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HYPERELLIPTIC SURFACES ARE LOEWNER

MIKHAIL G. KATZ∗ AND STÉPHANE SABOURAU

Abstract. We prove that C. Loewner’s inequality for the torus is
satisfied by all hyperelliptic surfaces X, as well. We first construct
the Loewner loops on the (mildly singular) companion tori, locally
isometric to X away from Weierstrass points. The loops are then
transplanted to X, and surgered to obtain a Loewner loop on X.
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1. Introduction

The systole, sysπ1(g), of a compact non simply connected Riemann-
ian manifold (X, g) is the least length of a noncontractible loop γ ⊂ X:

sysπ1(g) = min
[γ] 6=0∈π1(X)

length(γ). (1.1)

This notion of systole is apparently unrelated to the systolic arrays
of [Ku78]. We will be concerned with comparing this Riemannian in-
variant to the total area of the metric, as in Loewner’s inequality (2.2).
Higher dimensional optimal generalisations of Loewner’s inequality are
studied in [BK03, BK04, IK04, BCIK2]. The defining text for this ma-
terial is [Gr99], with more details in [Gr83, Gr96]. See also the recent
survey [CK03], as well as [KR04].

We will review the relevant literature in Section 2, state the main
theorem in Section 3, and prove it in Sections 3 and 4.
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2. Inequalities of Loewner and Pu

The Hermite constant, denoted γn, can be defined as the optimal
constant in the inequality

sysπ1(Tn)2 ≤ γn vol(Tn)2/n, (2.1)

over the class of all flat tori Tn. Here γn is asymptotically linear in n,
cf. [LLS90, pp. 334, 337]. The precise value is known for small n, e.g.

γ2 = 2√
3
, γ3 = 2

1
3 , . . .. An inequality of type (2.1) remains valid in the

class of all metrics, but with a nonsharp constant on the order of n2n

[Gr83].
Around 1949, Charles Loewner proved the first systolic inequality,

cf. [Pu52]. He showed that every Riemannian metric g on the torus T2

satisfies the inequality

sysπ1(g)2 ≤ γ2 area(g), (2.2)

while a metric satisfying the boundary case of equality in (2.2) is neces-
sarily flat, and is homothetic to the quotient of C by the lattice spanned
by the cube roots of unity.

M. Gromov [Gr83, p. 50] (cf. [Ko87, Theorem 4, part (1)]) proved
a general estimate which implies that if Σs is a compact orientable
surface of genus s with a Riemannian metric, then

sysπ1(Σs)
2

area(Σs)
<

64

4
√

s + 27
. (2.3)

Thus the optimal systolic ratio tends to 0 as the genus increases without
bound.

Remark 2.1. It was shown in [Gr83] (see also [KS04]) that asymptot-

ically the optimal systolic ratio behaves as C (log s)2

s
.

Another helpful estimate is found in [Gr83, Corollary 5.2.B]. Namely,
every aspherical compact surface (Σ, g) admits a metric ball B =
Bp

(
1
2
sysπ1(g)

)
⊂ Σ of radius 1

2
sysπ1(g), which satisfies

sysπ1(g)2 ≤ 4

3
area(B). (2.4)

Furthermore, whenever a point x ∈ Σ lies on a two-sided loop which
is minimizing in its free homotopy class, the metric ball Bx(r) ⊂ Σ of
radius r ≤ 1

2
sysπ1(g) satisfies the estimate

2r2 < area (Bx(r)) . (2.5)
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Question 2.2. It follows from Gromov’s estimate (2.3) that orientable
surfaces Σs satisfy Loewner’s inequality (2.2) if s > 50. This is im-
proved in [KS04] to s ≥ 20. Can the genus assumption be removed
altogether?

A similar question for Pu’s inequality [Pu52] has an affirmative an-
swer. The generalisation is immediate from Gromov’s inequality (2.4).
Namely, every surface (X, g) which is not a 2-sphere satisfies

sysπ1(g)2 ≤ π

2
area(g), (2.6)

where the boundary case of equality in (2.6) is attained precisely when,
on the one hand, the surface X is a real projective plane, and on the
other, the metric g is of constant Gaussian curvature.

3. Hyperelliptic surfaces and Loewner surfaces

Recall that a Riemann surface X is called hyperelliptic if it admits
a degree 2 meromorphic function, cf. [Mi95, p. 60-61] as well as [Mi95,
Proposition 4.11, p. 92]. The associated ramified double cover

Q : X → S2

over the sphere S2 is conformal away from the 2s+2 ramification points,
where s is the genus. Its deck transformation J : X → X is called the
hyperellitic involution. Such a holomorphic involution, if it exists, is
uniquely characterized by the property of having precisely 2s + 2 fixed
points. The fixed points of J are called Weierstrass points. Their
images under Q will be referred to as ramification points.

We provide the following partial answer in the direction of Ques-
tion 2.2. We will say that a surface is Loewner if it satisfies inequal-
ity (2.2). We prove that every hyperelliptic surface is Loewner. More
precisely, we prove the following.

Theorem 3.1. Let (X, g) be an orientable surface, where the metric g
belongs to a hyperelliptic conformal class. Then (X, g) is Loewner.

Since every genus 2 surface is hyperelliptic [FK92, Proposition III.7.2,
page 100], we obtain the following corollary.

Corollary 3.2. Every metric on the genus 2 surface is Loewner.

