Mikhail G Katz 
  
Yuli B Rudyak 
email: rudyak@math.ufl.edu
  
St Éphane Sabourau 
email: sabourau@lmpt.univ-tours.fr
  
  
  
  
SYSTOLES OF 2-COMPLEXES, REEB GRAPH, AND GRUSHKO DECOMPOSITION

Keywords: 2000 Mathematics Subject Classification. Primary 53C23; Secondary 20E06 55M30, 57N65 2-complex, coarea formula, corank, Grushko's decomposition, Lusternik-Schnirelmann category, minimal model, Reeb graph, systole, systolic category, systolic ratio, tree energy

Let X be a finite 2-complex with unfree fundamental group. We prove lower bounds for the area of a metric on X, in terms of the square of the least length of a noncontractible loop in X. We thus establish a uniform systolic inequality for all unfree 2-complexes. Our inequality improves the constant in M. Gromov's inequality in this dimension. The argument relies on the Reeb graph and the coarea formula, combined with an induction on the number of freely indecomposable factors in Grushko's decomposition of the fundamental group. More specifically, we construct a kind of a Reeb space "minimal model" for X, reminiscent of the "chopping off long fingers" construction used by Gromov in the context of surfaces. As a consequence, we prove the agreement of the Lusternik-Schnirelmann and systolic categories of a 2-complex.
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When X is a surface, numerous systolic inequalities are now available. They include near-optimal asymptotic upper bounds for the optimal systolic ratio of surfaces of large genus [START_REF] Gromov | Filling Riemannian manifolds[END_REF][START_REF] Katz | Entropy of systolically extremal surfaces and asymptotic bounds[END_REF], as well as near-optimal asymptotic lower bounds for large genus [START_REF] Buser | On the period matrix of a Riemann surface of large genus. With an appendix[END_REF][START_REF] Katz | Logarithmic growth of systole of arithmetic Riemann surfaces along congruence subgroups[END_REF]. The genus 2 surface was recently shown to be Loewner [START_REF] Katz | Hyperelliptic surfaces are Loewner[END_REF], and moreover admits an optimal systolic inequality in the CAT(0) class [START_REF] Katz | An optimal systolic inequality for CAT(0) metrics in genus two[END_REF]. A relative version of Pu's inequality [START_REF] Pu | Some inequalities in certain nonorientable Riemannian manifolds[END_REF] was obtained in [START_REF] Bangert | Filling area conjecture and ovalless real hyperelliptic surfaces[END_REF]. However, many of the existing techniques, including the entropy technique of [START_REF] Katz | Entropy of systolically extremal surfaces and asymptotic bounds[END_REF], are not applicable in the more general context of an arbitrary finite 2-complex.

Definition 1.2. A 2-complex is unfree if its fundamental group is not free.

Specifically in dimension 2, M. Gromov [START_REF] Gromov | Filling Riemannian manifolds[END_REF]6.7.A] (note a misprint in the exponent) showed that every unfree 2-dimensional complex X satisfies the inequality SR(X) ≤ 10 4 .

(1.1)

Contrary to the case of surfaces, where a (better) systolic inequality can be derived by simple techniques, Gromov's proof of inequality (1.1) depends on the advanced filling techniques of [START_REF] Gromov | Filling Riemannian manifolds[END_REF]. Note that the technique of cutting a surface open along a non-separating loop, and applying the coarea formula to the distance function from one of the boundary components, does not seem to generalize to arbitrary 2-complexes. Recently, M. Gromov [START_REF] Gromov | Private communication[END_REF] remarked that a systolic inequality for unfree 2-complexes should be a consequence merely of the coarea formula.

We have been able to obtain a uniform inequality for arbitrary unfree 2-complexes using merely the coarea formula, the properties of the Reeb graph of the distance function, as well as the classical Grushko decomposition of the fundamental group [START_REF] Stallings | A topological proof of Grushko's theorem on free products[END_REF][START_REF] Scott | Topological methods in group theory. Homological group theory[END_REF]. More specifically, we construct a kind of a Reeb space "minimal model" M (X, r) for X, reminiscent of the "chopping off long fingers" construction used by M. Gromov [START_REF] Gromov | Filling Riemannian manifolds[END_REF] in the context of surfaces. We thus improve the constant in (1.1) to the value 12. Namely, we show the following.

Theorem 1.3. Every finite unfree piecewise flat 2-complex X satisfies the bound SR(X) ≤ 12.

Remark 1.4. Given an arbitrary 2-dimensional complex X, we consider a 2-dimensional complex Y whose fundamental group is the unfree factor of the Grushko decomposition of the fundamental group of X, cf. Section 2. Then there is a map f : Y → X inducing a monomorphism in π 1 , cf. [ScW79, Lemma 1.5]. Now in the absence of loose loops (see Section 8), for the source space Y , an inequality SR(Y ) ≤ 4 can be established relatively easily by means of the coarea formula. Furthermore, one can pushforward systolic inequalities by such a map f , by a technique pioneered by I. Babenko [START_REF] Babenko | Asymptotic invariants of smooth manifolds[END_REF], cf. [START_REF] Katz | Lusternik-Schnirelmann category and systolic category of low dimensional manifolds[END_REF][START_REF] Katz | Bounding volume by systoles of 3-manifolds[END_REF]. This would prove a systolic inequality for the target space X, as well. However, the resulting inequality for X is not uniform, since pushforward affects the constant in the inequality. Namely, the constant is worsened by the number of faces of Y in the inverse image of a face of X. To overcome this difficulty, we will use an induction on the free index of Grushko, cf. (2.3).

Question 1.5. It is an open question whether all unfree 2-complexes satisfy Pu's inequality for RP 2 , equivalently if the optimal constant in (1.1) is π 2 . This article is organized as follows. The corank and the free index of Grushko FIG(X) of a 2-complex X are reviewed in Section 2. A useful application of the Seifert-van Kampen theorem appears in Section 3. The Reeb graph and its generalisation called Reeb space are described in Section 4. Section 5 introduces a minimal model for X, obtained by pruning suitable simply connected superlevel sets, as well as superfluous branches of the Reeb tree. Technical results on the level curves of the distance function are presented in Sections 6. We define loose loops and describe the intersection of pointed systoles with level curves in Section 7. The dichotomy loose loop/area lower bound is explained in Section 8. In Section 9 we prove the bound SR(X) ≤ 4 when FIG(X) = 0, cf. Theorem 9.3. A suitable noncontractible level of the distance function is identified in Section 10. In Section 11, using such a noncontractible level and the coarea formula, we prove a corank-dependent systolic inequality for unfree 2-complexes. We compute the Lusternik-Schnirelmann category cat LS (X) of a 2-complex X in Section 12, and show that cat LS (X) and the systolic category of X agree. The proof of the uniform bound SR(X) ≤ 12 occupies Sections 13 and 14.

All complexes are assumed to be finite, connected, and piecewise flat, unless explicitly mentioned otherwise.

Corank and free index of Grushko

Recall that the corank of a group G is defined to be the maximal rank n of a free group F n admitting an epimorphism G → F n from G.

Clearly, every finitely generated group has finite corank, and therefore each finite CW -space has fundamental group of finite corank.

