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CRITICAL ISOSYSTOLIC SURFACES OF GENUS THREE

FOR SLOW METRIC VARIATIONS

STÉPHANE SABOURAU

Abstract. We show that the two piecewise flat surfaces with coni-
cal singularities conjectured by E. Calabi as extremal surfaces for the
isosystolic problem in genus 3 are critical with respect to some met-
ric variations. The proof relies on a new approach to study isosystolic
extremal surfaces.

1. Introduction

Let M be a nonsimply connected closed surface. The systole of a Rie-
mannian metric g on M , denoted by sys(g), is defined as the infimum of the
lengths of the noncontractible loops of M . Define the systolic area of (M, g)
as

σ(g) =
area(g)

sys(g)2
.

The systolic area of a nonsimply connected closed Riemannian surface (M, g)
is bounded from below by 2

π , where equality holds if and only if (M, g) is
isometric to a round projective plane, cf. [Pu52], [Gr83].

Extremal metrics, i.e. metrics realizing the minimum of the systolic area
for a surface of given topological type, are known in only three cases. Around
1949, C. Loewner proved that extremal metrics on the torus are flat hexag-
onal, cf. [Ka07]. Then, P. Pu [Pu52] showed that extremal metrics on the
projective plane are round. In comparison, C. Bavard [Bav86] showed that
extremal metrics on the Klein bottle, formed of two round Möbius bands
glued together, are not smooth and present a line of singularities.

In [Gr83], M. Gromov established the existence of extremal metrics in
the setting of “generalized metrics”. A general study of extremal surfaces
has been conducted by E. Calabi [Ca96] and pursued by R. Bryant [Br96].
Loosely speaking they showed that extremal metrics tend to have flat re-
gions. In [Ca96], E. Calabi also described two piecewise flat metrics with
conical singularities on the genus three surface extremal in their conformal
classes. He conjectured1 that these two metrics represent local minima of
the systolic area and that one of them corresponds to the global minimum.
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1In a private discussion, he told me that he was less confident now than at the time of

the writing of [Ca96] that the metric with the higher systolic area represents a local min-
imum, though he still believes that the other metric corresponds to the global minimum.
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The goal of this article is to show that these two piecewise flat metrics
are critical for the systolic area with respect to some slow metric variations
defined below.

Since the systolic area functional g 7→ σ(g) is not necessarily differentiable,
we need to extend the notion of critical point. A similar extension was
required in [Na96] and [EI00] to study Riemannian surfaces maximizing the
product λ1(g) · area(g), where λ1(g) is the first nonzero eigenvalue of the
Laplacian. By analogy with the notion introduced by these authors, we say
that a metric g0 on M is critical for the systolic area with respect to a metric
variation (gt)t≥0 if

σ(gt) ≥ σ(g0) + o(t).

We will also need the following.

Definition 1.1. A slow metric variation (gt)t≥0 is a one-parameter fam-
ily of Riemannian metrics gt with conical singularities on M (cf. [Tr91] or
Section 12.1) such that the differential of the Busemann function βgtξ in the

direction ξ for the metric gt satisfies

||(dβgtξ − dβ
gt
−ξ)− (dβg0

ξ − dβ
g0

−ξ)||L2(B̂ξ)
= o(
√
t) (1.1)

where B̂ξ is a fundamental domain of the systolic band Bξ in the universal
cover of (M, g0).

The directions ξ involved in this definition correspond to the systolic
bandsBξ of the Calabi surface considered. We refer to Definitions 3.1 and 3.2
for precise definitions of the directions ξ and the systolic bands Bξ (which
rest on the description of the Calabi surfaces presented in Section 2). We
also refer to Section 8 for a definition of Busemann functions.

The condition (1.1) is clearly satisfied if the L2-norm of dβgtξ −dβ
g0

ξ on B̂ξ

is equal to o(
√
t). We could also use the L1-norm in the condition (1.1).

Remark that if the differentials of the Busemann functions vary smoothly,
or even Lipschitz, with respect to t, then the metric variation (gt)t≥0 is slow.
Actually, the first part of the article does not rely on metric variations, it
only occurs in the last two sections.

Examples of slow metric variations are presented in the last section.

Let (M0, g0) be one of the two piecewise flat surfaces of genus three with
conical singularities conjectured extremal by E. Calabi in [Ca96], see Sec-
tion 2 for a description. Note that these two singular surfaces are nonposi-
tively curved in the sense of Alexandrov.

We will deal with normalized metrics, that is, metrics with a systole equal
to one.

Theorem 1.2. The metric g0 on M0 is critical for the systolic area with
respect to any normalized slow metric variation. That is,

σ(gt) ≥ σ(g0) + o(t)

for every normalized slow metric variation (gt)t≥0 of the piecewise flat met-
ric g0.
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Of course, one can ask whether the assumption on the metric variation
is always satisfied or can be dropped. To our knowledge, this is still an
open question. Actually, it is possible that any metric variation is slow, and
that the restriction on the type of metric variations can be relaxed. In any
case, this result shows that the two Calabi surfaces have special isosystolic
properties. We do not know any other surface of genus greater than one
which is critical with respect to slow metric variations.

In spite of the restriction on the metric variations considered, we believe
that the point of view developed in this article could be useful in the study
of extremal isosystolic properties on surfaces. We present the general frame-
work of the proof below.

The techniques used in this article fit in this contemporary approach of
Riemannian geometry which consists of isometrically embedding a Riemann-
ian manifold M into a space of large dimension, such as a Banach or Hilbert
space, through the geometry of M . This point of view allows us to study the
intrinsic geometry of M through the study of its isometric embedding. This
approach was developped in [Gr83], [BCG95], [Iv02], [BI02] and [BI10], for
instance, to obtain deep results on the geometry of Riemannian manifolds.
We borrow several features from these pioneer works.

Thus, contrary to classical techniques available to study extremal isosys-
tolic surfaces, cf. [Ka07], [Pu52], [Bav86], [Ba88], [Ba92], [KS06b], [HKK09],
our proof does not rest on the conformal length method nor does it make
use of the uniformization theorem. Instead we embed the universal cover of
a Riemannian surface M into an infinite dimensional space in an equivariant
way using the geometry of the surface. This infinite dimensional space car-
ries some special Euclidean metrics and two-forms along certain directions.
These metrics and two-forms are modeled on a given Calabi surface M0 so
that its embedding into this infinite dimensional space preserves some iso-
metric properties. Here, the combinatorics of the systolic loops of M0 plays
an essential role. Patching the pullbacks of these metrics and two-forms by
the embedding of M , we construct an auxiliary metric and a two-form on
the competing surface M . A comparison of the area measures of the differ-
ent metrics with the area measure of the two-form shows that it is enough
to study the first variation of the integral of the two-form associated to the
embedding of M . In some sense, the proof of the main theorem boils down
to an infinitesimal calibration argument and the two-form considered above
can be thought of as an “infinitesimally calibrating” form. The restriction on
the metric variation occurs only in the final step to differentiate the integral
of the infinitesimally calibrating form.

