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ENTROPY AND SYSTOLES ON SURFACES

STÉPHANE SABOURAU

Abstract. We show that the volume entropy of surfaces with unit
systole is bounded from above by a constant which does not depend on
the metric, which answers a question raised by A. Katok. This upper
bound follows from a comparison between the geometric and algebraic
lengths on the fundamental groups of surfaces.

1. Introduction

Let (M̃ , g̃) be the universal Riemannian covering of a closed n-dimensional
Riemannian manifold (M,g). Fix x0 ∈ M and a lift x̃0 ∈ M̃ of x0.

The volume entropy (or asymptotic volume) of (M,g) is defined as

hvol(M,g) = lim
R→+∞

log(Volg̃B(x̃0, R))
R

(1.1)

where Volg̃B(x̃0, R) is the volume of the ball centered at x̃0 with radius R

in M̃ . Since M is compact, the limit in (1.1) exists and does not depend
on the point x̃0 ∈ M̃ (see [13]). This asymptotic invariant describes the
exponential growth rate of the volume on the universal covering. It is related
to the geometry, the dynamic and the topology of manifolds.

The volume entropy can be normalized by the volume. This amounts
to defining the normalized volume entropy hvol(M,g) · Vol(M,g)

1
n , which

is invariant under scaling. The infimum of the normalized volume entropy
over the space of all metrics has been studied by A. Katok in [10], M. Gro-
mov in [6], I. Babenko in [1] and G. Besson, G. Courtois and S. Gallot
in [2]. These authors specifically found universal lower bounds (i.e., bounds
which do not depend on the metric) on the normalized volume entropy. In
particular, the following result holds.

Theorem 1.1 ([10] and [2]). Let (M,g0) be a closed negatively curved locally
symmetric n-manifold. Every metric g on M satisfies

Vol(M,g) · hvol(M,g)n ≥ Vol(M,g0) · hvol(M,g0)n (1.2)

with equality if and only if g is locally symmetric.
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The volume entropy can also be normalized by the diameter. In this case,
every closed Riemannian manifold (M,g) satisfies

Diam(M,g) · hvol(M,g) ≥ 1
2
halg(Γ), (1.3)

where halg(Γ) is the minimal algebraic entropy of the fundamental group Γ
of M (see [18], [16] and also [8, 5.16]). We refer to Section 2 for a definition
of halg(Γ). Note that the minimal algebraic entropy of the closed surfaces
of genus h is bounded from below by log(4h − 3) (see [9, p. 195]).

In this article, we are interested in another normalization of the volume
entropy. Namely, we are interested in the scale invariant product sys(M,g) ·
hvol(M,g) where sys(M,g) is the systole of a nonsimply connected closed
Riemannian manifold (M,g). Recall that the systole of (M,g) is defined
as the length of the shortest noncontractible loop of M . Such a shortest
noncontractible loop is called a systolic loop of M .

While the previous normalizations by the volume and the diameter yield
lower bounds on the volume entropy, the normalization by the systole leads
to upper bounds on the volume entropy. Namely, we show that, for surfaces,
the volume entropy normalized by the systole is bounded from above.

Theorem 1.2. Let M be a nonsimply connected closed surface. Then, there
exists a positive constant C such that every metric g on M satisfies

sys(g) · hvol(g) ≤ C (1.4)

The constant C we obtain in inequality (1.4) is explicit but nonsharp.
Note that the optimal constant C necessarily depends on the topology of
the surface M as it must tend to infinity with the genus. Indeed, there exist
hyperbolic surfaces of large genus with large systole (see [3, Sect. 4]) while
the volume entropy of every hyperbolic surface equals 1. These surfaces are
obtained as congruence coverings of an arithmetic Riemann surface.

Metrics which maximize sys(M,g) · hvol(M,g), if they exist, seem rather
difficult to describe.

In general, the universal inequality (1.4) does not hold in higher dimen-
sion, see Section 3 for counterexamples.

The topological entropy of the geodesic flow, noted htop(M,g), is related
to the volume entropy. More precisely, this dynamical invariant agrees
with the volume entropy when the metric has no conjugate points (see [4]
and [13]). In general, we have only htop(M,g) ≥ hvol(M,g). Thus, the
statement of Theorem 1.1 and the inequality (1.3) still hold if we replace
the volume entropy by the topological entropy. However, such a substitution
in the statement of Theorem 1.2 is not valid. Indeed, arbitrary perturba-
tions of the metric in a sufficiently small neighborhood of a point through
which no systolic loop passes do not change the value of the systole. Thus, it
is possible to make the topological entropy arbitrarily large (see [14]) while
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keeping the systole fixed.

Theorem 1.2 answers a question raised by A. Katok in [10, p. 358] where
the following result with an extra assumption on the Gaussian curvature has
been established.

Theorem 1.3 ([10]). Let M be a closed surface. Then, for every real num-
ber K0, there exists C > 0 such that every metric g on M with Gaussian
curvature bounded from below by K0 satisfies

inj(M,g) · hvol(M,g) ≤ C (1.5)

where inj(M,g) is the injectivity radius of (M,g).
Here the constant C depends on the lower bound K0 on the curvature.

In order to state our next result, we need to introduce the algebraic and
geometric lengths on the fundamental groups of closed Riemannian mani-
folds.

Let Σ be a finite generating set of a group Γ. The algebraic (or word)
length of an element α ∈ Γ with respect to Σ is noted |α|Σ. It is defined as
the smallest integer k ≥ 0 such that α = α1 . . . αk where αi ∈ Σ ∪ Σ−1. By
definition, the neutral element e is the only element of Γ with null algebraic
length. Every element α ∈ Γ can be written in a reduced form, i.e., as a
product α = α1 . . . αk such that αi ∈ Σ ∪ Σ−1 with k = |α|Σ.

