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We find an upper bound for the entropy of a systolically extremal surface, in terms of its systole. We combine the upper bound with A. Katok's lower bound in terms of the volume, to obtain a simpler alternative proof of M. Gromov's asymptotic estimate for the optimal systolic ratio of surfaces of large genus. Furthermore, we improve the multiplicative constant in Gromov's theorem. We show that every surface of genus at least 20 is Loewner. Finally, we relate, in higher dimension, the isoembolic ratio to the minimal entropy.
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Entropy and systole

We show that the volume entropy h (together with A. Katok's optimal inequality for h) is the "right" intermediary in a transparent proof of M. Gromov's asymptotic bound for the systolic ratio of surfaces of large genus.

In this section, we review the definitions of minimal entropy and systole. The main results of this paper are presented in Section 2.

Let (M, G) be an n-dimensional closed Riemannian manifold. Denote by ( M , G) the universal Riemannian cover of (M, G). Choose a point x0 ∈ M . The volume entropy (or asymptotic volume) h(M, G) of (M, G) is defined as follows:

h(M, G) = lim R→+∞ log(vol G B(x 0 , R)) R , (1.1) 
where vol G B(x 0 , R) is the volume of the ball of radius R centered at x0 ∈ M . Since M is compact, the limit in (1.1) exists and does not depend on the point x0 ∈ M [START_REF] Manning | Topological entropy for geodesic flows[END_REF]. This asymptotic invariant describes the exponential growth rate of the volume in the universal cover.

Define the minimal volume entropy of M as the infimum of the volume entropy of metrics of unit volume on M , or equivalently

MinEnt(M ) = inf G h(M, G). vol(M, G) 1 n (1.2)
where G runs over the space of all metrics on M .

The classical result of A. Katok [START_REF] Katok | Entropy and closed geodesics[END_REF] states that every metric G on a closed surface M with negative Euler characteristic χ(M ) satisfies the optimal inequality h(G) 2 ≥ 2π|χ(M )| area(G) .

(1.3) Inequality (1.3) also holds for hom ent(G) [START_REF] Katok | Entropy and closed geodesics[END_REF], as well as the topological entropy, since the volume entropy bounds from below the topological entropy (see [START_REF] Manning | Topological entropy for geodesic flows[END_REF]).

The systole of a nonsimply connected closed Riemannian n-manifold (M, G) is defined as

sysπ 1 (M, G) = inf γ {length(γ) | γ a noncontractible loop of M } .
We define the systolic ratio SR of (M, G) as

SR(M, G) = sysπ 1 (M, G) n vol(M, G) , (1.4)
and the optimal systolic ratio of M as

SR(M ) = sup G SR(M, G), (1.5)
where G runs over the space of all metrics on M .

C. Loewner proved the first systolic inequality. Namely, he showed that every metric G on the torus T 2 satisfies the inequality

sysπ 1 (G) 2 ≤ 2 √ 3 area(G), (1.6) 
with equality if and only if the metric G is flat, while the group of deck transformations of (T 2 , G) is a lattice homothetic to the lattice spanned by the cube roots of unity in C. Thus, we have

SR(T 2 ) = 2 √ 3 .
See [START_REF] Croke | Universal volume bounds in Riemannian manifolds, Surveys in Differential Geometry VIII[END_REF] for a recent account on systolic inequalities. Asymptotic bounds for higher systoles are studied in [START_REF] Katz | Four-manifold systoles and surjectivity of period map[END_REF]. Systolic geometry has recently seen a period of rapid growth. In Section 2, we present the main results of the paper. In Section 3, we describe the basic estimate, based on a maximal packing argument combined with area lower bounds for systolically optimal surfaces. In Section 4, we combine the basic estimate with Katok's inequality to prove one of our main results, Theorem 2.2. In Section 5, we prove that every surface of genus at least 20 is Loewner. The last section contains higher dimensional generalisations and a proof of Theorem 2.3.

The results

We will relate the minimal entropy of a closed surface to its optimal systolic ratio. Namely, we find an upper bound for the entropy of a systolically extremal surface, in terms of its systole.