It seems that a local calibration argument could yield a local lower bound
on the systolic area of the Calabi surfaces and not merely an infinitesimal
one. However the presence of conical singularities on the Calabi surfaces
makes the construction of a form which locally calibrates the embedding
tricky. Let us emphasize that no form defined globally calibrates the em-
bedding of the first Calabi surface since this surface is not a global minimum
of the systolic area.
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We also carried out a similar variational study directly on the auxil-
iary metric without using the infinitesimally calibrating form but the re-
sult turned out to be the same. We will not present this study. Instead
we decided to develop the infinitesimally calibrating form approach as it
lends itself to estimates for Finsler metrics too, cf. [Iv02], [BI02]. In this
case, we have to replace the Riemannian metric with an hexagonal metric
as in [Ca96].

In contrast with the genus three surface, we showed in [Sa04] that ex-
tremal metrics on the genus two surface are not piecewise flat with conical
singularities. In a joint work [KS06b] with M. Katz, we found the infimum
of the systolic area on nonpositively curved genus two surfaces and described
the extremal metrics. These extremal metrics are piecewise flat with conical
singularities but are not extremal for the general isosystolic problem. This
shows that extremal metrics for the general isosystolic problem on the genus
two surface have regions with positive curvature and regions with negative
curvature. To be complete with the genus two case, let us mention that the
best available systolic inequality on this surface can be found in [KS06a].
It is proved that every metric on the genus two surface has a systolic area
greater or equal to the systolic area of the extremal metric on the torus.
The same result holds for surfaces of genus at least 20, cf. [KS05].

Locally extremal and critical metrics have recently been described on
the two-sphere [Ba06], [Ba10], [Sa10] and on compact rank-one symmetric
spaces [AB] for an extended notion of systolic volume.

We refer to the survey [CK03] and the monograph [Ka07] for an overview
on other aspects of systolic geometry, especially on the notion of stable sys-
tole for which extremal metrics have been described in higher dimension.

Acknowledment. The author is grateful to the referee for his or her careful
reading and cogent suggestions, which helped improve the presentation of
the article, and for pointing out an incorrect statement in a previous version.

2. Description of critical surfaces

In this section, we describe the two piecewise flat surfaces of genus three
with conical singularities introduced by E. Calabi and arising in Theo-
rem 1.2. This presentation follows the description of [Ca96].

2.1. Piecewise flat surface modeled on Fermat’s quartic. The first
surface is conformal to the Fermat quartic, defined in the complex projective
plane CP 2 by the homogeneous polynomial equation

x4 + y4 + z4 = 0.

It is modeled on the triangular hyperbolic surface representing the Fermat
quartic. This triangular hyperbolic surface is tiled by 32 equilateral hyper-
bolic triangles with angles equal to π

4 and has 12 vertices with 8 equilateral
triangles around each of them. These 12 vertices correspond to the points
adjoined in the compactification of the quartic, that is to the points (x, y, z)
where one of the coordinates is zero and the quotient of the other two is a
primitive eighth root of unity.
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Replacing the hyperbolic equilateral triangles by Euclidean equilateral
triangles gives rise to a piecewise flat surface M0 = (M0, g0) with 12 con-
ical singularities of angle 8π

3 , normalized to have a systole equal to one,
cf. Figure 1. The orientation-preserving isometry group of M0 is a group
of order 96. Denote by T the collection of the equilateral flat triangles
tiling M0.

Every geodesic in the interior of one of the triangles of T and parallel
to any side of this triangle extends as a geodesic and closes after passing
through 6 triangles. These closed geodesics are systolic loops of M0.

The systolic area of M0 is equal to

σ(M0) =
8
√

3

9
' 1.5396.
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Figure 1

The piecewise flat surface M0 can also be described as the polygonal
domain of Figure 1 where the sides are identified (preserving the orientation)
according to the letters. The 32 equilateral flat triangles of T are outlined in
thin black lines, while the gray stripes, crossing each other pairwise through
the midpoint of each edge represent the central portions of the bands foliated
by the systolic loops on M0. These systolic loops cover the surface M0 and
induce 32 free homotopy classes. Furthermore, exactly six of them (with
the orientation taken into account) pass through every point lying in the
interior of a triangle of T .
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Note that the conformal class of M0 is given by a ramified 4-fold covering
of the octahedron.

2.2. Piecewise flat surface modeled on Klein’s quartic. The second
surface is conformal to the Klein quartic, defined in the complex projective
plane CP 2 by the homogeneous polynomial equation

x3y + y3z + z3x = 0.

The hyperbolic surface representing the Klein quartic is tiled by 56 equilat-
eral hyperbolic triangles with angles equal to 2π

7 and has 24 vertices with 7
equilateral triangles around each of them. These 24 vertices correspond to
the points adjoined in the compactification of the quartic.

As before, replacing the hyperbolic equilateral triangles by Euclidean
equilateral triangles gives rise to a piecewise flat surface M0 = (M0, g0)
with 24 conical singularities of angle 7π

3 , normalized to have a systole equal
to one, cf. Figure 2 for a representation. The orientation-preserving isom-
etry group of M0 is isometric to the group PSL2(F7) of order 168. Denote
by T the collection of the equilateral flat triangles tiling M0.

As previously, the systole is achieved by the length of the geodesics par-
allel to the edges of the triangles of T , which close after passing through 8
triangles. The systolic loops on M0 cover the surface and induce 56 free ho-
motopy classes. As before, exactly six of them (with the orientation taken
into account) pass through every point lying in the interior of a triangle
of T .

The systolic area of M0 is equal to

σ(M0) =
7
√

3

8
' 1.5155.

2.3. Comparison with other surfaces. It might be instructive to com-
pare the systolic areas of the two Calabi surfaces with the ones of surfaces
of different topological types.

Given a nonsimply connected closed surface Σ, define S(Σ) as the infimum
of σ(g) over all the Riemannian metrics g on Σ.

The exact value of S is known only for the projective plane RP 2, cf. [Pu52],
the torus T2, cf. [Ka07], and the Klein bottle K2,cf. [Bav86]:

S(RP 2) =
2

π
' 0.6366

S(T2) =

√
3

2
' 0.8660

S(K2) =
2
√

2

π
' 0.9003.

