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We prove an optimal systolic inequality for CAT(0) metrics on a genus 2 surface. We use a Voronoi cell technique, introduced by C. Bavard in the hyperbolic context. The equality is saturated by a flat singular metric in the conformal class defined by the smooth completion of the curve y 2 = x 5x. Thus, among all CAT(0) metrics, the one with the best systolic ratio is composed of six flat regular octagons centered at the Weierstrass points of the Bolza surface. Contents 1. Hyperelliptic surfaces of nonpositive curvature 1 2. Distinguishing 16 points on the Bolza surface 3 3. A flat singular metric in genus two 4 4. Voronoi cells and Euler characteristic 8 5. Arbitrary metrics on the Bolza surface 10 References 12 1. Hyperelliptic surfaces of nonpositive curvature

Over half a century ago, a student of C. Loewner's named P. Pu presented, in the pages of the Pacific Journal of Mathematics [START_REF] Pu | Some inequalities in certain nonorientable Riemannian manifolds[END_REF], the first two optimal systolic inequalities, which came to be known as the Loewner inequality for the torus, and Pu's inequality (5.4) for the real projective plane.

The recent months have seen the discovery of a number of new systolic inequalities [Am04, BK03, Sa04, BK04, IK04, BCIK05, BCIK06, KL05, Ka06, KS06, KRS07], as well as near-optimal asymptotic bounds [Ka03, KS05, Sa06a, KSV06, Sa06b, RS07]. A number of questions posed in [START_REF] Croke | Universal volume bounds in Riemannian manifolds[END_REF] have thus been answered. A general framework for systolic geometry in a topological context is proposed in [START_REF] Katz | Lusternik-Schnirelmann category and systolic category of low dimensional manifolds[END_REF][START_REF] Katz | Bounding volume by systoles of 3-manifolds[END_REF].

The homotopy 1-systole, denoted sysπ 1 (X), of a compact metric space X is the least length of a noncontractible loop of X.

Given a metric G on a surface, let SR(G) denote its systolic ratio SR(G) = sysπ 1 (G) 2 area(G) .

Given a compact Riemann surface Σ, its optimal systolic ratio is defined as SR(Σ) = sup G SR(G), where the supremum is over all metrics in the conformal type of Σ. Finally, given a smooth compact surface M, its optimal systolic ratio is defined by setting SR(M) = sup Σ SR(Σ), where the supremum is over all conformal structures Σ on M. The latter ratio is known for the Klein bottle, cf. (5.2), in addition to the torus and real projective plane already mentioned.

In the class of all metrics without any curvature restrictions, no singular flat metric on a surface of genus 2 can give the optimal systolic ratio in this genus [START_REF] Sabourau | Systoles des surfaces plates singulières de genre deux[END_REF]. The best available upper bound for the systolic ratio of an arbitrary genus two surface is γ 2 ≃ 1.1547, cf. [START_REF] Katz | Hyperelliptic surfaces are Loewner[END_REF].

The precise value of SR for the genus 2 surface has so far eluded researchers, cf. [START_REF] Calabi | Extremal isosystolic metrics for compact surfaces, Actes de la table ronde de geometrie differentielle[END_REF][START_REF] Bryant | On extremals with prescribed Lagrangian densities, Manifolds and geometry[END_REF]. We propose an answer in the framework of negatively curved, or more generally, CAT(0) metrics.

The term "CAT(0) space" evokes an extension of the notion of a manifold of nonpositive curvature, to encompass singular spaces. We will use the term to refer to surfaces with metrics with only mild quotient singularities, defined below. Here the condition of nonpositive curvature translates into a lower bound of 2π for the total angle at the singularity. We need such an extension so as to encompass the metric which saturates our optimal inequality (1.1).

A mild quotient singularity is defined as follows. Consider a smooth metric on R 2 . Let q ≥ 1 be an integer. Consider the q-fold cover X q of R 2 \ {0} with the induced metric. We compactify X q in the neighborhood of the origin to obtain a complete metric space X c q = X q ∪{0}. Definition 1.1. Suppose X c q admits an isometric action of Z p fixing the origin. Then we can form the orbit space Y p,q = X c q /Z p . The space Y p,q is then called mildly singular at the origin.