Fix a point x0 on a closed Riemannian manifold (M,g). The geometric
length on Γ := π1(M,x0) of an element α ∈ Γ, denoted |α|g, is defined as
the minimal length of a loop based at x0 representing α.

The proof of Theorem 1.2 rests on the following comparison between the
algebraic and geometric lengths on the fundamental groups of surfaces.

Theorem 1.4. Let M be a nonsimply connected closed surface of Euler
characteristic χ(M) and x0 ∈ M . Then, there exists λ > 0 such that every
metric g on M with sys(g) ≥ 1 satisfies

|.|g ≥ λ|.|Σ (1.6)

for some generating set Σ of π1(M,x0) with at most 2|χ(M)| + 3 elements
(|χ(M)| + 2 in the orientable case).

As in the case of Theorem 1.2, this result does not hold in general for
higher dimensional manifolds, see Section 3.

The multiplicative constants we obtain in our inequalities, even though
explicit, are far from being optimal. Though many of them can easily be
improved to some extent. But since the nature of our arguments leaves little
hope of obtaining good constants, we will not examine that here. Instead,
we will decompose our arguments into simple independent results.
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Other similar bounds on the entropy have been established in [11] for sys-
tolically extremal surfaces (see [17] for a generalization in higher dimension).

This article is organized as follows. In Section 2, we recall some properties
of the algebraic and geometric lengths on the fundamental groups of closed
Riemannian manifolds. In particular, we observe that Theorem 1.4 implies
Theorem 1.2. In Section 3, we present counterexamples to Theorem 1.2 and
Theorem 1.4 in higher dimension. In Section 4, we show that cutting off the
long spikes and the long tubes of surfaces does not change the value of the
systole and possibly increases the volume entropy (without loss of generality,
we only consider metrics with unit systole). This permits us to consider only
metrics of “small” diameter without long spikes and long tubes. We show
then that such metrics admit “standard” systems of loops with bounded
lengths. In Section 5, we prove Theorem 1.4 first for punctured surfaces,
then for arbitrary closed surfaces.

Roughly speaking, the proof proceeds as follows. The restriction of a stan-
dard system of loops in a surface M (found in Section 4) to the surface N
obtained by removing a small disk centered at their based point is formed
of a collection Γ of disjoint minimizing arcs. Further, this collection of arcs
gives rise to generating sets Σ and S in the fundamental groups of M and N .
Given a minimizing loop γ of M , the minimal writing of [γ] in π1(N) with
respect to S is related to the intersection of γ with the arcs of Γ. One can
be read off through the other. If the minimal writing of γ is long enough,
there is a subarc of γ corresponding to a subword of the minimal writing of γ
with bounded length which intersects an arc of Γ a large number of times.
We show that the length of this subarc is bounded from below and remove
it from γ using a cut-and-paste argument. An induction argument permits
us to obtain a lower bound on the length of γ in terms of the S-algebraic
length of [γ]. A comparison of the S- and Σ-algebraic lengths yields the
result. The nonorientable case is treated at the very end.

The author would like to thank the referee for suggestions that helped
improve the presentation of this article.

2. Preliminaries

In this section, we introduce the algebraic and geometric entropies of the
algebraic and geometric lengths of the fundamental groups of closed Rie-
mannian manifolds. We also recall how these entropies are related. For the
sake of completeness, we present the proofs of these classical results. Finally,
we observe that Theorem 1.2 is an immediate consequence of Theorem 1.4.

Let Σ be a finite generating set of a group Γ and |.|Σ be the algebraic
length on Γ with respect to Σ.
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The algebraic entropy of Γ with respect to Σ is defined by

halg(Γ,Σ) = lim sup
R→+∞

log(NΣ(R))
R

, (2.1)

where NΣ(R) = card{α ∈ Γ | |α|Σ ≤ R} is the cardinality of the R-ball
of (Γ, |.|Σ) centered at its origin. If Γ is the fundamental group of a closed
manifold, then the sup-limit is a limit (see [13]).

The minimal algebraic entropy of Γ is defined as

halg(Γ) = inf
Σ

halg(Γ,Σ), (2.2)

where Σ runs over all the finite generating sets of Γ.
The following well-known result provides an upper bound on the algebraic

entropy.

Lemma 2.1. Let Γ be a group generated by a finite set Σ of cardinality |Σ|.
Then,

halg(Γ,Σ) ≤ log(2|Σ| − 1). (2.3)

Proof. We can assume that e /∈ Σ. Let k = |Σ|. To construct an element of
word length n with respect to Σ, we must choose the first letter of its reduced
form among the 2k letters of Σ ∪ Σ−1. Then, for each remaining letter, we
have at most 2k−1 possible choices since that letter cannot be the inverse of
the previous letter. Thus, NΣ(n) ≤ 1+

∑n−1
p=0 2k(2k−1)p = 1+2k (2k−1)n−1

2k−2 .
Therefore, halg(Γ,Σ) ≤ log(2k − 1). �

Let (M,g) be a closed Riemannian manifold. Fix x0 in M and a lift x̃0

of x0 in the universal covering M̃ . The group Γ := π1(M,x0) acts on M̃ by
isometries. By definition of the geometric length, for every α ∈ Γ, we have

|α|g = dg̃(α.x̃0, x̃0). (2.4)

Recall that the volume entropy of (M,g) may be obtained from the geo-
metric length |.|g on Γ as follows

Lemma 2.2. Let (M,g) be a closed Riemannian manifold. Then,

hvol(g) = lim
R→+∞

log(Ng(R))
R

(2.5)

where Ng(R) = card{α ∈ Γ | |α|g ≤ R} is the cardinality of the R-ball of
(Γ, |.|g) centered at the origin.