In general, we only have
2

π
≤ S(Σ)

while for the genus γ surfaces Σγ the following estimates hold

S(T2) ≤ S(Σ2) ≤ 3(
√

2− 1) ' 1.2426

S(T2) ≤ S(Σγ) for every γ ≥ 20,
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Figure 2

cf. [Pu52, Gr83], [KS06a, KS06b], [KS05]. Even for the genus three surface,
we do not know whether S(T2) ≤ S(Σ3).

3. Systolic directions and admissible maps

Let us introduce some notations which will be used throughout this article.

Given a genus three surface M , denote by M̃ its universal covering. De-
note also by Γ the deck transformation group of the universal covering M̃
of M , that is M ' M̃/Γ. The deck transformation group Γ is a subgroup
of PSL2(R) isomorphic to the fundamental group π1(M) of M .

Let M0 = (M0, g0) be one of the two piecewise flat Calabi surfaces de-
scribed in Section 2. Recall that sys(g0) = 1. The metric g0 on M0 lifts to

a metric g̃0 on M̃0. Similarly, the natural triangulation T of M0 lifts to a
triangulation T̃ on M̃ . Fix an orientation on M0. This orientation induces
an orientation on the triangles ∆̃ of T̃ and on their boundaries ∂∆̃.

Definition 3.1. A systolic direction of M̃0 is a g̃0-unit vector of M̃0 based
at the midpoint of a height of an oriented triangle ∆̃ of T̃ , parallel to an
edge of ∆̃ and pointing in the same direction as this edge. The set of systolic
directions, denoted by S0, depends on the choice of the surface M0 and its
orientation. Set S∗0 = {ξ | ξ ∈ S0} ∪ {−ξ | ξ ∈ S0}.
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A vector ξ ∈ S∗0 induces a geodesic line cξ on M̃0 such that c′ξ(0) = ξ.

It also defines a unique element αξ of Γ ⊂ PSL2(R), leaving cξ globally
invariant, which takes c′ξ(0) to the vector c′ξ(1) (recall that sys(g0) = 1).
Note that the line cξ projects onto a systolic loop of M0 representing αξ.

Two vectors ξ and ξ′ of S∗0 point in the same direction if they generate
the same oriented geodesic line up to some time shift. That is,

cξ′(t) = cξ(t+ τ)

for some τ ∈ R and every t ∈ R.

Definition 3.2. The systolic band B̃ξ of M0 induced by a systolic direction ξ

of M̃0 is the union of all the triangles of T̃ through which cξ passes. The

projection Bξ of B̃ξ to M0, which agrees with the quotient of B̃ξ by 〈αξ〉, is
also called a systolic band of M0.

Definition 3.3. Let us define the infinite product

R∞ =
∏

∆̃∈T̃

R3
∆̃

where R3
∆̃

is a copy of R3. The space R∞ is endowed with the product

topology.
For every simplex ∆̃ of T̃ , number once and for all the systolic directions

ξ1, ξ2, ξ3 of M̃0 with basepoints in ∆̃ such that the angles between ξi and ξi+1

are equal to 2π
3 (all the indices are taken modulo 3).

Every systolic direction ξ ∈ S0 agrees with one of the three systolic di-
rections ξi with basepoints in the same triangle ∆̃ξ of T̃ containing the
basepoint of ξ.

The ξ-coordinate of an element z of R∞, denoted by zξ, is defined as the
i-th coordinate of the canonical projection of z in R3

∆̃ξ
.

The action of Γ on M̃0 induces an action on the (oriented) simplices ∆̃

of T̃ , on the systolic directions ξ of M̃0 and on the vectors of S∗0 . It also
defines an action on R∞ given by

γ.(zξ) = (zγ.ξ)

for every γ ∈ Γ and z = (zξ) ∈ R∞. Clearly,

cγ.ξ = γ.cξ

αγ.ξ = γ.αξ.γ
−1

for every ξ ∈ S∗0 and γ ∈ Γ.

Throughout this article, we will consider admissible maps defined as fol-
lows.

Definition 3.4. A continuous map Φ : M̃ → R∞ is admissible if for every
systolic direction ξ ∈ S0 the following conditions are satisfied

(1) the map Φξ : M̃ → R defined as the ξ-coordinate map of Φ, i.e. Φξ =

Φ(.)ξ, is differentiable almost everywhere on M̃ ;
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(2) the one-forms dΦξ and dΦξ′ defined almost everywhere on M̃ agree
whenever the systolic directions ξ and ξ′ point in the same direction.
That is,

dΦξ′ = dΦξ;

(3) the one-form dΦξ defined almost everywhere on M̃ satisfies the fol-
lowing equivariance property

γ∗(dΦγ.ξ) = dΦξ

for every γ ∈ Γ;
(4) the map Φξ passes to the quotient and induces a map

Φξ : M̃/〈αξ〉 → R/Z
where 〈αξ〉 is the subgroup of Γ generated by αξ, cf. Definition 3.1.

4. Riemannian metrics induced by admissible maps

Let ∆̃ be a simplex of T̃ , and ξ1, ξ2 and ξ3 be the three systolic directions
with basepoints in ∆̃, cf. Definition 3.3. Recall that the angles between ξi
and ξi+1 are equal to 2π

3 (all the indices are taken modulo 3).
Define a linear projection π∆̃ as

π∆̃ : R∞ → R3
∆̃
' R3

z 7→ (zξ1 , zξ2 , zξ3).

Let Φ : M̃ → R∞ be an admissible map. Denote by Φi the ξi-coordinate
map Φξi of Φ. Even though Φ is not necessarily differentiable (no norm has
even been set on R∞), the composite π∆̃ ◦Φ, which sends x to (Φi(x))3

i=1, is

differentiable almost everywhere on M̃ . This allows us to define a metric gΦ

on M as follows.

Definition 4.1. Let ∆̃ ∈ T . Denote by g̃Φ the pull-back on ∆̃ of the
standard Euclidean metric gE of R3 by π∆̃ ◦ Φ|∆̃. That is,

g̃Φ = (π∆̃ ◦ Φ|∆̃)∗(gE)

where Φ|∆̃ is the restriction of Φ to ∆̃. Strictly speaking, the quadratic

form g̃Φ, which is only defined almost everywhere on ∆̃, can be degenerate
(as the differential of π∆̃ ◦ Φ). In spite of that, we will still refer to g̃Φ as a

metric. Putting together the metrics g̃Φ on each simplex ∆̃ of T̃ gives rise
to a metric on M̃ still denoted by g̃Φ.

Note that the metric g̃Φ is not well defined on the one-skeleton of the
triangulation T̃ since the metrics defined on each simplex of T̃ do not nec-
essarily agree on their common edges.

