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Abstract

Neuroscience studies face challenges in gathering large datasets, which limits the use of machine learning (ML)

approaches. One possible solution is to incorporate additional data from large public datasets; however, data collected

in different contexts often exhibit systematic differences called dataset shifts. Various factors, e.g., site, device type,

experimental protocol, or social characteristics, can lead to substantial divergence of brain signals that can hinder the

success of ML across datasets. In this work, we focus on dataset shifts in recordings of brain activity using MEG and

EEG. State-of-the-art predictive approaches on M/EEG signals classically represent the data by covariance matrices.

Model-based dataset alignment methods can leverage the geometry of covariance matrices, leading to three steps: re-

centering, re-scaling, and rotation correction. This work explains theoretically how differences in brain activity, anatomy,

or device configuration lead to certain shifts in data covariances. Using controlled simulations, the different alignment

methods are evaluated. Their practical relevance is evaluated for brain age prediction on one MEG dataset (Cam-

CAN, n=646) and two EEG datasets (TUAB, n=1385; LEMON, n=213). Among the same dataset (Cam-CAN), when

training and test recordings were from the same subjects but performing different tasks, paired rotation correction was

essential (δR2 = +0.13 (rest-passive) or +0.17 (rest-smt)). When in addition to different tasks we included unseen

subjects, re-centering led to improved performance (δR2 = +0.096 for rest-passive, δR2 = +0.045 for rest-smt). For

generalization to an independent dataset sampled from a different population and recorded with a different device,

re-centering was necessary to achieve brain age prediction performance close to within dataset prediction performance.

This study demonstrates that the generalization of M/EEG-based regression models across datasets can be substantially

enhanced by applying domain adaptation procedures that can statistically harmonize diverse datasets.

Keywords: MEG/EEG, machine learning, dataset shift, domain adaptation, Riemannian geometry, brain age

1. Introduction

Magneto- and electroencephalography (M/EEG) are

brain recording methods with a high temporal resolution

on the order of milliseconds, offering a unique and non-

invasive neuroscience method enabling basic research and

∗Correspondence: apolline.mellot@inria.fr, 1 Rue Honoré

d’Estienne d’Orves, 91120 Palaiseau

clinical applications (Hari and Puce, 2017). While quan-

titative approaches to analyzing M/EEG signals have his-

torically focused on detecting statistical effects, the field

has progressively embraced machine learning (ML) ap-

proaches whose success is evaluated through predictive

modeling. In the context of brain health, classification

models are widely used for various applications, e.g., for



epileptic seizure detection (Tzallas et al., 2009), Brain

Computer Interface (BCI) (Lotte et al., 2018), or auto-

matic sleep staging (Chambon et al., 2018; Perslev et al.,

2021). Even though the regression context has been less

explored in the literature, it has been shown to be success-

ful for biomarker learning, e.g., focusing on brain age as an

application (Al Zoubi et al., 2018; Engemann et al., 2020;

Sun et al., 2019). In the following, we focus on methods

for regression modeling in the particular case of statistical

discrepancies between datasets, for example, due to dif-

ferent populations, acquisition devices, or tasks performed

during the recording. In other words, we aim to fit a re-

gression model on one dataset and apply it on another.

Different approaches have been explored to predict cog-

nitive-behavioral or biomedical outcomes from M/EEG

data. Methods like Common Spatial Filtering (CSP) (Koles,

1991) or Source Power Comodulation (SPoC) (Dähne et al.,

2014) build on top of supervised spatial filtering for dimen-

sionality reduction and unmixing of overlapping, yet physi-

ologically distinct, signal generators. Lately, deep learning

based techniques have been the focus of interest as they

can learn good feature representation directly from the raw

signal, hence potentially simplifying processing pipelines

(Roy et al., 2019; Schirrmeister et al., 2017). Indepen-

dently, an alternative approach has emerged from the BCI

community which, like spatial filter methods, summarizes

M/EEG data by covariance matrices. But instead of de-

composing covariance matrices into filters, this approach

uses mathematical tools motivated by the Riemannian ge-

ometry of the space of symmetric positive definite (SPD)

matrices (Barachant et al., 2012, 2013) to define non-linear

feature transformations that facilitate statistical learning

with linear models. These techniques perform remarkably

well given their simplicity (Congedo et al., 2013; Nguyen

et al., 2017; Sabbagh et al., 2020) and are competitive

with methods exploiting anatomical information or end-

to-end deep learning approaches (Engemann et al., 2022).

As the field of Riemannian geometry applied to M/EEG is

beginning to expand and consolidate, many opportunities

remain unexplored. In this work, we focus on investigat-

ing the utility of the Riemannian framework for defining

dataset-harmonizing transformations.

The recent emergence of large public databases and

advances in ML have led to promising prediction mod-

els. Yet, these models can be sensitive to shifts in the

data distribution and may perform poorly when applied to

datasets from other clinical or research contexts. We refer

to these gaps between datasets as dataset shifts (Dockès

et al., 2021; Quinonero-Candela et al., 2008). This is-

sue has also been referred to as batch effects Li et al.

(2022). In this work, we focused on domain adaptation

techniques that attempt to deal with these shifts. We aim

for a predictive model to not only perform well on the

data it has been trained on, called source domain, but

also when applied to data from a distinct statistical dis-

tribution, called target domain. Many domain adaptation

methods exist, ranging from simple approaches minimiz-

ing the difference between the second-order statistics of

source and target domains (Sun et al., 2017), to more so-

phisticated models measuring the distance between deep

representations of the source and target domains based on

optimal transport (Damodaran et al., 2018). In the con-

text of brain data analysis, Canonical Correlation Analy-

sis (CCA) and multiway CCA (MCCA) have been largely

applied to find common brain activity and combine data

across subjects when the same stimulus is presented to

them (de Cheveigné et al., 2019; Dmochowski et al., 2018;

Lankinen et al., 2014, 2018). The experimental setups we

are interested in do not meet these assumptions, for ex-

ample, we consider recordings at rest and from different

datasets with different subjects for which CCA or MCCA

are not adapted. As we wish to work with M/EEG covari-

ance matrices as basic signal representations for machine

learning, we focus on techniques that explicitly use the ge-

ometry of SPD matrices to model the statistical distribu-

tions of distinct source and target datasets. One first ap-
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proach proposed in the BCI context is to re-center the dis-

tributions to a common point of the SPD space (Li et al.,

2021; Yair et al., 2019; Zanini et al., 2018). To get a better

alignment of the distributions, (Bleuzé et al., 2021; Maman

et al., 2019; Rodrigues et al., 2019) propose to complement

this re-centering step by adding a re-scale and a rotation

correction. These covariance-based methods were initially

developed to solve classification problems and are not nec-

essarily applicable to regression without modification. In

addition, most of them require labels in the target domain

(Bleuzé et al., 2021; Rodrigues et al., 2019) for alignment.

We focus on unsupervised alignment methods that can be

readily used for regression modeling.

In this paper, we develop a model-based approach for

tackling dataset shifts in M/EEG data in which we con-

sider re-centering, re-scaling, and rotation techniques from

previous research on classification (Bleuzé et al., 2021; Ma-

man et al., 2019; Rodrigues et al., 2019) to regression con-

texts, while assuming that no labeled data is available in

the target domain. We build on top of the conceptual

framework from (Sabbagh et al., 2020), linking M/EEG-

based regression to neural signal models, to investigate

how dataset shifts can be expressed and handled with an

appropriate generative model linking brain activity to both

M/EEG measurements and biomedical outcomes. We elu-

cidate how observed dataset shifts can be conceptually de-

composed into differences in brain activity and differences

in the relationship between the location and orientation

of M/EEG signal generators relative to the recording de-

vice that reflects the device type, body posture, and indi-

vidual brain anatomy. With this approach, we establish

the connection between particular alignment steps and the

parameters of the generative model as well as the physi-

ological and physical shifts they are meant to compen-

sate for. Using statistical simulations, based on the gen-

erative model, we then explore different dataset-shift sce-

narios and investigate the effectiveness of data alignment

techniques — combined and in isolation. Through empir-

ical benchmarks on the Cam-CAN MEG dataset (n=646)

and two EEG datasets (TUAB-normal, n=1385; LEMON,

n=213), we evaluate the practical impact of these align-

ment techniques for boosting the generalization capacity

of regression models across acquisition protocols (resting

state vs. audiovisual & motor tasks) and cohorts (clinical

EEG versus research & laboratory-grade EEG). We focus

on brain age as it is a label easy to collect and valuable as

a surrogate biomarker.

The article is organized as follows. In Section 2, we ex-

tend the generative model from (Sabbagh et al., 2020) to

express and decompose dataset shifts into distinct factors,

which motivates the three steps we use to compensate for

dataset shifts: re-centering, re-scaling, and rotation cor-

rection. In Sections 3 and 4, we assess the robustness

of these alignment steps using simulations and real-world

M/EEG data.