Grushko's theorem [START_REF] Stallings | A topological proof of Grushko's theorem on free products[END_REF][START_REF] Scott | Topological methods in group theory. Homological group theory[END_REF] asserts that every finitely generated group G has a decomposition as a free product of subgroups

G = F p * H 1 * • • • * H q (2.1)
such that F p is free of rank p, while every H i is nontrivial, non isomorphic to Z and freely indecomposable. Furthermore, given another decomposition of this sort, say Definition 2.2. Let G be a finitely generated group. We say that an element g ∈ G splits off if G admits a decomposition as a free product with the infinite cyclic group generated by g.

G = F r * H 1 * • • • * H s ,

An application of the Seifert-van Kampen theorem

We need the following well-known fact, cf. [Rud98, Prop. I.3.26].

Proposition 3.1. Let (X, A) be a CW -pair. If A is a contractible space, then the quotient map X → X/A is a homotopy equivalence.

Corollary 3.2. Consider a CW -pair (X, A) and a CW -space X ∪ CA where CA is the cone over A. Then the quotient map

X ∪ CA → (X ∪ CA)/CA = X/A
is a homotopy equivalence. In particular, X ∪ CA and X/A are homotopy equivalent, X ∪ CA X/A.

Lemma 3.3. Let (X, A) be a CW -pair with X and A connected. Then the quotient map q : X → X/A induces an epimorphism of fundamental groups. Furthermore, if the inclusion j : A → X induces the zero homomorphism j * : π 1 (A) → π 1 (X) of fundamental groups, then the quotient map q : X → X/A induces an isomorphism of fundamental groups.

Proof. By the Seifert-van Kampen theorem, the inclusion i : X ⊂ X ∪ CA induces an epimorphism i * : π 1 (X) → π 1 (X ∪ CA) of fundamental groups, and i * is an isomorphism if j * is the zero map. Finally, by Corollary 3.2, the quotient map X ∪ CA → X/A is a homotopy equivalence, while the map q is the composition X ⊂ X ∪ CA → X/A, proving the lemma.

Lemma 3.4. Let A = {a 0 , a 1 , . . . , a k } be a finite subset of a connected CW -space X. Then X ∪ CA is homotopy equivalent to the wedge of X and k circles,

X ∪ CA X ∨ S 1 1 ∨ • • • ∨ S 1 k . In particular, π 1 (X ∪ CA) = π 1 (X) * F k
where F k is the group of rank k. In other words, the free index of Grushko of π 1 (X ∪ CA) is at least k.

Proof. Let X (1) be the 1-skeleton of X. Without loss of generality, we can assume (subdividing X) that A ⊂ X (1) , α ⊂ X(1) and that X (1) is connected. Since X (1) is connected, we can find a tree T ⊂ X (1) that contains α and A. Since T is contractible, we have

X ∪ CA (X ∪ CA)/T (X/T ) ∨ (CA/A) X ∨ (CA/A) X ∨ S 1 1 ∨ • • • ∨ S 1 k from Proposition 3.1.
Let X be a finite connected complex and let f :

X → R + be a function on X. Let [f ≤ r] := {x ∈ X f (x) ≤ r} and [f ≥ r] := {x ∈ X f (x) ≥ r}
denote the sublevel and superlevel sets of f , respectively. Definition 3.5. Given r ∈ R + , suppose that a single path-connected component of the superlevel set [f ≥ r] contains k path-connected components of the level set f -1 (r). Then we will say that the k pathconnected components coalesce forward.

For future needs, recall that the connected components of any complex are path-connected.

Lemma 3.6. Given r > 0, assume that the pair [f ≥ r], f -1 (r) is homeomorphic to a CW -pair. Suppose that the set [f ≤ r] is connected and that k + 1 connected components of f -1 (r) coalesce forward. Then the corank of π 1 (X) is at least k. Furthermore, if the inclusion

[f ≤ r] ⊂ X of the sublevel set [f ≤ r] induces the zero homomorphism of funda- mental groups, then FIG(X) ≥ k.
Proof. Let C 0 , C 1 . . . , C k be the distinct components of f -1 (r) that coalesce forward, and let Z be the component of [f ≥ r] that contains all C i 's. Then [f ≥ r] = Z W where W is the (finite) union of all components of [f ≥ r] other than Z. Let Y = Z/ ∼ where x ∼ y if and only if x, y belong to the same component C i of f -1 (r). Let a i be the image of C i under the quotient map Z → Y and let

A = {a 0 , . . . a k } ⊂ Y. We set W = W/(W ∩ f -1 (r)). Then we have X/[f ≤ r] = W ∨ Z/(∪C i ) = W ∨ Y /A W ∨ Y ∨ S 1 1 ∨ • • • ∨ S 1 k ,
where the last equivalence follows from Corollary 3.2 and Lemma 3.4. By the Seifert-van Kampen Theorem, we have FIG(X/[f ≤ r]) ≥ k. In particular, there exists an epimorphism

π 1 (X/[f ≤ r]) → F k .
By Lemma 3.3, the quotient map X → X/[f ≤ r] induces an epimorphism of fundamental groups. Hence corank(π 1 (X)) ≥ k. Finally, if the inclusion [f ≤ r] ⊂ X induces the zero homomorphism of fundamental groups, then π 1 (X/[f ≤ r]) is isomorphic to π 1 (X) by Lemma 3.3, proving the lemma.

Reeb graph of a piecewise flat complex

Definition 4.1. Let X be a finite connected complex. Consider a function f : X -→ R + . Let r 0 > 0 be a real number. The Reeb space of f in range r 0 , denoted Reeb(f, r 0 ), is defined as the quotient Reeb(f, r 0 ) = X/ ∼ where we have equivalence x ∼ y if and only if f (x) = f (y) ≤ r 0 , and x and y lie in the same connected component of the level set f -1 (f (x)), cf. [START_REF] Reeb | Sur les points singuliers d'une forme de Pfaff complètement intégrable ou d'une fonction numérique[END_REF]. The Reeb space Reeb(f, ∞) in "full range" will be denoted simply Reeb(f ).

The following fact is a consequence of standard results on the triangulation of semialgebraic functions [BCR98, §9], [START_REF] Shiota | Piecewise linearization of real-valued subanalytic functions[END_REF].

Proposition 4.2. Let X be a finite, 2-dimensional, piecewise flat complex. Then the Reeb space Reeb(f ) of the distance function f = f p from a point p ∈ X is a finite graph.

Furthermore, the finite graph Reeb(f ) can be subdivided so that the natural map X → Reeb(f ) yields a trivial bundle over the interior of each edge of Reeb(f ).

The Reeb graph was used in [START_REF] Gromov | Positive scalar curvature and the Dirac operator on complete Riemannian manifolds[END_REF][START_REF] Katz | The first diameter of 3-manifolds of positive scalar curvature[END_REF] to study 3-manifolds of positive scalar curvature. Other applications are discussed in [START_REF] Cole-Mclaughlin | Loops in Reeb graphs of 2-manifolds[END_REF].

Remark 4.3. A more precise description (than that predicted by semireal algebraic geometry) can be given of the level curves themselves, cf. Section 6.

