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LOCAL EXTREMALITY OF THE CALABI-CROKE
SPHERE FOR THE LENGTH OF THE SHORTEST

CLOSED GEODESIC

STÉPHANE SABOURAU

Abstract. Recently, F. Balacheff [Ba] proved that the Calabi-Croke
sphere made of two flat 1-unit-side equilateral triangles glued along their
boundaries is a local extremum for the length of the shortest closed
geodesic among the Riemannian spheres with conical singularities of
fixed area. We give an alternative proof of this theorem, which does not
make use of the uniformization theorem and carries over to the Lipschitz
distance topology. Furthermore, we extend the result to Finsler metrics.

1. Introduction

In [Cr88], C. Croke proved that every Riemannian sphere S2 satisfies

area(S2) ≥ 1
(31)2

scg(S2)2 (1.1)

where scg(S2) represents the length of the shortest closed geodesic on S2.
This inequality is not sharp and has been improved in [NR02], [Sa04] and
[Ro06]. Though the round sphere is a critical point for the quotient area/scg2

(and might be a local minimum), cf. [Ba06], it does not represent the optimal
bound. Actually, it was suggested by E. Calabi and C. Croke that the
optimal bound is attained by a flat metric with three conical singularities,
cf. [Cr88] and [CK03]. This surface, called the Calabi-Croke sphere and
denoted by (S2, g0), is obtained by gluing two copies of a flat 1-unit-side
equilateral triangle along their boundaries. The quotient area/scg2 of this
degenerate metric is equal to 1

2
√

3
.

In a recent paper [Ba], F. Balacheff proved that the Calabi-Croke sphere
is locally extremal by using the uniformization theorem on the sphere.

The goal of the present article is twofold: 1) to present an alternative
(more geometrical) proof of the local extremality of the Calabi-Croke sphere,
which does not rely on the uniformization theorem and carries over to the
Lipschitz distance topology; 2) to establish a Finsler version of it.

A closed geodesic on a Riemannian sphere with conical singularities is a
loop which is locally length-minimizing in the neighborhood of every point
of S2 with a conical angle of at least 2π. In this definition, there is no
condition at a conical singularity of conical angle less than 2π (a nontrivial
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loop passing through such a conical singularity is never length-minimizing)
in order to guarantee the existence of a nontrivial closed geodesic on any
Riemannian sphere with conical singularities.

Rather than using this notion of a closed geodesic, we will show that as
in [Ba], the Calabi-Croke sphere is locally extremal for the diastole over
the one-cycle space. This diastole, denoted by diasZ(S2), is defined by a
minimax process over the families of one-cycles sweeping out the sphere,
cf. Section 2 or [BS] for a precise definition. We have

scg(S2) ≤ diasZ(S2) (1.2)

with equality for the Calabi-Croke sphere, cf. Section 2.
Thus, showing that the Calabi-Croke sphere is locally extremal for the

diastole over the one-cycle space implies that it is locally extremal for the
length of the shortest closed geodesic too.

In order to specify the topology on the space of metrics considered in this
article, let us describe further the Calabi-Croke sphere.

The points x1, x2 and x3 corresponding to the three conical singularities
of angles 2π

3 of the Calabi-Croke sphere are called vertices. By the uni-
formization theorem, the sphere S2 has only one conformal structure up to
diffeomorphism. This conformal structure is given by the natural conformal
structure on CP 1 ' C ∪ {∞}. With this identification, from [Tr86, Tr90]
(see also [Ba]), the Calabi-Croke metric on S2 can be written as

g0 = λ (|z − 1| · |z| · |z + 1|)−
4
3 |dz|2

for some λ > 0. Thus, the metric g0 is only defined (and smooth) on
S2 \ {x1, x2, x3}.

It is then natural to set the following. A Riemannian metric with conical
singularities g on S2 is said to be close enough to g0 if g is close enough to g0

in the usual sense on the open surface S2 \ {x1, x2, x3}, i.e. as a smooth sec-
tion of the bundle of symmetric 2-forms on S2 \ {x1, x2, x3}.

With this definition, we can now state F. Balacheff’s result [Ba], to which
we will present an alternative proof in the sequel.

Theorem 1.1. Every Riemannian metric with conical singularities g on S2

close enough to the Calabi-Croke sphere g0 satisfies the sharp inequality

area(S2, g) ≥ 1
2
√

3
diasZ(S2, g)2

with equality if and only if g is homothetic to g0.

From (1.2), this result still holds true if one replaces diasZ(S2, g) with scg(S2, g).

Other generalizations are presented in Section 10. Among them, we prove
the following new result which cannot be derived from [Ba].