Definition 4.2. Two maps ϕ,ψ : X → R3 are said to agree up to a coordi-
nate permutation of R3 if there exists a permutation σ of {1, 2, 3} such that
for every x ∈ X and i ∈ {1, 2, 3}, the coordinates ϕ(x)i and ψ(x)i of ϕ(x)
and ψ(x) satisfy ϕ(x)σ(i) = ψ(x)i. In this case, we write ϕ ' ψ. Note that
the permutation σ does not depend on x.

This definition extends to vectors of R3 viewed as constant maps in R3.
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Let us state a result that will be used to establish some invariance prop-
erties a couple of times in this article.

Lemma 4.3. Let ∆̃ ∈ T̃ and γ ∈ Γ. Then the two maps γ∗[d(πγ.∆̃ ◦
Φ|γ.∆̃)] and d(π∆̃ ◦ Φ|∆̃) agree almost everywhere on ∆ up to a coordinate

permutation of R3. That is,

γ∗[d(πγ.∆̃ ◦ Φ|γ.∆̃)] ' d(π∆̃ ◦ Φ|∆̃).

Proof. Let (ξi)
3
i=1 and (ξ′i)

3
i=1 be the three systolic directions of M̃0 with

basepoints in ∆̃ and γ.∆̃, cf. Definition 3.3. Since γ is an orientation pre-
serving isometry of M̃0, it preserves the systolic directions of M̃0. Hence,
γ.(ξi)

3
i=1 ' (ξ′i)

3
i=1. Thus,

πγ.∆̃ ◦ Φ|γ.∆̃ =
(

Φξ′i|γ.∆̃

)3

i=1

'
(

Φγ.ξi|γ.∆̃

)3

i=1
.

Differentiating this relation yields

d(πγ.∆̃ ◦ Φ|γ.∆̃) '
(
dΦγ.ξi|γ.∆̃

)3

i=1
.

From Definition 3.4 (3), we derive

γ∗
(
dΦγ.ξi|γ.∆̃

)3

i=1
=

(
dΦξi|∆̃

)3

i=1

= d(π∆̃ ◦ Φ|∆̃).

Hence, γ∗[d(πγ.∆̃ ◦ Φ|γ.∆̃)] ' d(π∆̃ ◦ Φ|∆̃). �

The following result shows that the metric g̃Φ descends to M .

Lemma 4.4. The metric g̃Φ is Γ-invariant on M̃ .

Proof. Let γ ∈ Γ and x ∈ M̃ such that g̃Φ and γ∗g̃Φ are defined at x. Denote
by ∆̃ the simplex of T̃ such that x ∈ ∆̃. We have

(γ∗g̃Φ)|x = [γ∗(πγ.∆̃ ◦ Φ)∗gE ]|x

= [γ∗d(πγ.∆̃ ◦ Φ)]∗|x gE .

From Lemma 4.3 and since gE is invariant by coordinate permutations, we
derive

(γ∗g̃Φ)|x = d(π∆̃ ◦ Φ)∗|x gE

= [(π∆̃ ◦ Φ)∗gE ]|x

= g̃Φ|x.

Hence, γ∗g̃Φ = g̃Φ. �

Definition 4.5. The metric induced by g̃Φ on the quotient M will be de-
noted by gΦ.
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5. Two-forms induced by admissible maps

Let Φ : M̃ → R∞ be an admissible map. As in Section 4, we can define a
two-form ωΦ on M .

Definition 5.1. Let ∆̃ ∈ T̃ . Denote by ω̃Φ the pull-back on ∆̃ of the two-
form

∑3
i=1 dxi ∧ dxi+1 of R3 by π∆̃ ◦ Φ|∆̃ (all indices are taken modulo 3).

That is,

ω̃Φ = (π∆̃ ◦ Φ|∆̃)∗

(
3∑
i=1

dxi ∧ dxi+1

)
.

As previously, this two-form is only defined almost everywhere on ∆̃. Putting
together the two-forms ω̃Φ on each simplex ∆̃ gives rise to a two-form on M̃
still denoted by ω̃Φ.

The following result shows that the two-form ω̃Φ descends to M .

Lemma 5.2. The one-form ω̃Φ is Γ-invariant on M̃ .

Proof. The proof proceeds as in the proof of Lemma 4.4: simply replace g̃Φ

by ω̃Φ and gE by
∑3

i=1 dxi ∧ dxi+1. As previously, the result follows from

Lemma 4.3 and the invariance of
∑3

i=1 dxi ∧ dxi+1 by coordinate permuta-
tions. �

Definition 5.3. The two form induced by ω̃Φ on the quotient M will be
denoted by ωΦ.

6. Comparaison of the area forms dgΦ and ωΦ

Lemma 6.1. Let Φ : M̃ → R∞ be an admissible map. Then we have

|ωΦ| ≤
√

3 dgΦ

almost everywhere on M , where |ωΦ| is the area measure of ωΦ on M and
dgΦ is the area measure of gΦ on M .

Proof. Let ∆̃ ∈ T̃ . The two-form ω̃Φ is represented on ∆̃ by the sum

3∑
i=1

dΦi ∧ dΦi+1

where Φi = Φξi and the ξi’s are the three systolic directions with basepoints

in ∆̃, cf. Definition 3.3.
Let x ∈ ∆̃ such that the Φi’s are differentiable at x for i ∈ {1, 2, 3}. Each

bi-vector dxΦi ∧ dxΦi+1 of the cotangent plane T ∗xM̃ can be represented by
the oriented g̃0-area of the parallelogram #i spanned by the g̃0-gradients
∇xΦi and ∇xΦi+1 of Φi and Φi+1 at x, cf. [Iv02], [BI02], so that

ω̃Φ =
3∑
i=1

area(#i) dg̃0. (6.1)

Note that

area(#i) = detg̃0(∇xΦi,∇xΦi+1). (6.2)
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On the other hand, the differential of π∆̃ ◦ Φ at x is given by

dx(π∆̃ ◦ Φ) : TxM̃0 → R3

u 7→ (〈∇xΦi, u〉)3
i=1.

Let (e1, e2) be a positively oriented g̃0-orthonormal basis of TxM̃0. The
cross-product of dx(π∆̃ ◦Φ)(e1) and dx(π∆̃ ◦Φ)(e2) is the vector of R3 given
by

dx(π∆̃ ◦ Φ)(e1)× dx(π∆̃ ◦ Φ)(e2) = (detg̃0(∇xΦi+1,∇xΦi+2))3
i=1 (6.3)

where the indice i is taken modulo 3. Now, recall that g̃Φ = (π∆̃ ◦ Φ)∗ gE .
Hence,

dg̃Φ = ||dx(π∆̃ ◦ Φ)(e1)× dx(π∆̃ ◦ Φ)(e2)||E dg̃0

=

√√√√ 3∑
i=1

area(#i)2 dg̃0

from the equations (6.3) and (6.2). By the Cauchy-Schwarz inequality, we
derive

ω̃Φ =

3∑
i=1

area(#i) dg̃0 ≤
√

3

√√√√ 3∑
i=1

area(#i)2 dg̃0 =
√

3 dg̃Φ.