From now on, X and f will be as in Proposition 4.2. The Reeb space Reeb(f, r) in range r can be thought of as a "hybrid" space, consisting of two pieces. One piece is the Reeb graph Reeb(f | B ) of the ball B = B(p, r) of radius r centered at p. The other piece [f ≥ r] is the complement, in X, of the open ball of radius r, attached to the graph by a map µ which collapses each connected component of the level curve f -1 (r) to a point:

Reeb(f, r) = Reeb f | B(p,r) ∪ µ [f ≥ r].
(4.1)

The Reeb graph Reeb(f ) of f is endowed with the length structure induced from X. Let p ∈ Reeb(f ) be the image of p. The ball

B(p, r) ⊂ X of radius r < 1 2 sysπ 1 (X) projects to the ball B(p, r) ⊂ Reeb(f ). Lemma 4.4. Let r < 1 2 sysπ 1 (X). The subgraph B(p, r) ⊂ Reeb(f ) is a tree, denoted T r . Thus, the decomposition (4.1) becomes Reeb(f, r) = T r ∪ µ [f ≥ r]. (4.2)
Proof. Every edge of Reeb(f ) lifts to a minimizing path in X, given by a segment of the minimizing path from p. Given an embedded loop γ ⊂ Reeb(f ), we can lift each of its edges to X. The endpoints of adjacent edges lift to a pair of points lying in a common connected component of a level curve of f (by definition of the Reeb graph), and can therefore be connected in X by a path which projects to a constant path in Reeb(f ). We thus obtain a loop in X whose image in Reeb(f ) is homotopic to γ. The lemma now follows from the fact that the inclusion B(p, r) ⊂ X induces the trivial homomorphism of fundamental groups, cf. Remark 7.2.

Lemma 4.5. Let r < 1 2 sysπ 1 (X). Then the natural projection map h : X → Reeb(f, r) induces an isomorphism of fundamental groups,

h * : π 1 (X) → π 1 (Reeb(f, r)). (4.3) Proof. The obvious map g : X/B(p, r) → Reeb(f, r)/T r (induced by h) is a homeomorphism. Consider the commutative diagram π 1 (X) h * ---→ π 1 (Reeb(f, r))     π 1 (X/B(p, r)) g * ---→ π 1 (Reeb(f, r)/T r )
The vertical maps are isomorphisms by Lemma 3.3 and Remark 7.2, while g * is induced by a homeomorphism.

A minimal model and tree energy

We describe a pruning of the Reeb space which results in a kind of a "minimal model", cf. (5.1), for our 2-complex X.

Let r < 1 2 sysπ 1 (X). Consider the function f : Reeb(f, r) → R naturally defined by f . Denote by C ⊂ Reeb(f, r) the union of the connected components C of the subset [ f ≥ r] with the following two properties:

(1) C is simply connected;

(2) C is attached to the tree T r ⊂ Reeb(f, r) at a single leaf. The pullback of the standard 1-form dr on R by the map

Reeb(f ) → R
back to an edge of Reeb(f ) defines a positive direction on each edge. We prune the tree T r by removing edges of the following two types:

(1) edges that do not reach the set [ f ≥ r] when we follow the positive direction; (2) edges that lead only to components in C ⊂ [ f ≥ r]. Denote by T r ⊂ T r the resulting pruned tree. In other words, T r is the union of embedded paths connecting p to components of the complement

[ f ≥ r] \ C.
A vertex of T r is by definition a point whose open neighborhood in T r is not homeomorphic to an open interval. An edge is a connected component of the complement of the set of vertices.

Define the energy E(Γ) of a graph Γ to be the sum of the squares of the lengths of its edges. The height of a tree with a distinguished root leaf p is the least distance from p to any other leaf of the tree.

Proposition 5.1. The energy of a tree Γ of height h satisfies the bound E(Γ) ≥ 1 2 h 2 . Proof. For a simplest tree shaped as the letter Y, the least energy is given by the metric for which the bottom interval is twice as long as each of the top two intervals. Arguing inductively, we see that the lower bound is attained by the infinite tree where the length of an edge is halved after each branching.

Definition 5.2. We introduce a kind of a minimal model M (X, r) ⊂ Reeb(f, r) for X by setting

M (X, r) = T r ∪ µ ([f ≥ r] \ C).
(5.1)

Proposition 5.3. The map X → M (X, r) collapsing all superfluous material to the vertex of T r where it is attached to the pruned tree T r ⊂ T r , induces an isomorphism π 1 (X) π 1 (M (X, r)).

Definition 5.4. If the pruned tree T r has exactly one edge attached to its root leaf, we call this edge the root edge of T r . If T r has more than one edge attached to its root leaf, the root edge is defined as the trivial edge reduced to the root leaf of T r . (5.2)

Proof. If removing e does not disconnect the space Reeb(f, r), then, by Lemma 3.4, we have 

π 1 (M (X, r)) π 1 (Reeb(f, r)) π 1 (Y ) * Z,

Level curves

In this section, we present technical results concerning the level curves of the distance function on a piecewise flat 2-complex. The 2-simplices of such a complex will be referred to as faces. Theorem 6.1. A level curve of the distance function from a point in a finite piecewise flat 2-dimensional complex X is a finite union of circular arcs and isolated points.

The claim is obvious for level curves at sufficiently small distance from a vertex p ∈ X. Such a level curve is known as the link of X at p, cf. [START_REF] Munkres | Elements of algebraic topology[END_REF]§2].

The structure of the proof is 3-fold:

(1) a finiteness result on the number of geodesic arcs of bounded length joining a pair of points of X;

(2) the construction of a finite graph Λ p , cf. (6.1), containing a level curve S;

(3) an argument showing that S is a subgraph of Λ p . Lemma 6.2. Let C > 0. Then there are finitely many geodesic arcs of length at most C between any pair of points of a finite piecewise flat 2-complex X.

Proof. Let X be the complement of the set of vertices in X. Let p, q ∈ X . By the flatness of the complex, there is at most one geodesic path from p to q in a given homotopy class of such paths in X . Note that X is homotopy equivalent to a compact 2-complex, by removing an open disk around each vertex. The lemma now follows from the finiteness of the number of homotopy classes of bounded length in a compact complex.

Remark 6.3. Consider a geodesic γ ⊂ X in the universal cover X of X . Then the union of all faces meeting γ, includes a flat strip containing γ.

Continuing with the proof of Theorem 6.1, note that the link at q is a graph which can be identified with the set of unit tangent vectors at q. To describe the graph Λ of step 2, we refine the link at q as follows. Consider the tangent vectors of the geodesics of length smaller than the diameter of X, connecting q to all vertices of X. We subdivide the link recursively. At each step, we add to the link the vertices corresponding to such tangent vectors, so that the edge containing such a vertex is split into two. By Lemma 6.2, the resulting graph V q is finite.

