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SYSTOLIC VOLUME OF HYPERBOLIC MANIFOLDS AND
CONNECTED SUMS OF MANIFOLDS

STÉPHANE SABOURAU

Abstract. The systolic volume of a closed n-manifold M is defined as
the optimal constant σ(M) satisfying the inequality vol(M) ≥ σ(M) sys(M)n

between the volume and the systole of every metric on M . First, we show
that the systolic volume of connected sums of closed oriented essential
manifolds is unbounded. Then, we prove that the systolic volume of ev-
ery sequence of closed hyperbolic (three-dimensional) manifolds is also
unbounded. These results generalize systolic inequalities on surfaces in
two different directions.

1. Introduction

Consider a nonsimply connected closed n-manifold M endowed with a
Riemannian metric g. The systole of (M, g), denoted sys(M, g), is defined
as the length of the shortest noncontractible loop in M . Define the systolic
volume of M as

σ(M) = inf
g

vol(M, g)
sys(M, g)n

(1.1)

where g runs over the space of all metrics on M .
The systolic volume is a homotopy invariant, cf. [Ba93]. Furthermore, in

a large number of cases, the systolic volume of a manifold depends only on its
homology class in the corresponding Eilenberg-MacLane space (cf. [Ba04]
and [Ba06] for a more precise statement).

A closed oriented n-manifold M is said to be essential if there is a map
Φ : M → K(π, 1) to someK(π, 1)-space such that Φ∗[M ] is nonzero inHn(π; Z).
Note that closed oriented aspherical manifolds are essential. Furthermore,
the connected sum of an essential manifold with any closed oriented manifold
is essential.

M. Gromov [Gr83] proved that the systolic volume of essential manifolds
is bounded away from zero (cf. [Gu] for a recent extension). More precisely,
there exists a positive constant Cn such that every essential n-manifold M
satisfies

σ(M) ≥ Cn. (1.2)

Conversely, I. Babenko [Ba93] showed that a closed oriented manifold with
positive systolic volume is essential.
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2 S. SABOURAU

The systolic inequality (1.2) can be improved by taking into account the
topology of the manifold. For instance, M. Gromov [Gr83, 6.4.C’ & 6.4.D’],
[Gr96, 3.C.3] showed that the systolic volume of a closed manifold M is
bounded from below in terms of its simplicial volume ||M || and its simplicial
height h(M) (cf. Section 2 for a definition). Specifically, there exist two
positive constants Cn and C ′n depending only on n such that every closed
n-manifold M satisfies

σ(M) ≥ Cn
||M ||

logn(1 + ||M ||)
, (1.3)

σ(M) ≥ Cn
h(M)

exp(C ′n
√

log h(M))
. (1.4)

When M is aspherical, n 6= 3, the author [Sa06] showed that the simplicial
volume can be replaced by the minimal entropy in (1.3).

In the two-dimensional case, the inequality (1.3), improved in [KS05],
yields a lower bound on the systolic volume of surfaces (an asymptotic lower
bound for general 2-complexes can be found in [RS]). The examples of
hyperbolic surfaces with large systoles obtained in [BS94] (cf. [KSV05] for
other examples and generalizations in higher dimension) provide a similar
upper bound on the systolic volume. Specifically, there exists an explicit
positive constant c such that every closed orientable surface Σk of genus k
satisfies

π
k

(log k)2
. σ(Σk) . c

k

(log k)2
. (1.5)

The surface Σk can be described as a connected sum of k tori or as a surface
admitting a hyperbolic metric (of area 4π(k − 1)). In higher dimension, no
manifold satisfies these two features, but we can separately study the sys-
tolic volume of the manifolds satisfying one or the other.

The first result we obtain deals with connected sums.

Theorem A. Let M be a closed oriented essential n-manifold. Then, the
systolic volume of the connected sums #kM = M# . . .#M of k copies of M
is unbounded. More precisely,

σ(#kM) ≥ Cn
k

exp(C ′n
√

log k)
(1.6)

where Cn and C ′n are two positive constants depending only on n.