�

7. Area measures of 1-Lipschitz admissible maps

Let g be a metric on M and g̃ its lift on M̃ . Even though the supremum
norm ||.||∞ is not always finite on R∞, the following definition of Lipschitz
maps for the supremum norm still makes sense.

Definition 7.1. A map Φ : M̃ → R∞ is 1-Lipschitz if

||Φ(x)− Φ(y)||∞ ≤ dg̃(x, y)

for every x, y ∈ M̃ , or equivalently if Φξ is 1-Lipschitz as a function with
real values for every ξ ∈ S0.

With this notion, we can state the following result.

Lemma 7.2. Let Φ : M̃ → R∞ be a 1-Lipschitz admissible map. Then we
have

dgΦ ≤
3

2
dg

almost everywhere on M , where dg and dgΦ represent the area measures of g
and gΦ on M .

Furthermore, equality holds if and only if gΦ = 3
2g almost everywhere

on M .

Proof. Let x ∈ M̃ such that g̃Φ is defined at x. Denote by ∆̃ the simplex
of T̃ such that x ∈ ∆̃. Let (ξi)

3
i=1 be the three systolic directions with

basepoints in ∆̃, cf. Definition 3.3. We will write Φi = Φξi .

Let (e1, e2) be a positively oriented g̃-orthonormal basis of TxM̃ . We have

dg̃Φ =
√

detg̃ g̃Φ dg̃ (7.1)
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where the determinant of g̃Φ with respect to g̃ is defined as detg̃ g̃Φ =
(det g̃Φ(ei, ej))i,j∈{1,2}. (This definition does not depend on the choice of

the positively oriented g̃-orthonormal basis (e1, e2).)
The trace of g̃Φ|x with respect to g̃ is given by

trg̃ (g̃Φ|x) =
2∑
j=1

(π∆̃ ◦ Φ)∗(gE)|x(ej , ej)

=

2∑
j=1

||dx(π∆̃ ◦ Φ)(ej)||2E

=
2∑
j=1

3∑
i=1

|dxΦi(ej)|2

=

3∑
i=1

||dxΦi||2g̃.

By assumption, the map Φ is 1-Lipschitz. Thus, the map Φξ is 1-Lipschitz
for every systolic direction ξ. Therefore, ||dxΦi||g̃ ≤ 1. Hence,

trg̃ (g̃Φ) ≤ 3.

From the geometric-arithmetic mean inequality, we have√
detg̃ g̃Φ ≤

3

2
.

The result follows from (7.1). �

Corollary 7.3. Under the same assumption as Lemma 7.2, we have

area(gΦ) ≤ 3

2
area(g)

with equality if and only if gΦ = 3
2g almost everywhere.

8. Admissible map induced by a metric on M

Fix a Calabi surface M0, cf. Section 2. Let g be a metric on M and g̃ be
the induced metric on the universal covering M̃ of M .

Given ξ ∈ S∗0 , cf. Definition 3.1, we define sysg(αξ) as the least length of
a loop of M representing αξ. That is,

sysg(αξ) = sys(M̃/〈αξ〉) (8.1)

where M̃/〈αξ〉 is endowed with the metric induced by g.

Lemma 8.1. There exists a constant C = C(g) such that for every vector
ξ ∈ S∗0 , cf. Definition 3.1, we have

|dg̃(cξ(0), cξ(t))− t sysg(αξ)| ≤ C. (8.2)

Proof. Let m = E(t) be the integer part of t. The g̃-distance between cξ(m)

and cξ(t) is uniformly bounded from above.
Let γ be a g-length minimizing loop in M representing αξ. Denote by

c̄ξ(0) the projection of cξ(0) to M and by c a segment joining c̄ξ(0) to γ.
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The loop c∪γm∪ c−1 represents αmξ and lifts to an arc of M̃ with endpoints

cξ(0) and cξ(m). Thus,

dg̃(cξ(0), cξ(m)) ≤ m sysg(αξ) + 2 diam(g). (8.3)

On the other hand, every arc with endpoints cξ(0) and cξ(m) projects to
a loop of M representing αmξ . From [Gr99, Lemma 4.32], we obtain

m sysg(αξ) ≤ dg̃(cξ(0), cξ(m)). (8.4)

Combined with some triangular inequalities, the bounds (8.3) and (8.4)
yield the desired estimate. �

The bound (8.2) shows that the following limit-sup (8.5) is finite.

Definition 8.2. Every vector ξ ∈ S∗0 induces a Busemann function βgξ : M̃ → R
with respect to g defined as

βgξ (x) = lim sup
t→∞

dg̃(x, cξ(t))− t sysg(αξ) (8.5)

where x ∈ M̃ . Note that βgξ (cξ(0)) = 0.

The function βgξ is 1-Lipschitz as a limit-sup of 1-Lipschitz functions.

Thus, it is differentiable almost everywhere by the Rademacher theorem.

Suppose that βgξ is differentiable at x ∈ M̃ . The g-geodesic ray γ arising

from the g-gradient ∇xβgξ of βgξ at x satisfies the relation

βgξ (γ(s))− βgξ (γ(0)) = s (8.6)

for every s ≥ 0. Furthermore, βgξ is differentiable at every point of γ and

∇xβgξ = γ′(s).

The relation (8.6) also implies that the projection of γ to M is a geodesic
curve without transverse self-intersecting points.

Definition 8.3. Let us define a map Φg : M̃ → R∞ as follows.
As previously, given a vector ξ ∈ S∗0 , we define φgξ : M̃ → R as

φgξ(x) =
1

2
(βgξ (x)− βg−ξ(x))

for every x ∈ M̃ . Note that φg−ξ = −φgξ .
Given ξ ∈ S∗0 , denote by ξ(i) with i ∈ Z the vectors of S∗0 pointing in the

same direction as ξ. More precisely, ξ(i) = c′ξ(
i
n), where n is equal to 6 if M0

is the first Calabi surface, cf. Section 2.1, and to 8 if M0 is the second Calabi
surface, cf. Section 2.2 (recall that sys(M0) = 1). Remark that ξ(0) = ξ,
ξ(n) = αξ.ξ, ξ(i)(j) = ξ(i+ j) and αξ(i) = αξ.