Let ρ > 0. Given an edge e of the refined link V q at q, consider the corresponding pencil of geodesics, of length ρ, issuing from q. By Remark 6.3, their endpoints trace out a single compact (possibly selfintersecting) circular arc, denoted CA(q, e, ρ) ⊂ X, of "radius" ρ and geodesic curvature 1 ρ , at least if X is a surface. In general, the structure of CA(q, e, ρ) may be more complicated due to branching at a point where a geodesic issuing from q encounters a 1-cell of X, but in any case the number of circular arcs forming the graph CA can be controlled in terms of the total number of faces. Now let p ∈ X, and let r > 0. Let (q i ) be an enumeration of the vertices of X, and (e ij ) an enumeration of the edges of the refined link V q i . Lemma 6.4. Let S = S(r) ⊂ X be the level r curve of the distance function from p ∈ X, namely, S = {x ∈ X dist(p, x) = r}. Consider the finite union

Λ p = Λ p (r) = i,j
CA q i , e ij , r -dist(p, q i ) .

(6.1)

Then Λ p is a finite graph, containing S, and at distance at most r from p.

Proof. To describe the graph structure of Λ p , note that a pair of circular arcs in a given simplex of X meet in at most a pair of points. This elementary algebraic-geometric observation is thus the basis of the proof of Theorem 6.1; cf. Remark 6.9. Whether the arcs are transverse or tangent, we include the common points as vertices of Λ p . Also, if a circular arc of Λ p meets an edge of X, then the common point is declared to be a vertex of Λ p .

To complete the proof of Theorem 6.1, we need a notion of a cut locus. The notion of a cut locus for a complex is ill-defined. However, we define an analogue CL p of the cut locus from a point p ∈ X inside an open face ∆ ⊂ X, as the set of points q ∈ ∆ with at least a pair of distinct unit tangent vectors at q to minimizing geodesics from p.

Remark 6.5. The vertices of CL p seem to be related to the critical points of the distance function from p in the sense of Grove-Shiohama-Gromov-Cheeger [START_REF] Cheeger | Critical points of distance functions and applications to geometry[END_REF]. We will not pursue this direction. Lemma 6.6. The set CL p ⊂ X is relatively closed inside each open face of X.

Proof. Consider a sequence of points {x n } in CL p converging to x ∈ ∆. Let u n be a unit vector at x n , and tangent to a minimizing geodesic from p. By choosing a subsequence, we can assume that the minimizing geodesics corresponding to the vectors u n lead to the same vertex A ∈ X, and, furthermore, are homotopic as relative paths from A to ∆ for the pair ({A}∪X , ∆), where X is the complement of the set of vertices in X. Now, we use a kind of a developing map and consider the face ∆ as lying in the Euclidean plane R 2 . Then there is a point à ∈ R 2 such that the circular arcs of Λ p corresponding to the vectors u n at x n ∈ ∆ ⊂ R 2 are arcs of concentric circles with common center Ã.

If {v n } is another sequence of tangent vectors at {x n }, we similarly obtain points B ∈ X and B ∈ R 2 for the sequence v n . Now suppose the two sequences have a common limit vector lim n u n = lim n v n . Then the points Ã, B, x ∈ R 2 are collinear, while x ∈ [ Ã, B]. Hence

d( Ã, B) = |d( Ã, x) -d( B, x)| = |d(A, p) -d(B, p)|.
Since the geodesics leading to x n are assumed minimizing, we have

|d( Ã, x n ) -d( B, x n )| = |d(A, p) -d(B, p)| = d( Ã, B).
Therefore, the points Ã, B, x n ∈ R 2 are collinear, as well, and

x n ∈ [ Ã, B]. Thus u n = v n , proving the lemma.
The proof of Theorem 6.1 is now completed by means of the following lemma.

Lemma 6.7. The level curve S is a subgraph of the finite graph Λ p .

Proof. At least two circular arcs corresponding to edges of Λ p pass through each point of CL p ∩Λ p . Therefore, the points of CL p ∩Λ p are vertices of the graph Λ p . In particular, every open edge e ⊂ Λ p is disjoint from CL p .

Every point x ∈ e ∩ S is away from the relatively closed set CL p , cf. Lemma 6.6. Hence the level curves (of the distance function from p) in the neighborhood of x form a family of concentric circular arcs. The circular arc of this family passing through x is clearly contained in S, but also in e. Otherwise, it would intersect transversely the circular arc e and the point x would lie in CL p . We conclude that e ∩ S is open in e.

On the other hand, the level curve S of a distance function is a closed set, hence the intersection e ∩ S is closed in e. Therefore, this intersection coincides with e or is empty. It follows that S ⊂ Λ p is a subgraph.

Given a point p ∈ X, set f (x) = dist(p, x).

Corollary 6.8. The triangulation of X can be refined in such a way that the sets [f ≤ r], f -1 (r), and [f ≥ r] become CW -subspaces of X.

Proof. We add the graph S = f -1 (r) to the 1-skeleton of X. Some of the resulting faces may not be triangles, therefore a further (obvious) refinement may be necessary. The sets [f ≤ r] and [f ≥ r] are connected components of the complement X \ S, and hence CWsubspaces.

Remark 6.9. Alternatively, Corollary 6.8 (but not Theorem 6.1) can be deduced from standard results in real semialgebraic geometry, as follows, cf. [START_REF] Bochnak | Real algebraic geometry[END_REF]. First, note that X can be embedded into some R N as a semialgebraic set and that the distance function f is a semialgebraic function on X. Thus, the level curve f -1 (r) is a semialgebraic subset of X and, therefore, a finite graph, cf. proof of Lemma 6.4.

Loose loops and pointed systoles

Definition 7.1. Let p ∈ X. A shortest noncontractible loop of X based at p is called a pointed systolic loop at p. Its length, denoted by sysπ 1 (X, p), is called the pointed systole at p. Remark 7.2. Alternatively, sysπ 1 (X, p) could be defined as twice the upper bound of the reals r > 0 such that induced map π 1 (B(p, r)) → π 1 (X) is zero. In other words, every loop in B(p, r) is contractible in X.

The following lemma describes the structure of a pointed systolic loop.

Lemma 7.3. Let γ be a pointed systolic loop at p ∈ X, and let L = length(γ) = sysπ 1 (X, p).

(i) The loop γ is formed of two distance-minimizing arcs, starting at p and ending at a common endpoint, of length L/2. (ii) Any point of self-intersection of the loop γ is no further than 1 2 (L -sysπ 1 (X)) from p. Proof. Consider an arclength parametrisation γ(s) with γ(0) = γ(L) = p. Let q = γ L 2 ∈ X be the "midpoint" of γ. Then q splits γ into a pair of paths of the same length L 2 , joining p to q. By Remark 7.2, if q were contained in the open ball B(p, L 2 ), the loop γ would be contractible. This proves item (i).

If p is a point of self-intersection of γ, the loop γ decomposes into two loops γ 1 and γ 2 based at p , with p ∈ γ 1 . Since the loop γ 1 is shorter than the pointed systolic loop γ at p, it must be contractible. Hence γ 2 is noncontractible, so that length(γ 2 ) ≥ sysπ 1 (X). Therefore, length(γ 1 ) = L -length(γ 2 ) ≤ L -sysπ 1 (X), proving item (ii).

Definition 7.4. Let γ be a pointed systolic loop at p ∈ X, and let L = length(γ) = sysπ 1 (X, p). Let r be a real number satisfying L -sysπ 1 (X) < 2r < L.

If for at least one such r, the loop γ meets two distinct connected components of the level curve S(r) = {x ∈ X|dist(x, p) = r} ⊂ X, then we say that γ is a loose loop.