2. Methods

To describe dataset shifts that can occur with M/EEG

signals, we extend the generative model of M/EEG regres-

sion tasks from (Sabbagh et al., 2020) where the predic-

tion outcome is continuous. A canonical example that we

will use in this work is brain age prediction (Engemann

et al., 2022; Xifra-Porxas et al., 2021). This model has

also been applied to event-level regression of muscular ac-

tivity with electromyogram and MEG recordings (Sabbagh

et al., 2020). We describe and discuss the parameters of

the generative model to understand which mechanisms can

explain dataset shifts. Finally, we present various align-

ment strategies aiming to draw a geometrical analysis of

the possible shifts and compensate for them.

2.1. Statistical generative model of M/EEG signals

Generative model. M/EEG signals x(t) ∈ RP are multi-

variate time series recorded with P sensors at (or above)

the surface of the scalp, and that capture the electrical
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x Scalar

x Vector

X Matrix

Et[x] Expectation of x w.r.t t

N (µ, σ2) Normal distribution of mean µ

and variance σ2

S++
P Space of P × P symmetric positive

definite matrices

O(N) Group of N ×N orthogonal matrices

IP Identity matrix of size P

( )⊤ Transposition of a vector or a matrix

∥X∥F Frobenius norm of matrix X

diag(X) Diagonal of matrix X

log(X) Logarithm of matrix X

Xα Power α of matrix X

uvec(X) Vector formed from the upper triangular

values of a symmetric matrix X

Table 1: Notations

or magnetic activity generated by large-scale neural syn-

chrony. These neurophysiological generators are not di-

rectly observable, and here we focus on the situation in

which we do not have access to information about the

individual brain anatomy, e.g., when MRI scans are not

available. Thus, we use a statistical approach inspired by

blind source separation to approximate the signal’s genera-

tive mechanism. We model the M/EEG signals as a linear

combination of statistical brain generators corrupted by

some additive noise. In this work, we consider datasets

with N observations X = {xi, i = 1 . . . N} for which one

observation corresponds to one subject. One observation

xi(t) ∈ RP is written as:

xi(t) = A′si(t) +A′′ni(t) , (1)

where si(t) ∈ RQ is the underlying signal generating this

observation withQ ≤ P , and ni(t) ∈ R(P−Q) ∼ N (0, σ2
nIP−Q)

causes a contamination due to noise. We denote A′ =

[a1, . . . ,aQ] ∈ RP×Q the mixing matrix whose columns

are the spatial patterns of the neural generators, andA′′ =

[aQ+1, . . . ,aP ] ∈ RP×(P−Q) the matrix of the spatial noise

patterns. Note that in this model, the noise is not consid-

ered independent across sensors but spatially correlated,

as is typically the case with environmental or physiologi-

cal artifacts present in M/EEG data.

This model can be rewritten by combining the gener-

ator patterns and the noise in a single invertible matrix

A = [a1, . . . ,aQ,aQ+1, . . . ,aP ] ∈ RP×P which is the con-

catenation of A′ and A′′. The model is thus given by

xi(t) = Aηi(t) , (2)

where ηi(t) ∈ RP denotes the concatenation of si(t) and

ni(t). In this model, we assume A to not depend on i

nor t. It is also assumed that the statistical generators

si(t) = {si,j(t), j = 1 . . . Q} are zero-mean, uncorrelated,

and independent from the noise. In other words, we as-

sume that the noise generated by artifacts is completely

independent of brain activity. In the following, j will de-

note the generator’s index.

We now consider the covariances Ci of M/EEG signals

Xi ∈ RP×T with T the number of time samples:

Ci =
XiX

⊤
i

T
∈ RP×P . (3)

The covariance of M/EEG signals holds the sensors’ vari-

ance on its diagonal. In our statistical model and with

the previous assumptions, the covariance of the statisti-

cal generators is a diagonal matrix whose elements are

the variances of each generator Et

[
si(t)s

⊤
i (t)

]
= diag(pi)

with pi ∈ RQ, also referred to below as “powers”. Thus,

we can conveniently summarize the M/EEG covariances

as follows:

Ci = AHiA
⊤ (4)

where Hi = Et

[
ηi(t)η

⊤
i (t)

]
∈ RP×P is a block matrix of

diag(pi) on the upper Q×Q part, and the noise covariance

is in the lower (P −Q)× (P −Q) block. We here assume

that Et

[
si(t)n

⊤
i (t)

]
= 0, meaning that the matrix Hi is

block diagonal.
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For regression modeling from M/EEG, it is natural to

model the outcome yi as a linear combination of a function

of the generators’ power pi,j = Et[s
2
i,j(t)] ∈ R:

yi = β0 +

Q∑
j=1

βjf(pi,j) + ϵi , (5)

where βj are regression coefficients, f is a known function,

and ϵi ∼ N (0, σ2
ϵ ) is an additive random perturbation. For

example, ageing (y) could impact brain activity in distinct

brain networks (s) to different extents (βj , . . . , βQ). This

could lead for example to a log-decay or log-increase of

brain activity per year, hence, motivating a logarithmic

function f = log, which is a wide-spread function describ-

ing the scaling of various facets of brain structure and

function (Buzsáki and Mizuseki, 2014) including neural

firing rates, axonal diameters, synaptic weights, and, im-

portantly power and frequency scaling.

Replacing the generator power with the empirical av-

erage of the squared generators, the model is given by:

yi = β0 +

Q∑
j=1

βj log

(
1

T

T∑
t=1

s2i,j(t)

)
+ ϵi . (6)

Model violations. The assumption that A does not de-

pend on the observation (subject) is not valid when work-

ing with actual M/EEG data. Each subject has a different

head morphology, which results in slight variations in their

respective mixing matrices: Ai = A+Ei with Ei ∈ RP×P .

When subscript i is omitted below, A represents the aver-

age head morphology of the subjects. In our simulations

below, we will assume for simplicity that Ei is drawn from

N (0, σ2
AIP ).

Riemaniann geometry basics. We are working with covari-

ance matrices that belong to the space S++
P of symmet-

ric positive matrices. These matrices lie in a Riemannian

manifold that can be equipped with an appropriate dis-

tance (Förstner and Moonen, 2003):

δR(C1,C2) =
∥∥log(C−1

1 C2)
∥∥
F
=

[
P∑

k=1

log2λk

] 1
2

, (7)

where λk, k = 1, . . . P are the real eigenvalues of C−1
1 C2.

Note that the matrix logarithm of an SPD matrix C is

computed via its eigenvalue decomposition with the log

function applied to its eigenvalues:

log(C) = Udiag (log(λ1), . . . , log(λP ))U
⊤ . (8)

Similarly, the power α ∈ R+
∗ of an SPD matrix is:

Cα = Udiag(λα
1 , . . . , λ

α
P )U

⊤ . (9)

We can then find the geometric mean, or Riemannian

mean, of a set of covariances as the minimum of the func-

tion:

C̄ = argmin
C∈S++

P

N∑
i=1

δ2R(C,Ci) . (10)

Regression method. The approach we focus on in this work

involves learning linear models from covariance matrices

(Barachant et al., 2012, 2013). Sabbagh et al. in (Sab-

bagh et al., 2019, 2020) show that this Riemann-based

model is robust to different preprocessing choices and to

model violation. This model also stands out in terms of

performance when applied for regression tasks to M/EEG

data in various settings.

In this framework, covariances Ci are used as input of

the model. The covariance matrices are vectorized to get

a feature vector:

zi = uvec(S⊙ log(C̄
− 1

2CiC̄
− 1

2 )) ∈ RP (P+1)/2 , (11)

with S ∈ RP×P a matrix holding one on the diagonal

elements and
√
2 elsewhere, where ⊙ denotes the element-

wise matrix product, and uvec the function returning a

vector containing the concatenation of the upper triangle

values of a matrix. The logarithm projects the covariance

Ci to an Euclidean tangent space to the manifold at point

C̄. The variables zi are thus called tangent vectors. The

matrix S preserves the Frobenius norm. Since these tan-

gent vectors are elements of an Euclidean space, we can

use them as input on classical machine learning models.
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2.2. Possible data shifts

Each parameter of the model described in equations (2)

and (6) can vary for different reasons. We are interested in

fitting a regression algorithm to a source dataset X(S) ={
x
(S)
i , i = 1, . . . , N (S)

}
to later predict outcomes on a dis-

tinct target dataset X(T ) =
{
x
(T )
i , i = 1, . . . , N (T )

}
both

recorded with the same P sensors. The datasets are not

necessarily composed of the same number of subjects. Ap-

plying our previous notations, we can describe the source

dataset as follows:
x
(S)
i (t) = A′(S)

i s
(S)
i (t) +A′′(S)

i n
(S)
i (t) = A

(S)
i η

(S)
i (t)

y
(S)
i = β0 +

Q∑
j=1

βj log

(
1

T

T∑
t=1

(s
(S)
i,j (t))

2

)
+ ϵ

(S)
i

(12)

whereA
(S)
i = A(S)+E

(S)
i withE

(S)
i ∼ N

(
0,
(
σ
(S)
A

)2
IP

)
,

n
(S)
i ∼ N

(
0,
(
σ
(S)
n

)2
IP−Q

)
and ϵi ∼ N

(
0,
(
σ
(S)
ϵ

)2)
.