Theorem 1.2. Every Riemannian metric with conical singularities g on S2

close enough to the Calabi-Croke sphere g0 for the Lipschitz distance satisfies
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the sharp inequality

area(S2, g) ≥ 1
2
√

3
sys(S2, g)2

with equality if and only if g is homothetic to g0.

Our proof of Theorem 1.1 rests on three ingredients:
(1) the construction of a ramified cover from the torus onto the sphere;
(2) C. Loewner’s systolic inequality on the torus;
(3) Morse theory on the loop space and the one-cycle space of the sphere

through minimax principles.
The ramified cover from the torus onto the sphere (allowing us to use

C. Loewner’s inequality) was first introduced by the author [Sa01, Sec-
tion 2.5] in this context. It is also the starting point of [Ba]. While the
proof in [Ba] makes use of the uniformization theorem and continues with
an analysis of the conformal factor of the metric, requiring a bound on its
derivative, our arguments are more geometrical. In particular, they do not
require the uniformization theorem. Instead, they rely on some geometric
observations based on the minimax principle on the loop space and the one-
cycle space.

Our arguments also carry over to Finsler metrics. We refer to Section 11
for the necessary definitions regarding Finsler metrics and the following the-
orem, including the definition of the Finsler Calabi-Croke sphere.

In order to prove the local extremality of the Finsler Calabi-Croke sphere
for the diastole over the one-cycle space, we also establish a Finsler version
of C. Loewner’s systolic inequality, cf. Theorem 12.1.

All this leads to the following.

Theorem 1.3. Every Finsler metric F close enough to the Finsler Calabi-
Croke sphere F0 satisfies the sharp inequality

area(S2, F ) ≥ 2
3π

diasZ(S2, F )2

for the Holmes-Thompson area (i.e., the canonical symplectic volume of the
unit cotangent bundle divided by π), with equality if F is homothetic to F0.

As previously, this result still holds true if one replaces diasZ(S2, F )
with scg(S2, F ).

Other infinitesimally extremal metrics for related problems have recently
been described in [AB] and [S].

This article is organized as follows. First, we define the diastole over the
loop space and the one-cycle space, cf. Section 2. Then, we introduce a de-
gree three ramified cover from the torus onto the sphere in Section 3. In the
sections 4 to 8, we derive geometric estimates on the lengths of some loops on
the sphere leading to a comparison between the diastole over the one-cycle
space of the sphere and the systole of the torus. Using C. Loewner’s sys-
tolic inequality, we prove Theorem 1.1 in Section 9. Some generalizations



4 S. SABOURAU

are then presented in Section 10. Finsler metrics, along with the Finsler
Calabi-Croke sphere, are introduced in Section 11. In Section 12, we give an
overview of the different proofs of C. Loewner’s inequality in the Riemann-
ian case and establish a Finsler version of it. The proof of Theorem 1.3 is
then derived.

Acknowledgement. The author would like to thank Juan-Carlos Álvarez
Paiva and Florent Balacheff for pointing out a mistake in the proof of the
systolic inequality on Finsler two-tori in an earlier version of the article.

2. Closed geodesics and Birkhoff’s minimax principle

The existence of closed geodesics on a smooth Riemannian sphere S2 has
been established by G. D. Birkhoff using Morse theory on the free loop space
of S2. More specifically, consider the free loop space ΛS2 formed of piecewise
smooth curves γ : S1 → S2 parametrized proportionnally to arclength and
endowed with the compact-open topology. The subspace of point curves is
denoted by Λ0S2.

The isomorphism between π1(ΛS2,Λ0S2) and π2(S2) ' Z allows us to
define the diastole over the loop space of S2 by using a minimax principle

diasΛ(S2) = inf
(γt)

sup
0≤t≤1

length(γt)

where (γt) runs over all the one-parameter families of loops inducing a gen-
erator of π1(ΛS2,Λ0S2) ' Z. Following G. D. Birkhoff [Bi66], there exists
a closed geodesic of length diasΛ(S2). In particular,

scg(S2) ≤ diasΛ(S2).

The existence of a closed geodesic on S2 can also be proved by using
a minimax principle on a different space, namely the one-cycle space with
integer coefficients Z1(S2; Z), or Z1(S2) for short, endowed with the flat
norm topology. The use of the one-cycle space allows us to cut and paste
loops. We refer to [Al60], [Sa04] or [BS] for a precise definition. Simply recall
that every one-cycle z decomposes into a countable sum of simple loops and
that the mass of z, denoted by M(z), is the sum of the lengths of these
loops counted with multiplicities. The Almgren isomorphism [Al60] between
π1(Z1(S2; Z), {0}) and H2(S2; Z) ' Z allows us to define the diastole over
the one-cycle space of S2 as

diasZ(S2) = inf
(zt)

sup
0≤t≤1

M(zt)

where (zt) runs over all the one-parameter families of one-cycles inducing a
generator of π1(Z1(S2), {0}). From a result of J. Pitts [Pi74, p. 468] (see
also [CC92]), this minimax principle gives rise to a union of closed geodesics
(counted with multiplicities) of total length diasZ(S2). Hence,

scg(S2) ≤ diasZ(S2).