Proof. The orbit of x̃0 under the group Γ is noted Γ.x̃0. Consider a funda-
mental domain ∆ for the action of Γ containing x̃0. Denote by D the diame-
ter of ∆. The cardinality of Γ.x̃0∩B(x̃0, R) agrees with Ng(R). Further, it is
bounded from above by the number of translated fundamental domains α.∆
contained in B(x̃0, R+D) and bounded from below by the number of trans-
lated fundamental domains α.∆ contained in B(x̃0, R). Hence,

vol(B(x̃0, R))
vol(M,g)

≤ Ng(R) ≤ vol(B(x̃0, R + D))
vol(M,g)

. (2.6)



6 S. SABOURAU

Take the log of these terms, multiply them by 1
R and let R go to infinity.

The left-hand term and the right-hand term both yield h(g). The result
follows. �

The volume entropy of a Riemannian manifold is related to the algebraic
entropy of its fundamental group through the following classical result.

Lemma 2.3. Let (M,g) be a closed Riemannian manifold and Σ be a finite
generating set of Γ = π1(M,x0). If λ|.|Σ ≤ |.|g ≤ µ|.|Σ for some constants
λ, µ > 0, then

1
µ

halg(Γ,Σ) ≤ hvol(g) ≤ 1
λ

halg(Γ,Σ). (2.7)

Proof. Since λ|.|Σ ≤ |.|g ≤ µ|.|Σ, we have NΣ(R/µ) ⊂ Ng(R) ⊂ NΣ(R/λ).
In particular, 1

µ
1

R/µ log(NΣ(R/µ)) ≤ 1
R log(Ng(R)) ≤ 1

λ
1

R/λ log(NΣ(R/λ)).
Thus, as R goes to infinity, we get 1

µhalg(Γ,Σ) ≤ hvol(g) ≤ 1
λhalg(Γ,Σ). �

Note that if Σ is a finite generating set of Σ, then the ball BΣ(k) of
radius k centered at the origin of (Γ, |.|Σ) is also a finite generating set.

Lemma 2.4. Let Γ be a group generated by a finite set Σ. Then, for every
integer k,

halg(Γ, BΣ(k)) ≥ k

2
halg(Γ,Σ).

Proof. Let α ∈ Γ. The element α can be decomposed as a product α =
α1 · · ·αn, where αi ∈ Σ and n = |α|Σ. This product can also be written as
α = (α1 · · ·αk)·(αk+1 · · ·α2k) · · · (· · ·αn), where each factor (αik+1 · · ·α(i+1)k)
is the product of k elements except possibly for the last one (· · ·αn), which
is the product of k elements or less. Thus, |α|BΣ(k) ≤ [nk ] + 1. This leads to
|.|BΣ(k) ≤ 2

k |.|Σ. Using the same arguments as in the proof of Lemma 2.3,
we conclude that k

2halg(Γ,Σ) ≤ halg(Γ, BΣ(k)). �
Remark 2.5. Using better asymptotic estimates, we can show that the
inequality in Lemma 2.4 can be improved by a factor 2.

Remark 2.6. Since the product sys(g) · hvol(g) is scale invariant, we can
assume that sys(g) = 1. Thus, Theorem 1.2 may immediately be deduced
from Theorem 1.4, Lemma 2.1 and Lemma 2.3.

3. Counterexamples in higher dimension

In this section, we show that Theorem 1.2 (and therefore Theorem 1.4)
does not hold in higher dimensions in general.

First notice that the fundamental group of a closed manifold M does not
have an exponential growth (that is, its algebraic entropy with respect to a
finite generating set is zero) if and only if its volume entropy h(g) is zero for
every metric g on M (see [16] and [18]). In this case, the inequality (1.4)
trivially holds.
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Otherwise, we have the following result.

Proposition 3.1. Let M be a closed manifold of dimension n ≥ 3 whose
fundamental group Γ has exponential growth. Then, the product sys(g) · hvol(g)
is unbounded when g runs over all the metrics on M .

Proof. Fix x0 ∈ M . Consider a finite generating set Σ of π1(M,x0). Since
n ≥ 3, the ball BΣ(k) of radius k in (Γ, |.|Σ) is induced by a collection
of simple loops γi that intersect one another only at their basepoint x0.
Take a metric g on M and modify it in the tubular neighborhood of these
simple loops so that, after normalization, the systole of the new metric gk

equals 1 and the length of the loops γi is between 1 and 2. Clearly, we have
|.|gk

≤ 2|.|BΣ(k). By the lemmas 2.3 and 2.4, we deduce that

hvol(gk) ≥ 1
2
halg(Γ, BΣ(k)) ≥ k

4
halg(Γ,Σ).

Since halg(Γ,Σ) is positive by assumption, we obtain the desired result by
letting k go to infinity. �

4. Change of the metric

The goal of this section is to prove Propositions 4.1 and 4.6 below. These
propositions will permit us to consider in the remainder of this article only
metrics of “small” diameter with “short” systems of loops. These features
will turn out to be useful to prove Theorem 1.4 in Section 5.

Let us state the first result of this section.

Proposition 4.1. Let M be a closed surface of genus h and x0 ∈ M .
There exists a homotopy equivalence p : M −→ M , where M is a surface
homeomorphic to M , and a metric g on M such that

i) sys(g) ≥ 1;
ii) Diam(g) ≤ 32h;
iii) |p∗(a)|g ≤ 3|a|g for every a ∈ π1(M,x0).

Remark 4.2. Since the homeomorphism p∗ induced by p between the fun-
damental groups is an isomorphism, the preimage by p∗ of every generating
set Σ of π1(M) is a generating set of π1(M). Furthermore, |p∗(a)|Σ =
|a|p−1∗ (Σ) for every a ∈ π1(M). Thus, if we can prove Theorem 1.4 for every
metric g with Diam(g) ≤ 32h, namely |.|g ≥ C|.|Σ for some generating set Σ
with 2|χ(M)| + 3 elements, we would immediately obtain |.|g ≥ C

3 |.|Σ with
Σ = p−1∗ (Σ). Therefore, in order to prove Theorem 1.4, we can consider only
metrics with diameter less than 32h.