Proposition 7.5. The loop homotopy class [γ] of a loose loop γ splits off in π 1 (X, p), cf. Definition 2.2. In particular, FIG(X) > 0.

In other words, there is a 2-complex Y and a map X → Y ∨ S 1 inducing an isomorphism ϕ : π 1 (X, p) → π 1 (Y, y 0 ) * Z where the image of [γ] is a generator of the free factor:

ϕ([γ]) = 1 ∈ π 1 (S 1 ) = Z.
Proof. Consider the natural projection h : X → Reeb(f, r), where r is as in Definition 7.4 so that γ meets two different components of S(r). By Lemma 7.3, the image h(γ) of γ is homotopic to the simple loop c = α ∪ β where α agrees with the unique embedded arc of T r with the same endpoints as β = γ ∩ [f > r]. Therefore, the loop homotopy class of h(γ) splits off in π 1 (Reeb(f, r)). This yields the desired result since the natural projection h induces an isomorphism of fundamental groups by Lemma 4.5.

Loose loops vs area lower bounds

The following proposition provides a lower bound for the length of level curves in a 2-complex X.

Proposition 8.1. Let L = sysπ 1 (X, p) be the pointed systole of a finite 2-complex. Let r be a real number satisfying L -sysπ 1 (X) < 2r < L.

Consider the level curve S ⊂ X at distance r from p ∈ X. Let γ be a pointed systolic loop at p. If γ is not loose, then length S ≥ 2r -L + sysπ 1 (X).

(8.1)

Proof. By Lemma 7.3, the loop γ is formed of two distance-minimizing arcs which do not meet at distance r from p. Thus, the loop γ intersects S at exactly two points. Let γ = γ ∩ B be the subarc of γ lying in B = B(p, r).

Since γ meets exactly one connected component of S, there exists an embedded arc α ⊂ S connecting the endpoints of γ . By Remark 7.2, every loop based at p and lying in B(p, r) is contractible in X. Hence γ and α are homotopic (keeping endpoints fixed), and the loop α∪(γ \γ ) is homotopic to γ. Hence, length(α) + length(γ) -length(γ ) ≥ sysπ 1 (X).

(8.2)

Meanwhile, length(γ) = L and length(γ ) = 2r, proving the lower bound (8.1), since length(S) ≥ length(α).

The bound SR(X) ≤ 4 for Grushko unfree complexes

The length estimate of the previous section easily yields a uniform bound for the systolic ratio of any Grushko unfree 2-complex, i.e. a complex X with FIG(X) = 0.

Theorem 9.1. Let X be a finite piecewise flat 2-complex. Let γ ⊂ X be a pointed systolic loop at x ∈ X, and assume γ is not loose. For every real number r such that sysπ 1 (X, x) -sysπ 1 (X) ≤ 2r ≤ sysπ 1 (X, x), (9.1) the area of the ball B(x, r) of radius r centered at x satisfies

area B(x, r) ≥ r -1 2 (sysπ 1 (X, x) -sysπ 1 (X)) 2 . (9.2)
Proof of Theorem 9.1. Let L = sysπ 1 (X, x). Denote by S = S(r) and B = B(r), respectively, the level curve and the ball of radius r satisfying L -sysπ 1 (X) < 2r < L, centered at x ∈ X.

The non-loose loop γ meets a single connected component of S. Let ε = L -sysπ 1 (X). Now, Proposition 8.1 implies that length S(r) ≥ 2r -L + sysπ 1 (X) = 2r -ε. Corollary 9.2. If X admits a systolic loop which is not loose, then SR(X) ≤ 4.

Proof. If γ is a systolic loop of X, then ε = 0. By hypothesis, γ is not loose, and we let r tend to 1 2 sysπ 1 (X). Corollary 9.3. Let X be a Grushko unfree 2-complex. Then the area of every ball B(x, r) ⊂ X of radius r < 1 2 sysπ 1 (X) centered at a point x lying on a systolic loop of X, satisfies the lower bound area B(x, r) ≥ r 2 .

(9.4)

In particular, we have the bound SR(X) ≤ 4.

Example 9.4. The Moore spaces M n with π 1 (M n ) = Z n satisfy the bound SR(X) ≤ 4 for all n.

Noncontractible fibers

Corollary 9.3 is limited by its hypothesis on the free index of Grushko. As a warm-up to the more exotic uses of the coarea formula in later sections, we first present a simple argument in Section 11, to obtain an explicit upper bound for SR(X) dependent on the corank of the fundamental group. The topological result of this section will be used in Section 11.

Lemma 10.1. Let h : Y → [0, 1] be a map that yields a trivial bundle over the half-interval (0, 1]. Let F = h -1 (0) and assume that F is compact. Assume also that the pair (Y, F ) is (homeomorphic to) a CW -pair. If every fiber of h is contractible in Y and path connected then Y is simply connected.

Proof. Since (Y, F ) is a CW -pair, there exists a neighborhood U of F such that F is a deformation retract of U . Since F is compact, there exists δ > 0 such that h

-1 [0, δ) ⊂ U . Let A = h -1 [0, δ), B = h -1 (0, 1] and C = A ∩ B. The homomorphism π 1 (C) → π 1 (B) (induced by the inclusion) is an isomorphism, while the homomorphism π 1 (C) → π 1 (A)
is trivial since every loop in C is homotopic in A to a loop in U , and therefore to a loop in F . So, by the Seifert -van Kampen Theorem, Y is simply connected.

Corollary 10.2. Let T be a tree and h : Y → T be a map that yields a trivial bundle over the interior of each of edges of T . Assume also that for every t ∈ T the pair (Y, h -1 (t)) is a CW -pair. Finally, assume that h -1 (T ) is compact for every finite subtree T of T . If every fiber of h is contractible in Y and path connected then Y is simply connected.

Proof. We first consider the case of T = [0, 1]. Then Y = A ∪ B with A = h -1 [0, 1) and B = h -1 (0, 1]. Notice that all the fibers of h are compact. So, A and B are simply connected by Lemma 10.1. Now the result follows from the Seifert -van Kampen Theorem. Now consider the case of a finite tree T . The result follows from the Seifert -van Kampen Theorem by an obvious induction.

In the general case, consider a loop ϕ : S 1 → Y . The image of hϕ, which is compact, is contained in some finite subtree T of T . Now let Y = h -1 (T ). By Step 2, the loop ϕ is contractible in Y . Hence the result.

Proposition 10.3. Let X be a connected 2-dimensional complex, and let f : X → R be a semialgebraic function. If the group π 1 (X) is not free, then, for a suitable ρ ∈ R, the preimage f -1 (ρ) contains a noncontractible loop of X.

Proof. Consider the Reeb graph Reeb(f ) of f and let f : X → Reeb(f ) be the lifted function. Let p :

T → Reeb(f ) be the universal cover of Reeb(f ). Consider the pull-back diagram Y ---→ X h     b f T p ---→ Reeb(f ) Since π 1 (X)
is not free, the group π 1 (Y ) is non-trivial. Hence, by Corollary 10.2 and in view of Proposition 4.2, there exist t ∈ T and a loop in h -1 (t) that is homotopy non-trivial in Y . Therefore, there exists a loop in f -1 (p(t)) which is non-contractible in X. This loop is contained in f -1 (ρ) with ρ = f ( f -1 (p(t))).