Of course,
diasZ(S2) ≤ diasΛ(S2). (2.1)

Furthermore, equality holds for nonnegatively curved spheres, cf. [CC92].
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The example of a two-sphere of given area with three spikes arbitrarily
long shows that the diastole over the loop space diasΛ(S2) provides no lower
bound on the area of the sphere (cf. [Sa04, Remark 4.10] for further details).
However, the diastole over the one-cycle space does provide a lower bound
on the area of the sphere similar to C. Croke’s inequality (1.1), cf. [BS].

These definitions extend to Riemannian metrics with conical singularities
and Finsler metrics.

Remark 2.1. In this article, we do not need the full generality of the one-
cycle space arising from geometric measure theory. We could instead work
with the double loop space Γ introduced in [CC92, Appendix], and also used
in [NR02, Ro06].

3. A ramified cover from the torus onto the sphere

The proof of the main theorem relies on the following construction of
a ramified cover from the torus onto the sphere. This ramified cover was
introduced by the author [Sa01] in the study of short closed geodesics on
Riemannian spheres and used later in [Ba].

By the theory of coverings, there exist a degree three cover π : T2 → S2

ramified over the three vertices x1, x2 and x3 of S2, and a deck transforma-
tion map ρ : T2 → T2 only fixing the ramification points of π with ρ3 = idT2

and π ◦ ρ = π.
The ramified cover π can also be constructed in a more geometrical way

as follows. First, cut the sphere along the two minimizing arcs of g0 joining
x1 to x2 and x1 to x3. This yields a parallelogram with all sides of equal
length. Then, glue three copies of this parallelogram along the two sides
between x3 and the two copies of x1 to form a hexagon (see the figure be-
low). By identifying the opposed sides of this parallelogram, we obtain an
equilateral flat torus T2. The isometric rotation, defined on the hexagon,
centered at x3 and permuting the parallelograms, passes to quotient and
induces a map ρ : T2 → T2. This map gives rise to a degree three ramified
cover π : T2 −→ S2.
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Thus, the Calabi-Croke sphere can be described as the quotient of an
equilateral flat torus by the deck transformation map ρ.

Given a Riemannian metric with conical singularities on S2, we will en-
dow T2 with the metric pulled back by π and its universal cover R2 with the
metric pulled back by

R2 −→ T2 π−→ S2. (3.1)

Since the degree of the Riemannian ramified cover π is equal to three, we
have

area(T2) = 3 area(S2).

4. Geometry and dynamics of deformed Calabi-Croke spheres

We will need the following definitions.

Definition 4.1. The systole of a nonsimply connected metric space X,
denoted by sys(X), is defined as the infimum of the lengths of the noncon-
tractible loops of X. The pointed systole of X at a point x ∈ X, denoted
by sys(X,x), is defined similarly with the extra assumption that the non-
contractible loops considered are based at x. A shortest noncontractible
loop of X is called a systolic loop. A systolic loop based at x is a shortest
noncontractible loop of X with basepoint x.

As seen in the previous section, the Calabi-Croke sphere can be described
as the quotient of an equilateral flat torus by π : T2 → S2. Furthermore, we
have the following.

Lemma 4.2. A Riemannian metric with conical singularities g on S2 is
close to g0 if and only if the pulled-back metric π∗g extends to a smooth
Riemannian metric on T2 close to the flat metric π∗g0.

In this case, the metric g has the same conical singularities as g0 with the
same angles.

Proof. Let g be a metric on S2 given by a function g : TS2 \ Σ → R C∞-
close to the flat metric g0, with Σ = ∪3

i=1TxiS
2. The pulled-back metric π∗g

on T2 is also given by a function π∗g : π∗TS2 \ π∗Σ → R C∞-close to the
flat metric π∗g0. Note that π∗g0, contrary to π∗g, is defined on the whole
tangent bundle of T2.

The metric π∗g and all its derivatives are Lipschitz. From the differential
extension theorem, π∗g extends to a smooth function, still denoted by π∗g,
on TR2. The restriction of this function to each tangent plane of R2 defines
a nonnegative quadratic form. Since π∗g is close to π∗g0, this nonnegative
quadratic form is nondegenerate. Therefore, π∗g defines a smooth metric
on R2, which is close to π∗g0. The converse is clear.

