est donc égale à Si l'angle de la singularité x vaut 5π 2 , alors les systoles limites orthogonales c et c ′ passent par deux autres singularités (différentes de x) d'après la proposition 4.2. En particulier, les courbes c et c ′ s'intersectent une deuxième fois en une singularité x ′ différente des x i et de x, ce qui est exclu. L'angle de la singularité x vaut donc 3π d'après la proposition 4.1. D'après le formule de Gauss-Bonnet (1.1), les singularités (x i ) 1≤i≤5 et x sont les seules singularités coniques de M . Ainsi, toutes les systoles limites γ ′ i passent par x. L'angle de la singularité x est donc égal à 5π 2 . En effet, l'orthogonalité étant préservée par parallélisme, les positions relatives des courbes γ ′ i en x sont les mêmes que celles des courbes γ i en x 0 . On obtient donc une contradiction.
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Preuve du théorème

Nous pouvons à présent démontrer le Théorème 0.1 en nous ramenant à l'exemple 1.2 traité dans la première section.

Preuve du Théorème 0.1. Les angles des singularités coniques de M sont égaux à 3π. D'après la formule de Gauss-Bonnet, la surface M a exactement quatre singularités coniques. Soient γ 1 , γ 2 et γ 3 trois systoles limites deux à deux partiellement parallèles passant par une singularité x. D'après la proposition 4.1, de telles systoles existent. Notons [x, y] le segment le long duquel γ 1 et γ 2 sont partiellement parallèles (l'extrémité y correspond à une singularité conique). Notons aussi γ ′ i la systole limite distincte de γ i et parallèle à γ i . Les systoles γ i et γ ′ i bordent un cylindre plat.

La systole γ ′ 1 , disjointe de γ 1 , passe par deux singularités différentes de x et y d'après la proposition 4.2. Ces deux singularités coniques sont notées x ′ et y ′ . La courbe γ 1 passe donc par les deux seules singularités coniques x et y. Ainsi, γ 3 passe aussi par les deux seules singularités coniques x et y. On montre comme précédemmment que les courbes γ i (resp. γ ′ i ) passent par les deux seules singularités coniques x et y (resp. x ′ et y ′ ). Les systoles limites γ ′ i ne se coupant pas transversalement sont deux à deux partiellement parallèles.

La surface M est par conséquent composée de trois cylindres plats identifiés deux à deux le long de deux paires d'arcs de leurs bords. L'exemple 1.2 étudié dans la première section montre que cette configuration n'est pas extrémale pour le problème isosystolique.

Références

  Les courbes du cylindre C joignant x 0 à x h se projettent sur des courbes fermées non homotopiquement triviales dans M . Leur longueur est donc supérieure à 1. Par conséquent, la hauteur du cylindre vérifie h ≥

  Proposition 2.5. i) Les points d'intersection entre deux systoles forment un ensemble connexe ou vide. L'indice entre deux systoles vaut donc -1, 0 ou 1. ii) Un nombre fini de systoles passe par chaque point de M . iii) Les systoles ne sont pas homologiquement triviales. iv) Deux systoles homologues différentes sont disjointes et bordent un cylindre plat. Preuve. Supposons que les points d'intersection entre deux systoles c 1 et c 2 forment un ensemble comprenant plusieurs composantes connexes (points ou segments). Les systoles c 1 et c 2 se décomposent alors en a 1 ∪ b 1 et a 2 ∪ b 2 où a 1 , b 1 , a 2 et b 2 sont des arcs géodésiques différents de mêmes extrémités.

Définitions 2 . 6 .Proposition 2 . 7 .