We can also replace #kM by the connected sum M1# · · ·#Mk of k closed
oriented essential n-manifolds, cf. Theorem 3.1 for a slightly more general
version. If M is non-essential then #kM is also non-essential and its systolic
volume vanishes, cf. [Ba93].

Theorem A provides a partial answer to a question raised in [Gr96, p. 330]
and [BB05, Q1] asking for the asymptotic behaviour of σ(#kM). In [BB05],
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I. Babenko and F. Balacheff show that, for every closed n-manifold M , there
exists a constant C(M) depending only on the topology of M such that

σ(#kM) ≤ C(M)
k
√

log log k√
log k

.

This estimate provides a sublinear upper bound on σ(#kM). They also
conjecture that for every closed essential n-manifold M

σ(#kM) ∼ k

(log k)n
.

Example 1.1. The systolic volume of k copies of n-tori goes to infinity
with k, i.e., σ(Tn# · · ·#Tn) → ∞. This result does not follow from the
inequality (1.3) since the simplicial volume ||Tn|| of the torus is zero for
n ≥ 3, cf. [Gr81]. When n = 2, this result follows from the estimate (1.5).

The second result we obtain deals with hyperbolic manifolds.

Theorem B. Let {Mi} be a sequence of infinitely many, non-homeomorphic,
closed hyperbolic n-manifolds. Then, the systolic volume of the Mi’s is un-
bounded, that is

lim
i→∞

σ(Mi) = ∞. (1.7)

This result is already known for n = 2 and n ≥ 4. In the two-dimensional
case, it follows from the asymptotic bound (1.5). When n ≥ 4, H. C. Wang’s
theorem [Wa72] (see [BGLM02] for a quantitative version) asserts that there
are only finitely many closed hyperbolic n-manifolds with bounded simplicial
volume (recall that the simplicial volume is proportional to the hyperbolic
volume, cf. [Th97], [Gr81]). Combined with the inequality (1.3), this im-
plies Theorem B for n ≥ 4. Since the conclusion of H. C. Wang’s theorem
does not hold for n = 3, the three-dimensional case requires other arguments.

This paper is organized as follows. In Section 2, we introduce the notions
of relative systoles and simplicial heights. We also recall a very general
systolic inequality due to M. Gromov, which relates the systolic volume of
a manifold to its simplicial height, generalizing the inequality (1.4). This
systolic inequality plays a central role in the proofs of Theorems A and B.
In Section 3, we introduce some constructions and notations about the con-
nected sums of manifolds. In Section 4, we bound from below the simplicial
height of the connected sum #kM by k, which leads to Theorem A. The
proof of Theorem B proceeds as follows. In [So98], T. Soma proved a finite-
ness result for closed orientable hyperbolic manifolds dominated by the same
manifold. Recently, G. Besson, G. Courtois and S. Gallot [BCG05] found
another proof of this result based on the deformation of representations in
the isometry group of the hyperbolic space. A straightforward generaliza-
tion of their arguments shows that T. Soma’s theorem applies to cycles,
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cf. Sections 5 and 6. We deduce then that the simplicial height of a se-
quence of closed orientable hyperbolic manifolds is unbounded, which leads
to Theorem B.

Acknowledgement. Part of this work was completed during the program
”Spaces of negative curvature” at the Centre Interfacultaire Bernoulli, where
the author tried to construct a counterexample to Theorem B, see Exam-
ple 6.3. The author would like to thank the Centre for its hospitality and
the participants, including F. Balacheff, C. Croke, H. Parlier and A. Reid,
for several helpful discussions.