The total angle at the singularity is then 2πq p , and the CAT(0) condition is q p ≥ 1. Remark 1.2. Alternatively, a point is singular of total angle 2π(1 + β) if the metric is of the form e h(z) |z| 2β |dz| 2 in its neighborhood, where |dz| 2 = dx 2 + dy 2 , cf. M. Troyanov [Tr90,p. 915].

Theorem 1.3. Every CAT(0) metric G on a surface Σ 2 of genus two, satisfies the following optimal inequality:

SR(Σ 2 , G) ≤ 1 3 cot π 8 = 1 3 √ 2 + 1 = 0.8047 . . . (1.1)
The inequality is saturated by a singular flat metric, with 16 conical singularities, in the conformal class of the Bolza surface.

The Bolza surface is described in Section 2. The optimal metric is described in more detail in Section 3. Theorem 1.3 is proved in Section 4 based on the octahedral triangulation of S 2 .

Remark 1.4. A similar optimal inequality can be proved for hyperelliptic surfaces of genus 5 based on the icosahedral triangulation, cf. [START_REF] Bavard | Inégalité isosystolique pour la bouteille de Klein[END_REF].

Distinguishing 16 points on the Bolza surface

The Bolza surface B is the smooth completion of the affine algebraic curve y 2 = x 5 -x.

(2.1)

It is the unique Riemann surface of genus two with a group of holomorphic automorphisms of order 48. (A way of passing from an affine hyperelliptic surface to its smooth completion is described in [Mi95, p. 60-61].)

Definition 2.1. A conformal involution J of a compact Riemann surface Σ of genus g is called hyperelliptic if J has precisely 2g + 2 fixed points. The fixed points of J are called the Weierstrass points of Σ.

The quotient Riemann surface Σ/J is then necessarily the Riemann sphere, denoted henceforth S 2 . Let Q : Σ → S 2 be the conformal ramified double cover, with 2g + 2 branch points. Thus, J acts on Σ by sheet interchange. Recall that every surface of genus 2 is hyperelliptic, i.e. admits a hyperelliptic involution [FK92, Proposition III.7.2].

We make note of 16 special points on B. We refer to a point as being special if it is a fixed point of an order 3 automorphism of B.

Consider the regular octahedral triangulation of S 2 = C ∪ ∞. Its set of vertices is conformal to the set of roots of the polynomial x 5 -x of formula (2.1), together with the unique point at infinity. Thus the six points in question can be thought of as the ramification points of the ramified conformal double cover Q : B → S 2 , while the 16 special points of B project to the 8 vertices of the cubical subdivision dual to the octahedral triangulation.

In other words, the x-coordinates of the ramification points are {0, ∞, 1, -1, i, -i} , which stereographically correspond to the vertices of a regular inscribed octahedron. The conformal type therefore admits the symmetries of the cube. If one includes both the hyperelliptic involution, and the real (antiholomorphic) involution of B corresponding to the complex conjugation (x, y) → (x, ȳ) of C 2 , one obtains the full symmetry group Aut(B), of order | Aut(B)| = 96, (2.2) see [START_REF] Kuusalo | Geometric uniformization in genus 2[END_REF]p. 404] for more details.

Lemma 2.2. The hyperbolic metric of B admits 12 systolic loops. The 12 loops are in one to one correspondence with the edges of the octahedral decomposition of S 2 . The correspondence is given by taking the inverse image under Q of an edge. The 12 systolic loops cut the surface up into 16 hyperbolic triangles. The centers of the triangles are the 16 special points.