 2627 Les systoles singulières obtenues comme limites de systoles régulières parallèles sont appelées systoles limites. Les systoles passant par une singularité se divisent en deux catégories : les systoles limites et les systoles isolées. Les systoles limites passant par x 0 décomposent D en secteurs. Deux systoles limites passant par x 0 sont dites partiellement parallèles si elles coïncident sur un segment d'intérieur non vide.Par la suite, nous ne considèrerons que des systoles limites.Le résultat suivant, fondamental pour la suite, précise le point i) de la proposition 2.5 dans le cas de systoles limites. Il montre que l'indice entre deux systoles limites passant par une même singularité conique est déterminé par leur intersection au voisinage de cette singularité.Par la suite, nous déduirons immédiatement l'indice entre deux systoles limites d'après leurs positions relatives au voisinage des singularités coniques. Soient γ 1 et γ 2 deux systoles limites passant par une singularité conique x 0 . L'indice entre γ 1 et γ 2 est égal à ±1 si et seulement si l'intersection entre les deux courbes est transverse en x 0 . Dans le cas contraire, l'indice est nul.

  le lemme 3.1, les systoles parallèles aux (γ i ) 1≤i≤5 sont les seules systoles régulières passant par le secteur délimité par γ 1 et γ 2 . En particulier, α et β ne passent pas par ce secteur.

H 1 (

 1 M, Z), les vecteurs (1, a, b, c, d) et (e, 1, f, g, h) sont différents à une coordonnée près des vecteurs colonnes de J 5 et -J 5 . En effet, dans le cas contraire, α ou β serait homologue à γ i ou -γ i pour 1 ≤ i ≤ 5. Ce qui est exclu d'après la proposition 2.5.iv). • D'après la proposition 2.7, l'indice entre α et γ i est non nul (et donc égal à ±1) si et seulement si leur intersection en x 0 est transverse. Par conséquent, l'étude des intersections de α avec les courbes (γ i ) 1≤i≤5 montre que 1 ≥ a ≥ b ≥ c ≥ d ≥ -1. On rappelle que α ne passe pas par le secteur délimité par γ 1 et γ 2 . De manière analogue, en considérant β au lieu de α, on a 1 ≥ f ≥ g ≥ h ≥ -e ≥ -1. • Le rang de la matrice d'intersection A n'excède pas dim H 1 (M, Z) = 4. Un test sur ordinateur permettant d'éviter des calculs fastidieux montre que seules quatre combinaisons ξ = (a, b,

  Il existe une systole limite correspondant à γ 7 , sinon une systole au plus passerait en tout point générique du secteur délimité par -γ 1 et -γ 2 .Montrons par l'absurde que huit systoles limites passent bien par x 0 . Par symétrie, on peut supposer qu'il n'existe pas de systole limite correspondant à γ 8 . Il existe une systole limite correspondant à 6 , sinon une seule systole passerait par certains points du secteur délimité par -γ 1 et -γ 2 . Pour la même raison, la courbe -γ 6 est partiellement parallèle à -γ 2 . Deux systoles au plus passent par chaque point générique du secteur délimité par -γ 2 et -γ 4 . Par conséquent, d'après le lemme 1.1, les systoles -γ 7 et -γ 3 sont orthogonales à γ 2 et partiellement parallèles. Puisque -γ 6 est partiellement parallèle à -γ 2 , les courbes γ 6 et γ 7 forment un angle droit en x 0 . Or, les courbes γ 2 et γ 3 forment aussi un angle droit en x 0 . Donc l'angle que forme γ 1 en x 0 n'est pas plat. D'où une contradiction Montrons maintenant que γ 7 est partiellement parallèle à γ 5 et à γ 3 . Deux systoles exactement passent par chaque point générique du secteur délimité par -γ 1 et -γ 6 . Elles sont parallèles à γ 6 et à γ 7 . D'après le lemme 1.1, ces systoles sont deux à deux orthogonales. On en déduit que γ 5 et γ 7 sont partiellement parallèles. En effet, dans le cas contraire, deux systoles exactement passent par chaque point générique du secteur délimité par γ 5 et γ 7 . Ainsi, γ 1 et γ 6 sont orthogonales. Les courbes γ 1 et γ 7 , coupant orthogonalement γ 6 , sont donc partiellement parallèles. D'où une contradiction. De même, on montre par symétrie que -γ 3 et -γ 7 sont partiellement parallèles. Puisque γ 7 est partiellement parallèle aux courbes γ 3 et γ 5 et que ces dernières s'intersectent transversalement, l'angle de la singularité conique x 0 est strictement inférieur à 3π. Or les systoles limites γ 4 , γ 6 et γ 8 ne s'intersectent pas transversalement. Donc l'angle de la singularité x 0 est supérieur ou égal à 3π. D'où une contradiction. Nous pouvons à présent montrer le résultat principal de cette section. Proposition 3.4. Soit D un disque adapté à une singularité conique x 0 de M . Au plus trois systoles passent par chaque point générique de D.