2. Systolic volume and simplicial height

Let π be a discrete group. A geometric cycle representing a homology
class α in Hn(π; Z) is a map Ψ : X −→ K(π, 1) from a closed oriented n-
dimensional Riemannian pseudomanifold (X, g) (cf. [Sp66] for a definition)
to a K(π, 1)-space such that Ψ∗[X] = α where [X] is the fundamental class
of X. Denote by ψ : π1(X) → π the homomorphism induced by Ψ and
by ψ] the map induced by ψ between the conjugacy classes. The ψ-systole
of (X, g), denoted sysψ(X, g), is defined as the length of the shortest loop
of X whose image by ψ] is nontrivial. The ψ-systolic volume of (X, g) is
defined as

σψ(X, g) =
vol(X, g)

sysψ(X, g)n
. (2.1)

Here, the volume of an n-dimensional Riemannian polyhedron (X, g) is de-
fined as the sum of the n-volumes of all the n-simplices of X. Thus, the
n-volume agrees with the n-dimensional Hausdorff measure. We clearly have

σψ(X) ≤ σ(X). (2.2)

The systolic volume of a homology class α ∈ Hn(π; Z) is defined as

σ(α) = inf
X
σψ(X, g), (2.3)

where X = (X,Ψ, g) runs over all the geometric cycles representing α.
M. Gromov showed in [Gr83, §6] that there exists a positive constant cn

such that every nontrivial homology class α ∈ Hn(π; Z) satisfies

σ(α) ≥ cn (2.4)

By definition, if M is a closed oriented essential manifold, there exists a map
Φ : M → K(π, 1) such that Φ∗[M ] is nonzero in Hn(π,Z). Thus,

σ(Φ∗[M ]) ≤ σ(M). (2.5)

In particular, every closed essential n-manifold M satisfies σ(M) ≥ cn.

Example 2.1. Given a closed Riemannian manifold M , the homology mod-
ulo torsion, denoted H∗(M ; Z)R, is the image of H∗(M ; Z) in H∗(M ; R).
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Suppose there exist n cohomology classes in H1(M ; R) whose cup product
is nonzero in Hn(M ; R). Then, the natural map

Φ : M → K(H1(M ; Z)R, 1) ' H1(M ; R)/H1(M ; Z)R

to the Jacobi variety takes the fundamental class of M to a nonzero class in
homology. The inequality (2.4) yields a systolic inequality for the homology
systole (modulo torsion) defined as sysH(M) = sysφ(M) where φ : π1(M) →
H1(M ; Z)R is the natural homomorphism. Namely,

sysH(M)n ≤ cn vol(M).

Since the stable systole, cf. [CK03] for a definition, satisfies stsys(M) ≤
sysH(M), this leads to the inequality,

stsys(M)n ≤ cn vol(M)

where the constant cn depends only on n (in particular, it is independent of
the (first) Betti number of M). Compare with [BK03], [IK04] where more
general systolic inequalities have been established for the stable systole but
with a constant depending on the Betti numbers of M . See also [BK03],
[BK04], [IK04], [BCIK06], [KR] for examples of sharp systolic inequalities
for the stable and conformal systoles along with a description of the extremal
metrics and [CK03] for a general account on the subject.

By using regularization techniques on geometric cycles, M. Gromov also
showed that the lower bound (2.4) can be improved by taking into account
the topology of the representatives of the homology class α as follows.

Definition 2.2 ([Gr96, 3.C.3]). The simplicial height of a homology class α ∈
Hn(π; Z), denoted h(α), is the minimal possible number of simplices of an
oriented pseudomanifold X which admits a map Ψ : X → K(π, 1) to some
K(π, 1)-space such that Ψ∗[X] = α where Ψ∗ : Hn(X; Z) → Hn(π; Z) is the
homomorphism induced by Ψ. The simplicial height of a closed orientable
manifold M , denoted h(M), is defined as the simplicial height of the im-
age of its fundamental classs under the homomorphism Φ∗ : Hn(M ; Z) →
Hn(π1(M); Z) induced by its classifying map.

The following estimate, to compare with (1.4), improves the bound (2.4).