We remind that the statistical generator powers are de-

fined as diag(p
(S)
i ) = Et

[
s
(S)
i (t)s

(S)⊤
i (t)

]
. The same equa-

tions can be written for the target dataset by replacing

the exponent (s) by (t). We now list physical reasons

that could induce differences between source and target

datasets and link them to parameter changes of the corre-

sponding generative models (12).

1. If we consider two different populations, the head

morphology may vary, and the subject-averaged mix-

ing matrices A(S) and A(T ) would differ.

2. Having different populations in both datasets would

also imply that they will not have the same mixing

matrices distribution: σ
(S)
A ̸= σ

(T )
A .

3. When data are recorded with different devices, the

recording conditions and noise might not be the same,

resulting in different signal-to-noise ratio (SNR):

σ
(S)
n ̸= σ

(T )
n .

4. Clinical outcomes e.g., neuropsychological testing scores

can be noisy. This noise could differ from one dataset

to another: σ
(S)
ϵ ̸= σ

(T )
ϵ .

Because of all those possible causes of variability in the

model parameters, machine learning approaches may fail

to provide good predictions across datasets. In this work,

we focus on shifts that only affect the data, and we assume

that the regression coefficients βj are the same for source

and target. In particular, we are interested in understand-

ing changes related to the mixing matrix and the variance

of the statistical generators. The variability of these pa-

rameters across subjects and datasets affects the observed

signals and results in variability in the data distribution.

Below, we discuss which statistical methods could help re-

duce these different shifts between the data distributions

of two different datasets.

2.3. Alignment methods

We aim to learn a regression model from one dataset,

the source domain, that will perform well on another, the

target domain. As we focus on shifts affecting the data

distribution, we investigate domain adaptation methods

that align the source and the target distributions using

geometrical transformations. The methods we chose for

understanding and reducing dataset shifts are articulated

in three alignment steps: re-centering, equalizing disper-

sion, and rotation correction. This choice was inspired by

transfer learning methods used in Brain-Computer Inter-

faces (BCI) application and, more specifically, by the Rie-

mannian Procrustes Analysis (RPA) of (Rodrigues et al.,

2019). These steps can be used independently, usually by

only re-centering the data, or combined. In the following,

we detail these alignment functions in a general manner.

Step 1: re-centering. The most commonly used method

of transfer learning on symmetric positive definite (SPD)

matrices is to re-center each dataset in a common refer-

ence point on the Riemannian manifold (Li et al., 2021;

Zanini et al., 2018). This reference can be chosen as one

of the domains’ geometric mean or an arbitrary point on

the manifold. Here we propose to re-center each domain

to the Identity by whitening them with their respective
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Figure 1: Alignment steps illustrated on simulated data. The three alignment steps are applied to data simulated following the

generative model, as detailed in Section 3.1. We set the size of the matrices to P = 2 and generated N = 300

matrices in each domain. Each new step is applied on top of the previous one. The plots correspond to the two first

principal components of the tangent vectors. (A) The simulated data are plotted on the tangent space before any

alignment steps. (B) The original simulated data are centered to a common point, (C), then their distributions are

equalized, and (D) finally, a rotation correction is applied.

geometric mean C̄
(S)

and C̄
(T )

:

hrct
C̄(S)

(
C

(S)
i

)
= C̄

(S)− 1
2C

(S)
i C̄

(S)− 1
2 (13)

hrct
C̄(T )

(
C

(T )
i

)
= C̄

(T )− 1
2C

(T )
i C̄

(T )− 1
2 . (14)

Differently put, re-centering applies separate whitening for

source versus target data. This helps avoid errors in the

tangent space projection when the average covariance is

different for the source and target, e.g., because the mix-

ing matrices are different, as in Figure 1 (B). This is a

Riemannian equivalent of the centering step in classical

z-scoring.

Step 2: equalizing the dispersion. In this second step, the

idea is to re-scale the covariances distribution around their

mean C̄ as illustrated in Figure 1(C). We first compute

the mean dispersion d of the covariances as the sum of

the square distance between each matrix of the set and

their geometric mean C̄ over the number of samples in the

dataset:

d(S) =
1

N

N∑
i=1

δ2R

(
C

(S)
i , C̄

(S)
)

(15)

d(T ) =
1

N

N∑
i=1

δ2R

(
C

(T )
i , C̄

(T )
)

, (16)

with δR the Riemannian distance defined in Equation 7.

Then, we re-scale all covariances with
√

1
d so that the dis-

tribution has a dispersion of 1:

hstr
d(S)

(
C

(S)
i

)
= C

(S)
√

1

d(S)

i (17)

hstr
d(T )

(
C

(T )
i

)
= C

(T )
√

1

d(T )

i . (18)
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This is a Riemannian equivalent of the re-scaling step in

classical z-scoring. By analogy, univariate rescaling of two

groups modifies the data so that, e.g. a t-test would find

its assumptions of equal variances met while not detecting

any difference of means between the two datasets.

Step 3: rotation correction. Until now, we have applied

correction measures that process source and target data

independently. This is not the case in this third step

which implies shared information between source and tar-

get datasets. The rotation correction is the most delicate

of the three steps. It requires estimating many more pa-

rameters than the others, and the source and target feature

spaces must be the same size (P (S) = P (T ) = P ). In the

literature, several methods for rotation estimation exist.

In the following, we detail two of the methods we selected:

1. The first rotation correction we implemented is in-

spired by (Maman et al., 2019). The covariances

are first vectorized by mapping them in the tan-

gent space (at identity after re-centering). Then we

compute the Singular Value Decomposition (SVD)

of these tangent vectors zi ∈ RP (P+1)/2, Z(S) ={
z
(S)
i , i = 1 . . . N (S)

}
and Z(T ) =

{
z
(T )
i , i = 1 . . . N (T )

}
:

Z(S) = U(S)⊤S(S)V(S) (19)

Z(T ) = U(T )⊤S(T )V(T ) . (20)

The columns of the U ∈ RP (P+1)/2×P (P+1)/2 matri-

ces are the left singular vectors ordered from largest

to smallest singular values. The SVD is done sepa-

rately on source and target distributions so the re-

sulting singular vectors will unlikely have the same

direction. As we desire for corresponding singular

vectors between source and target to have an acute

angle, we reorient them with a sign correction ap-

plied to the columns of U(T ):

u
(T )
j = sign

(
u
(S)
j u

(T )
j

)
u
(T )
j , ∀j (21)

Finally, the U matrices are used for rotation correc-

tion:

hrot
U(S)

(
Z(S)

)
= U(S)⊤Z(S) (22)

hrot
U(T )

(
Z(T )

)
= U(T )⊤Z(T ) . (23)

We will refer to this rotation correction method as

unpaired.

2. The second way to estimate the rotation that we used

is inspired by (Bleuzé et al., 2021). In this paper,

they consider a classification question and propose to

correct the rotation between source and target distri-

butions by matching their respective classes’ mean.

This is done by solving the Procrustes problem

argmin
R∈O(N(T ))

∥∥∥RZ̄
(T ) − Z̄

(S)
∥∥∥
F

, (24)

where O(N (T )) is the orthogonal group, Z̄
(S)

the

concatenation of the classes’ mean tangent vector

from the source domain, and similarly for Z̄
(T )

with

the available labeled data of the target domain. Then,

to correct the rotation, the target tangent vectors

are transformed using the solution of the Procrustes

problem

hrot
R

(
Z̄

(T )
)
= RZ̄

(T )
. (25)

As we wish to be in a regression context without

access to target labels, we modified this method by

solving the Procrustes problem on all the tangent

vectors

argmin
R∈O(N(T ))

∥∥∥RZ(T ) − Z(S)
∥∥∥
F

. (26)

In practice, this solution is found by computing the

SVD of the product of the source and target tangent

vectors

Z(T )Z(S)⊤ = U⊤SV , (27)

and is R = VU⊤. In this step, we include the in-

formation on which source point should be matched

to which target point. It means the source and the
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target dataset should have the same number of ob-

servations (N (S) = N (T ) = N) and be composed

of “matching” observations (for example, the same

set of subjects but different tasks/recording condi-

tions/devices). We will refer to this method as paired.

This step allows us to align source and target distribu-

tions in a shared space. The rotation correction is helpful

when the mixing matrices are different between the do-

mains (Fig.1 (D)).

3. Benchmarks

We conducted a first benchmark with simulated data

to evaluate how the alignment steps can compensate for

changes in the generative model parameters. We then ap-

plied the alignment steps to MEG data from the same

dataset. In this benchmark, we used the different tasks

performed by the subjects as domains. We first evaluated

the methods using the same subjects in source and tar-

get but performing different tasks, and then used some

subjects performing one task as the source domain and

other subjects performing another task as the target do-

main. Finally, we evaluated whether the alignment makes

it possible to generalize from one M/EEG dataset to an-

other. The regression problem of these benchmarks is age

prediction. It means we have no noise on the outcome

as assumed in Section 2.2. More details about these ex-

perimental set-ups can be found in Section 3.2.3. In the

following, we detail precisely the different setups.