Before proving Proposition 4.1, let us introduce some notations and defi-
nitions, and state some facts.
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Let g be a Riemannian metric on M such that sys(M,g) = 1. Fix
x0 ∈ M . We can approximate (in the sup-norm topology) the distance
function dg(x0, .) by a Morse function f with only one critical point on
each of its critical levels and with x0 as its only local minimum. Such an
approximation has also been used in [12].

Definition 4.3. A cylinder of M is said to be admissible if it is maximal
(for the inclusion) among all open cylinders C such that

• the boundary components c1 and c2 of C lie in some critical levels
of f , denoted f−1(λ1) and f−1(λ2), with λ1 < λ2;

• some neighborhood of c1 in C lies in f−1(]λ1,+∞[);
• some neighborhood of c2 in C lies in f−1(] −∞, λ2[);
• the loops c1 and c2 are noncontractible.

Remark that an admissible cylinder with boundaries c1 and c2 lying in
f−1(λ1) and f−1(λ2) is not necessarily included in f−1(]λ1, λ2[) (for instance,
a ”long finger” of the cylinder can go above the λ2-level).

Denote by C the collection of (disjoint) admissible cylinders. Exactly one
critical point of f lies in each boundary component of the cylinders of C.
Therefore, the boundary components of the cylinders of C are either simple
loops or figure-eight loops (recall that the cylinders of C are open). Since the
surface M is orientable, the connected components of M \ ∪C∈CC are open
topological disks. They are called admissible disks and form a collection D.
The boundary of a disk of D is a figure-eight curve which lies in some critical
level of f and decomposes into two simple loops along which two cylinders
of C are glued.

Lemma 4.4. The collection C is composed of at most 4h − 2 cylinders.
The collection D is composed of at most h + 1 disks.

Proof. Let us argue by induction on h.
If M is a torus, then M is composed of two admissible cylinders and two

admissible disks. Recall that x0 is the only local minimum of f .
Assume now that M is a surface of genus h ≥ 2. Take D ∈ D which

does not contain x0. Two cylinders C+, C− ∈ C with boundary components
c±1 , c±2 are glued “below” along the boundary ∂D of D, i.e., ∂D = c+

2 ∪ c−2 .
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D

C−C+

C ′

γ′

C0 or D0

C ′′

γ′′

D

C−C+

C ′

γ′

D

C−

C+

C−
C+

D

γ

Figures 1-4

If c+
1 and c−1 form a figure-eight curve (see Figures 1 and 2), then there

exists a cylinder C ′ ∈ C glued “below”along c+
1 ∪ c−1 . Denote by γ′ the other

boundary component of C ′. Two cases may occur: either γ′ is simple or γ′
is a figure-eight loop. In the former case (Figure 1), there exists a loop γ′′
lying in some critical level of f and forming with γ′ a figure-eight curve such
that a cylinder C ′′ of C is glued “above” along γ′′ and a cylinder C0 of C or
a disk D0 of D is glued “below” along γ′ ∪ γ′′. In the latter case (Figure 2),
there exist two cylinders of C glued “below” along each simple loop of the
figure-eight loop γ′ (recall that x0 is the only local minimum of f). In both
cases, replacing C ′ ∪ C+ ∪ C− ∪ D by a hemisphere cap H glued “above”
along γ′ (which is not a torsion element of H1(M, Z) since M is orientable)
gives rise to a surface N of genus h − 1. By construction, if CN is the
collection of admissible cylinders of N , we have card(CN ) ≥ card(C) − 4 (in
the first case, C0 ∪H ∪C ′′ is an admissible cylinder of N or D0 ∪H ∪C ′′ is
an admissible disk of N). Similarly, N has fewer admissible disks than M .
Therefore, card(C) ≤ 2 + 4(h − 1) and card(D) ≤ h − 1 by induction.

Otherwise, c+
1 and c−1 are disjoint (see Figures 3 and 4). As previously,

two cases may occur: either c+
1 is a figure-eight loop or c+

1 is simple. In the
former case (Figure 3), two cylinders of C distinct from C± are glued “below”
along c+

1 . In the latter case (Figure 4), c+
1 forms with a loop γ a figure-eight

curve such that two cylinders of C are glued along γ and c+
1 ∪ γ (recall

that x0 is the only local minimum of f). The same goes for c−1 . Replacing
C+∪C−∪D by two hemisphere caps glued “above” along c+

1 and c−1 , which
are not torsion elements, gives rise to a closed orientable surface N . Since
x0 is the only local minimum of f , the surface N is connected of genus h−1.
By construction, card(CN ) ≥ card(C) − 4 and N has fewer admissible disks
than M . The result follows as previously by induction. �
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The proof of Proposition 4.1 consists in four steps. In the first two steps,
we “chop off the spikes and remove the long tubes” of the surface. Then, in
the last two steps, we apply combinatorial and counting arguments on the
new surface so as to evaluate the lengths of curves.

Proof of Proposition 4.1. Without loss of generality, we can assume that
sys(g) = 1. We will also assume that f agrees with dg(., x0). The general
case requires only minor modifications of the proof. Given an admissible
cylinder C, denote by DC the collection of maximal (for the inclusion) disks
in C whose boundary lies in some (critical) level of f .

Step 1: Lower the spikes of M .

Take a disk D in D or in DC for some C ∈ C. Consider the metric
gt = e−tϕ(x)g where ϕ(x) = dg(U1/2(M \ D), x) and U1/2(M \ D) = {x ∈
M | dg(M \ D,x) < 1

2}. We clearly have gt ≤ g and sys(gt) = 1 for all
t ≥ 0. Furthermore, for t large enough, we have dgt(∂D, x) < 1 for every
x ∈ D. Note also that the collections C,D and DC defined with respect
to g agree with the same collections defined with respect to gt. Therefore,
changing g on each disk of D or of DC for every C ∈ C if necessary, we can
assume that dg(∂D, x) < 1 for every C ∈ C, D ∈ DC and x ∈ D.