We can now define a function Φg
ξ : M̃ → R as

Φg
ξ(x) =

(
1

n

n−1∑
i=0

φgξ(i)(x)

)
/sysg(αξ) (8.7)

for every x ∈ M̃ and every vector ξ ∈ S∗0 . Note that Φg
−ξ = −Φg

ξ .

The functions Φg
ξ give rise to a map Φg : M̃ → R∞.
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Example 8.4. Let g = g0 and ξ ∈ S0 be a systolic direction on M0. Denote
by ∆̃ the flat triangle of T̃ where the basepoint of ξ lies in. The Busemann
function βgξ is differentiable on ∆̃ and its g̃0-gradient on ∆̃ is a unit vector

parallel to ξ pointing in the same direction as ξ. Hence,

∇xΦg0

ξ = ∇xβg0

ξ = ξ

for every x ∈ ∆̃.

Lemma 8.5. Let g be a metric on M with sys(g) ≥ 1. Then the map Φg : M̃ → R∞
induced by g is 1-Lipschitz and admissible.

Proof. Let ξ ∈ S0. Since sysg(αξ) ≥ 1, the ξ-coordinate maps Φg
ξ are 1-

Lipschitz as an average of 1-Lipschitz functions. In particular, the condi-
tion (1) of Definition 3.4 is satisfied by the Rademacher theorem. Further-

more, the map Φg : M̃ → R∞ is also 1-Lipschitz, cf. Definition 7.1.
Let x ∈ M̃ and γ ∈ Γ. Since cγ.ξ = γ.cξ and dg̃ is Γ-invariant, we have

dg̃(γ.x, cγ.ξ(t)) = dg̃(x, cξ(t)).

We also have sysg(αγ.ξ) = sysg(αξ) since αγ.ξ and αξ are conjugate in Γ.
Thus,

βgγ.ξ(γ.x) = βgξ (x)

and

φgγ.ξ(γ.x) = φgξ(x). (8.8)

Combined with the relations (γ.ξ)(i) = c′γ.ξ(
i
n) = γ.c′ξ(

i
n) = γ.ξ(i) and the

definition of Φg
ξ , cf. (8.7), we obtain

Φg
γ.ξ(γ.x) = Φg

ξ(x)

Hence the equivariance of dΦg
ξ , cf. Definition 3.4 (3).

By definition of αξ, cf. Definition 3.1, we have αξ.c±ξ(t) = c±ξ(t ± 1).

Recall also that c−ξ(t) = cξ(−t), α−ξ = α−1
ξ and sysg(α−ξ) = sysg(αξ).

Thus, the Busemann functions βg±ξ satisfy the following

βg±ξ(αξ.x) = lim sup
t→∞

dg̃(αξ.x, c±ξ(t))− t sysg(α±ξ)

= lim sup
t→∞

dg̃(x, c±ξ(t∓ 1))− (t∓ 1) sysg(α±ξ)∓ sysg(αξ)

= βg±ξ(x)− sysg(αξ).

Hence

φgξ(αξ.x) = φgξ(x)− sysg(αξ). (8.9)

Combined with the relation αξ = αξ(i) and the definition of Φξ, cf. (8.7), we
obtain

Φg
ξ(αξ.x) = Φg

ξ(x)− 1.

Hence the condition (4) of Definition 3.4.
Now, from the equations (8.8) and (8.9), we derive

φgαξ.ξ(x) = φgξ(x) + sysg(αξ). (8.10)
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Let ξ and ξ′ = ξ(1) be two neighbor systolic directions pointing in the
same direction. From the equation (8.10) and the relations ξ′(i) = ξ(i+ 1)
and ξ(n) = αξ.ξ, we deduce

Φg
ξ′(x) =

(
1

n

n−1∑
i=0

φgξ(i+1)(x)

)
/sysg(αξ)

=

 1

n

n∑
j=1

φgξ(j)(x)

 /sysg(αξ)

=

 1

n

n−1∑
j=0

φgξ(j)(x)

 /sysg(αξ) +
1

n

= Φg
ξ(x) +

1

n
. (8.11)

Repeatedly using this relation, we derive

Φg
ξ′(x) = Φg

ξ(x) +
i

n

for every pair of systolic directions ξ and ξ′ pointing in the same direction
with ξ′ = ξ(i) and i ∈ Z.

The condition (2) of Definition 3.4 immediately follows. �

9. Induced metrics and two-forms of model admissible maps

Let Φ0 be the 1-Lipschitz admissible map induced by the metric g0 on M0,
cf. Definition 8.3.

Lemma 9.1. We have

gΦ0 =
3

2
g0.

Proof. Let x ∈ M̃ and u ∈ TxM̃ . Denote by ∆̃ the triangle of T̃ such that
x ∈ ∆̃. Let (ξi)

3
i=1 be the three systolic directions with basepoints in ∆̃,

cf. Definition 3.3. We will write Φ0
i = Φg0

ξi
.

g̃Φ0(u, u) = (π∆̃ ◦ Φ0)∗(gE)(u, u)

=

3∑
i=1

|dxΦ0
i (u)|2

Suppose u is the gradient of Φ0
j at x for the metric g̃0, i.e. u = ∇xΦ0

j . Since

the g̃0-dot product between ∇xΦ0
i and ∇xΦ0

j is equal to 1− 3
2δi,j (i.e. 1 when

i = j and −1
2 when i 6= j), we have

g̃Φ0(u, u) =
3∑
i=1

g0(∇xΦ0
i ,∇xΦ0

j )
2

= ||(1,−1
2 ,−

1
2)||2E

=
3

2
g̃0(u, u).
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since u = ∇Φ0
j is a g̃0-unit vector. We derive that

g̃Φ0 =
3

2
g̃0

on M̃0 since the vectors ∇xΦ0
j span the vector space TxM̃ . Hence the result.

�

Lemma 9.2. We have

ωΦ0 =
3
√

3

2
dg0.

Proof. We will use the same notations as in the proof of the previous lemma.
By definition of ω̃Φ0 , we have, cf. (6.1),

ω̃Φ0 =

3∑
i=1

detg̃0(∇xΦ0
i ,∇xΦ0

i+1) dg̃0.

Now, the angle between the unit vectors ∇xΦ0
i and ∇xΦ0

i+1 is equal to 2π
3 .

Therefore,

detg̃0(∇xΦ0
i ,∇xΦ0

i+1) =

√
3

2
.

Hence,

ω̃Φ0 =
3
√

3

2
dg̃0.

�

10. The A-functional of an admissible map

Definition 10.1. The A-functional of an admissible map Φ : M̃ → R∞ is
defined as

A(Φ) =

∫
M
ωΦ.