3.1. Simulations

In the simulation study, we generated simulated data

with the generative model presented in Section 2.1. We

set the dimension of the matrices to P = 20 to have a

matrix size coherent with real data, and the number of

statistical generators to Q = P , in other words, we con-

sidered signals without noise. Mixing matrices A were

generated as Gaussian random matrices in RP×P from

N (0, 1). Instead of generating signals s, we directly com-

puted their powers p as random numbers from a uniform

distribution in [0, 1). The same powers were used for

both the source and the target sets. We then constructed

the covariance matrices C(S) =
{
C

(S)
i , i = 1, . . . , N

}
and

C(T ) =
{
C

(T )
i , i = 1, . . . , N

}
, and the outcome to predict

as in equations (4) (with Hi = diag(pi) because P = Q)

and (6) (with ϵi = 0,∀i). We designed several shift sce-

narios by altering either the mixing matrices or the powers

in order to evaluate the alignment methods. In practice,

the shifts were created by first generating the source data

and then building the target data as a modified version

of the source data. By doing so, one point of the source

set corresponds to one point of the target set. This way,

it is possible to evaluate the paired rotation correction.

More details about the shift scenarios are presented in the

following paragraphs.

3.1.1. Simulation scenarios

We detail the changes we introduced for each scenario

between source and target distributions. As stated in Sec-

tion 2.2, we focused on modeling shifts involving changes

in the mixing matrix or the variance of the statistical gen-

erators. The parameters that are not mentioned were the

same for source and target. For the first three scenarios, we

aimed to find transformations/shifts between source and

target to which each alignment step is robust. Table 2

summarizes the scenarios and the associated parameter

changes in source and target.

Translation. In this scenario, we wish to assess how ro-

bust the alignment methods are when the source and tar-

get mixing matrices are different. Specifically, we built the

target mixing matrix as A(T ) = BαA(S) with B ∈ S++
P

and α ∈ R+
∗ . Here, one considered that the mixing ma-

trix perturbation is done by an SPD matrix to decom-

pose the case of A(T ) ̸= A(S) into translation and rota-

tion effects. The benchmark extends the previous simu-

lations from (Sabbagh et al., 2020). More explanations

9



Scenarios Translation Scale Translation and rotation Noise on mixing matrix

Source A(S) fixed p
(S)
i fixed A(S) fixed,

A
(S)
i = A(S) +E

(S)
i

with E
(S)
i ∼ N

(
0,
(
σ
(S)
A

)2
IP

)
σ
(S)
A = 10−2 fixed

Target
A(T ) = (B)αA(S)

with α > 0

p
(T )
i = (p

(S)
i )σp

with σp > 0

A(T ) = mAt + (1−m)A(S)

with At ̸= A(S) fixed

and m ∈ [0, 1]

A
(T )
i = A(T ) +E

(T )
i

with E
(T )
i ∼ N

(
0,
(
σ
(T )
A

)2
IP

)
σ
(T )
A > 0

Table 2: Summary of the simulation scenarios.

are provided about this decomposition in the translation

and rotation paragraph. The parameter α controls the

strength of the perturbation and thus howA(T ) is different

from A(S) (if α = 0, A(T ) = A(S)).

Scale. We wanted to create a scenario in which the source

and target distributions have different dispersions. In this

scenario, we constructed the target covariances with an

exponent on the powers: p
(T )
i =

(
p
(S)
i

)σp

with σp > 0.

The parameter σp controls how different the dispersions

are. This modification was only applied to the data, so

the outcome values y were unchanged.

Translation and rotation. For this scenario, we built

the source and target data from completely different mix-

ing matrices and thus generalized the translation sce-

nario. To evaluate how alignment methods performed

for a growing difference between the source and the tar-

get mixing matrices, we defined a parameter m such as

A(T ) = mAt + (1−m)A(S). At was fixed and generated

as a random matrix in RP×P from N (0, 1). In this man-

ner, we created an interpolation between At and A(S) to

generate A(T ): if m = 0, A(T ) = A(S) and if m = 1,

A(T ) = At.

In this scenario, A(T ) ̸= A(S) but we constructed the

source and target covariances with the same Hi matrices

following equation (4). Thus we can write:

Hi = [A(S)⊤]−1C
(S)
i [A(S)]−1 (28)

We can replace thisHi expression in the target covariances

to get:

C
(T )
i = A(T )HiA

(T )⊤ (29)

= A(T )[A(S)⊤]−1C
(S)
i [A(S)]−1A(T )⊤ (30)

= DC
(S)
i D⊤ (31)

with D = A(T )[A(S)⊤]−1. The target covariance matrices

correspond to the source covariance matrices transformed

with the square matrix D. A square matrix can be inter-

preted as a linear transformation: such a matrix can be

decomposed into the product of an orthogonal matrix with

a positive semi-definite Hermitian matrix (polar decompo-

sition, a.k.a. QR factorization). Thus, we can interpret

this scenario as the translation scenario (SPD matrix of

the polar decomposition) with an additional perturbation

by an orthogonal matrix.

Noise on mixing matrix. We finally introduced indi-

vidual noise in the mixing matrix to get a more realis-

tic scenario: A
(S)
i = A(S) + E

(S)
i assuming that E

(S)
i ∼

N
(
0,
(
σ
(S)
A

)2
IP

)
(and similarly for the target mixing

matrices). The source data were generated with a fixed

noise value σ
(S)
A = 10−2, and the tested σ

(T )
A values var-

ied from 10−3 to 1. Here, the mean mixing matrices A(S)

and A(T ) were the same. This scenario was inspired by

the simulation study of Sabbagh et al. (2020) in which the

same level of noise on the mixing matrix was added in

the train and the test sets. Here, we explored the situa-
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tion in which the noise levels in the train (source) and test

(target) mixing matrices were different.

3.1.2. Alignment, vectorization, and regression

Once the covariance matrices were generated accord-

ing to a given scenario, data of both domains were aligned

with the methods detailed in Section 2.3. Then, we vector-

ized the matrices in the tangent space as in (11) with C̄
(S)

as a reference point for both domains. To avoid numerical

issues, we removed low-variance features (see Appendix A

for more details). The remaining features were then stan-

dardized to get features with zero mean and unit variance.

To predict from the standardized vectors in these simu-

lations, for simplicity, we used Ridge regression with its

regularization term set to 1. This model was trained on

the source data, and predictions were made on the tar-

get data. We evaluated these predictions with R2 scores.

Results are presented in Section 4.1 and discussed in Sec-

tion 5.

3.2. M/EEG empirical benchmarks

In the following empirical benchmarks, we focused on

one MEG and two EEG datasets for evaluating our align-

ment methods with real-world data. We first describe

these datasets and their preprocessing, then explain how

we computed the covariance matrices of the signals. We

followed the same preprocessing and processing steps as

in (Engemann et al., 2022) for the ‘filterbank-riemann’

pipeline. Finally, we detail the design of each benchmark.

3.2.1. Datasets

Cam-CAN MEG data. The Cambridge Center of Aging

and Neuroscience (Cam-CAN) dataset (Taylor et al., 2017)

consists of MEG recordings from a healthy population

covering a wide age range. These data were recorded

for each subject during resting state with eyes closed, an

audio-visual (passive) task with visual and auditory stim-

uli presented separately, and a sensorimotor (smt) task

with the same stimuli as the previous task combined with

a manual response. All data were collected with the same

306-channel VectorView MEG system (Elekta Neuromag,

Helsinki) with a sampling rate of 1 kHz.

Sample description: We included 646 subjects (319 fe-

male, 327 male) with all three recordings. Their age dis-

tribution is from 18.5 to 88.9 years with an average of

54.9 ± 18.4 years and an almost uniform spread over the

age range. There was no exclusion of participants. The set

of subjects of each benchmark only depends on the avail-

ability of recordings for the source and the target tasks and

the success of the preprocessing and the feature extraction.

Thus some subjects with only two tasks recorded are not

included in all benchmarks leading to small variations of

the subject sample between benchmarks.

Preprocessing: We applied a FIR band-pass filter be-

tween 0.1 and 49Hz to all data. We decimated the sig-

nals with a factor of 5 to get a sampling frequency of

200Hz. To compensate for environmental noise, we per-

formed a temporal signal-space-separation (tSSS) method

(Taulu et al., 2005) with a chunk duration of 10 seconds

and a correlation threshold of 98%. We only picked chan-

nels corresponding to magnetometers (after tSSS signals

from magnetometers and gradiometers are mixed and lin-

early related).

TUAB EEG data. The Temple University (TUH) EEG

Corpus (Harati et al., 2014) is a large publicly available

dataset of clinical EEG recordings. This dataset includes

socially and ethnically diverse subjects. In this work, we

focus on the Temple University Hospital Abnormal EEG

Corpus (TUAB) (Obeid and Picone, 2016), a subset of

the TUH EEG Corpus in which recordings were labeled

as normal or abnormal by medical experts. Data were

collected using several Nicolet EEG devices between 24

and 36 channels and sampled at 500Hz. The subjects

were at rest during the recording.