Step 2: Shorten the admissible cylinders.

Let C be an admissible cylinder whose boundary components c1 and c2

lie in f−1(λ1) and f−1(λ2) with λ2 > λ1 + 4 + 2ε for some positive ε < 1
2 .

Let Ui = {x ∈ C | 1
2 < dg(ci, x) < 1

2 + ε} for i = 1, 2. We can modify
the metric g on U1 and U2 into a metric g′ conformal to g with g′ ≤ g
and sys(g′) = 1 such that some g′-systolic loops γ1 and γ2 pass through
U1 and U2. The g′-systolic loop γi lie in Vi = {x ∈ C | dg(ci, x) < 1 + ε}
for i = 1, 2. Therefore, since dg(c1, c2) > 4 + 2ε, we have dg′(γ1, γ2) > 2.
Furthermore, the g′-systolic loops γ1 and γ2 bound a cylinder C ′ in C. Let
xi be the endpoint on γi of a g′-minimizing segment of C ′ joining γ1 to γ2

for i = 1, 2. Shrinking the cylinder C ′ of C along its height without a twist
so that the boundaries γ1 and γ2 of M \ C ′ and the points x1 and x2 agree
gives rise to a homotopy equivalence from M to a surface homeomorphic
to (M \ C ′)/γ1 ∼ γ2. Further, the metric g′ on M induces a metric on the
target space.

Performing this operation on all admissible cylinders of (M,g) with λ2 >
λ1 + 4 yields a homotopy equivalence p : M −→ M (by shrinking all the
cylinders C ′ for all the admissible cylinder C) and a metric g on M . By
construction, we have sys(g) = 1.

Step 3: Bound from above the g-diameter.
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Given x ∈ M , let c be a g-minimizing segment of M joining x0 to x, where
x ∈ p−1(x). The g-geodesic c starts at x0, exits the disk D of D containing
x0, then goes through some cylinders of C and finally ends at x by possibly
going into some disk D of D. Furthermore, the g-minimizing geodesic c
goes through each cylinder of C at most once. In the general case, that is
when f is a small perturbation of dg(x0, .), the geodesic c might go through
the boundary of each cylinder C more than once, but this is unessential,
since it would occur along a short segment of c.

Consider an admissible cylinder C of M not containing x whose boundary
components ci lie in f−1(λi) with i = 1, 2. The arc γ = c ∩ C joins c1 to c2

and the g-length Lg(γ) of γ satisfies Lg(γ) = λ2 − λ1. In the general case,
these two quantities might not be equal, but they are close. If Lg(γ) ≤ 4,
then Lg(p(γ)) = Lg(γ) ≤ 4. Otherwise, λ2 > λ1 + 4. In this case, the arc
αi of γ lying in C \ C ′ and joining ci to γi (see Step 2 for the notations)
satisfies Lg(p(αi)) ≤ Lg′(αi) ≤ 1 + ε. Furthermore, the g-distance between
the endpoints of p(αi) on p(γ1) = p(γ2) for i = 1, 2 is at most 1

2 . Thus, the
g-distance between the endpoints of p(γ) is at most 2(1 + ε) + 1

2 < 4.
Consider now the admissible cylinder C containing x (it might not exist)

and the arc γ = c∩C. If λ2 ≤ λ1+4, then Lg(p(γ)) = Lg(γ) ≤ 4+ 1
2 +ε0 = 5

since γ goes into at most one disk of DC . Otherwise, we show as previously
that the g-distance between the endpoints of p(γ) is at most 2(1 + ε) + 1

2 +
1
2 + ε0 < 5.

Note also that the images by p of the arcs of c lying in some disk of D
have g-lengths less than 1

2 + ε0 = 1.
Since card(C) ≤ 4h − 2, we have Lg(p(c)) ≤ 4(4h − 2) + 2. In particular,

dg(p(x0), x) ≤ 16h − 6. Thus, Diam(g) ≤ 32h − 12.

Step 4: Compare the lengths of curves.

Let C be an admissible cylinder as in Step 2. Consider an arc α of (M,g′)
lying in C ′ whose endpoints lie in ∂C ′ = γ1∪γ2 (see Step 2 for the notations).
We are going to construct an arc α of (M,g) homotopic to p(α) with the
same endpoints such that Lg(α) ≤ 3Lg′(α).

Suppose that the endpoints of α lie in the same g′-systolic loop γi. Since
γi is a g′-systolic loop, the arc α of γi homotopic to p(α) with the same
endpoints is not longer than α. Therefore, Lg(α) ≤ Lg′(α).

Suppose that the endpoints, z1 and z2, of α lie in γ1 and γ2. Recall
that xi is the endpoint on γi of a g′-minimizing segment γ′ of C ′ joining
γ1 to γ2. Denote by σi a shortest arc of γi joining xi to zi. We have
Lg′(σi) = Lg(p(σi)) ≤ 1

2 . Consider the loop c = σ1 ∪ α ∪ σ−1
2 ∪ γ′−1 of C ′.