  Supposons maintenant que deux systoles exactement passent par un point de D. Quitte à renuméroter les courbes γ i , on peut supposer qu'exactement deux systoles passent par un point du secteur délimité par γ 3 et γ 4 . D'après le lemme 1.1, ces deux systoles, parallèles à γ 1 et γ 4 , sont orthogonales. L'angle entre γ 1 et γ 4 est donc droit. Ainsi, trois systoles passent par chaque point générique du secteur délimité par -γ 3 et -γ 4 (voir la figure précédente). Autrement, d'après le lemme 1.1, les courbes γ 2 et γ 3 se couperaient orthogonalement, ce qui est exclu. Il existe donc une systole γ 9 partiellement parallèle à -γ 4 , dont l'intersection avec les courbes γ i est donnée par ξ ′ 1 .D'après la remarque suivant la figure précédente, les systoles limites correspondant à γ 6 et γ 7 n'existent pas simultanément. Ainsi, deux familles de systoles exactement passent au voisinage de -γ 1 dans le secteur délimité par -γ 1 et -γ 2 . Leurs systoles limites en x 0 correspondent à ξ = ξ 1 (i.e., γ 5 ) et ξ = ξ 2 ou ξ 3 (i.e., γ = γ 6 ou γ 7 ). De plus, les deux systoles limites γ 5 et γ sont orthogonales.Les systoles parallèles à γ 1 , γ 5 et γ sont les seules systoles régulières passant par le secteur délimité par γ 4 et -γ 1 . Ainsi, puisque γ 5 ne coupe pas γ 1 orthogonalement, la systole γ est partiellement parallèle à γ 4 . Or γ et γ 5 se coupent orthogonalement. D'où une contradiction.Par conséquent, au moins trois systoles passent par chaque point de D. Les neuf systoles limites (γ i ) 1≤i≤9 existent donc, ce qui est exclu.

4 .Proposition 4 . 1 .

 441 Rigidité des angles des singularités coniques L'analyse des positions relatives des systoles au voisinage des singularités coniques permet d'obtenir des résultats de rigidité sur l'angle de ces singularités et sur la géométrie des systoles. Soit x 0 une singularité conique de M d'angle θ. L'angle θ est égal à 5π 2 ou 3π. i) Si θ = 5π 2 , il existe cinq systoles limites (γ i ) 1≤i≤5 passant par x 0 avecγ 1 et γ 2 , γ 1 et γ 3 , γ 2 et γ 5 , γ 3 et γ 4 , et γ 4 et γ 5 orthogonales et γ 1 et γ 4 , γ 1 et γ 5 , γ 2 et γ 3 , γ 2 et γ 4 ,et γ 3 et γ 5 partiellement parallèles. De plus, il n'existe pas d'autre systole limite passant par x 0 admettant des systoles limites orthogonales. ii) Si θ = 3π, il existe six systoles limites (γ i ) 1≤i≤6 passant par x 0 avec γ 1 et γ 2 , γ 1 et γ 3 , γ 2 et γ 6 , γ 3 et γ 4 , γ 4 et γ 5 , et γ 5 et γ 6 orthogonales et γ 1 et γ 4 , γ 1 et γ 6 , γ 2 et γ 3 , γ 2 et γ 5 , γ 3 et γ 5 , et γ 4 et γ 6 partiellement parallèles. De plus, il n'existe pas d'autre systole limite passant par x 0 .