Theorem 2.3 ([Gr83, 6.4.C’] & [Gr96, 3.C.3]). There exist two positive con-
stants Cn and C ′n depending only on n such that every nontrivial homology
class α ∈ Hn(π; Z) satisfies

σ(α) ≥ Cn
h(α)

exp(C ′n
√

log h(α))
. (2.6)

3. Relative systolic volume of connected sums of manifolds

Fix n ≥ 3. Let Φi : Mi −→ Ki = K(πi, 1), 1 ≤ i ≤ k, be maps between
closed oriented n-dimensional manifoldsMi to aspherical spacesKi with fun-
damental group πi. The maps Φi induce homomorphisms φi : π1(Mi) −→ πi
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between the fundamental groups and homomorphisms Φi,∗ : Hn(Mi; Z) −→
Hn(πi; Z) between the n-th homology groups. Note that the Ki are K(πi, 1)-
spaces.

Let M be the connected sum of M1,M2, . . . ,Mk, that is

M = M1#M2# . . .#Mk,

and K be the bouquet of the aspherical spaces K1,K2, . . . ,Kk, that is

K = K1 ∨K2 ∨ · · · ∨Kk.

The space K is also aspherical. Since n ≥ 3, the fundamental groups of M
and K are respectively isomorphic to the following free products

π1(M) = π1(M1# . . .#Mk) ' π1(M1) ∗ · · · ∗ π1(Mk)

π1(K) = π1(K1 ∨ · · · ∨Kk) ' π1 ∗ · · · ∗ πk.
We will denote by π the fundamental group of K. Thus, K is a K(π, 1)-
space with π ' π1 ∗ π2 ∗ · · · ∗ πk.

Define a map Φ : M −→ K as follows

Φ : M1# . . .#Mk −→M1 ∨ · · · ∨Mk −→ K1 ∨ · · · ∨Kk. (3.1)

The map Φ first contracts the attaching spheres of M1# . . .#Mk into a
point, then takes each component Mi of the bouquet M1 ∨ · · · ∨Mk to the
corresponding component Ki of K1 ∨ · · · ∨Kk through Φi. The homomor-
phism φ : π1(M) −→ π induced by Φ between the fundamental groups
agrees with the homomorphism φ1 ∗ · · · ∗ φk from π1(M1) ∗ · · · ∗ π1(Mk) to
π1 ∗ · · · ∗ πk which takes every element x of π1(Mi) to φi(x) in π1 ∗ · · · ∗ πk.

Using the previous notations, we can state the following result, whose
proof occupies the next section.

Theorem 3.1. Let Φi : Mi −→ Ki, 1 ≤ i ≤ k, be maps as above. Suppose
that, for every i, the class Φi∗[Mi] is nontrivial in Hn(πi; Z). Then,

σφ(M1# . . .#Mk) ≥ Cn
k

exp(C ′n
√

log k)
, (3.2)

where Cn and C ′n are two positive constants depending only on n.

Remark 3.2. The assumptions of Theorem 3.1 mean exactly that the man-
ifolds Mi are essential. Using the inequality (2.2), Theorem 3.1 yields The-
orem A.

Remark 3.3. It should be noted, cf. [Ba95, BB05, Ba06], that adding a
non-essential manifold to an essential manifold does not change the systolic
volume. More precisely, let M and N be two closed oriented n-manifolds
with M essential and N non-essential then σ(M#N) = σ(M).
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4. Proof of Theorem A

Let us prove Theorem 3.1, which implies Theorem A.
Using the notations of the previous section, the n-th homology group

Hn(π; Z) of the bouquet K of the K(πi; Z)-spaces Ki is given by

Hn(π; Z) '
k⊕
i=1

Hn(πi; Z).

By construction, the map Φ, cf. (3.1), takes the fundamental class of M to
the sum of the Φi∗[Mi], that is

Φ∗[M ] = Φ1∗[M1]⊕ · · · ⊕ Φk∗[Mk] ∈ Hn(π; Z).