Since C ′ is a two-cylinder and sys(g′) = Lg′(γ1) = 1, we have Lg′(c) ≥ n
where [c] = n[γ1] ∈ H1(M, Z). Thus, Lg′(α) ≥ n − Lg′(γ′) − 1. We also
have Lg′(α) ≥ dg′(γ1, γ2) = Lg′(γ′). As previously, this latter equality is
only an approximation in the general case. Therefore, Lg′(α) ≥ 1

3(n + 1).
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This can be checked for n less than, equal to or greater than 3Lg′(γ′) − 1
(recall that Lg′(γ′) = d(C′,g′)(γ1, γ2) ≥ 2). Define the arc α of (M,g) by
α = p(σ−1

1 ∪ γn
1 ∪ σ2). By construction, α is homotopic to p(α) with the

same endpoints and Lg(α) ≤ n + 1 ≤ 3Lg′(α).
We can now prove iii). Let γ be a g-shortest representative of a ∈

π1(M,x0). Replacing the arcs p(α) of p(γ) by the arcs α defined above (for
each arc α of γ lying in C ′) yields a loop γ in M homotopic to p(γ) with fixed
based point p(x0). By construction, we have Lg(γ) ≤ 3Lg′(γ) ≤ 3Lg(γ).
Hence iii). �

We need another definition.

Definition 4.5. Let S = (α1, . . . , αh, β1, . . . , βh) be a system of loops based
at some point x0 of a surface M of genus h. The system S is said to be
standard if

• it induces a basis in π1(M,x0);
• the loops of S are simple;
• the loops of S intersect each other at a single point, namely x0;

• the intersection matrix of the loops of S is given by
[

0 Ih

−Ih 0

]
,

where Ih is the h × h identity matrix

Let us now state the second result of this section.

Proposition 4.6. Let M be a Riemannian surface of genus h and diame-
ter D. Then, there exists a standard system of loops based at x0 ∈ M whose
lengths are bounded from above by Lmax := 5hD.

Proof. Let us argue by induction on the genus of M . Consider the digons
formed by two minimizing segments (of length at most D) from x0 to a
point x, where the endpoint x varies.
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A minimizing segment arising from x0 cannot intersect another minimiz-
ing segment arising from x0 in its interior. Therefore, the digons are simple
loops of lengths at most 2D and the intersection between two of them re-
duces to the singleton {x0}, a pair {x0, x} or a minimizing segment from x0

to x. Furthermore, these digons induce in homology a generating set of
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H1(M, Z). Actually, they induce in homotopy a generating set of π1(M,x0)
(see [8, p. 90]). The index between two of them, γ1 and γ2, is equal to ±1;
otherwise the index on H1(M, Z) would be even. If γ1 and γ2 intersect
transversally at x, we can construct with the minimizing segments form-
ing these two digons two other digons intersecting transversally only at x0.
Thus, we can always assume that γ1 and γ2 intersect transversally only at x0

or have a minimizing segment from x0 to x in common. In this latter case, it
is possible to slightly perturb γ1 or γ2 into a shorter simple loop intersecting
(transversally) the other digon only at x0. This yields two simple loops of
lengths at most 2D intersecting transversally only at x0. Hence the result
in the genus 1 case.

The commutator of these two simple loops can be represented by a sim-
ple loop γ based at x0 of length less than 8D (recall that the surface is
orientable). If h ≥ 2, this simple loop is noncontractible and separates
M into two parts as it vanishes in H1(M, Z). Gluing a hemisphere cap
along the boundary of each of these two parts gives rise to two closed
surfaces, M1 and M2, of genus less than h. By construction, we have
Diam(Mi) ≤ D + 1

2L(γ) < 5D, where L(γ) is the length of γ. There exists,
by induction, a standard system Si of loops of Mi based at x0 whose lengths
are bounded from above by 5h−1(5D). The loops of Si can be pushed off the
hemisphere cap of Mi through length-nonincreasing homotopies. Therefore,
they can be considered as lying in M . Putting together the standard sys-
tems S1 and S2 yields a standard system of loops of M based at x0 whose
lengths are bounded from above by 5hD. �

5. Comparison of the geometric and algebraic lengths

In this part, we first show an inequality similar to (1.6) for punctured
surfaces. Then, we deduce Theorem 1.4 for closed orientable surfaces. The
case of nonorientable surfaces is treated in the last section.

5.1. Punctured surfaces of genus h.

Let (N, g) be a closed orientable Riemannian surface of genus h with
one topological disk removed such that its boundary ∂N is smooth. Let αi

and βi be arcs with their endpoints in ∂N which induce a standard system
of loops in the closed quotient surface N/∂N of genus h (see Definition 4.5).
Without loss of generality, we can assume that the arcs αi and βi are length-
minimizing in their homotopy classes in π1(N, ∂N) (see [5]). Thus, the arcs
αi and βi are orthogonal to ∂N . Denote by L an upper bound on the lengths
of αi and βi. Cutting N along the αi and βi gives rise to a Riemannian 8h-
gon ∆ with right angles. Denote by

a1, c1, b1, d1, a−1, e1, b−1, f1, . . . , ah, ch, bh, dh, a−h, eh, b−h, fh (5.1)

the sides of the 8h-gon ∆ in clockwise order, and orient ai and bi clockwise
if i > 0 and anticlockwise if i < 0. Renaming the arcs αi, βi, ai, bi, ci, di, ei
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and fi if necessary, this can be done so that the surface obtained by gluing
a−i to ai and b−i to bi agrees with N , and that, after gluing, the sides a−i

and ai (resp. b−i and bi) identify with αi (resp. βi). See Figure 6 below.

Let π : (Ñ , g̃) −→ (N, g) be the Riemannian universal cover. The deck
transformation group G agrees with the fundamental group of N . Hence,
G is a nonabelian free group of rank 2h. The 8h-gon ∆ identifies with a
fundamental domain of N in Ñ . Thus, the universal cover Ñ is tiled by the
orbit G.∆ of ∆ under G. Let Ai (resp. Bi) be the orientation preserving
isometry of Ñ taking a−i to ai (resp. b−i to bi). The set S = {Ai, Bi} is a
free generating system of the deck transformation group G. In particular,
every element of G has a unique minimal writing with respect to S.