  les coefficients appartiennent à {-1, 0, 1}. L'étude des positions relatives des courbes γ 2 , γ 5 et γ 6 montre aussi que 0 ≤ a ≤ b ≤ 1. On obtient alors une contradiction, car le rang de la matrice d'intersection B excède dim H 1 (M, Z) = 4. La géométrie des systoles décrite dans la proposition 4.1 conduit immédiatement au résultat suivant. Proposition 4.2.-Une systole limite γ coupant orthogonalement une autre systole limite en une singularité x 0 d'angle5π 2 passe par deux autres singularités (différentes de x 0 ). -Une systole limite γ passant par une singularité x 0 d'angle 3π passe par une autre singularité (différente de x 0 ). Preuve. D'après les positions relatives des systoles décrites dans la proposition 4.1, la systole limite γ vérifie ce qui suit. Dans le premier cas, elle est partiellement parallèle à deux autres systoles limites s'intersectant transversalement en x 0 . Dans le second cas, elle est partiellement parallèle à une autre systole limite. La conclusion suit immédiatement. La proposition 4.1 peut être améliorée en étudiant les implications de la rigidité des systoles limites sur l'ensemble des singularités et plus uniquement sur une seule d'entre elles.

Proposition 4 . 3 .

 43 Les angles des singularités coniques de M sont égaux à 3π.Preuve. Supposons qu'il existe une singularité conique x 0 d'angle 5π 2 . D'après la proposition 4.1, il existe alors cinq systoles limites (γ i ) 1≤i≤5 passant par x 0 dont les positions relatives sont données par la figure suivante où les points x i représentent des singularités coniques.Deux systoles γ i s'intersectant transversalement se coupent en un angle droit. Les singularités coniques x i sont deux à deux différentes d'après la proposition 2.5.i). Soit γ ′ i la systole limite parallèle à γ i , i.e., bordant avec γ i un cylindre plat. La courbe γ ′ 1 ne passe pas par x 0 , x 2 et x 3 d'après la proposition 2.5.iv). Elle ne passe pas non plus par x 4 et x 5 d'après la proposition 2.5.i) car γ ′ 1 coupe orthogonalement γ 2 et γ 3 le long de [x 0 , x 1 ]. Par symétrie, les courbes γ ′ i ne passent pas par x j avec j = i. D'après la proposition 4.2, chaque systole limite γ ′ i passe par une singularité différente des x i .D'après la formule de Gauss-Bonnet (1.1) et la proposition 4.1, il existe au plus deux singularités coniques x et x ′ différentes des x i . Trois systoles limites, parmi les cinq systoles γ ′ i , passent par x ou x ′ . Ainsi, deux d'entre elles, notées c et c ′ , se coupent transversalement en une singularité x différente des x i . Cette singularité est leur seul point d'intersection d'après la proposition 2.5.i). Par conséquent, puisque l'orthogonalité est préservée par parallélisme, les courbes c et c ′ s'intersectent orthogonalement en x.

  Un disque D adapté à une singularité conique x 0 est un disque centré en x 0 ne contenant aucune singularité conique autre que x 0 et par lequel ne passe aucun arc de systole singulière autre que ceux passant par x 0 . La terminologie est justifiée par la remarque suivante. Remarque 2.3. Puisque la métrique est à courbure négative ou nulle au sens d'Alexandrov, il ne passe qu'une géodésique entre deux singularités coniques du revêtement universel de M . Par conséquent, il n'existe qu'un nombre fini de systoles singulières. Puisque les systoles singulières sont en nombre fini, chaque singularité conique admet un disque adapté. Le lemme suivant, décrivant la géométrie de systoles homotopes, sera étendu dans la proposition 2.5. Lemme 2.4. Deux systoles différentes, homotopes dans M et sans point d'intersection transverse sont disjointes et bordent un cylindre plat. Preuve. Soient γ 1 et γ 2 deux systoles différentes, homotopes et sans point d'intersection transverse. Les courbes simples γ 1 et γ 2 bordent un domaine obtenu à partir d'un cylindre C de bord γ 1 et γ 2 en identifiant éventuellement des points du bord. Malgré le risque de confusion, nous noterons aussi C ce domaine. Notons que les composantes γ 1 et γ 2 du domaine ne sont pas nécessairement disjointes. Les angles intérieurs au bord du cylindre étant supérieurs ou égaux à π, la formule de Gauss-Bonnet (1.2) et le lemme 2.1 montrent que le cylindre C est plat. Puisque γ 1 et γ 2 sont des systoles, le cylindre C est isométrique au cylindre plat rectangle S 1 × [0, h] où S 1 est le cercle de longueur 1 et h représente la hauteur du cylindre. Les courbes γ 1
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