Proposition 2.1. Every extremal metric G on a surface M satisfies

h(G) ≤ - 1 β sysπ 1 (G) log 2α 2 SR(M ) , (2.1)
whenever α, β > 0 and 4α + β < 1 2 . We combine this upper bound with A. Katok's optimal lower bound in terms of the volume, see (1.3), to obtain a simpler alternative proof of M. Gromov's asymptotic estimate for the optimal systolic ratio of surfaces of large genus. Furthermore, we improve the multiplicative constant in Gromov's theorem (see Section 4 for further details).

Theorem 2.2. A surface M g of genus g satisfies the bound

SR(M g ) ≤ log 2 g πg (1 + o(1)) when g → ∞.
(2.2)

An alternative approach is taken by F. Balacheff [START_REF] Balacheff | Sur des problèmes de la géométrie systolique[END_REF], but his constant is not as good as Gromov's, see Section 4. Furthermore, the approach of the present paper lends itself to higher-dimensional generalisations [START_REF] Sabourau | Systolic volume and minimal entropy of aspherical manifolds[END_REF].

As an application, we show that every metric on a surface of genus at least 20 satisfies the Loewner inequality (1.6) for the torus. This improves the best earlier estimate of 50.

Finally, we relate, in higher dimension, the optimal isoembolic ratio to the minimal entropy (1.2). Recall that the optimal isoembolic ratio of an n-manifold M is defined as

Emb(M ) = inf G vol(M, G) inj(M, G) n (2.3)
where G runs over the space of all metrics on M and inj(M, G) is the injectivity radius of (M, G). We show the following (see Section 6 for further details).

Theorem 2.3. There exits a positive constant λ n such that every nmanifold M satisfies

Emb(M ) ≥ λ n MinEnt(M ) n log n (1 + MinEnt(M ))
.

(2.4)

Basic estimate

In Lemma 3.6 we recall the following well-known fact: the volume entropy agrees with the exponential growth rate of orbits under the action of the fundamental group in the universal cover, sometimes called the critical exponent.

We will also need the following estimate, cf. (3.5). M. Gromov showed in [START_REF] Gromov | Filling Riemannian manifolds[END_REF] that every aspherical closed surface M satisfies the inequality

SR(M ) ≤ 4 3 . (3.1)
He also showed that every nonsimply connected closed surface admits an extremal metric in a suitable generalized sense, namely a metric G ex with optimal systolic ratio SR(M, G ex ) = SR(M ). Furthermore, the disks D(x, r) of radius r ≤ 1 2 sysπ 1 (G ex ) of extremal surfaces satisfy the bound area D(x, r) ≥ 2r 2 .

(3.2)

We will use arguments developed in [START_REF] Katok | Entropy and closed geodesics[END_REF]p. 357] to prove Proposition 3.1 below. Related arguments have been exploited in [START_REF] Burger | Counting hyperbolic manifolds[END_REF][START_REF] Gelander | Homotopy type and volume of locally symmetric manifolds[END_REF].

Proposition 3.1. Every extremal metric G on a surface M satisfies h(G) ≤ - 1 β sysπ 1 (G) log 2α 2 SR(M ) , (3.3) 
whenever α, β > 0 and 4α + β < 1 2 . Remark 3.2. As shown in [START_REF] Sabourau | Entropy and systoles on surfaces[END_REF], the volume entropy of surfaces with unit systole is bounded from above by a constant which does not depend on the metric. However, the constant found is not as good as in inequality (3.3).

Proof of Proposition 3.1. The idea is to bound from above the number of homotopy classes of based loops in M , by deforming such a loop into a fixed subgraph in M . The subgraph can be allowed to be as "coarse" as the size of the systole of M . More precisely, let x 0 ∈ M be a fixed basepoint. Consider a maximal system of disjoint disks

D i = D(x i , R) ⊂ M (3.4)
of radius R = α sysπ 1 (G) and centers x i with i ∈ I, including x 0 . Since the metric G is assumed extremal, inequality (3.2) implies area D i ≥ 2α 2 sysπ 1 (G) 2 ∀i ∈ I.