See [Sc93, § 5] for further details. The Bolza surface is extremal for two distinct problems:

• systole of hyperbolic surfaces [START_REF] Bavard | La systole des surfaces hyperelliptiques[END_REF], [Sc93, Theorem 5.2];

• conformal systole of Riemann surfaces [START_REF] Buser | On the period matrix of a Riemann surface of large genus. With an appendix[END_REF]. The square of the conformal systole of a Riemann surface is also known as its Seshadri constant [START_REF] Kong | Seshadri constants on Jacobian of curves[END_REF]. The Bolza surface is also conjectured to be extremal for the first eigenvalue of the Laplacian. Such extremality has been verified numerically [START_REF] Jakobson | Spectral problems with mixed Dirichlet-Neumann boundary conditions: isospectrality and beyond[END_REF]. The above evidence suggests that the systolically extremal surface may lie in the conformal class of B, as well. Meanwhile, we have the following result, proved in Section 5.

Theorem 2.3. The Bolza surface B satisfies SR(B) ≤ π 3 . Note that Theorems 2.3 and 1.3 imply that SR(B) ∈ [0.8, 1.05].

A flat singular metric in genus two

The optimal systolic ratio of a genus 2 surface (Σ 2 , G) is unknown, but it satisfies the Loewner inequality, cf. [START_REF] Katz | Hyperelliptic surfaces are Loewner[END_REF]. Here we discuss a lower bound for the optimal systolic ratio in genus 2, briefly described in [START_REF] Croke | Universal volume bounds in Riemannian manifolds[END_REF].

The example of M. Berger (see [Gr83, Example 5.6.B ′ ]) in genus 2 is a singular flat metric with conical singularities. It has systolic ratio SR = 0.6666. This ratio was improved by F. Jenni [START_REF] Jenni | Über den ersten Eigenwert des Laplace-Operators auf ausgewählten Beispielen kompakter Riemannscher Flächen[END_REF] 

= cosh -1 (1 + √ 2). It has sysπ 1 = 2 log 1 + √ 2 + 2 + 2 √ 2 ,
area 4π, and systolic ratio SR ≃ 0.7437. This ratio can be improved as follows (see the table of Figure 3.1).

Proposition 3.1. The conformal class of the Bolza surface B admits a metric, denoted G O , with the following properties:

(1) the metric is singular flat, with conical singularities precisely at the 16 special points of Section 2; (2) each singularity is of total angle 9π 4 , so that the metric G O is CAT(0);

(3) the metric is glued from six flat regular octagons, centered on the Weierstrass points, while the 1-skeleton projects under Q : B → S 2 to that of the dual cube in S 2 ; (4) the systolic ratio equals

SR(G O ) = 1 3 √ 2 + 1 > 4 5 . Proof.
The octahedral triangulation of the sphere, cf. Section 2, lifts to a triangulation of B consisting of 16 triangles, which we think of as being "equilateral". Here 8 equilateral triangles are connected cyclically around each of the 6 Weierstrass vertices of the triangulation of B.

We further subdivide each equilateral triangle into 3 isosceles triangles, with a common vertex at the center of the equilateral triangle. We equip each of the 48 isosceles triangles with a flat metric with obtuse angle 3π 4 . > 2π. Alternatively, we can apply the Gauss-Bonnet formula σ α(σ) = 2g -2, in genus 2 with 16 isometric singularities. Here the sum is over all singularities σ of a singular flat metric on a surface of genus g, where the cone angle at singularity σ is 2π(1 + α(σ)). Since the metric G O is smooth at a Weierstrass point of B, the metric has only 16 singularities, precisely at the special points of Section 2, proving items 1 and 2 of the proposition.

Let x denote the sidelength of the equilateral triangle. The barycentric subdivision of each equilateral triangle consists of 6 copies of a flat right angle triangle, denoted ∠ | x 2 , π 8 , with side x 2 and adjacent angle π 8 . We thus obtain a decomposition of the metric G O into 96 copies of the triangle ∠ | x 2 , π 8 , which can be thought of as a fundamental domain for the action of Aut(B), cf. (2.2).

We have sysπ 1 (G O ) = 2x by Lemma 3.2, proving item 4 of the proposition. To prove item 3, note that the union of the 16 triangles

∠ | x 2 , π 8 
with a common Weierstrass vertex is a flat regular octagon. The latter is represented in Figure 3.2, together with the systolic loops passing through it.