Sample description: We only included healthy subjects

with normal EEG in our benchmark. This led to a sample
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Name low δ θ α βlow βmid βhigh

Range (Hz) 0.1 — 1 1 — 4 4 — 8 8 — 15 15 — 26 26 — 35 35 — 49

Table 3: Definition of frequency bands.

of 1385 subjects (female = 775 and male = 610) with ages

between 0 and 95 years (mean = 44.4 years and std = 16.5

years).

Preprocessing: Data were band-pass filtered between

0.1 and 49Hz with a zero-phase finite impulse response

(FIR) filter using the firwin with Hamming window fea-

turing a 0.0194 passband ripple, 53 dB stopband attenu-

ation, a 0.1Hz lower transition bandwidth and a 12.25Hz

upper transition bandwidth, and a filter length of 6601

samples (33.005 s). Data were then resampled to 200Hz.

We selected a subset of 21 channels common to all record-

ing devices used in this dataset. When several recordings

were available for one patient, we picked the first to get

only one recording per subject.

LEMON EEG data. The Leipzig Mind-Brain-Body database

provides multimodal data from healthy groups of young

and elderly subjects (Babayan et al., 2019). In our bench-

mark, we only used EEG recordings from this dataset.

They were recorded with a 62-channel ActiCAP device

and sampled at 2500Hz. Each subject did two recordings

at rest with two conditions: eyes closed and eyes open.

Sample description: We included 213 subjects from

the LEMON database in our benchmark. No selection

criteria were applied, and we kept the data for which the

processing and the feature extraction were successful. This

led to a cohort with 134 males and 79 females aged from 20

to 77 years. The age distribution of the LEMON presents

a peculiarity: it is split into two separate age groups, one

with individuals being between 20 and 35 years old and

the second between 55 and 77 years old.

Preprocessing: A band-pass filter between 0.1 and

49Hz was applied to the data and resampled to 200Hz.

To keep a maximum of data, recordings with eyes closed

and eyes open were pooled before feature extraction.

3.2.2. Data processing and feature extraction

After preprocessing, each filtered recording was seg-

mented in 10 s epochs without overlap. Epochs were then

filtered into seven frequency bands as defined in Table 3

as in Engemann et al. (2022). We performed artifact re-

jection by thresholding extreme peak-to-peak amplitudes

on single epochs using the local autoreject method (Jas

et al., 2017). Subsequently, we computed covariance ma-

trices from the set of artifact-free epochs with the Oracle

Approximating Shrinkage (OAS) estimator (Chen et al.,

2010). The ensuing regression pipeline, including all align-

ment steps, is illustrated in Figure 2.

For MEG signals, the tSSS method reduces noise by

projecting them in a subspace mainly containing the sig-

nal, leading to rank-deficient covariance matrices. As a

result, it is not possible to correctly apply our alignment

methods directly, as rank-deficient covariance matrices are

not SPD matrices. To extract valid SPD matrices, we fol-

low the approach from (Sabbagh et al., 2019) and apply

Principal Component Analysis to reduce the dimension-

ality of the covariance matrices, which renders them full

rank. We denote the resulting dimension R. We use as fil-

ters the eigenvectors W(S) ∈ RR×P corresponding to the

R highest eigenvalues of the mean source covariance C̄
(S)

.

Matrices of both domains are transformed as:

C
(S)
i,filtered = W(S)C

(S)
i W(S)⊤ ∈ RR×R (32)

C
(T )
i,filtered = W(S)C

(T )
i W(S)⊤ ∈ RR×R (33)

For Cam-CAN data, we set R = 65. This spatial filter

is applied to each frequency band separately. We did not

apply this procedure to EEG data.
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Figure 2: Pipeline for regression modeling with M/EEG with different dataset harmonization steps. For every subject, we

summarize the M/EEG recording by the covariance matrix after performing artifact cleaning (Section 3.2.1). The covariances computation,

alignments steps, projection to the tangent space, and vectorization steps are done separately for seven frequency bands of Table 3. Alignment

steps detailed in Section 2.3 are computed from the covariance distribution across all subjects. The re-center and re-scale steps are performed

separately for source and target datasets. The Procrustes steps combine information across source and target datasets. Finally, the seven

resulting tangent vectors are concatenated to form one vector per subject used for regression.

3.2.3. Empirical benchmarks

Cam-CAN (MEG): same subjects. For this benchmark,

we used the experimental tasks of the Cam-CAN dataset

for defining the different domains. Here, the source sub-

jects were the same as the target subjects. Only the ex-

perimental task (e.g., audiovisual VS audiovisual + mo-

tor) changed from one domain to the other. All subjects

included underwent MEG recordings for both the source

and the target domain. Therefore, importantly, the mix-

ing matrix and the age distributions were the same for the

source and target. As we dealt only with healthy partic-

ipants, we aimed to minimize the error in age prediction

when learning on one task (source domain) and predicting

on another (target domain). To estimate standard devia-

tion, we did a bootstrap with 100 repetitions.

Cam-CAN (MEG): different subjects. In this second bench-

mark on the Cam-CAN data, we again defined the differ-

ent domains in terms of the experimental MEG tasks per-

formed by the subjects. Yet, the critical difference with

the previous benchmarks is that the source subjects and

the target subjects were distinct persons. To implement

this analysis, we randomly divided all Cam-CAN subjects

into subsets of 80% forming the source subjects, and the

left-out 20 % forming the target subjects. A stratification

was performed by age decade to maintain similar age dis-

tributions between splits. We repeated this split with 100

different random initializations.

TUAB & LEMON (EEG): different datasets. In this bench-

mark, we gauged the performance of alignment methods

when the source and target domains are two different datasets.

Here, the source domain was composed of data from TUAB,

and the target one of data from LEMON. These datasets

were not recorded with the same device. However, they

had 15 channels in common. We picked the same channels

on both datasets to define covariance matrices of the same

shape and similar information. The target set was kept

fixed, and we implemented a bootstrap procedure on the

source subjects to estimate standard deviations. In this

setup, in addition to evaluating the alignment methods on

the Riemannian regression model, we also applied them

with a regression model based on Source Power Comodula-

tion (SPoC). SPoC is a supervised spatial filtering method

in which the filters WSPoC maximize the covariance be-

tween the power of the filtered signals and the outcome y
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(Dähne et al., 2014). Denoting by C̃ = 1
N

∑N
i=1 Ci the Eu-

clidean average covariance matrix and Cy = 1
N

∑N
i=1 yiCi

the weighted average covariance matrix, the first filter

wSPoC is given by: wSPoC = argmaxw
w⊤Cyw

w⊤C̃w
. The same

idea was proposed by (de Cheveigné and Parra, 2014). As

WSPoC recovers the inverse of the mixing matrix A (Sab-

bagh et al., 2020), the SPoC regression model is defined

as:

zi = diag(log(WSPoCCiW
⊤
SPoC)) (34)

3.2.4. Alignment, vectorization, and regression

The matrices from both domains were first aligned with

the methods described in Section 2.3. We projected the

aligned data in the tangent space at C̄
(S)

to get tangent

vectors. Tangent vectors from all frequency bands were

concatenated. Then we applied ridge regression after stan-

dardizing (z-scoring) all the features. To select the regular-

ization hyperparameter, we used a generalized (leave-one-

out) cross-validation (Golub et al., 1979) on a logarithmi-

cally spaced grid of 100 points from 10−5 to 1010. For

quantifying prediction performance, we use the R2 score.

3.3. Software

We processed the M/EEG data with the open-source

package MNE-Python (Gramfort et al., 2013), MNE-BIDS

(Appelhoff et al., 2019), and the associated MNE-BIDS-

Pipeline (https://mne.tools/mne-bids-pipeline/). The

covariance matrices computation and the predictive pipeline

were done with the coffeine library (Sabbagh et al., 2020)

(https://github.com/coffeine-labs/coffeine). The

covariance matrices were manipulated in the alignment

methods with the Pyriemann package (Barachant et al.,

2022). Results analyses were performed with the Scikit-

Learn software (Pedregosa et al., 2011).

4. Results

We now present the results we obtained from the sim-

ulation and M/EEG benchmarks. We first computed the

baseline performance of the Riemannian framework with-

out alignment. We then added one alignment step at a

time to evaluate its impact on prediction performance. For

example, the re-scale method corresponds to re-centering

and re-scaling (step 1 + step 2). Likewise, steps 1 and

2 were always performed before rotation correction (Pro-

crustes unpaired and Procrustes paired).

We implemented an element-wise z-scoring to provide

comparisons between this widely used method (Apicella

et al., 2022; Chen et al., 2021), which is not ideal as it

ignores the covariance manifold that can be described and

handled by Riemannian geometry, and the presented align-

ment methods. For this benchmark, we transformed the

covariance matrices into correlation matrices by removing

the variance of each observation/subject individually. This

way, we ended up with symmetric matrices with ones on

the diagonal and correlation coefficients between -1 and 1

elsewhere. This transformation corresponds to making the

signals zero-mean and with a unit variance before comput-

ing the covariance matrices. The correlation matrices were

then used as input for the same estimation pipeline as the

covariances: projection in the tangent space, vectorization,

and regression.