(3.5) Therefore, this system admits at most area(G) 2α 2 sysπ 1 (G) 2 disks. Thus,

|I| ≤ 2α 2 SR(M ) -1 . (3.6) Let c : [0, T ] → M be a geodesic loop of length T based at x 0 . Let m = T β sysπ 1 (G) (3.7)
be the integer part. The point p 0 = x 0 , together with the points

p k = c(kβ sysπ 1 (G)), k = 1, . . . , m
and the point p m+1 = x 0 , partition the loop c into m + 1 segments of length at most β sysπ 1 (G). Since the system of disks D i is maximal, the disks of radius 2R = 2α sysπ 1 (G) centered at x i cover M . Therefore, for every p k , a nearest point q k among the centers x i , is at distance at most 2R from p k . Consider the loop

α k = c k ∪ [p k+1 , q k+1 ] ∪ [q k+1 , q k ] ∪ [q k , p k ],
where c k is the arc of c joining p k to p k+1 , while [x, y] denotes a minimizing path joining x to y. Then

length(α k ) ≤ 2(4α + β) sysπ 1 (G) < sysπ 1 (G),
by our hypothesis on α, β. Thus the loop α k is contractible. The same is true for the loops

c 0 ∪ [p 1 , q 1 ] ∪ [q 1 , x 0 ] and c m ∪ [x m , q m ] ∪ [q m , p m ].
Therefore, the geodesic loop c is homotopic to a piecewise geodesic loop c = (x 0 , q 1 , . . . , q m , x 0 ).

(3.8) Note that the minimizing path from p k to q k may not be unique, but we choose one, being careful that the same choice is used on "both sides", i.e. for both loops α k-1 and α k .

Thus, two nonhomotopic closed geodesic loops c 1 and c 2 based at x 0 , give rise to two distinct loops c 1 and c 2 as in (3.8). In constructing the loops c , we always choose the same minimizing path between a given pair of points q k . Thus, the number P (T ) of homotopy classes which can be represented by loops of length T based at x 0 satisfies

P (T ) ≤ |I| m ≤ |I| T β sysπ 1 (G) ≤ 2α 2 SR(M ) - T β sysπ 1 (G) , (3.9) 
and the proposition now follows from Lemma 3.6.

Remark 3.3. Instead of relying on the existence of systolically extremal surfaces, we could have exploited instead -regular surfaces satisfying (3.2) for r ≥ , whose existence is considerably easier to establish [Gr83, 5.6.C"]. Since the choice of α in (4.5) entails exploiting packings by arbitrarily small disks in (3.4), we have to be careful to choose < α sysπ 1 (M ).

Remark 3.4. A similar technique can be used to bound the number of free homotopy classes of loops in X. In higher dimensions, the latter bound seems to be less useful, therefore we chose to bound the number of based loops.

Combining inequalities (1.3) and (3.3), we obtain the following corollary.

Corollary 3.5. Let M g be a closed orientable surface of genus g. Whenever 4α + β < 1 2 , we have log 2 2α 2 SR(M g ) SR(M g ) ≥ 4πβ 2 (g -1).

(3.10)

We conclude this section by recalling the following well-known fact, cf. [KH95, Proposition 9.6.6, p. 374]. 

(B(x 0 , R)) vol(M, G) ≤ card(Γ.x 0 ∩ B(x 0 , R)) ≤ vol(B(x 0 , R + D)) vol(M, G) . (3.12)
Take the log of these terms and divide by R. The lower bound becomes

1 R log vol(B(R)) vol(G) = = 1 R log (vol(B(R))) - 1 R log (vol(G)) , (3.13) 
and the upper bound becomes

1 R log vol(B(R + D)) vol(G) = = R + D R 1 R + D log(vol(B(R + D))) - 1 R log(vol(G)).
(3.14)

Hence both bounds tend to h(G) when R goes to infinity. Therefore,

h(G) = lim R→+∞ 1 R log (card(Γ.x 0 ∩ B(x 0 , R))) . (3.15)
This yields the result since P (R) = card(Γ.x 0 ∩ B(x 0 , R)).