For the second part, simply remark that the deck transformation group
fixing a given ramification point of π on T2 is a group isomorphic to Z3 which
acts by isometries on the smooth Riemannian torus (T2, π∗g), cf. [Tr90]. �

The Calabi-Croke sphere satisfies the following properties:
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(P1) The length of a shortest loop based at a vertex of S2 which is non-
contractible in the sphere with the other two vertices removed is less
than twice the minimal distance δ between two vertices. That is,

sys(S2 \ {xi+1, xi+2}, xi) < 2δ

for every i ∈ {1, 2, 3}, where the indices are taken modulo 3.

(P2) The conical angles of the vertices x1, x2 and x3 of S2 are less than π.

(P3) The metric lifts to a smooth Riemannian metric on the universal
cover of the torus

R2 −→ T2 π−→ S2,

which does not have any nontrivial closed geodesic of length less
than 3 diasΛ(S2).

More generally, we have the following.

Lemma 4.3. Every Riemannian metric with conical singularities g on S2

which is close enough to g0 still satisfies (P1), (P2) and (P3).

Proof. The pointed systole and the minimal distance δ between two vertices
vary continuously with the metric on S2. Combined with Lemma 4.2, this
shows that the open conditions (P1) and (P2) are satisfied for a metric on S2

close enough to g0.
The metric g lifts to a smooth Riemannian metric g̃ on the universal cover

of the torus
R2 −→ T2 π−→ S2.

Observe that the metric g̃0 defined on R2 is Euclidean. The geodesic flow
φg̃ : TR2 × R→ TR2 of g̃ is the solution of a Euler-Lagrange equation given
by a second-order differential equation which depends continously on the
coefficients of g̃ and their (first) derivatives, cf. [Be78, Section 1.7].

Let ε > 0. General results on the dependence of the solutions of a dy-
namical system with parameters, cf. [Ar06], imply the following. If g̃ is
close enough to g̃0, the geodesic flow of g̃ is ε-close to the geodesic flow of g̃0

in restriction to any given compact set of TR2 × R. Furthermore, we can
assume that the lengths of the corresponding geodesic trajectories on R2

are ε-close. Thus, for g̃ close enough to g̃0, there is no g̃-geodesic loop of
length at most 3 diasΛ(S2, g) on R2 (remark that the diastole over the loop
space – and the one-cycle space – of S2 varies continously with the metric
on S2). �

5. curve shortening process

Consider a Riemannian metric on T2 which passes to the quotient through
π : T2 → S2, cf. Section 3. The metric on T2 lifts to a Riemannian metric
on the universal cover R2 → T2.

Let γ be a piecewise geodesic loop of R2 without transverse self-intersection
point. Assume that γ is shorter than the shortest closed geodesic on R2.
The mean curvature flow studied in [Gr89] is a curve shortening process
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which deforms γ through a one-parameter family of loops (γt)0≤t≤1 where
γ0 agrees with γ and γ1 is a point curve (after a reparametrization of t).

When γ bounds a convex polygonal domain D (i.e., with acute angles),
the mean curvature flow gives rise to a map of degree ±1 from the disk
onto D.

Furthermore, if γ is a lift of a simple loop on S2 through

R2 −→ T2 π−→ S2,

then the same holds for γt from the equivariance property of the flow.

Remark 5.1. Another equivariant curve shortening process satisfying these
properties has been introduced by G. D. Birkhoff [Bi66], see also [Cr88]. To
ensure the equivariance property of the flow when γ is a lift of a simple loop
on S2, one has to take equivariant loop subdivisions in the definition of the
curve shortening process.

Furthermore, the Birkhoff curve shortening process extends to Finsler
metrics, cf. Section 11.

6. Geodesic loops and diastole

The following observation is one of the key arguments in the proof of the
main theorem. It compares the length of various geodesic loops on a metric
sphere close to the Calabi-Croke sphere.

Lemma 6.1. Let S2 be a Riemannian sphere with conical singularities sat-
isfying (P1), (P2) and (P3), cf. Section 4.

Then,
sys(S2 \ {xi+1, xi+2}, xi) ≥ diasΛ(S2)

for every i ∈ {1, 2, 3}, where the indices are taken modulo 3.

Proof. Let γ be a shortest loop based at a vertex of S2 which is noncon-
tractible in the sphere with the other two vertices removed. Such a loop
exists from (P1). Furthermore, it is simple and piecewise geodesic (with a
singularity of angle less than π only at its basepoint).