�

�

a

a−1

bb−1

c

e d

f

A

B

Figure 6

The following discussion relates the minimal writing of an element σ of
G 
 π1(N) with respect to S to the trajectory of some minimal geodesic
loop γ representing this element. Let Γ be the union of the αi and the βi

in N and Γ̃ be the preimage of Γ in Ñ . Since the arcs αi and βi are
length-minimizing in their homotopy classes in π1(N, ∂N), every minimizing
segment of Ñ intersects the minimizing segments σ.ai and σ.bi at most once,
where σ runs over G. Therefore, a minimizing segment γ joining a point x
in the interior of ∆ ⊂ Ñ to σ.x, where σ is an element of G of S-length n,
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intersects
Γ̃ =

⋃
σ∈G

σ.ai ∪ σ.bi

in exactly n points. Furthermore, if σ = σ2A
ε
iσ1 (resp. σ2B

ε
i σ1) where

ε = ±1, and |σi|S = ni with n = n1 + n2 + 1, the (n1 + 1)-th intersection
point of γ with Γ̃ agrees with γ ∩ σ1.aεi (resp. γ ∩ σ1.bεi).

Conversely, let γ be a minimizing segment joining a point x in the interior
of ∆ ⊂ Ñ to another point x′ = σ.x in the G-orbit of x. The successive
intersections of γ with the orbit of the fundamental domain ∆ yield the min-
imal writing of σ with respect to S. For instance, if γ leaves ∆ through the
side aεi (resp. bεi), then the minimal writing of σ ends with Aε

i (resp. Bε
i ).

More generally, if γ goes through ∆, σ1.∆, σ2σ1.∆, . . . , σn . . . σ2σ1.∆ in this
order, then σ = σn . . . σ2σ1.

Assume that the systole of the surface N0 of genus h obtained by gluing
isometrically a round hemisphere along the boundary ∂N of N is greater or
equal to 1, i.e., sys(N0) ≥ 1. In particular, L ≥ 1. Note that N ⊂ N0.

Proposition 5.1. With the previous notations and assumptions, let γ be
a loop of N based at some point x0 such that γ is length-minimizing in its
homotopy class in π1(N0, x0). Then, we have

L(γ) ≥ Ch|γ|S , (5.2)

where L(γ) is the length of γ and Ch = 1
48Lh .

Remark 5.2. We emphasize that in this proposition, the loop γ is length-
minimizing not only in its homotopy class in N , but also in its homotopy
class in N0. Such a condition is needed since the length of ∂N can be arbi-
trarily small, providing no lower bound on |∂N |g solely in terms of |∂N |S .

Remark 5.3. Note also that we have identified γ with its homotopy class [γ]
in G 
 π1(N,x0). Despite the risk of confusion, we will continue to do so
from now on.

Proof of Proposition 5.1. Without loss of generality, we can assume that x0

does not lie in Γ. Set n := |γ|S . Let us show by induction on n that
L(γ) ≥ Ch|γ|S where Ch = 1

48Lh .
If |γ|S ≤ 24Lh, the result is obvious. Indeed, 24Lh ≤ 1

Ch
and L(γ) ≥

sys(N0) ≥ 1 by assuming that the class of γ is nontrivial in π1(N0, x0).
Thus, we can assume that |γ|S > 24Lh.

In this case, from the pigeon hole principle, the element γ can be written
as [γ] = ζ1ηζ2 in G, where |γ|S = |ζ1|S +|η|S +|ζ2|S and η is the first subword
of [γ] from the right, starting and ending with the same letter C ∈ S ∪S−1,
and containing m := [4L] + 2 times the letter C in its minimal writing.
Recall that S∪S−1 contains 4h elements, that L ≥ 1 and that [x] represents
the integer part of the real number x. Note that |η|S + |ζ2|S ≤ 24Lh, in
particular, |η|S ≤ 24Lh.
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From the discussion preceding Proposition 5.1, the geodesic trajectory γ
starts from x0 and intersects Γ in exactly n points y1, . . . , yn, in this order
along γ. Strictly speaking, we should say that there exist 0 < t1 < t2 < · · · <
tn < 1 such that the γ(ti) are the only points of γ : [0, 1] −→ N lying in Γ.
The points yi agree with the γ(ti). The points yp and yq, where p = 1+ |ζ2|S
and q = |η|S + |ζ2|S , lie in αi if C = A±1

i , or in βi if C = B±1
i . We will

denote by δ this segment in which yp and yq lie, i.e., δ = αi if C = A±1
i

and δ = βi if C = B±1
i . Actually, since the subword η contains m times the

letter C in its minimal writing, there are m points z1, . . . , zm in {yp, . . . , yq}
with z1 = yp and zm = yq such that γ intersects δ at z1, . . . , zm (through the
same direction). Since m = [4L] + 2 and L(δ) ≤ L, the length of some arc
of δ joining two points of {z1, . . . , zm} and not containing x0 is at most 1

4 .
Therefore, there exists an arc τ of δ with L(τ) ≤ 1

4 that intersects γ only at
its endpoints u and v (different from x0). The points x0, u and v decompose
γ into three arcs γ′, γ′′ and γ′′′.

We will need the following result.

Lemma 5.4. We have L(γ′′) ≥ 3
4 .

Proof. We can assume that γ′′ ∪ τ is simple. Otherwise, there exists a sub-
arc c of γ′′ forming a loop (recall that γ′′ intersects the nonself-intersecting
arc τ only at its endpoints). Since γ is length-minimizing in π1(N0, x0), the
loop c is noncontractible in N0. Therefore,

L(γ′′) ≥ L(c) ≥ sys(N0) ≥ 1,

which implies the desired inequality.
We want to show by contradiction that γ′′ ∪ τ is noncontractible in N0 to

conclude that

L(γ′′) ≥ sys(N0) − L(τ) ≥ 3
4
.