Corank-dependent inequalities

In this section, we apply the coarea formula to obtain an explicit bound for SR(X) dependent on the corank of the fundamental group. More refined applications of the coarea formula will be presented in later sections, to obtain a uniform bound.

We will say that a space X is unfree if its fundamental group is not free, and that X is of zero corank if π 1 (X) is. The first theorem of this section is a special case of Corollary 9.3 (but see Remark 11.3). We include its proof as preparation for the more general result of Theorem 11.5.

Theorem 11.1. Every 2-dimensional, piecewise flat complex X of zero corank satisfies the bound SR(X) ≤ 4.

Proof of Theorem 11.1. Choose a point p ∈ X and consider the function f (x) = dist(p, x). The idea is to apply the coarea formula "inward", i.e. toward the basepoint p ∈ X, so as to obtain the desired lower bound for the area, along the lines of [Gro83, p. 129, line 9].

In fact, we will use the coarea formula to show that the area of the 2-complex is bounded below by the area of a right triangle with base 1 2 sysπ 1 (X) and altitude sysπ 1 (X).

Consider the Reeb graph Reeb(f ) of f and note that the preimages of f are finite graphs and CW -subspaces of X, cf. Theorem 6.1 and Corollary 6.8. By Proposition 10.3, there exists a connected component

C ρ ⊂ f -1 (ρ) ⊂ X, containing a loop which is noncontractible in X.
Since X is a compact path metric space, it satisfies the Hopf-Rinow theorem, [Gro99, p. 9]. For each x ∈ C ρ , consider a minimizing geodesic path joining p to x. Given r < ρ, let x r be a point where this geodesic meets the level set f -1 (r). Then

dist(x r , x) = f (x) -f (x r ) = ρ -r.
The points x r lie in the boundary of the connected component of the superlevel set [f ≥ r] containing C ρ . Thus, the connected components C r 1 , . . . , C r k of this boundary coalesce forward. By Lemma 3.6, there is only one such component, denoted C r (that is, k = 1 and C r = C r 1 ).

Lemma 11.2. We have

ρ ≥ 1 2 sysπ 1 (X) (11.1) length(C r ) ≥ sysπ 1 (X) -2(ρ -r) (11.2)
Proof. The first inequality follows from Remark 7.2. For the second inequality, we can assume that C r does not contain a loop noncontractible in X, otherwise the result is obvious. Then, there is a pair of the points x r , y r ∈ C r with x = y ∈ C ρ ⊂ X, and a path [x r , y r ] ⊂ C r between them, such that the loop [x r , y r ] ∪ [y r , y] ∪ [y, x r ] is noncontractible in X. Indeed, if all such loops were contractible, then the noncontractible loop contained in C ρ would admit a continuous retraction to C r , which is impossible. Therefore, length([x r , y r ]) ≥ sysπ 1 (X) -2(ρ -r).

Returning to the proof of Theorem 11.1, we use the coarea formula, [Fe69, 3.2.11], [Cha93, p. 267], and exploit (11.2) to write

area(X) = ∞ 0 length(f -1 (r)) dr ≥ ρ 0 length(C r ) dr ≥ ρ ρ- 1 2 sysπ 1 (X) sysπ 1 (X) -2(ρ -r) dr ≥ 1 4 sysπ 1 (X) 2 , cf.
[Gro83, p. 129, line 9], proving the theorem.

Remark 11.3. The estimate SR(X) ≤ 4 can be improved in terms of the difference ρ -1 2 sysπ 1 (X), where ρ is the noncontractible level. Note that the method of proof of Corollary 9.3 does not allow for such an improvement.

Lemma 11.4. Let C ρ ⊂ X be a level curve containing a loop which is noncontractible in X. Normalize the systole to the value 2. Then for every n ∈ N, the level C ρ admits a 1 n -separated set containing at least n + 1 elements.

Proof. Choose an essential loop ⊂ C ρ . Let A, B ∈ be a pair of points realizing the diameter of . Thus dist(A, B) ≥ 1. Let α be a connected component of the complement \ {A, B}. Choose a maximal finite sequence of points x i ∈ α, i = 0, 1, 2, . . . satisfying dist(x i , A) = i n ≤ 1. By the triangle inequality, for all i = j, we have dist(x i , x j ) ≥ 1 n . Theorem 11.5. Every unfree, 2-dimensional, piecewise flat complex X satisfies the bound SR(X) ≤ 16(corank(π) + 1) 2 .

Proof. Let n -1 be the corank of π 1 (X). Normalize the systole to the value 2. By Lemma 11.4, there exists an n-separated set {x i } ⊂ C ρ , such that dist(x i , x j ) ≥ 1 n when i = j. For each x i , consider a minimizing geodesic path joining p to x i . Given r < ρ, let x r i be a point where this geodesic meets the level set f -1 (r). Then for each i = 0, 1, . . . , n, we have

dist(x r i , x i ) = f (x i ) -f (x r i ) = ρ -r. Note that the connected set C ρ is contained in the superlevel set [f ≥ ρ].
Thus the set {x i } ⊂ C ρ coalesces forward. Hence by Lemma 3.6, the number of components of f -1 (r) is at most n. Hence there is a pair of points x r k , x r in a common connected component of f -1 (r). Let C r be such a component. By the triangle inequality,

dist(x r k , x r ) ≥ -dist(x r k , x k ) + dist(x k , x ) -dist(x , x r ) ≥ 1 n -2(ρ -r). (11.3) Therefore length(C r ) ≥ diam C r ≥ dist(x r k , x r l ) ≥ 1 n -2(ρ -r).
(11.4)

As before, we apply the coarea formula to obtain [START_REF] Gromov | Filling Riemannian manifolds[END_REF]p. 129,line 9]. We conclude that 4n 2 area(X) ≥ 1, proving the theorem.

area(X) = ∞ 0 length(f -1 (r)) dr ≥ ∞ 0 length(C r ) dr ≥ ρ ρ-(2n) -1 1 n -2(ρ -r) dr = 1 4 n -2 , cf. [

Comparison with Lusternik-Schnirelmann category

Originally we were led to consider the systoles of 2-complexes in the context of the comparison with the Lusternik-Schnirelmann category cat LS , cf. [START_REF] Katz | Lusternik-Schnirelmann category and systolic category of low dimensional manifolds[END_REF]. Since the latter equals 2 unless the group is free, cf. Theorem 12.1, the question arose whether an unfree 2-complex always satisfies a systolic inequality. Eventually we found an affirmative answer in [START_REF] Gromov | Filling Riemannian manifolds[END_REF], cf. inequality (1.1). Thus, the systolic category cat sys of X, defined in [START_REF] Katz | Lusternik-Schnirelmann category and systolic category of low dimensional manifolds[END_REF], coincides with cat LS (X) for every 2-complex X, cf. Theorem 12.6: cat sys = cat LS .