We argue by contradiction and suppose that

length(γ) < diasΛ(S2).

Since the conical angle of the basepoint of γ is less than π from (P2), the
loop γ decomposes S2 into two convex polygonal domains D− and D+. Lift
D− and D+ to two polygonal domains D̃− and D̃+ (two triangles) on the
universal cover of the torus, cf. (3.1),

R2 −→ T2 π−→ S2.

The domains D̃− and D̃+ are convex and the length of their boundaries
is less than 3 diasΛ(S2). Applying an equivariant curve shortening process,
cf. Section 5, to the boundaries ∂D̃− and ∂D̃+ of the domains D̃− and D̃+

induces two one-parameter families of loops from ∂D̃− and ∂D̃+ to point
curves in D̃− and D̃+. (Indeed, from (P3), there is no nontrivial closed
geodesic on R2 shorter or of the same length as ∂D̃− and ∂D̃+.) These two
families of loops are the lifts of two families of loops (γ−t ) and (γ+

t ) on S2,
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which both start at γ. Putting together (γ−t ) and (γ+
t ) gives rise to a one-

parameter family of loops (γt), starting and ending at point curves, which
induces a generator of π1(ΛS2,Λ0S2) ' Z. By construction, we have

length(γ) = sup
t

length(γt).

Hence, length(γ) ≥ diasΛ(S2), which is absurd. �

7. Projection of systolic loops

Let S2 be a Riemannian sphere with conical singularities and π : T2 → S2

be the Riemannian ramified cover of degree three introduced in Section 3.

Lemma 7.1. Every systolic loop γ of T2 which does not pass through a
ramification point of π projects to a figure-eight geodesic of S2.

Furthermore, this figure-eight geodesic decomposes S2 into three domains
with exactly one vertex lying in each of them.

Proof. The projection of γ on S2 forms a (finite) graph α with geodesic
edges. Consider the shortest simple loop c1 lying in the support of α which
separates one vertex of S2, say x1 after renumbering, from the other two.
This loop exists, otherwise the lift γ of α in T2 would be contractible. Con-
sider also the shortest simple loop c2 lying in the closure of α\ c1 which sep-
arates x2 from x3. This loop exists for the same reason as above. Switching
the roles of x2 and x3 if necessary, we can assume that the winding number
of ci around the vertex xj in S2 \ {x3} is equal to δi,j for i, j ∈ {1, 2}, where
δi,j = 1 if i = j and 0 otherwise.

Let c3 be the shortest arc of α connecting c1 to c2. We can construct a
loop c made of c1, c2 and two copies of c3 with winding numbers 1 and −1
around x1 and x2 in S2 \ {x3}. Clearly,

length(c) ≤ length(α) = length(γ). (7.1)

The loop c lifts to a noncontractible loop of T2. From (7.1), we conclude
that c is the projection of a systolic loop of T2 like α. Thus, c is a geodesic
loop of the same length as α. This implies that c is a figure-eight geodesic
loop (with c3 reduced to a point) which agrees with α. Hence the claim. �

Remark 7.2. For a metric on S2 close enough to g0, which is the case
we are interested in, we could have used the dynamical properties of the
geodesic flow to conclude, cf. Section 4.

8. Systole and diastole over the one-cycle space

In the following result, we compare the diastole over the one-cycle space
of some metric spheres with the systole of the corresponding torus.

Proposition 8.1. Let S2 be a Riemannian sphere with conical singularities
satisfying (P1), (P2) and (P3), and π : T2 → S2 be the Riemannian ramified
cover of degree three of Section 3.

Then,
sys(T2) ≥ diasZ(S2).
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Proof. A systolic loop of S2 \ {xi+1, xi+2} based at xi lifts to a noncon-
tractible loop on the torus. Thus, its length is greater or equal to the
systole of T2. Along with (P1), we can write

sys(T2) ≤ sys(S2 \ {xi+1, xi+2}, xi) < 2δ. (8.1)

Thus, every systolic loop γ of T2 passes through at most one ramification
point of the cover π.

If γ passes through exactly one ramification point yi of the projection π,
with π(yi) = xi, then its projection is noncontractible in S2 \ {xi+1, xi+2}.
Otherwise, this projection would lift to a contractible loop of T2. From
Lemma 6.1, we obtain

length(γ) ≥ sys(S2 \ {xi+1, xi+2}, xi) ≥ diasΛ(S2).