Let us show that the simplicial height of Φ∗[M ] is bounded from below
by k. Consider a map Ψ : X −→ K from an oriented n-dimensional pseu-
domanifold X to K such that

Ψ∗[X] = Φ∗[M ], (4.1)

where Ψ∗ : Hn(X; Z) → Hn(π; Z) is the homomorphism beween the n-th
homology groups induced by Ψ. Denote by ψ : π1(X) −→ π the homomor-
phism between the fundamental groups induced by Ψ.

By Grushko’s theorem [Ma77, §7.6], the image G = ψ(π1(X)) of ψ de-
composes into a free product of subgroups

G = Fp ∗H1 ∗ · · · ∗Hr ⊂ π

such that Fp is free of rank p, while every Hi is nontrivial, non isomorphic
to Z and freely indecomposable. Furthermore, given another decomposition
of this sort, say G = Fq ∗H ′

1 ∗ · · · ∗H ′
s, one necessarily has p = q, r = s and,

after reordering, H ′
i is conjugate to Hi.

STEP 1. Our first step amounts to drop the free factor Fp in the Grushko
decomposition of G.

The homomorphism ψ : π1(X) → π factors through the following com-
mutative diagram

G

��
π1(X)

ψ
//

<<yyyyyyyyy
π

where π1(X) → G is the epimorphism induced by ψ and G ↪→ π is the
monomorphism given by the inclusion. Therefore, the map Ψ factors, up
to homotopy, through the classifying maps induced by the above epimor-
phism and monomorphism, according to the following commutative (up to
homotopy) diagram
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K ′

��

X
Ψ

//

>>||||||||
K

where K ′ is a K(G, 1)-space.
The composite Ψ′ : X → K ′ → K of these classifying maps and the

map Ψ take [X] to the same class, that is

Ψ∗[X] = Ψ′
∗[X]. (4.2)

Since G = Fp ∗H with H = H1 ∗ · · · ∗Hr, the Eilenberg-MacLane space
K ′ = K(G, 1) can be realized (up to homotopy equivalence) as K ′ = K ′′ ∨∨p
i=1 S

1, where K ′′ is a K(H, 1)-space. The projection of K ′ to K ′′ defines
a map K ′ → K ′′. Consider the natural composite

Θ : X → K ′ → K ′′ → K

where the map K ′′ → K is the classifying map induced by the inclusion
homomorphism H ↪→ G. By construction, we have Θ∗[X] = Ψ′

∗[X]. From
(4.1) and (4.2), this relation can be written as

Θ∗[X] = Φ∗[M ].

Furthermore, the image of the homomorphism θ : π1(X) → G induced by Θ
agrees with H, that is θ(π1(X)) = H.

This shows that, for our purpose, we can drop the free factor in Grushko’s
decomposition.

STEP 2. Consider now another natural composite

Θj : X Θ−→ K → Kj ,

where the second map K → Kj is the projection of K to Kj . Note that
the homomorphism pj : π → πj induced by K → Kj is trivial on each free
factor πi of π with i 6= j.

Since Θ∗[X] = Φ∗[M ], the homomorphism between the n-th homology
groups induced by Θj takes [X] to the nontrivial class Φj∗[Mj ]. Therefore,

the homomorphism θj : π1(X) θ−→ H
pj−→ πj induced by Θj is nontrivial.

STEP 3. By Kurosh’s theorem [Ma77, §7.5], the subgroup Hi of π =
π1 ∗ · · · ∗ πk is conjugate in π to a subgroup of πj with j = τ(i). This
property fails if Hi is a nontrivial free subgroup of π. Indeed, one can define
a homomorphism from Fp to π by taking each element of a natural basis
of Fp to any element of π. This justifies our first step.

Thus, if j is different from τ(i), then pj(Hi) is trivial. Therefore, the
map τ from {1, · · · , r} to {1, · · · , k} is surjective, otherwise there would be
a trivial homomorphism θj : π1(X) → H → πj with j /∈ Im τ , contradicting
Step 2. Thus, we have r ≥ k.
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STEP 4. We can now conclude the proof of Theorem 3.1, which implies
Theorem A.