The chance level was represented by a dummy model,

which always predicts the mean of the source domain (train-

ing data). Performances of all methods were evaluated

with the coefficient of determination score or R2 score, so

the higher the score is, the better the model. Scores below

0 indicate predictions performing (arbitrarily) worse than

the training-outcome-mean regressor that marks chance-

level prediction. Negative R2 values are in this sense worse

than chance and point at bias due to systematic shifts or

other distribution mismatches.

4.1. Simulations

We simulated data according to the four shift scenarios

detailed in Section 3.1. Figure 3 presents the results for

each alignment method and each scenario.
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Figure 3: Alignment method comparison across simulated dataset shift scenarios (R2 score). Alignment methods (indicated by

color) were evaluated on four different scenarios with an increasing shift. We generated N = 300 matrices per domain to have data sets of

the magnitude of real EEG datasets that would be considered as medium to large in terms of operational costs and curation effort. Error

bars show standard deviations of the metric obtained with 50 random repetitions. The dashed vertical gray lines on (B) and (D) indicate

the fixed parameter’s value of the source set. Panel (A) displays the performance achieved when the target covariance matrices were created

by multiplying the source mixing matrix with an SPD matrix: A(T ) = BαA(S) with B ∈ S+
P . All methods that included re-centering the

distributions on the same reference point performed well. (B) displays the performance achieved when the dispersion of covariances differs

between source and distributions (σp ̸= 1). Here, the re-scaling step was essential to align the distributions correctly. (C) In this scenario,

A(S) ̸= A(T ), which led to a translation and a rotation of the target set compared to the source set. Re-centering was not insufficient, and a

rotation correction was needed to achieve good performance. Interestingly, while Procrustes paired performed well, the unpaired correction

broke as the difference between the mixing matrices increased. (D) In this scenario, different levels of individual noise were added to the

mixing matrices of both domains. For low σ
(T )
A values, all methods except the unpaired rotation correction performed similarly with R2

scores decreasing slowly. For higher values, the scores dropped, and correcting the rotation with the paired method performed best.
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The top left Panel (A) illustrates the scores for each

alignment method on data generated following the trans-

lation scenario. The value of α controls the shift. As

expected, the farther apart the source and target mixing

matrices were (higher α values), the worse the performance

on the unaligned domains method became (in blue). The

z-score baseline (light orange) failed even earlier than us-

ing Riemannian geometry without alignment. Methods in-

cluding a re-centering step (green, dark orange, pink, and

brown) did not suffer from this shift. This suggests that

whitening the source and target distributions by their re-

spective geometric mean mostly compensated for the mix-

ing matrix being perturbed by an SPD matrix. It allowed

the regression model to access the log of the powers with

little distortion, hence, allowing the linear model to infer

the correct function.

Panel (B) presents the scale scenario in which the log

of the target powers were scaled by a parameter σp in the

signals. When σp = 1, the source and target distributions

were exactly the same C(S) = C(T ). In this case, methods

including the re-scaling step adjusted for this shift and

made accurate predictions, whereas the performance of

other methods deteriorated as σp increased. Re-centering

helped to achieve better predictions compared to no align-

ment. The z-score method performed slightly better than

not aligning the distribution but was still worse than re-

centering.

The third Panel (C) corresponds to the translation

and rotation scenario. Here, the target mixing matrix

was modified by interpolating between the source mix-

ing matrix A(S) and another randomly generated matrix

At. The parameter m controls where the target mix-

ing matrix is located between these two other matrices,

thus how different A(S) and A(T ) were. The only method

reaching perfect predictions, irrespective of the value of

m, was Procrustes paired. However, the unpaired Pro-

crustes method failed where m > 0.5 and even fell behind

re-centering. When no rotation correction was applied,

re-centering helped to compensate for slight differences be-

tween the mixing matrices, but the performance dropped

as this difference increased. As expected, a re-centering

step and a rotation correction were needed to correct a

shift consisting of translation and rotation.

In the last scenario noise on mixing matrix, dis-

played in Panel (D), we introduced noise in both source

and target mixing matrices to simulate individual differ-

ences between subjects. σ
(S)
A was set at 10−2, and even

when σ
(T )
A = σ

(S)
A we had A

(T )
i ̸= A

(S)
i . Procrustes un-

paired performed worst in this scenario. The unpaired

rotation correction was not robust to noise on the mixing

matrix. All the other methods performed similarly for low

values of σ
(T )
A . When σ

(T )
A > 10−1, all methods deterio-

rated. The z-score method again showed lower R2 scores

than all other methods. Results suggest that the best so-

lution for this scenario is the paired rotation correction.

The paired rotation correction method performed best

in all scenarios but requires the source and target sets to

be the same size and have corresponding/paired points.

When this is not the case (for datasets with different sub-

jects, for example), re-centering and re-scaling should be

the best solution for improving performance. The un-

paired rotation estimation seems particularly unstable when

the induced shift is too big or when there is noise.

4.2. M/EEG data

We now examine the performance of alignment meth-

ods with M/EEG data. As with simulated data, the un-

paired Procrustes method was not sufficiently robust and

led to chance-level performance. We, therefore, do not

report it in the following figures.

Cam-CAN (MEG): same subjects. We first focused on a

regression problem for which there was an individual noise

on the mixing matrices, but their distribution was the

same in source and target sets because the subjects were

the same. It also implies that the age distribution was

identical for both domains. The interest of this analysis
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Figure 4: Impact of data alignment on age prediction across different tasks on the same subjects from Cam-CAN dataset

(R2 score). Alignment methods comparison for three different source-target tasks using 2000 repeat-bootstrap to select the subjects. Both

domains contained the same subjects, only their task was different. Models are depicted along the y-axis, and standard boxplots represent

their associated R2 score. The dashed black lines represent chance-level performance. (A) Generalization of age prediction regression model

from resting state to the passive task. Re-centering and the paired rotation correction led to an increased R2 score with no obvious benefits

for additional re-scaling. (B) The regression model was trained on resting-state data, and predictions were made on the recordings of the

somatosensory task. Re-centering the data led to slightly improved R2 scores. Again, the re-scaling step did not lead to further improvements.

Correcting the rotation with the paired method contributed to improving 99% of the splits in comparison to only re-centering. (C) Here we

used the data from the passive task as the source domain and the somatosensory task as the target domain. Re-centering and re-scaling steps

did not affect the prediction performance. The paired rotation correction improved the scores in all splits.

is to assess what kind of shift is produced when only the

task changes and if alignment methods can rectify this.

Results for each alignment method on age prediction for

three source-target tasks associations are displayed in Fig-

ure 4.

The z-score method led to scores similar or lower to

what is obtained without alignment across all three Pan-

els, as expected from the simulation results. For the two

first Panels (A and B), the source domain contained the

resting-state recordings, and the target tasks were, respec-

tively, the passive and the somatosensory tasks. The R2

scores we obtained after these two benchmarks were highly

similar. When no alignment was done, the mean R2 score

was around 0.7. Re-centering the distributions led to a

reduced standard deviation and an increased mean R2

score in both situations, even though this was more pro-

nounced in Panel (A). The re-scaling step had no obvious

impact on performance. The paired rotation correction

led to improved prediction scores on 87.4% of the boot-

strap iterations in Panel (A) and on 99.1% of the iter-

ations in Panel (B) compared to only re-centering. In

Panel (C), the source domain was the passive task, and

we made predictions on the somatosensory task, leading

to quite different results. The performance reached with

no alignment was already very high, with a mean R2 of

0.9. Re-centering and re-scaling gave the same results as

not performing any alignment. Then, the paired rotation

correction step induced increased scores for all bootstrap

iterations (R2 = 0.951 ± 0.005). Going from rest to tasks

affects the geometric mean of the covariance matrix dis-

tributions, but not when going between passive and smt

tasks. In all three situations, the performance gain ob-

tained with Procrustes paired implies the presence of a

rotation of the tangent vector distribution.

Cam-CAN (MEG): different subjects. In this second bench-

mark, we focused on domain-shift differences between MEG
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Figure 5: Impact of data alignment on age prediction across different tasks for different subjects from Cam-CAN dataset

(R2 score). Alignment methods comparison for three different source-target tasks using 100 stratified Monte Carlo cross-validation (shuffle

split) iterations to determine which subjects form the source and the target sets. We depict the models along the y-axis and represent the R2

scores with standard boxplots. The dashed black lines represent chance-level performance. (A) The model was trained on the rest task, and

predictions were made on the passive task recordings. When re-centering source and target distributions, prediction performance substantially

improved, whereas re-scaling did change performance. (B) The target set was composed of recordings from the somatosensory task. The

improvement of the re-centering step was smaller but still present. Re-scaling, still, did not lead to obvious improvements. (C) In the last

Panel, the passive task was the source domain, and the somatosensory task was the target. In this case, aligning was not helpful and led to

the same performance as not performing any alignment.

tasks in non-overlapping samples of distinct subjects. As

a consequence, the distributions of mixing matrices, nec-

essarily, differed for the source and target domains. We

performed a cross-validation in which 80% of the subjects

were assigned to the source domain and 20% to the tar-

get domain. To keep relatively similar age distributions in

the train and test splits, we did a stratification on the age

decades of the subjects (cf StratifiedShuffleSplit of

the Scikit-Learn software). Applying the paired rotation

correction in this setup was no longer possible. Thus, it

is impossible to analyze whether a rotation exists in the

shift. We present the results of each alignment step in

Figure 5.