If the loop γ′′ ∪ τ is contractible in N0, then the arc γ′′ is no longer than τ
since γ is length-minimizing in π1(N0, x0). Furthermore, γ′′ ∪ τ and ∂N
bound a cylinder C in N . Thus, since γ′′ and τ are length-minimizing in
their homotopy classes, the nonself-intersecting trajectory δ starts from ∂N ,
leaves C to run across N \ C and comes back into C only to end at ∂N .
In particular, the arc (δ \ τ) ∪ γ′′ lies in the same homotopy class as δ
in π1(N, ∂N). Since γ′′ is no longer than τ , we can shorten δ within its
homotopy class. This yields a contradiction. �

We can now conclude the proof of Proposition 5.1. From the discussion
preceding the statement of this proposition, the loop γ′∪τ∪γ′′′, based at x0,
satisfies |γ′ ∪ τ ∪ γ′′′|S ≥ |ζ1|S + |ζ2|S + 1. Hence |γ′ ∪ τ ∪ γ′′′|S ≥ n − 24Lh
since |η|S ≤ 24Lh. Furthermore, Lemma 5.4 and the inequality L(τ) ≤ 1

4
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imply that L(γ′′) ≥ L(τ) + 1
2 . Therefore, by induction on n,

L(γ) = L(γ′ ∪ γ′′ ∪ γ′′′) ≥ L(γ′ ∪ τ ∪ γ′′′) +
1
2

(5.3)

≥ Ch|γ′ ∪ τ ∪ γ′′′|S +
1
2

(5.4)

≥ Ch(n − 24Lh) +
1
2

(5.5)

≥ Chn (5.6)

since Ch ≤ 1
48Lh . Hence, L(γ) ≥ Ch|γ|S . �

5.2. Surfaces of genus h. In this section, we prove Theorem 1.4 for ori-
entable closed surfaces.

Let (M,g) be an orientable closed Riemannian surface of genus h with
sys(g) ≥ 1. Fix x0 ∈ M . As previously, we will identify the loops with
their homotopy classes. From Remark 4.2, we can assume that the diameter
of g is at most 32h. Let us choose a shortest representative for each class
of π1(M,x0) and a point x which does not lie in the union of these represen-
tatives. From Proposition 4.6, there exists a standard system of loops SM

based at x whose lengths are bounded from above by L := 32h5h.
Let γ be one of the previous shortest representatives inducing a nontrivial

class in π1(M,x0). Consider the surface N obtained from M by removing
a small disk D centered at x such that γ does not intersect D and every
loop of SM , based at x, intersects D along an arc. The system of loops SM

restricted to N gives rise to a collection of arcs αi and βi with their endpoints
in ∂N and their lengths bounded from above by L. This collection of arcs
induces a free generating set S of π1(N) with 2h elements (see Section 5.1).

From Proposition 5.1, we have L(γ) ≥ Ch|γ|S . Furthermore, the inclusion
i : N ↪→ M 
 N/∂N induces an epimorphism between the fundamental
groups. Therefore, the system Σ := i∗(S) is a generating set of π1(M) with
2h elements, which, by construction, does not depend on γ. In particular,
|γ|S ≥ |γ|Σ. Hence the inequality |.|g ≥ Ch|.|Σ.

In the general case (i.e., with no assumption on the diameter of g), we
obtain |.|g ≥ λ|.|Σ with λ = 1

3Ch.

5.3. Nonorientable surfaces. In the previous section, we proved Theo-
rem 1.4 for orientable surfaces. Let us show now how to extend this result
to nonorientable closed surfaces.

For the projective plane, the result is obvious (take λ = 1).
Let (M,g) be a nonorientable closed Riemannian surface with sys(g) ≥ 1,

nonhomeomorphic to the projective plane. Denote by p : (M,g) −→ (M,g)
its orientable double cover. We have sys(g) ≥ 1. Fix x0 ∈ M and a lift x0 ∈
M of x0. The map p induces an injective homomorphism p∗ in homotopy
such that p∗π1(M,x0) is a subgroup of π1(M,x0) of index 2. Let Σ be a
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generating set of π1(M,x0) with 2h elements such that |.|g ≥ λh|.|Σ, where
h is the genus of M . Let Σ = p∗(Σ)∪{[c]}, where c is a shortest loop based
at x0 with [c] ∈ π1(M,x0) \ Imp∗. The set Σ forms a generating system
of π1(M,x0) with |Σ| ≤ 2h + 1.

Consider a loop γ based at x0. If a lift γ of γ to M closes up, then
|γ|g ≥ λh|γ|Σ. Since |γ|g = |γ|g and |γ|Σ ≥ |γ|Σ, we obtain the desired
result. Otherwise, consider a lift γ′ of the loop γ ∪ c. The lift γ′ closes
up and |γ′|g ≤ |γ|g + |c|g ≤ 2|γ|g. Further, |γ′|g ≥ λh|γ′|Σ ≥ λh|p(γ′)|Σ.
Since γ is homotopic to p(γ′).c−1, we have |γ|Σ ≤ |p(γ′)|Σ + 1. Note that
|γ|Σ−1 ≥ 1

2 |γ|Σ for |γ|Σ ≥ 2. Therefore, |γ|g ≥ λh
4 |γ|Σ. This latter inequality

still holds for |γ|Σ < 2 since sys(g) ≥ 1 and λh ≤ 1.

Remark 5.5. Theorem 1.2 reduces to the case when M is orientable. In-
deed, let (M,g) be the orientable double cover of (M,g). Then, hvol(g) =
hvol(g) since the volume entropy depends only on the universal cover. Fur-
thermore, sys(g) ≥ sys(g) since the quotient map from M to M is distance
nonincreasing and induces an injective homomorphism in homotopy. There-
fore, sys(g) · hvol(g) ≥ sys(g) · hvol(g).
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