By Grushko’s theorem (cf. [Ma77, §7.6]), we have rankG ≥ r. Thus,

rankπ1(X) ≥ rankG ≥ r ≥ k.

Since the number of 1-simplices in X bounds from above the rank of π1(X),
we obtain

h(Φ∗[M ]) = h(Ψ∗[X]) ≥ k,

where the simplicial height h is defined in Section 2.
Using (2.6), we deduce

σφ(M1# . . .#Mk) ≥ Cn
k

exp(C ′n
√

log k)
.

Hence Theorem 3.1.

5. Deformations of representations in hyperbolic spaces

Let P be a finite simplicial n-complex and P̃ be its universal cover (on
which π1(P ) acts by deck transformations). Let ρ : π1(P ) → Isom(Hn)
be a representation from π1(P ) to the isometry group of the hyperbolic n-
space Hn. Choose a piecewise smooth ρ-equivariant map f : P̃ → Hn. The
pullback f∗(ω) of the volume form ω on Hn descends to a simplicial form
on P , still denoted by f∗(ω). Define the ρ-volume of an n-cycle c of P as
follows:

vol(ρ, c) =
∫
c
f∗(ω).

The ρ-volume of an n-cycle is independent of the choice of f . Indeed,
two piecewise smooth ρ-equivariant maps f0 and f1 from P̃ to Hn are ρ-
equivariantly homotopic. Thus, the pullbacks f∗t (ω) of the volume form ω
on Hn by this ρ-equivariant homotopy ft passe to the quotient on P . Their
quotients on P define a homotopy between f∗0 (ω) and f∗1 (ω) (viewed as sim-
plicial forms on P ). Thus, these two forms lie in the same cohomology class
through the De Rham isomorphism for simplicial complexes, cf. [Sw75].
Therefore, the ρ-volume vol(ρ, c) of an n-cycle c of P is well-defined (see
[Du99] for further details).

The following proposition generalizes to finite simplicial complexes a re-
sult established in [Re96] for closed oriented 3-manifolds and in [BCG05, §6]
for closed oriented n-manifolds. Note that if c is not a cycle but only a chain,
the ρ-volume of c depends on the ρ-equivariant map f and the conclusion
of the proposition fails.

Proposition 5.1. Let c be an n-cycle of a finite simplicial n-complex P .
There exists a finite set Λ ⊂ R such that the ρ-volume of c lies in Λ for
every representation ρ : π1(P ) → Isom(Hn).
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Proof. We adapt the arguments of [BCG05, §6], developing only the points
that differ from that reference.

Since the space of representations R from π1(P ) to Isom(Hn) is an al-
gebraic variety, it has finitely many path-connected components. For our
purpose, it is therefore enough to show that vol(., c) is constant on each of
these path-connected components.

Let ρt : π1(P ) → Isom(Hn), t ∈ R, be a C1-family of representations.
By [BCG05, Lemme 6.2], there exists a C1-family of nondegenerate ρt-
equivariant affine maps ft : P̃ → Hn defined for |t| small enough. Here,
a map from a simplicial complex to Hn is said to be affine if it is affine along
the geodesic arcs of every (Euclidean) simplex. Such a map is said to be
nondegenerate if the image of every simplex is a nondegenerate (geodesic)
simplex of Hn. Strictly speaking, this result has been stated in [BCG05] for
closed manifolds, but the proof extends to finite polyhedra.

Fix an orientation on every n-simplex of P . Let c =
∑

i∈I kisi be an
n-cycle of P , where the si are n-simplices of P . Let F be an oriented 2-
codimensional simplex of P . An n-simplex s of P with F as an (n− 2)-face
has exactly two (n−1)-faces meeting along F . The barycenters of these two
faces can be joined by a segment of s. The link around F is defined as the
union of all these segments. Thus, the link around F is a (possibly multi-
connected) graph Γ whose edges are in one-to-one correspondence with the
n-simplices of P with F as a face. The orientation of F along with the
orientations of the n-simplices of P induce an orientation on the edges of Γ.