Lemma 3.2. The systole of the singular flat CAT(0) metric on the Bolza surface equals twice the distance between a pair of adjacent Weierstrass points.

Proof. Consider the smooth closed geodesic γ ⊂ B which is the inverse image under the map Q : B → S 2 of an edge of the octahedron, cf. Lemma 2.2. Let x be the distance between a pair of opposite sides of the regular flat octagon in B, or equivalently, the distance between a pair of adjacent Weierstrass points. Thus, length(γ) = 2x. Consider a loop α ⊂ B whose length satisfies length(α) < 2x.

(3.1)

We will prove that there are two possibilities for α: it is either contractible, or freely homotopic to one of the 12 geodesics γ of the type described above. On the other hand, γ is necessarily length minimizing in its free homotopy class, by the CAT(0) property of the metric [BH99, Theorem 6.8]. This will rule out the second possibility, and prove the lemma. Denote by B (1) the graph on B given by the inverse image under Q of the 1-skeleton of the cubical subdivision of S 2 . The graph B (1) partitions the surface into six regular octagons, denoted Ω k :

B = ∪ 6 k=1 Ω k . (3.2)
We will deform α to a loop β ⊂ B (1) , as follows. The partition (3.2) induces a partition of the loop α into arcs α i , each lying in its respective octagon Ω k i . We deform each α i , without increasing length, to the straight line segment [p i , q i ] ⊂ Ω k i . The boundary points p i , q i of α i split the boundary closed curve ∂Ω k i ⊂ B (1) into a pair of paths. Let β i ⊂ ∂Ω k i be the shorter of the two paths. Denote by y the distance between adjacent vertices of the octagon. Then clearly length(β i ) ≤ 4y x length(α i ).

(3.3)

We first deform the loop α into the graph B (1) . The deformation fixes the intersection points α ∩ B (1) . Inside Ω k i , we deform the arc α i to the path β i . The length of the resulting loop is at most 4y x length(α) < 8y by (3.1) and (3.3). Therefore, its homotopy class in B (1) can be represented by an imbedded loop β ⊂ B (1) of length at most 8y. Thus, β contains fewer than 8 edges of B (1) . Since the number of edges must be even, its image under Q must retract to a circuit with at most six edges in the 1-skeleton of the cubical subdivision of S 2 . If the number is 4, then the circuit lies in the boundary of a square face of the cube in S 2 . But the boundary of a face does not lift to B, since it surrounds a single ramification point, namely the center of the square face.

Hence there must be 6 edges in the circuit. There are two types of circuits with six edges in the 1-skeleton of the cubical subdivision of S 2 :

(a) the boundary of the union of a pair of adjacent squares; (b) a path consisting of the edges meeting a suitable great circle. However, a path of type (b) surrounds an odd number, namely 3, of ramification points, and hence does not lift to the genus 2 surface. Meanwhile, a path of type (a) surrounds two ramification points, and hence does lift to the surface. Such a path is freely homotopic in B to one of the 12 geodesics of type γ (cf. Lemma 2.2), completing the proof.

Voronoi cells and Euler characteristic

The following proposition provides a preliminary lower bound on the area of hyperelliptic surfaces with nonpositive curvature.

Proposition 4.1. Every J-invariant CAT(0) metric G on a closed hyperelliptic surface Σ g of genus g, satisfies the bound

SR(Σ g , G) ≤ 8((g + 1)π) -1 .
Proof. To prove this scale-invariant inequality, we normalize the metric on Σ = Σ g to unit systole, i.e. sysπ 1 (Σ, G) = 1. The preimage by Q : Σ → S 2 of an arc of S 2 joining two distinct branch points forms a noncontractible loop on Σ. Therefore, the distance between two Weierstrass points is at least 1 2 sysπ 1 (Σ, G) = 1 2 . Thus, we obtain 2g + 2 disjoint disks of radius 1 4 , centered at the Weierstrass points. Since the metric is CAT(0), the area of each disk is at least π 16 . Thus, area(Σ, G) ≥ g+1 8 π. An optimal lower bound requires a more precise estimate on the area of the Voronoi cells. The idea is to replace area of balls by area of polygons, where control over the number of sides is provided by the Euler characteristic, cf. [START_REF] Bavard | La systole des surfaces hyperelliptiques[END_REF].