Asymptotic behavior of systolic ratio for large genus

We now consider the asymptotic behavior of the optimal systolic ratio of surfaces. M. Gromov [Gr83,p. 74] established a bound for the ratio SR(M g ) by using a technique known as "diffusion of chains". The multiplicative constant 1 π in (4.2) below improves the constant 4 which could be obtained from the techniques in [START_REF] Gromov | Filling Riemannian manifolds[END_REF]. F. Balacheff [START_REF] Balacheff | Sur des problèmes de la géométrie systolique[END_REF] found another proof of a similar inequality, by combining the works of S. Kodani [START_REF] Kodani | On two-dimensional isosystolic inequalities[END_REF], and B. Bollobás and E. Szemerédi [START_REF] Bollobás | Girth of sparse graphs[END_REF] Proof of Theorem 4.1. Let G be an extremal metric on M g . We now apply Corollary 3.5. Note that SR(M g , G) tends to zero as the genus g becomes unbounded, cf. (5.4). For a right choice of α and β, inequality (3.10) leads to the asymptotic implicit upper bound (4.6) on SR(M g ) below. Indeed, given λ < λ + < π, we set

β = λ + 4π < 1 2 ,
and choose

α < 1 4 1 2 -β . (4.5) Inequality (3.10) implies log 2 (SR(M g )) SR(M g ) ≥ λg (4.6)
if g is large enough. Now we want to invert this relation in order to get an asymptotic upper bound on SR(M g ). Let ρ = SR(M g ) -1 2 and δ = 1 2 √ λg. Then inequality (4.6) yields the following estimate:

ρ log ρ ≥ δ ≥ δ - δ log log δ log δ = δ log δ log δ log δ .
Since the function x log x is increasing for x large enough, we deduce that ρ ≥ δ log δ , and the latter inequality translates back into (4.1).

When is a surface Loewner?

We now extend the classical Loewner inequality (1.6) on the torus to surfaces of higher genus. We will say that a surface M is Loewner if SR(M ) ≤ 2 √ 3 . Theorem 5.1. Every surface of genus at least 20 is Loewner.

Proof. Let G be an extremal metric on M . If β = 1 2 -4α, inequality (3.10) yields

log 2 (2α 2 SR(M )) SR(M ) ≥ 4π( 1 2 -4α) 2 (g -1) (5.1) for every α ≤ 1 8 . Suppose now that SR(M ) > 2 √ 3 . Since SR(M ) ≤ 4 3 by (3.1), we have 2α 2 SR(M ) ≤ 1 for every α ≤ 1 8 . Therefore, √ 3 2 log 2 ( √ 3 4α 2 ) ≥ 4π( 1 2 -4α) 2 (g -1) (5.2) for every α ≤ 1 8 . Hence, min 0<α≤ 1 8 √ 3 8π   log √ 3 4α 2 1 2 -4α   2 ≥ g -1 (5.3)
For α = .031, the expression to minimize is about 18.201. Thus, g ≤ 19.

Therefore, every surface of genus greater or equal to 20 is Loewner.

Note that M. Gromov [Gr83, p. 50] (cf. [Ko87, Theorem 4, part (1)]) proved a general estimate which implies that SR(M g ) < 64 4 √ g + 27 .

(5.4)

It follows from Gromov's estimate (5.4) that orientable surfaces satisfy Loewner inequality (1.6) if the genus g is bigger than 50. Our theorem brings this bound down to 20. It has recently been shown [START_REF] Katz | Hyperelliptic surfaces are Loewner[END_REF] that the genus 2 surface is Loewner. The remaining open cases are therefore g = 3, . . . , 19.

Remark 5.2. Let α = 1 30 . Instead of taking an arbitrary packing, we start with a systolic loop, and choose 15 disjoint disks centered at equally spaced points the loop. By an averaging procedure [START_REF] Gromov | Filling Riemannian manifolds[END_REF], we can get the combined area of these disks to be, not 15(2r 2 ), but rather 15(3r 2 ). Now we complete these 15 disks to a maximal packing, and argue as before. The only difference is that we have a better lower bound for the area of the disks.

If α = 1 30 , then there are at most 382 balls in the packing of an unloewner surface. Hence the area of the packing is at least 2.039α 2 , instead of 2α 2 . Calculating the resulting expression in (5.3) yields about 18.12, which is better than 18.20 but not enough to dip under 18.