Let sj , j ∈ JF ⊂ I, be the n-simplices si of c with F as a face. Denote
by ej the (oriented) edges of Γ corresponding to the n-simplices sj of P .
Since c is a cycle, the 1-chain e =

∑
j∈JF

kjej of Γ is a cycle too.
The geodesic simplex Ft := ft(F ) of Hn is endowed with the orientation

of F . Since Hn is an oriented manifold, the link around Ft is a circle Ct en-
dowed with the induced orientation. The map ft induces a map ϕt : Γ → Ct
between the links. The homomorphism ϕt∗ : H1(Γ,Z) → H1(Ct,Z) ' Z
induced by ϕt takes the homology class of the 1-cycle e to an integral mul-
tiple k of the fundamental class of Ct. Since ft is nondegenerate for |t| small
enough, the integer k, also noted degF ft, does not depend on t for |t| small
enough.

Given an n-simplex s of P with F as a face, let θ(t;F, s) be the nonnega-
tive hyperbolic dihedral angle of ft(s) at Ft. Define εi as 1 if the restriction
of ft to the n-simplex si (which is an affine map) preserves the orientation
and as −1 otherwise. As previously, since ft is nondegenerate for |t| small
enough, the value εi does not depend on t for |t| small enough.

By adapting the proofs of the lemmas 6.3 and 6.4 in [BCG05], one can
show the following

Lemma 5.2 (Compare with [BCG05, Lemmes 6.3 & 6.4]). We have

2π degF ft = ±
∑
j∈JF

εjkjθ(t;F, sj).
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In particular,

d

dt

 ∑
j∈JF

εjkjθ(t;F, sj)

 = 0

for |t| small enough.

We can now conclude as in [BCG05, §6]. By definition,

vol(ρt, c) =
∫
c=

P
kisi

f∗t (ω)

=
∑
i∈I

εiki vol(ft(si)).

Its derivative can be expressed using Schläfli’s differential formula, cf. [Mi94],

d

dt
vol(ρt, c) =

∑
i∈I

εiki

− 1
n− 1

∑
F⊂si

d

dt
(θ(t;F, si)) voln−2(Ft)


= − 1

n− 1

∑
F⊂c

d

dt

 ∑
j∈JF

εjkjθ(t;F, sj)

 voln−2(Ft)

for |t| small enough. By Lemma 5.2, this expression is equal to zero. There-
fore, vol(., c) is constant on the path-connected components of the space of
representations R. Hence the result. �

6. Proof of Theorem B

Proposition 6.1. Let {Mi} be a sequence of infinitely many, non-homeomorphic,
closed oriented hyperbolic n-manifolds. Then, the sequence {h(Mi)} of their
simplicial heights is unbounded.

Proof. We follow the arguments developed in [BCG05, Théorème 6.6], which
provide an alternate proof to a result of T. Soma [So98].

We argue by contradiction and assume that the simplicial height of the
manifolds Mi is bounded by an integer N , cf. Definition 2.2. Let Ψi : Pi →
Mi be a map from a finite simplicial complex Pi with at most N simplices
which induces an epimorphism Ψi∗ : Hn(Pi,Z) → Hn(Mi,Z) between the n-
th homology groups. Such maps exist by assumption since Mi is aspherical,
that is a K(π1(Mi), 1)-space. For every integer i, choose a family of n-cycles
c1i , . . . , c

mi
i of Pi inducing in homology a basis of the Z-module Hn(Pi,Z).