If γ passes through no ramification point of the projection π, then its
projection α is a figure-eight geodesic of S2 which decomposes the sphere
into three convex polygonal domains Di, cf. Lemma 7.1. As in the proof of
Lemma 6.1, we construct three families of loops from ∂Di to point curves
in Di by using a curve shortening process. Putting together these three fam-
ilies of loops gives rise to a one-parameter family of one-cycles (zt), starting
and ending at null-currents, which induces a generator of π1(Z1(S2), {0}) '
Z with

length(γ) = length(α) = sup
t

M(zt).

Hence, length(γ) ≥ diasZ(S2).
Therefore, in both cases, we derive from (2.1) that

sys(T2) ≥ diasZ(S2).

�

9. Local extremality of the Calabi-Croke sphere

Before proving Theorem 1.1 using the results and the constructions from
the previous sections, let us recall C. Loewner’s systolic inequality, cf. [Ka07]
for an account on the subject.

Every Riemannian torus T2 satisfies

area(T2) ≥
√

3
2

sys(T2)2 (9.1)

with equality if and only if T2 is homothetic to an equilateral flat torus.
We will go over this inequality and extend it to Finsler metrics in Sec-

tion 12.
We can now proceed with the proof of Theorem 1.1.

Let S2 be a Riemannian sphere with conical singularities close enough to
the Calabi-Croke sphere to satisfy (P1), (P2) and (P3), cf. Lemma 4.3. Con-
sider the Riemannian ramified cover of degree three π : T2 → S2 introduced
in Section 3.
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Since area(T2) = 3 area(S2), we derive from Proposition 8.1 and C. Loewner’s
inequality (9.1) that

area(S2) ≥ 1
2
√

3
diasZ(S2)2

. (9.2)

Furthermore, if the equality occurs in this latter inequality, then it also
occurs in Loewner’s. This implies that T2 is an equilateral flat torus and
that S2 is a sphere obtained by gluing two copies of an equilateral flat
triangle along their boundaries. That is, S2 is homothetic to the Calabi-
Croke sphere.

Remark 9.1. The proof of Theorem 1.1 shows that the inequality (9.2)
holds for every Riemannian sphere with conical singularities satisfying (P1),
(P2) and (P3) (not necessarily close to the Calabi-Croke sphere).

10. Some generalizations

In this section, we briefly discuss some generalizations of Theorem 1.1.
We refrain from giving too much details as the arguments are similar to
those presented so far and no new idea is required.

As mentionned before, we can replace the diastole over the one-cycle space
with the diastole over the double loop space in Theorem 1.1, cf. Remark 2.1.
Actually, if there is no short loop on S2 representing a local minimum of the
length functional, we can replace the diastole over the one-cycle space with
the diastole over the loop space in Theorem 1.1.

More specifically, the sharp inequality

area(S2) ≥ 1
2
√

3
min{scg0(S2),diasΛ(S2)}2

holds for every Riemannian sphere with conical singularities satisfying (P1)
and (P2), where scg0(S2) is the length of a shortest nontrivial loop of S2

representing a local minimum of the length functional.
Indeed, the right-hand terms in the inequalities of Lemma 6.1 and Propo-

sition 8.1 can be replaced with

min{scg0(S2),diasΛ(S2)}.

This requires some modifications in the proofs but no new idea: simply recall
that every loop of length less than scg0(S2) converges to a point through a
curve shortening process, and that a systolic loop of T2 which does not pass
through a ramification point of π projects to a local minimum of the length
functional on ΛS2.

One can also show that a Riemannian sphere with conical singulari-
ties close enough to the Calabi-Croke sphere for the Lipschitz distance,
cf. [Gro99], satisfies (P1) and (P2) (the angles of the conical singulari-
ties vary continously in this topology). We conclude that the Calabi-Croke
sphere is also a local extremum of the quotient area/scg2 for the Lipschitz
distance topology. Note that such a result cannot be derived from [Ba].
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11. Finsler metrics and the Finsler Calabi-Croke sphere

Let us introduce some definitions.

Definition 11.1. A function F : TM −→ R, defined on the tangent bundle
of a manifold M , is a (symmetric) Finsler metric if

(1) it is smooth outside the zero section;
(2) its restriction on every fiber TxM is a vector-space norm;
(3) F 2 has positive definite second derivatives on the fiber TxM \ {0}

for every x ∈M .

One can define the length of piecewise smooth curves with respect to the
Finsler metric F and so the distance between two points as in the Riemann-
ian case. The condition (3) guarantees that the geodesic flow of F is well
defined, cf. [Be78, Chapter 1.F].

The Liouville measure of the cotangent bundle T ∗M of an n-dimensional
manifold M is defined as ωn

n! where ω is the canonical symplectic form
on T ∗M . The Holmes-Thompson volume of a Finsler n-manifold is the
Liouville measure of its unit cotangent bundle divided by the Euclidean vol-
ume of the unit n-ball in Rn. Unless stated otherwise, we will use this notion
of volume on Finsler manifolds.