(12.1)

Note that the two categories coincide, as well, for arbitrary closed 3-manifolds [START_REF] Katz | Bounding volume by systoles of 3-manifolds[END_REF]. An open question is whether all Poincaré 3complexes also satisfy equality (12.1). Recent examples due to J. Hillman [START_REF] Hillman | An indecomposable PD 3 -complex: II[END_REF] show that the answer may not be easy to obtain. The Lusternik-Schnirelmann category cat LS (X) of a 2-complex X can similarly be characterized in terms of its fundamental group. Thus, we have cat LS X = 1 if π 1 (X) is free, and cat LS X = 2 otherwise (see Theorem 12.1 for a detailed statement).

Theorem 12.1. Let X be a 2-dimensional connected finite CW -space, and let π = 0 denote the fundamental group of X. The following conditions are equivalent:

(1) the group π is free;

(2) the space X is homotopy equivalent to a wedge of a finite number of circles and 2-spheres; (3) one has cat LS X = 1; (4) for every group τ , every map f : X → K(τ, 1) can be deformed into the 1-skeleton of K(τ, 1).

Remark 12.2. Thus, a finite 2-dimensional complex satisfies a systolic inequality if and only if none of the four equivalent conditions of Theorem 12.1 holds.

Proof. We prove the following implications: (1) ⇒ (2) ⇒ (3) ⇒ (1) ⇒ (4) ⇒ (1). The implication (1) ⇒ (2) is proved by C. Wall [Wa65, Proposition 3.3]. We recall his argument for completeness. Let Z[π] denote the group ring of the group π that we assumed to be free. First, Wall proved that π 2 (X) is a finitely generated projective Z[π]-module. Now, by a theorem of H. Bass [START_REF] Bass | Projective modules over free groups are free[END_REF], every finitely generated projective module over Z[π] is free. Consider a wedge Y of k circles and l spheres, where k is the number of free generators of π and l is a number of free generators of the Z[π]-module π 2 (X). Now we map Y to X by mapping circles to free generators of π 1 (X) and spheres to Z[π]-free generators of π 2 (X), and this map is a homotopy equivalence.

The implication (2) ⇒ (3) is obvious. The implication (3) ⇒ (1) is well known, cf. [CLOT03, Exercise 1.21]. The implication (1) ⇒ (4) holds for τ = π since K(π, 1) is a wedge of circles if π is free. For general τ , we notice that every map f : X → K(τ, 1) factors through K(π, 1) . To prove that (4) ⇒ (1), it suffices to prove the implication for a map f that induces an isomorphism of fundamental groups. Let K denote the 1-skeleton of K(π, 1). Then the map X → K ⊂ K(π, 1) induces an isomorphism of fundamental groups. Thus, π is a subgroup of a free group π 1 (K). Hence π is free.

Proposition 12.3. Let X be a connected, finite, n-dimensional CWcomplex, where n > 2. Let π 1 (X) = π and assume that H k (π; G) = 0 for all k ≥ n and all Z[π]-modules G. Then cat LS X < n.

Proof. By theorem of I. Berstein [START_REF] Berstein | On the Lusternik-Schnirelmann category of Grassmannians[END_REF], cf. [CLOT03, Theorem 2.51], we have cat LS X = n only if u n = 0 for some u ∈ H 1 (X; I(π) ⊗n ), (12.2)

where I(π) is the augmentation ideal of Z[π]. We can obtain the classifying space K(π, 1) by attaching k-cells with k ≥ 3 to X. Now, the inclusion X → K(π, 1) induces an isomorphism H 1 (π; G) → H 1 (X; G) for any Z[π]-module G. Therefore u n = 0.

Corollary 12.4. Every free, connected, finite CW -complex X of dimension at least 2 satisfies cat LS (X) ≤ n -1.

Proof. Notice that H i (F ; G) = 0 for every free group F and i > 1. Now, for n > 2 the claim follows from Proposition 12.3, while for dim X = 2 the claim follows from Theorem 12.1, item (3).

An invariant called systolic category, cat sys (X), of X was defined in [START_REF] Katz | Lusternik-Schnirelmann category and systolic category of low dimensional manifolds[END_REF]. It is a homotopy invariant, which, furthermore, coincides with the Lusternik-Schnirelmann category cat LS (X) for all 3-manifolds [START_REF] Katz | Bounding volume by systoles of 3-manifolds[END_REF]. We now calculate it for 2-dimensional complexes. For technical reasons, we need to describe the 1-dimensional case first.

Proposition 12.5. Every graph X satisfies cat sys X = cat LS X. The common value is 0 if X is contractible, and 1 otherwise. Proof. A graph Γ which contains nontrivial cycles, satisfies the obvious systolic inequality sysπ 1 (Γ) ≤ length(Γ). The 1-systole of a tree is infinite, being an infimum over an empty set.

Theorem 12.6. Let X be a 2-dimensional complex that is not homotopy equivalent to a wedge of circles. Then we have cat sys (X) = cat LS (X).

Proof. Every free X is homotopy equivalent to a wedge of circles and 2-spheres, cf. [Wa65] and Theorem 12.1. We replace X by such a wedge W . For any K > 0, we can find a metric with sysπ 1 (W ) 2 ≥ K area(W ). Clearly, the 2-systole of W satisfies sys 2 (W ) ≤ area(W ). Therefore cat sys (W ) = cat LS (W ) = 1 in this case.

The theorem now follows from (1.1) (or Theorem 12.1), combined with the homotopy invariance of both categories [START_REF] Katz | Bounding volume by systoles of 3-manifolds[END_REF].

A useful auxiliary space

The main goal of this section is the construction of a space Z obtained by cutting a loose loop of X along a graph, and folding the graph to a tree.

We assume that X is connected. Let p ∈ X be a point on a systolic loop of X. Let f be the distance function from p. Let T r ⊂ Reeb(f, r) be the pruned Reeb tree of the ball of radius r < 1 2 sysπ 1 (X), as in Section 5. Let e ⊂ T r be an open non-root edge of length t 0 , isometrically identified with (0, t 0 ).

Let t ∈ (0, t 0 ) = e. Note that the connected component C t ⊂ X of the level set of f corresponding to t is contractible in X by Remark 7.2. Let λ = f (C t ) = f (t) ∈ R be the value taken by f on C t .

Next, we define new spaces W and Z as follows. Consider the complement X \ C t . Glue back two copies of C = C t to X \ C in order to compactify the two open sets

U -= π -1 (e) ∩ [f < λ] and U + = π -1 (e) ∩ [f > λ]
in the neighborhood of C, where π : X -→ Reeb(f, r) is the quotient map. Denote by W the resulting complex. If C is a tree, no further modifications need to be made.

Otherwise we introduce further identifications on W as follows. If the graph C contains a nontrivial embedded loop, we map this loop isometrically to a concentric circle in the complex plane. We then use complex conjugation, folding the circle to an interval, to introduce the same identification on both copies of C in W .

Inductively, we can eliminate all cycles of both copies of C in W while preserving the structure of a piecewise flat complex (up to subdivision). Denote by C ± the pair of trees thus obtained after elimination of all cycles. Here C ± is attached to U ± as before. By construction, the new space Z = (X \ C) ∪ C -∪ C + has the same fundamental group as Reeb(f, r) \ e, cf. Proposition 5.3. The space Z is equipped with a piecewise flat structure induced from X, and area(Z) = area(X). Let M (X, r) be the minimal model, cf. Section 5. Proof. The lemma follows from Lemma 13.1 and Proposition 5.5.