Let g be a metric on M with sys(g) ≥ 1. Consider the admissible map Φg

induced by g. Define ϕ̃g : M̃ → R∞ as the difference ϕ̃g = Φg − Φ0, where
Φ0 is the admissible map induced by the metric g0 on M0.

Lemma 10.2. Let ξ ∈ S0. The function ϕ̃gξ : M̃ → R passes to the quotient

by 〈αξ〉 and induces a function denoted by ϕgξ : M̃/〈αξ〉 → R.

Proof. The function Φg
ξ passes to the quotient by 〈αξ〉 and induces a map

Φg
ξ : M̃/〈αξ〉 → R/Z which takes a (simple) systolic loop of M̃/〈αξ〉 to

a generator of the fundamental group of R/Z. This map Φg
ξ induces an

isomorphism in homotopy between π1(M̃/〈αξ〉) and π1(R/Z). Therefore, the

map ϕgξ passes to the quotient and induces a map ϕgξ : M̃/〈αξ〉 → R/Z which

is homotopically trivial and lifts to the desired function ϕgξ : M̃/〈αξ〉 → R.
�

Definition 10.3. Let ξ ∈ S0 be a systolic direction of M̃0. Recall that the
systolic band B̃ξ of M induced by ξ is the union of all the triangles of T̃
through which cξ passes. The projection Bξ of B̃ξ to M0, which agrees with

the quotient of B̃ξ by 〈αξ〉, is also called a systolic band of M0.
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We assign to every triangle ∆ ∈ T lying in a systolic band B the systolic
direction ξ∆,B with basepoint in ∆ pointing in the same direction as the
edge of ∆ lying in the boundary of B (the edges of a triangle inherit the
orientation of the triangle).

Let D be a collection of triangles of T̃ whose union forms a fundamental
domain of M in M̃ as in the figures 1 and 2. By definition of A, we have

A(Φg)−A(Φ0) =
∑
∆̃∈D

∫
∆̃

3∑
i=1

dϕ̃gi ∧ dΦ0
i+1 + dΦ0

i ∧ dϕ̃
g
i+1 + dϕ̃gi ∧ dϕ̃

g
i+1

(10.1)

=
∑
∆̃∈D

∫
∆̃

3∑
i=1

dϕ̃gi ∧ dΦ0
i+1 + dΦ0

i ∧ dϕ̃
g
i+1︸ ︷︷ ︸

Ig

+
∑
∆̃∈D

3∑
i=1

∫
∆̃
dϕ̃gi ∧ dϕ̃

g
i+1︸ ︷︷ ︸

Jg

where Φg
i = Φg

ξ∆̃,i
, Φ0

i = Φ0
ξ∆̃,i

and ϕ̃gi = ϕ̃gξ∆̃,i
. Here, the ξ∆̃,i’s, with

i ∈ {1, 2, 3}, are the three systolic directions arising from the triangle ∆̃
of D.

The following proposition amounts to the criticality of the A-functional
at Φ0.

Proposition 10.4. We have

Ig :=
∑
∆̃∈D

∫
∆̃

3∑
i=1

dϕ̃gi ∧ dΦ0
i+1 + dΦ0

i ∧ dϕ̃
g
i+1 = 0.

Proof. By rearranging the terms of the sum, we can write Ig as

Ig =
∑
∆̃∈D

3∑
i=1

∫
∆̃
dϕ̃gi ∧ (dΦ0

i+1 − dΦ0
i−1).

Now, remark that dΦ0
i+1 − dΦ0

i−1 =
√

3
2 (dΦ0

i )
?, where (dΦ0

i )
? is the image

of dΦ0
i by the Hodge operator on the one-form space of M̃0. Thus,

Ig =

√
3

2

∑
∆̃∈D

3∑
i=1

∫
∆̃
dϕ̃gi ∧ (dΦ0

i )
?. (10.2)

The one-forms (dΦ0
i )
? are constant on the systolic bands B̃ξ of M̃0. We

will still denote by (dΦ0
i )
? the one-form obtained by passing to the quotient

on Bξ. By rearranging the terms of the sum and passing to the quotient,
we can write (10.2) as

Ig =

√
3

2

∑
B

∑
∆⊂B

∫
∆
dϕg∆,B ∧ (dΦ0

∆,B)?
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where the first sum is taken over all the systolic bands B of M0 and the
second over all the triangles ∆ of T lying in B. Here, ϕg∆,B = ϕgξ∆,B and

Φg
∆,B = Φg

ξ∆,B
where ξ∆,B is defined in Definition 3.2.

Now, fix a triangle ∆0 of T lying in B. Set ϕgB = ϕg∆0,B
and ν0

B =

(dΦ0
∆0,B

)?. Let ∆ be another triangle of T lying in B. If ∆ and ∆0 have an

edge lying in the same connected component of ∂B, then dϕg∆,B = dϕgB from

Definition 3.4 (2), and (dΦ0
∆,B)? = ν0

B. Similarly, if ∆ and ∆0 do not have

any edge lying in the same connected component of ∂B, then dϕg∆,B = −dϕgB
and (dΦ0

∆,B)? = −ν0
B. In both cases,

dϕg∆,B ∧ (dΦ0
∆,B)? = dϕgB ∧ ν

0
B.

Therefore,

Ig =

√
3

2

∑
B

∫
B
dϕgB ∧ ν

0
B.

Since the one-form ν0
B is constant on B, and therefore closed on B, we

deduce from Stockes’ formula that

Ig =

√
3

2

∑
B

∫
∂B
ϕgBν

0
B.

But the one-form ν0
B vanishes on the vectors tangent to ∂B. Therefore, Ig

is equal to zero. �

11. Proof of the main result

Let Φ = Φg be the 1-Lipschitz admissible map induced by a metric g
on M . From Lemma 9.2, we derive that

A(Φ0) =
3
√

3

2
area(g0).

Now, from Corollary 7.3 and Lemma 6.1, we have

A(Φg) ≤
√

3 area(gΦ) ≤ 3
√

3

2
area(g).

Let (gt) be a slow metric variation of g0 with sys(gt) = 1. By definition
of a slow variation, we deduce from the Cauchy-Schwarz inequality that the
term Jgt in (10.1) is negligeable with respect to t. Thus, Proposition 10.4
implies that

A(Φgt)−A(Φ0) = o(t).

Hence,

area(gt) ≥ area(g0) + o(t).

12. Examples of slow metric variations

The goal of this section is to present examples of slow metric variations
and, more generally, to show how one can prove that a metric variation is
slow.
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12.1. A general bound for non-necessarily slow metric variations.