When covariance matrices were not aligned, generaliz-

ing from rest to passive tasks led to a R2 score of 0.55±0.05

(A), and when the target task was the smt task, we ob-

served an R2 = 0.54± 0.04 (B). The z-score method per-

formed again similarly to the procedure without align-

ment. The re-centering step led to comparable results

across generalization scenarios involving resting state and

any event-related task (Panels (A) and (B)). Again, match-

ing the source and target dispersions with re-scaling was

not helpful. Finally, all methods showed similar perfor-

mance when the passive and the smt tasks were the source

and the target tasks, respectively (C). Our observations

for this benchmark match those we made when the sub-

jects were the same for the source and target sets. The

R2 scores reached after alignment in Figure 5 are consid-

erably lower than in Figure 4. Having different subjects in

the source and the target domain clearly creates a more

difficult-to-reachable shift.

TUAB → LEMON (EEG): different subejcts. We now con-

sider the resting-state data from two different EEG datasets.

The source and target populations are different, as well as

the recording devices, but all recordings were done at rest.

The source dataset is the larger TUAB dataset (n=1385),
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Figure 6: Impact of data alignment on age prediction across different EEG datasets (R2 score). Data from the TUAB dataset

were used as the source domain, and from the LEMON data as the target domain. We compare the alignment methods across 2000 bootstrap

iterations on the source data (n=1385). The target set was always the same (n=213). The methods are represented along the y-axis, and

we depict their associated R2 scores with standard boxplots. The dashed black lines represent chance-level performance. (A) Results of

alignment methods combined with the Riemannian approach of Equation 11 (as for all the results we have previously presented). Without

alignment, the prediction made on the LEMON data led to R2 scores far lower than what was reported in (Engemann et al., 2022) (10-fold

cross-validation on LEMON data only: 0.54± 0.13 represented by the dashed gray line). When both domains are re-centered to identity, we

reached performances similar to when the model is trained on LEMON. Re-scaling did not visibly improve results. (B) Results when the

regression model follows the SPoC approach. Not aligning led again to poor R2 scores. Unlike the first panel, the z-score method improved

the predictions similarly to re-centering. Re-scaling helped to reach performances on par with the Riemannian model trained on LEMON.

and the target dataset is the smaller LEMON dataset

(n=213). TUAB also has a broader age range. This way,

the regression model will be asked to predict age values

that fall within the range observed during model training.

We performed a bootstrap with 2000 iterations on TUAB

data. The results are reported in Figure 6. In addition

to the Riemannian approach we focused on in this work

(A), we were also interested in the impact of the alignment

methods on a non-Riemannian model like SPoC (B).

Without alignment, the Riemannian model and SPoC

led to poor results with mean R2 scores around 0.26. On

Panel (A), the z-score method performed at the level of

the dummy model. Re-centering the data drastically im-

proved the age prediction performances with R2 scores

of 0.44 ± 0.06 with a visibly reduced variance. Adding

the re-scaling step on top of re-centering did not bring

any improvement in performance. In (Engemann et al.,

2022), the filterbank-riemann pipeline trained on LEMON

data only with a 10-fold cross-validation led R2 scores of

R2 = 0.54 ± 0.13. Here, the training dataset only con-

sisted of data from the TUAB dataset. The Riemannian

re-center step made it possible to reach performance com-

parable to a model trained within the same dataset. With

SPoC (B), re-centering led to a reduced standard devi-

ation compared to no alignment. The highest R2 scores

were achieved when the re-scaling step was added to the

alignment procedure and almost reached the performance

of the Riemannian model trained on LEMON.

Aligning the covariances distribution helped improve

prediction performance even with a regression model like

SPoC that does not leverage the geometry of the covari-

ance matrices. This observation motivated an examination

of how alignment affects the SPoC patterns, the inverse of

the SPoC spatial filters WSPoC, and the resulting powers.
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Figure 7: Impact of alignment of different EEG datasets on their SPoC patterns and source powers. TUAB data were used

as the source domain, and LEMON data as the target domain. Alignment refers to re-centering the source and the target distribution by

whitening them respectively by their geometric mean. To obtain these figures, data were filtered in the alpha band. We included 19 channels

(15 commons and 4 with similar locations on the scalp) in both datasets. (A) Topographic maps of the five first SPoC source patterns without

alignment (first row) and target patterns without alignment (second row). The third row corresponds to the aligned source patterns adjusted

with the target whitening inverse filter. These are the patterns applied to unaligned target data to obtain the target powers with alignment.

The color map is normalized across each row. (B) Scatter plot of the target log powers as a function of the source log powers without and

with alignment averaged across subjects. The dashed black line is the identity line. Alignment makes target and source log-powers more

comparable.

As re-centering is a linear transformation, it is possible

to combine it with the SPoC patterns for visualization.

Thus this is the alignment method we used for the re-

sults displayed in Figure 7. The first two rows of (A)

illustrate the five first SPoC patterns of unaligned source

(TUAB) and target (LEMON) data. Without alignment,

the source patterns of the first row were directly applied

to the unaligned source and target data, resulting in the

log powers represented by the blue dots in the scatterplot

(B). The target log powers covered a wider range of values

than the source log powers and did not match the iden-

tity line. We then trained the model on the aligned source

data and applied it to the aligned source and target data

to get the log powers values represented as orange crosses

on the scatterplot (B). Re-centering each domain inde-

pendently resulted in more comparable source and target

log powers on average across subjects. To visualize the

patterns associated with the aligned log powers and com-

pare them to the unaligned source and target patterns,

we displayed on the third row of Figure 7 (A) the SPoC

patterns of the aligned source data adjusted with the tar-

get whitening inverse filter C̄(T ) 1
2 . In other words, these

adjusted patterns correspond to the SPoC filters applied

to the unaligned target data to obtain the target log pow-

ers with alignment. The shapes of the adjusted patterns

look similar to the source patterns of the first rows with-

out any clear transformation in the direction of the target

patterns. Even though this analysis was performed in the

alpha band, we made the same observations in all other

frequency bands.

5. Discussion

In this study, we thoroughly explored domain adapta-

tion methods that align M/EEG covariance matrix distri-
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butions for regression problems on both simulations and

large datasets. We considered methods from BCI applica-

tions (Bleuzé et al., 2021; Maman et al., 2019; Rodrigues

et al., 2019) articulated in three alignment steps: re-center

the geometric means, equalizing dispersions, and rotation

correction. These alignment steps are evaluated in the re-

gression context of generalizing age prediction across dif-

ferent domains. We investigated how dataset shifts can oc-

cur by analyzing a statistical generative model of M/EEG

data. We presented simulated dataset shift scenarios based

on this model for which alignment steps can effectively

compensate the shift, plus a noise scenario to get a sense of

how the methods would perform with real data. The sim-

ulation results showed that Procrustes paired is the most

effective method in all scenarios. It was expected as it in-

cludes the three alignment steps and a rotation correction

informed by the pairing of source and target subjects. We

then designed M/EEG benchmarks with different domain

definitions to determine the alignment methods’ efficiency

in those various settings. Coherently with the simulation

results, Procrustes paired achieved the best performance,

but since it cannot be applied in all situations, re-centering

is the best option.

We compared the alignment steps leveraging Rieman-

nian geometry with a z-score method that transforms the

covariance matrices into correlation matrices. This method

systematically performed worse than all the others. Taking

into consideration the geometry of the data space is essen-

tial. Among the three Riemannian alignment steps, re-

centering and the paired rotation correction of the source

and target distributions help to improve the prediction

performance in the M/EEG benchmarks. Re-centering

and the paired rotation correction were shown to com-

pensate for changes in the mixing matrices of the gen-

erative model, so we expected these steps to reduce the

shift in benchmarks where the target population is not

the same as the source population. In the first benchmark

on Cam-CAN data, the source and target subjects were

the same, but we still observed that re-centering and Pro-

crustes paired led to better scores. On the other hand,

equalizing their dispersions did not bring clear gains in

performance in any benchmark. In the Cam-CAN bench-

marks, the scores reached when the subjects are different

in the domains are distinctly lower than with the same

subjects: the shift is bigger (lower no alignment baseline)

and harder to recover. For the EEG benchmark, we used

the TUAB dataset as the source and the LEMON dataset

as the target. Here, all recordings were done at rest but

with different recording devices and in different popula-

tions. Re-centering the distributions in the EEG bench-

mark exceeded our expectations. Re-centering was suffi-

cient to recover performance close to what is reached when

training the Riemannian model on LEMON (Engemann

et al., 2022). The re-centering step is simple to implement

and has already been very effective in BCI classification

to deal with variability between sessions (Barachant et al.,

2013) but also between subjects (Zanini et al., 2018). Our

results suggest it is also effective in a regression context

with variability between populations, tasks, and recording

devices.