Note that this is the first improvement, known to the authors, on
Gromov’s 3/4 bound (2.4) in over 20 years, for surfaces of genus be-
low 50, cf. Question 2.2. No extremal metric has as yet been con-
jectured in this genus, but it cannot be flat with conical singulari-
ties [Sa04]. The best available lower bound for the optimal systolic
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ratio in genus 2 can be found in [CK03, section 2.2]. For genus s ≥ 3,
the theorem follows from the following proposition, cf. Remark 2.1
and [Kon03].

Proposition 3.3. Every hyperelliptic surface Σs of genus s satisfies
the estimate

sysπ1(Σs)
2

area(Σs)
≤ 4

s + 1
.

Proof. Averaging the metric by the hyperelliptic involution J : X → X
improves the systolic ratio, cf. [BCIK1]. Thus we may assume that
the metric g is invariant under J . The distance between any pair
of Weierstrass points is then at least 1

2
sysπ1(Σs). Thus, the disks of

radius R = 1
4
sysπ1(Σs) centered at the Weierstrass points are disjoint.

M. Gromov (and J. Hebda before him) proved that if the metric is
extremal for the systolic inequality, the area of such a disk is at least

2R2 =
1

8
sysπ1(Σs)

2,

cf. (2.5). The existence of an extremal metric was proved in [Gr83].
The latter result is still true in the class of hyperelliptic surfaces, prov-
ing the proposition. �

4. Proof of Theorem 3.1 in genus 2

Let X be a genus 2 surface. Recall that X has a hyperelliptic invo-
lution J with 6 Weierstrass points.

The idea of the proof of Theorem 3.1 in genus 2 is to apply Loewner’s
inequality to certain companion tori of X, and to surger the resulting
loops so as to obtain a Loewner loop on X. We may need the following
lemma.

Lemma 4.1. Let T2 be a torus endowed with a metric invariant under
its hyperelliptic involution JT 2, with conical singularities with total an-
gle less than 2π around each. Then the image of a systolic loop of T2

in S2 under the hyperelliptic projection is a simple loop.

Proof. Let γ ⊂ T2 be a systolic loop. Since JT 2 induces minus the
identity homomorphism on π1(T2), the loops γ and −JT 2(γ) are homo-
topic. In the hypotheses of our lemma, two homotopic systolic loops
are necessarily disjoint. Hence the image of γ on S2 is simple. �

Definition 4.2. A companion torus T(a, b, c, d) of X is a torus whose
ramification locus {a, b, c, d} ⊂ S2 is a subset of the ramification locus
of X.
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As in the proof of Proposition 3.3, we can assume that the metric
on X is invariant under J (see [BCIK1]). Therefore g descends to a
metric g0, of half the area, on S2. Let’s choose four of the 6 ramification
points, say a, b, c, d ∈ S2. Choose a double cover with ramification
locus {a, b, c, d}, denoted

T2(a, b, c, d) → S2.

Pulling back the metric g0 to the torus T2(a, b, c, d), we obtain a metric
of the same area as the surface X itself. This metric on the torus is
smooth away from the two remaining points, where it has a conical
singularity with total angle π around each. Consider a Loewner loop

LL ⊂ T2(a, b, c, d)

on this torus, e.g. a systolic loop realizing (2.2). Let L be the projection
of LL to S2. The simple loop L ⊂ S2 separates the four points a, b, c, d
into two pairs, say a, b on one side and c, d, on the other. If the lift
of L to X closes up, we obtain a Loewner loop on X and the theorem
is proved. Thus, we may assume that the following three equivalent
conditions are satisfied:

(1) the lift of L to X does not close up;
(2) the inverse image Q−1 (L) ⊂ X is connected;
(3) the loop L surrounds precisely 3 ramification points of Q.

Definition 4.3. The simple loop L partitions the sphere into two
hemispheres, H+ and H−, with a, b, e ∈ H+ and c, d, f ∈ H− where
a, b, c, d, e, f are the 6 ramification points of Q.

Using a pair of companion tori, we will construct two loops on the
sphere, defining two distinct partitions of the ramification locus into a
pair of triples. The basic example to think of is the case of a centrally
symmetric 6-tuple of points, e.g. , corresponding to the curve

y2 = x5 − x,

and a pair of generic great circles, such that each of the four digons
contains at least one ramification point. We now construct a companion
torus T(a, b, e, f).

Consider a Loewner loop LL′ ⊂ T2(a, b, e, f), and its projection L′ ⊂
S2. If its lift to X closes up, the theorem is proved. Therefore assume
that the lift of L′ to X does not close up, i.e. L′ surrounds exactly 3
ramification points. Now L′ separates the four points a, b, e, f into two
pairs. Hence it defines a different splitting of the six points into two
triples. The connected components of L′ ∩H+ form a nonempty finite
collection of disjoint nonselfintersecting arcs α.
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Each arc α divides H+ into a pair of regions homeomorphic to disks.
Such regions are partially ordered by inclusion. A minimal element
for the partial order is necessarily a digon. Such a digon must contain
at least one ramification point of Q (otherwise exchange the two sides
of the digon between the loops L and L′, so as to decrease the total
number of intersections, or else argue as in Lemma 4.1). It is clear that
there are at least two such digons in H+.

Hence one of them, denoted D ⊂ H+, must contain precisely one
of the 3 ramification points of H+. We now exchange the two sides
of D between the loops L, L′, obtaining two new loops M, M ′. Each of
the new loops surrounds a nonzero even number of ramification points.
Since

length(M) + length(M ′) = length(L) + length(L′),

one of the loops M or M ′ is no longer than Loewner. Moreover, its lift
to X closes up, producing a Loewner loop on X, as required.
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