All these notions, except the existence of a geodesic flow, extend to de-
generate Finsler metrics, that is, functions F satisfying only the conditions
(1) and (2), but not (3).

Remark 11.2. The Hausdorff measure provides another way to define the
volume of a Finsler manifold or more generally of a metric space. The
Hausdorff measure of an n-dimensional normed space E agrees with the
unique Haar measure µ such that µ(B) = εn, where B is the unit ball of E
and εn is the Euclidean volume of the standard unit ball in Rn, cf. [Th96].

Note that the Holmes-Thompson volume and the Hausdorff measure do
not necessarily agree. However, for Riemannian manifolds, the Holmes-
Thompson volume and the Hausdorff measure agree with the usual Rie-
mannian volume. Furthermore, from [Du98], the Hausdorff measure of a
Finsler manifold is not less than its Holmes-Thompson volume, with equal-
ity if and only if the metric is Riemannian.

Definition 11.3. The Riemannian Calabi-Croke sphere g0 can be described
as the quotient of a Riemannian equilateral flat torus by the deck transfor-
mation group of the degree three ramified cover π : T2 → S2, cf. Section 5.
Up to homothety, this Riemannian equilateral flat torus agrees with the
quotient of the Euclidean plane by the lattice Λ of R2 spanned by α = (1, 0)
and β = (1

2 ,
√

3
2 ).

Now, consider the Finsler flat torus obtained as the quotient by Λ of
the Minkowski plane R2 of unit disk the parallelogram of vertices α

2 , β
2 ,

−α
2 and −β

2 . By analogy with the Riemannian case, we define the Finsler
Calabi-Croke sphere F0 as the quotient of this Finsler flat torus by the deck
transformation group of the degree three ramified cover π. The metric F0 is
only defined on S2 \ {x1, x2, x3}.
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A Finsler metric close to the Finsler Calabi-Croke sphere F0 is a Finsler
metric defined on S2 \ {x1, x2, x3} which is close to F0 as a smooth Finsler
metric on S2 \ {x1, x2, x3}.

12. A Finsler Loewner’s inequality

Sixty years ago, C. Loewner proved the first systolic inequality, cf. [Ka07].
Namely, every Riemannian two-torus T2 satisfies

area(T2) ≥
√

3
2

sys(T2)2 (12.1)

with equality if and only if T2 is homothetic to a flat equilateral torus.
The original proof of this inequality rests on the uniformization theorem for
surfaces, cf. [Ka07].

There are two other proofs which do not rely on the uniformization the-
orem. The first one is a direct consequence of the Burago-Ivanov-Gromov
sharp inequality on the n-torus for the stable systole, cf. [Gro99, Theo-
rem 4.30+]. Simply notice that the systole and the stable systole agree on
a Riemannian two-torus. We will use this approach in the proof of Theo-
rem 12.1.

The second one immediately follows from a result of T. Ilmanen and
D. Knopf. In [IK03], the authors show that the stable systole of a closed
Riemannian manifold with nontrivial first homology group is nondecreasing
along the Ricci flow. The same result holds for the systole on an orientable
Riemannian surface since, in this case, the systole agrees with the stable
systole. Now, the Ricci flow of a Riemannian two-torus preserves the area
and converges to a flat torus, cf. [ChK04]. Letting the Ricci flow converge,
we derive that the optimal systolic inequality on T2 is attained by a flat met-
ric. From Minkowski’s theorem, we conclude that this extremal flat torus is
equilateral.

Now we establish a sharp Finsler version of C. Loewner’s inequality (12.1).

Theorem 12.1. Let T2 be a Finsler two-torus, then

area(T2) ≥ 2
π

sys(T2)2
. (12.2)

Equality holds if T2 is homothetic to the quotient of R2, endowed with a
parallelogram norm ||.|| (i.e., the unit disk of ||.|| is a parallelogram), by a
lattice with the unit disk of ||.|| as a fundamental domain.

The inequality still holds by replacing the Holmes-Thompson area with the
Hausdorff measure.

Proof. Consider the (nonzero degree) Jacobi mapping f : T2 −→ J onto the
Jacobi torus J = H1(T2; R)/H1(T2; Z) ' T2 endowed with the stable norm,
cf. [Gro99, Chapter 4]. From [BI02, Section 5], we have

area(T2) ≥ area(J)

for the Holmes-Thompson area. Note that this inequality has been proved
only in the two-dimensional case.