Denote by u : Σ → Σ its universal cover. Let {x i | i ∈ N} be an enumeration of the lifts of Weierstrass points on Σ. The Voronoi cell V i ⊂ Σ centered at x i is defined as the set of points closer to x i than to any other lift of a Weierstrass point. In formulas,

V i = x ∈ Σ d(x, x i ) ≤ d(x, x j ) for every j = i . (4.1)
The Voronoi cells on Σ are polygons whose edges are arcs of the equidistant curves between a pair of lifts of Weierstrass points. Note that these edges are not necessarily geodesics. The Voronoi cells on Σ are topological disks, while their projections u(V i ) ⊂ Σ may have more complicated topology. Thus, the surface Σ decomposes into 2g + 2 images of Voronoi cells, centered at the 2g + 2 Weierstrass points. By the number of sides of u(V ) we will mean the number of sides of the polygon V .

Lemma 4.2. Let G 1 and G 2 be two CAT(0) metrics lying in the same conformal class. Then, the averaged metric

G = 1 2 (G 1 + G 2 ) is CAT(0), as well.
Proof. Choose a point x ∈ Σ and a metric G 0 in its conformal class, which is flat in a neighborhood of x.

Every metric G = H G 0 conformal to it satisfies K G H = K G 0 -1 2 ∆ log H, cf. [GHL90, p. 265],
where K G and K G 0 are the Gaussian curvatures of G and G 0 , and ∆ is the Laplacian of G 0 with ∆f = div∇f . Thus, the metrics G i can be written as G i = e h i G 0 where h i is subharmonic in the neighborhood of x, i.e. ∆h i ≥ 0. A simple computation shows that

∆ log H ≥ e h 1 ∆h 1 + e h 2 ∆h 2 2H ≥ 0
where H = 1 2 (e h 1 + e h 2 ), proving the lemma if both points are regular. For singular points with positive angle excess, the CAT(0) property for the averaged metric is immediate from Remark 1.2.

Proof of Theorem 1.3. Since averaging by J can only improve the systolic ratio, we may assume without loss of generality that our metric is already J-invariant.

There exists an extension of the notions of tangent plane and exponential map, to surfaces with singularities. Namely, let A ∈ Σ. There exists a CAT(0) piecewise flat plane T A with conical singularities and a covering exp A : T A → Σ with the following properties:

(1) exp A sends the origin O of T A to A;

(2) exp A takes the conical singularities of T A to the singularities of Σ; (3) exp A sends every pair of geodesic arcs issuing from the origin O ∈ T A and forming an angle θ, to a pair of geodesic arcs of the same lengths, and forming the same angle, at their basepoint A. By the Rauch Comparison Theorem, the exponential map exp A does not decrease distances. Now assume A ∈ Σ is a Weierstrass point, and let B ∈ Σ be another Weierstrass point. Fix a lift B 0 of B to the tangent plane T A , along a minimizing arc. Consider the equidistant line

L O,B 0 ⊂ T A
between the origin O ∈ T A and the point B 0 . Consider a point X 0 ∈ L O,B 0 . Let X = exp A (X 0 ). Since the exponential map does not decrease distances, we have dist

Σ (A, X) = dist T A (O, X 0 ) = dist T A (B 0 , X 0 ) ≤ dist Σ (B, X). (4.2)
Now consider the polygon in the tangent plane T A , obtained as the intersection of the halfspaces containing the origin, defined by the lines L O,B 0 , as B runs over all Weierstrass points. It follows from (4.2) that the exponential image of this polygon is contained in the Voronoi cell of A. Since the exponential map does not decrease distances, the area of the polygon is a lower bound for the area of the Voronoi cell. If k is the number of sides of V , then V is partitioned into k triangles with angle θ i at O, whose area is bounded below by

sysπ 1 4 2 tan θ i 2 (4.3) since dist(A, B) ≥ sysπ 1
2 . Consider the graph on S 2 defined by the projections of the Voronoi cells to the sphere. Thus we have f = 6 faces. Applying the formula v -e + f = 2 and the well-known fact that 3v ≤ 2e, we obtain e ≤ 3f -6 = 12.