For every pair i, j such that Pi = Pj (notice that there are finitely many
simplicial complexes Pi), we can further impose that cki = ckj for every k =
1, . . . ,mi(= mj). Since the homomorphism Ψi∗ : Hn(Pi,Z) → Hn(Mi,Z) is
nonzero, there is an n-cycle ci = cki

i of Pi such that Ψi∗[ci] = di[Mi] where
di is a nonzero integer. The properties of the simplicial volume, cf. [Gr81],
imply that

||[ci]|| ≥ ||Ψi∗[ci]|| = |di| · ||Mi||.
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Since Mi is a closed hyperbolic manifold, its simplicial volume, which is
proportional to its volume cf. [Gr81], is bounded away from zero, cf. [Th97].
Thus, the sequence {di} is bounded (recall that ||[ci]|| takes finitely many
values).

Let ρi : π1(Pi) → Isom(Hn) be the representation induced by Ψi. By
construction, the relation

vol(ρi, ci) = di volMi

holds for every i. By Proposition 5.1, the volume of the closed hyper-
bolic manifolds Mi takes finitely many values (recall that di is nonzero
and bounded). Therefore, there are finitely many closed hyperbolic mani-
folds Mi, cf. [Th97]. �

Remark 6.2. To cover the nonorientable case, one can use Z2 homology co-
efficients in the definition of the simplicial height, cf. Definition 2.2. How-
ever, the example of a nonorientable closed hyperbolic 3-manifold admit-
ting maps of Z2-degree 1 onto infinitely many closed hyperbolic manifolds,
cf. [BW96], [Ro95], shows that the conclusion of Proposition 6.1 fails in this
case.

We can now conclude.

Proof of Theorem B. Combined with the inequality (1.4), Proposition 6.1
implies Theorem B in the orientable case. In the nonorientable case, we con-
sider the orientable double Riemannian cover M → M . Since the quotient
map from M to M is a local isometry which induces an injective homomor-
phism between the fundamental groups, we have sys(M) ≥ sys(M). On the
other hand, vol(M) = 2 vol(M). Hence σ(M) ≤ 2σ(M). Now, since only
finitely many hyperbolic n-manifolds have the same volume when n ≥ 3,
no subsequence of {M i} is constant. By Theorem B (orientable case), the
systolic volume of the M i’s, and so of the Mi’s, is unbounded. Hence the
result. �

Example 6.3 (Systolic volume of tubes). Let T2 be a flat 2-torus with
systole `. For every prime class c ∈ π1(T2) ' Z2, we can fill T2 into a solid
3-torus T 3

c such that the kernel of the π1-homomorphism induced by the
inclusion ∂T 3

c ⊂ T 3
c is generated by c. For every prime c ∈ π1(T2), we can

construct a metric g on T 3
c such that

(C1) g agrees with the initial flat metric on ∂T 3
c = T2;

(C2) sys(∂T 3
c , g) = `.

Is it possible to do so while controlling the volume of the filling? More
precisely, is there a constant V0 such that, for every prime c ∈ π1(T2), there
exists a metric g on ∂T 3

c = T2 satisfying the conditions (C1) and (C2) with
vol(∂T 3

c , g) ≤ V0? This question, which naturally arises when one tries
to construct a counterexample to Theorem B (see below), has a negative
answer: there is no such uniform upper bound on the volume of ∂T 3

c (for a
metric satisfying (C1) and (C2)). Specifically, let cn ∈ π1(T2) be a sequence
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of infinitely many distinct prime classes and gn be a sequence of metrics
on T 3

cn satisfying (C1) and (C2), then vol(gn) →∞.
To prove this result, we argue by contradiction and consider a complete

hyperbolic 3-manifold M of finite volume with one cusp. Cut this cusp along
a horosphere far enough and remove the noncompact convex component.
One obtains a compact hyperbolic 3-manifold with boundary a flat torus T2

along which we glue a solid 3-torus T 3
c . These Dehn surgeries yield infinitely

many, non-homeomorphic, closed 3-manifolds Mc admitting a hyperbolic
metric, cf. [Th97]. By construction, the systole of Mc agrees with ` and the
volume of Mc is less than vol(M) + V . Thus, the systolic volume of Mc is
bounded. Hence a contradiction with Theorem B.
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