Remark 13.3. By Proposition 4.2, the fundamental group of the connected components C ± of C does not change as t runs over e. Thus, we can choose Z * so that

(1) either C -is contained in Z * for every t ∈ e;

(2) or C + is contained in Z * for every t ∈ e. Denote by X τ the connected component of the level set of f corresponding to the point τ ∈ e = (0, t 0 ). We have the following lemma.

Lemma 14.2. Let γ be a systolic loop of Z * .

(1) If γ meets C -, then, for every τ ∈ (0, t), length(X τ ) ≥ 2t -2τ ;

(2) If γ meets C + , then, for every τ ∈ (t, t 0 ), length(X τ ) ≥ 2τ -2t.

The bound of Lemma 14.3 can be improved for the root edge e p to area(π -1 (e p )) ≥ 2 .

Indeed, for every τ ∈ [0, ], the level curve S τ = f -1 (τ ) is connected. Furthermore, every systolic loop through p meets S τ , cf. Lemma 7.3. The lower bound of Proposition 8.1 on the length of S τ leads, via the coarea formula, to the desired bound. Thus, each edge of Γ and Γ makes a contribution of one half of its length squared to the total area of X, while the root edge e p makes a contribution equal to the square of its length. Hence, area(X) ≥ 2 + 1 2 E(Γ) + 1 2 E(Γ ) ≥ 2 + 1 2 (r -) 2 ≥ 1 3 r 2 , where the second inequality comes from Proposition 5.1. The proof of Theorem 14.1 is then completed by letting r tend to 1 2 sysπ 1 (X).
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  FIG(Y * ) ≤ FIG(X) -1.(5.2)

  proving equality in (5.2). If removing e disconnects Reeb(f, r), then Y decomposes as Y -∪ Y + , where each of Y ± is connected. Neither component is simply connected by definition of the pruned tree. We haveπ 1 (X) π 1 (Y -) * π 1 (Y + )by the Seifert-van Kampen theorem. Hence FIG(X) = FIG(Y -) + FIG(Y + ). If both Y + and Y -are unfree, we choose the one with the least FIG. If one of them is free, then the other necessarily satisfies (5.2).

  , 5.1.B] and [He82], we use the coarea formula, [Fe69, 3.2.11], [Cha93, p. 267] to obtain area B(x, r)

Lemma 13. 1 .

 1 Let e ⊂ M (X, r) be an open non-root edge. Then the natural map i : Z -→ Y = M (X, r) \ e (13.1) sending U -∪ C -and U + ∪ C + to the endpoints of e induces an isomorphism of fundamental groups (on each connected component). Proof. The proof is immediate from the construction. Lemma 13.2. There exists an unfree connected component Z * of Z with FIG(Z * ) ≤ FIG(X) -1.

14.

  The uniform bound Theorem 14.1. Every finite unfree piecewise flat 2-complex X satisfies the bound SR(X) ≤ 12.Proof. By Corollary 9.3, the bound holds if FIG(X) = 0. Assume that the bound holds if FIG(X) < n. We will prove the bound for the case FIG(X) = n. We use the notation of Section 13. Let e ⊂ T r be an open non-root edge of the pruned tree T r ⊂ M (X, r) where r < 1 2 sysπ 1 (X). Consider the space Z * = Z * (e). By Lemma 13.2, FIG(Z * ) < n, while area(Z * ) = area(X). Suppose there is a connected component C = C t ⊂ X of a level curve of the distance function, with t ∈ e, such that sysπ 1 (X) ≤ sysπ 1 (Z * ). Then,SR(X) = sysπ 1 (X) 2 area(X) ≤ sysπ 1 (Z * ) 2 area(Z) = SR(Z * ) ≤ 12,by the inductive hypothesis. Now let us assume that sysπ 1 (X) ≥ sysπ 1 (Z * (e)), for every non-root edge e ⊂ T r and all t ∈ e. Then every systolic loop of Z * must meet either C -or C + . Indeed, if a systolic loop γ ⊂ Z * lies inZ \ (C -∪ C + ) = X \ C ⊂ X,then sysπ 1 (X) ≤ length(γ) = sysπ 1 (Z * ).

  one necessarily has r = p, s = q and, after reordering, H i is conjugate to H i .

Definition 2.1. We will refer to the number p in decomposition (2.1) as the free index of Grushko of G, denoted FIG(G). Thus, every finitely generated group G with FIG(G) = p can be decomposed as G = F p * H G , (2.2) where F p is free of rank p and FIG(H G ) = 0. The subgroup H G is unique up to isomorphism. Its isomorphism class is called the unfree factor of (the isomorphism class of) G. If X is a finite complex, we set FIG(X) = FIG(π 1 (X)) (2.3) by definition. Note that every finitely generated group G satisfies FIG(G) ≤ corank(G).
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Proof. Suppose that γ meets C -. By Lemma 13.1, the image i(γ) must leave the corresponding endpoint of the edge e ⊂ M (X, r). In particular, γ must meet the level X τ . Moreover, since i(γ) covers (0, t) at least twice, γ meets X τ at least twice.

Choose a subarc α ⊂ U -∪ C -of γ which meets C -, and with its endpoints in X τ . Note that length(α) ≥ 2(t -τ ). Let β ⊂ X τ be an embedded path joining the endpoints of α. By Lemma 13.1, the loop (γ \ α) ∪ β is homotopic to the systolic loop γ in Z * . Since it cannot be shorter than γ, we have length(β) ≥ length(α).

Hence, length(X τ ) ≥ 2(t -τ ), which proves item (1). Item (2) is proved using similar arguments. Lemma 14.3. Assume no connected component (of a level curve of the distance function) C ⊂ X can be found such that sysπ 1 (X) ≤ sysπ 1 (Z * ). Then we have area(π -1 (e)) ≥ 1 2 length(e) 2 . Proof. Let A -and A + denote the set of values t for which there exists a systolic loop of Z * that meets C -and C + , respectively. Then A -and A + are relatively closed subsets of (0, t 0 ). Hence, if A + ∩ A -= ∅ then at least one of the sets A -, A + is the full interval (0, t 0 ).

Suppose A + ∩ A -is nonempty. Then for some t ∈ [0, t 0 ], there exist two systolic loops γ -and γ + of Z * such that γ ± meets C ± . Now items (1) and (2) of Lemma 14.2 provide a lower bound for the length of X τ for every τ ∈ (0, t 0 ). Integrating this lower bound from 0 to t 0 leads, through the coarea formula, to the lower bound area(π -1 (e)) ≥ 1 2 t 2 0 . Suppose A -= (0, t 0 ). Then for all t ∈ e, there exists a systolic loop of Z * that meets C -. Integrating the lower bound provided by item (1) of Lemma 14.2 over [0, t 0 ], we obtain, through the coarea formula, the bound area(π -1 (e)) ≥ t 2 0 . The same bound holds if A + = (0, t 0 ).

The pruned tree T r decomposes into the root edge e p of length ≥ 0 (possibly zero) based at π(p), and two trees Γ and Γ , of height r -, attached to e p at the other endpoint:

T r = e p ∪ Γ ∪ Γ .