We extended our evaluation of the impact of align-

ment methods on different EEG datasets to the SPoC

model (Dähne et al., 2014). In this setting, the z-score

method and re-centering performed both equally better

than no alignment. Interestingly, re-scaling was beneficial

and helped to reach performance close to the Riemannian

model trained on LEMON. By inspecting the SPoC pat-

terns and the associated log powers, we demonstrated that

the observed gain in the performance of re-centering was

enabled by more similar log powers between source and

target than without alignment. In other words, data align-

ment adapts the target features to the regression equations

fitted on the source data, which explains generalization.

Unfortunately, the two last benchmarks are missing a

rotation correction method. As Procrustes paired led to

an apparent score increase in the first benchmark, we ex-
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pect a rotation correction to be beneficial in the other

benchmarks. Yet, the simulation study showed that the

unpaired Procrustes method failed to correctly estimate

the rotation when there is noise or when the shift gets too

large. The result suggests that this method would likely

fail with M/EEG data. The condition of matching sub-

jects between the source and target in Procrustes paired

is too restrictive and is not applicable in many settings.

The supervised rotation correction methods developed for

classification problems (Bleuzé et al., 2021; Maman et al.,

2019; Rodrigues et al., 2019) are unsuitable for regression.

Further investigations are needed to fill the lack of rotation

correction in regression contexts.

Another limitation of this work is that we only per-

formed benchmark that involved source and target covari-

ance matrices formed from the same set of sensors. The

dimensionalities of the source and the target data must

be equal to apply the predictive model to it. It has been

proposed to deal with different dimensionalities of covari-

ance matrices via zero-padding (Rodrigues et al., 2020).

However, this method is not applicable if there is no rota-

tion correction afterward, so we could not use it. We also

observed that our framework is not robust to sensor per-

mutation in the covariance matrices, even with the same

sets of sensors. In our EEG benchmark, we had to se-

lect the common channels between the two datasets and

sort them to reach acceptable performance even for the

re-center step. In addition to leading to a gain in perfor-

mance, having a proper rotation correction would help to

deal with issues related to different numbers or types of

sensors in the source and target datasets.

Besides the limitations linked to the rotation correc-

tion, further points would deserve future studies. First, we

explored unsupervised alignment methods that do not ex-

plicitly share any information between the source and the

target domains. Comparing our results with supervised

methods could allow us to quantify the gain of supervision

and to have additional insights into the trade-off between

the approaches. A second element to consider is that our

goal was to evaluate the alignment methods on a regression

problem by minimizing the prediction error. We focused

on brain age prediction as age is a label that is easy to col-

lect. But other prediction targets should equally benefit

from the methods presented in this work. Importantly, we

conducted our benchmarks on healthy participants sam-

pled from the general population. Yet, the biggest im-

pact of our results may be seen when bridging datasets

from heterogeneous clinical populations, which remains to

be demonstrated. Finally, in this work we focus on lin-

ear regression model but recent work demonstrated that

this Riemannian framework can also be applied with non-

linear models (Bonet et al., 2023). Kernel-based models

have been shown to perform well on brain age prediction

but were not investigated in a domain adaptation context.

Data and code Availability

All data used are publicly available. The Cam-CAN

data repository is accessible via http://www.mrc-cbu.

cam.ac.uk/datasets/camcan/, the TUH EEG data cor-

pus via https://isip.piconepress.com/projects/tuh_

eeg/ and the Leipzig Mind-Brain-Body database via https:

//fcon_1000.projects.nitrc.org/indi/retro/MPI_LEMON/

downloads/. The scripts and code for the alignment meth-

ods and the results presented in this paper are available on

GitHub (https://github.com/apmellot/harmonizing_

aligning_meeg).
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de Cheveigné, A. and Parra, L. C. (2014). Joint decorrelation, a

versatile tool for multichannel data analysis. Neuroimage, 98:487–

505.

Dmochowski, J. P., Ki, J. J., DeGuzman, P., Sajda, P., and Parra,

L. C. (2018). Extracting multidimensional stimulus-response cor-

relations using hybrid encoding-decoding of neural activity. Neu-

roImage, 180:134–146.

Dockès, J., Varoquaux, G., and Poline, J.-B. (2021). Preventing

dataset shift from breaking machine-learning biomarkers. Giga-

Science, 10(9).

Engemann, D. A., Kozynets, O., Sabbagh, D., Lemâıtre, G., Varo-
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Appendix A. Procrustes unpaired and the Vari-

anceThreshold function

In this appendix, we show that the unpaired Procrustes

method should be handled carefully. In particular, we

show that the vectorized logarithm maps {zi}Ni=1, defined

in Equation (11), only span a subspace of R
P (P+1)

2 regard-

less of the number of covariance matrices Ci. Indeed, the

rank of Z = {zi, i = 1 . . . N (S)} ∈ R
P (P+1)

2 ×N is at most

P . This implies that, computing the left singular vec-

tors U ∈ R
P (P+1)

2 ×P (P+1)
2 of Z, we get U⊤Z ∈ R

P (P+1)
2 ×N

that has at maximum P rows with non zero variances.

Thus, the other rows must be discarded using, for exam-

ple, the class VarianceThreshold from the scikit-learn li-

brary (Pedregosa et al., 2011). Otherwise, numerical issues

can be encountered using functions like StandardScaler

from the scikit-learn library. To prove these assertions, we

begin by recalling the mixing model of Ci with no noise

in the next hypothesis.

Assumption 1 (Mixing model). We have a set of covari-

ance matrices {Ci}Ni=1 that respect the following mixing

model

Ci = ADiA
⊤ (A.1)
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with A ∈ RP×P an invertible mixing matrix and with Di ∈

RP×P diagonal with strictly positive elements.

This assumption induces that the Riemannian mean C̄

of {Ci}Ni=1 defined in Equation (10) and the associated

Riemannian logarithmic mappings {log(C̄− 1
2CiC̄

− 1
2 )}Ni=1

have particular structures. These structures are computed

in the following lemma.

Lemma 1. Knowing A and {Di}Ni=1, the Riemannian

mean C̄ has a closed form expression which is

C̄ = AD̄A⊤ (A.2)

with D̄ diagonal with elements D̄jj =
(∏N

i=1(Di)jj

) 1
N

.

Furthermore, the Riemannian logarithmic mappings of any

C̄
− 1

2CiC̄
− 1

2 at identity is

log(C̄
− 1

2CiC̄
− 1

2 ) = C̄
− 1

2A−⊤ log(D̄
−1

Di)A
⊤C̄

1
2 . (A.3)

The log function on the right-hand side of the equation

applies the scalar logarithm on the diagonal elements.

Proof. By affine invariance of δR, we have C̄ = AD̄A⊤

with

D̄ = argmin
C∈S++

P

N∑
i=1

δ2R(C,Di). (A.4)

From (Moakher, 2005), D̄ is the unique solution of

N∑
i=1

log(D−1
i D̄) = 0P . (A.5)

It is readily checked that D̄ diagonal with elements D̄jj =(∏N
i=1(Di)jj

) 1
N

satisfies the Equation A.5. Using these

results and the matrix logarithm property log(EBE−1) =

E log(B)E−1 for any E ∈ RP×P invertible and B ∈ RP×P

such that log(B) and log(EBE−1) exist, we have

log(C̄
− 1

2CiC̄
− 1

2 ) = C̄
1
2 log(C̄

−1
Ci)C̄

− 1
2

= C̄
1
2 log(A−⊤D̄

−1
DiA

⊤)C̄
− 1

2

= C̄
1
2A−⊤ log(D̄

−1
Di)A

⊤C̄
− 1

2 .

(A.6)

These structures induce that the vectorized logarithm

maps {zi}ni=1 only span a subspace of R
P (P+1)

2 .

Proposition 1. The matrix Z = {zi, i = 1 . . . N} ∈

R
P (P+1)

2 ×N has a maximum rank of P .

Proof. We begin by defining the full vectorization coun-

terpart of (11)

z̃i = vec(S⊙ log(C̄
− 1

2CiC̄
− 1

2 )) ∈ RP 2

(A.7)

where vec is the operator that concatenates the columns

of a given matrix. Then, by denoting s = vec(S), we get

z̃i = diag(s)vec(log(C̄
− 1

2CiC̄
− 1

2 ))

= diag(s)vec(C̄
1
2A−⊤ log(D̄

−1
Di)A

⊤C̄
− 1

2 )

= diag(s)(C̄
− 1

2A⊗ C̄
1
2A−⊤)vec(log(D̄

−1
Di))

(A.8)

where ⊗ is the Kronecker product. Denoting Z̃ = {z̃i, i =

1 . . . N (S)} ∈ RP 2×N , it follows that

Z̃ = diag(s)(C̄
− 1

2A⊗ C̄
1
2A−⊤)×[

vec(log(D̄
−1

D1)), . . . , vec(log(D̄
−1

Dn))
]
.

Since rank(C̄
− 1

2A⊗ C̄
1
2A−⊤) = P 2, we have that

rank(Z̃) =

rank
([

vec(log(D̄
−1

D1)), . . . , vec(log(D̄
−1

Dn))
])

Since log(D̄
−1

Di) has at most P non-zero elements,

rank(Z̃) ≤ P.

To conclude, the rows of Z are included in those of Z̃,

hence

rank(Z) ≤ P.
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