Hence the spherical graph has at most 12 edges. Note that the maximum is attained by the 1-skeleton of the cubical subdivision.

The area of a flat isosceles triangle with third angle θ, and with unit altitude from the third vertex, is tan θ 2 . This formula provides a lower bound for the area of the Voronoi cells as in (4.3). The proof is completed by Jensen's inequality applied to the convex function tan( x 2 ) when 0 < x < π. In the boundary case of equality, we have e = 12, all angles θ i as in (4.3) must be equal, curvature must be zero because of equality in the Rauch Comparison Theorem, and we easily deduce that each Voronoi cell is a regular octagon. To minimize the area of the octagon, we must choose θ as small as possible. The CAT(0) hypothesis at the center of the octagon imposes a lower bound θ ≥ π 4 . Hence the optimal systolic ratio is achieved for the regular flat octagon with a smooth point at the center.

Arbitrary metrics on the Bolza surface

The conformal class of the Bolza surface B, cf. Section 2, is likely to contain a systolically optimal surface in genus 2, as discussed in Section 1. dist(x, J(x)).

Then area(B, G) ≥ 6 2 π δ(J) 2 . Proof. Consider the Voronoi subdivision with respect to the set of six Weierstrass points on B. Since each Voronoi cell Ω ⊂ B is J-invariant, we can identify all pairs of opposite points of the boundary ∂Ω, to obtain a projective plane RP 2 = Ω/ ∼ .

(5.3)

We now apply Pu's inequality [START_REF] Pu | Some inequalities in certain nonorientable Riemannian manifolds[END_REF] to each of the six Voronoi cells, to obtain area(RP 2 ) ≥ 2 π sysπ 1 (RP 2 ) 2 .

(5.4)

The lemma now follows from the bound sysπ 1 (RP 2 ) ≥ δ(J).

Lemma 5.4. Every Aut(B)-invariant metric G on B satisfies the bound 2δ(J) ≥ sysπ 1 (B, G).

Proof. Let p, J(p) ∈ ∂Ω satisfy dist(p, J(p)) = δ(J). Let α ⊂ Ω be a minimizing path joining p to J(p). Let Ω ′ ⊂ B be the adjacent Voronoi cell containing this pair of boundary points, and r : B → B the anticonformal involution which switches Ω and Ω ′ , and fixes their common boundary. The loop α ∪ r(α) belongs to the free homotopy class of the noncontractible loop γ ⊂ B obtained as the inverse image under Q : B → S 2 of the edge of the octahedral decomposition of S 2 joining the images of the centers of Ω and Ω ′ , cf. Lemma 2.2. Since length(α ∪ r(α)) = 2δ(J), the lemma follows.

Proof of Theorem 5.1. We may assume that the metric on B is Aut(B)invariant, since averaging the metric by a finite group of holomorphic and antiholomorphic diffeomorphisms can only improve the systolic ratio. We combine the inequalities of Lemmas 5.4 and 5.3 to prove the theorem.
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 32 Figure 3.2. Flat regular octagon obtained as the union of 16 triangles ∠ | x 2 , π 8 . The shaded interior octagon represents the region with 4 geodesic loops through every point
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 1 Every metric G in the conformal class of the Bolza surface satisfies the bound SR(G) ≤ π 3 = 1.0471 . . . (5.1) Remark 5.2. In particular, every metric G in the conformal class of the Bolza surface satisfies Bavard's inequality SR(G) ≤ π 2 3/2 ≃ 1.1107 (5.2) for the Klein bottle [Bav86]. This suggests a possible monotonicity of χ(Σ) as a function of SR(Σ). Lemma 5.3. Let G be an Aut(B)-invariant metric on B. Consider the displacement δ(J) of J on the 1-skeleton B (1) of the Voronoi subdivision of B, namely δ(J) = min x∈B (1)
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