Let D(R) be a disk of radius R < 1
2sys(J) in the flat Finsler torus J . We

have area(J) ≥ area(D(R)). By definition of the systole, this disk lifts to a
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disk D̃(R) in the normed space J̃ , where J̃ is the universal cover of J . In
dimension two, K. Mahler’s inequality, cf. [Th96, Theorem 2.3.4] yields the
sharp lower bound

area(D(R)) = area(D̃(R)) ≥ 8
π
R2

where equality holds if and only if D(R) is a parallelogram. When R tends
to 1

2sys(J), we get area(J) ≥ 2
π sys(J)2. Furthermore, we have sys(T2) =

sys(J) since the systole and the stable systole agree in the orientable two-
dimensional case. Therefore, we obtain

area(T2) ≥ area(J) ≥ 2
π

sys(T2)2
.

If T2 is a quotient of R2, endowed with a parallelogram norm ||.||, by a
lattice with the unit disk of ||.|| as a fundamental domain, then area(T2) = 8

π

and sys(T2) = 2. Hence the result. �

We can now prove Theorem 1.3.

Proof of Theorem 1.3. The proof follows Theorem 1.1’s, cf. Section 9, where
one replaces C. Loewner’s inequality (12.1) with its Finsler version, cf. The-
orem 12.1. Simply remark that the intermediate results of the sections 4, 6,
7 and 8 extend to Finsler metrics. �

13. A Finsler Pu’s inequality

This section is purely expository. It aims at completing the presentation
of sharp systolic inequalities on Finsler surfaces initiated in the previous
section.

An inequality analogous to C. Loewner’s (12.2) has been established by
P. Pu [Pu52] on the projective plane. More precisely, every Riemannian
projective plane RP 2 satisfies

area(RP 2) ≥ 2
π

sys(RP 2)2 (13.1)

with equality if and only if RP 2 is a round projective plane. As for the torus,
the original proof of this inequality rests on the uniformization theorem.

Another proof of this inequality, which does not rely on the uniformization
theorem, has been obtained by S. Ivanov, who showed that (13.1) follows
from the main result of [Iv02]. Furthermore, this proof applies to the Finsler
case and yields the same estimate.

Therefore, the estimate of the following theorem is not new. We state
it as it fits in our study of short closed geodesics on Finsler surfaces. We
simply give the details of the proof and add an observation on the equality
case.

Theorem 13.1 (see [Iv02]). Let RP 2 be a Finsler projective plane, then

area(RP 2) ≥ 2
π

sys(RP 2)2 (13.2)

Equality holds if the geodesic flow of the Finsler metric is periodic or, equiv-
alently, if all the geodesics of the Finsler metric are closed. This is the case,
for instance, with the standard round metric.
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The inequality still holds by replacing the Holmes-Thompson area with the
Hausdorff measure. In this case, equality holds if and only if the metric is
Riemannian with constant curvature.

Proof. Let RP 2 be a Finsler projective plane and S2 be its Finsler universal
cover. Let γ be a loop on S2 which projects onto a systolic loop of RP 2.
We have length(γ) = 2 sys(RP 2). The curve γ divides S2 into two isometric
disks. Let D be one of them. Since γ is the lift of a systole, the distance
in D between two points of γ is given by the length of the shortest subarc
of γ joining these two points. Equivalently, the distance on the boundary
of D agrees with the distance on the boundary of the round hemisphere
of circumference length(γ), where the boundaries of the two domains are
isometrically identified. From the Finsler version of S. Ivanov’s theorem,
cf. [Iv02, Section 3], we have

area(D) ≥ length(γ)2

2π
.

Since area(D) = area(RP 2), we finally obtain the Finsler version of P. Pu’s
theorem.

Suppose now that the projective plane RP 2 is endowed with a Finsler
metric all of whose geodesics are closed. The same holds for its universal
cover S2 endowed with the pull-back metric. From [GG81], the primitive
geodesics of S2 have the same length, namely 2 sys(RP 2). Strictly speaking,
the statement of [GG81] holds for Riemannian metrics, but the proof carries
over to Finsler metrics (see also [Zi82, p. 143]). Now, A. Weinstein’s theo-
rem on C-manifolds, cf. [Be78, Theorem 2.21 and Proposition 2.24], shows
that the Liouville measure of the unit cotangent bundle of S2 is equal to
4 sys(RP 2)2. That is,

area(RP 2) =
1
2

area(S2) =
2
π

sys(RP 2)2
.

The last part of the theorem follows from [Du98], cf. Remark 11.2, and the
equality case in Pu’s inequality (13.2) on Riemannian projective planes. �

Remark 13.2. Contrary to the Riemannian case, cf. [Bav86], there is no
known sharp systolic inequality on Finsler Klein bottles.
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