Isoembolic ratio, minimal entropy, and simplicial norm

Analogous estimates can be proved in higher dimension. However, the results we obtain are weaker than in the previous sections, in the absence of similar results on the existence of systolically extremal metrics.

M. Berger proved in [START_REF] Berger | Une borne inférieure pour le volume d'une variété riemannienne en fonction du rayon d'injectivité[END_REF] that the isoembolic ratio Emb(M, G) of every Riemannian n-manifold (M, G), defined as 

Emb(M, G) = vol(M, G) inj(M, G) n , ( 6 
(G) ≤ 1 β inj(G) log Emb(G) c n α n (6.5)
whenever α, β > 0 and 4α + β < 1 2 . The proof is identical to that of Proposition 3.1, with c n from (6.3) replacing the coefficient 2 in (3.5), (3.6) and (3.9), and n replacing the dimension 2. A very similar result also appears in [START_REF] Durumeric | Growth of fundamental groups and isoembolic volume and diameter[END_REF].

Arguing as in Theorem 4.1, we obtain the following theorem (compare with (6.4)). Theorem 6.2. There exits a positive constant λ n such that every nmanifold M satisfies

Emb(M ) ≥ λ n MinEnt(M ) n log n (1 + MinEnt(M )) (6.6)
G. Besson, G. Courtois, and S. Gallot [START_REF] Besson | Volume et entropie minimale des espaces localement symétriques[END_REF] proved that the minimal entropy of a closed negatively curved locally symmetric nmanifold (M, G 0 ) satisfies MinEnt(M ) n = vol(G 0 ).h(G 0 ) n .

(6.7) Thus, inequality (6.9) appears as a particular case of (6.10).

Question 6.4. Are there manifolds with large minimal entropy and small simplicial volume? Such manifolds (if they exist) would provide examples where (6.6) yields a better estimate than (6.10).

More generally, in the presence of a lower bound for volumes of balls, our argument yields the following result. Proposition 6.5. Let G be a metric on a closed n-manifold M such that for some c > 0, every ball of radius r with 0 < r < 1 2 sysπ 1 (G) satisfies area B(r) ≥ cr n . (6.11) Then, we have h(G) ≤ -1 β sysπ 1 (G) log (cα n SR(M, G)) , (6.12) whenever α, β > 0 and 4α + β < 1 2 . Therefore, there exists a positive constant λ = λ(n, c) such that SR(M, G) ≥ λ(n, c) MinEnt(M ) n log n (1 + MinEnt(M ))

. (6.13)

Lemma 3. 6 .

 6 Let (M, G) be a closed Riemannian manifold. Then, h(M, G) = lim T →+∞ log(P (T )) T (3.11) where P (T ) is the number of homotopy classes of loops based at some fixed point x 0 which can be represented by loops of length at most T . Proof. Fix x 0 in M and a lift x0 in the universal cover M . The group Γ := π 1 (M, x 0 ) acts on M by isometries. The orbit of x0 by Γ is denoted Γ.x 0 . Consider a fundamental domain ∆ for the action of Γ, containing x0 . Denote by D the diameter of ∆. The cardinal of Γ.x 0 ∩ B(x 0 , R) is bounded from above by the number of translated fundamental domains γ.∆, where γ ∈ Γ, contained in B(x 0 , R + D). It is also bounded from below by the number of translated fundamental domains γ.∆ contained in B(x 0 , R). Therefore, we have vol

  The relation (6.7) is a sharp version, for negatively curved locally symmetric manifolds, of the following general result of M. Gromov (see [Gr81, p. 37]). Every n-manifold M with simplicial volume ||M || satisfies MinEnt(M ) n ≥ C n ||M ||.

	This theorem generalizes (1.3). Therefore, inequalities (6.6) and (6.8) show that there exists a positive constant λ n such that Emb(M ) ≥ λ n ||M || log n (1 + ||M ||) . (6.9) M. Gromov proved in [Gr83, p. 74] that there exists a positive con-stant λ n such that Remark 6.3. (6.8) SR(M ) ≤ λ n log n (1 + ||M ||) ||M || . (6.10)
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