Let (gt)t≥0 be a smooth deformation of g0. More precisely, gt is a Rie-
mannian metric with conical singularities on M which smoothly varies with t
on M0 \ {conical singularities} (as a smooth section of the bundle of sym-
metric 2-forms on M0 \ {conical singularities}). Recall from [Tr91] that a
point p of M is a conical singularity of order τ (or of angle θ = 2π(τ + 1)) of
the metric g if there exists a nonsingular conformal map z : U → C defined
in a neighborhood U of p such that z(p) = 0 and g = f(z)|z|2τ |dz|2 in U ,
for some continuous positive function f .

From [EL81], if p and q are two non-conjugate points on a complete sim-
ply connected manifold endowed with a Riemannian metric g̃, there exists
a neighborhood of g̃ such that for every metric h̃ in this neighborhood, the
points p and q are connected by a unique h̃-geodesic arc smoothly depend-
ing on h̃. Thus, the gt-minimizing arcs joining pairs of adjacent singularities
smoothly vary with t, for t small enough. Therefore, by taking the pull-
back of gt under a one-parameter family of diffeomorphisms converging to
the identity map when t goes to zero, we can assume that the edges of the
triangulation T are gt-minimizing arcs for t small enough.

Recall that the systolic band B̃ξ induced by a systolic direction ξ ∈ S0,

cf. Definition 3.2, is a flat strip in M̃0 composed of equilateral flat trian-
gles of T̃ . The trajectories (for positive time) of the dynamical system
generated by −∇g0β

g0

ξ (where βg0

ξ is the Busemann function defined by ξ,

cf. Definition 8.2) arising from the points of B̃ξ are semi-lines parallel to

the boundary of the flat strip B̃ξ and pointing in the same direction as cξ,
cf. Definition 3.1. If the metric has nonpositive curvature (the case we will
focus on), the Busemann function βgtξ is differentiable and the trajectory γxt
of −∇gtβ

gt
ξ arising from x is complete and leaves every compact set.

The following result shows that for t small enough the trajectories of−∇gtβ
gt
ξ

are still trapped in B̃ξ.

Lemma 12.1. For t small enough, every complete minimizing g̃t-geodesic
trajectory γt leaving B̃ξ does not stay at bounded distance from cξ.

In particular, for t small enough, the trajectories of −∇gtβ
gt
ξ arising from

the points of B̃ξ lie in B̃ξ.

Proof. We will assume that all the geodesics are parametrized by their ar-
clength. Denote by B̃+

ξ the g̃0-convex neighborhood of B̃ξ formed of the

triangles of T̃ with a vertex in B̃ξ. For t small enough, the boundary of B̃ξ
is made of g̃t-minimizing segments and the angles of the singularities of g̃t
are greater than 2π. Therefore, for t small enough, the trajectories γt leav-
ing B̃ξ also leave B̃+

ξ . By translating the trajectories if necessary, we can

extract a sequence γtn , where tn → 0, leaving B̃+
ξ with a speed vector un

such that (un) converges to a g̃0-unit vector u∞ pointing outside the interior
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of B̃+
ξ . Since the conical singularities of g̃0 are greater than 2π, the com-

plete minimizing g̃0-geodesic trajectories γ∞ generated by u∞ do not stay at
bounded distance from cξ. (Note that the trajectories γ∞ are not necessarily
uniquely determined by u∞ as they may pass through conical singularities.)
On the other hand, there exists a trajectory γ∞ as above such that (γtn)
converges (up to a subsequence) to γ∞ in restriction to any given bounded

open set of M̃ . The conclusion follows. �

We can now prove a general bound on the variation of the gradient of
Busemann functions with respect to any (non-necessarily slow) metric de-
formation.

Proposition 12.2. Let (gt)t≥0 be a smooth deformation of g0 as above.

Then for every systolic direction ξ ∈ S0 and every triangle ∆̃ of T̃ lying
in B̃ξ, we have

||dβgtξ − dβ
g0

ξ ||L∞(∆̃) = O(
√
t).

Remark 12.3. We do not know whether this O(
√
t)-bound can be replaced

with a o(
√
t)-bound as in the definition of slow metric variations, cf. Defi-

nition 1.1. A positive answer would show that any metric variation is slow.

Proof. Fix x ∈ ∆̃ a point where βgtξ is differentiable. Let h be the g̃0-segment

of B̃ξ passing through x and g̃0-orthogonal to the boundary components

of B̃ξ. Set xi = αiξ · x and hi = αiξ · h, cf. Definition 3.1. Denote by h
the distance function to cξ with respect to g̃0. Suppose for simplicity that
the angle θ0 = θ0(x) between −∇g0β

g0

ξ (x0) and −∇gtβ
gt
ξ (x0) is positive.

Note that the function θ0 tends to zero in L∞(∆̃) when t goes to zero.
Since the metric deformation is smooth and sysg0

(αξ) = 1, cf. (8.1), the

trajectory γxt of −∇gtβ
gt
ξ arising from x0, which is geodesic for g̃t, hits h1 at

a point x1 such that h(x1)−h(x0) ≥ sin θ0−C t for t small enough, where, by
compactness, C is an absolute constant (i.e., a constant depending only on g0

and the derivatives of the metric family (gt) at t = 0, but not on t and x0).
Furthermore, the angle θ1 between −∇g0β

g0

ξ (x1) and −∇gtβ
gt
ξ (x1) is greater

or equal to θ0 −C ′ t, where C ′ is another absolute constant. We repeat this
process again and again. As a result, we obtain a sequence of points xi
along the trajectory γxt and a sequence of angles θi between −∇g0β

g0

ξ (xi)

and −∇gtβ
gt
ξ (xi) is such that

h(xi+1)− h(xi) ≥ sin θi − C t (12.1)

and

θi ≥ θ0 − i C ′ t (12.2)

This last inequality implies that θi is positive for i < i0 := [ θ0C′t ]. Note that

for t small enough, θi is less than π
4 and so sin θi ≥ 9

10θi. Thus, summing
the inequality (12.1) from i = 0 to i0 − 1 and using (12.2), we derive that
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for t small enough

h(xi0)− h(x0) ≥
i0−1∑
i=0

sin θi − i0C t

≥ 9

10

i0−1∑
i=0

θi −
C

C ′
θ0

≥ 9

10

[
i0 θ0 −

i0(i0 − 1)

2
C ′t

]
− C

C ′
θ0 (12.3)

Now, since γxt lies in B̃ξ from Lemma 12.1, the sequence h(xi) is uniformly
bounded, for instance by 1. Thus, from (12.3) and the expression of i0, the
angle θ0 satisfies some inequality

a

t
θ2

0 − b θ0 − 1 ≤ 0

where a and b are positive absolute constants. We immediately deduce that

θ0 ≤
b+

√
b2 + 4a

t

2a
t

= O(
√
t).

Hence the result. �

12.2. Changing the edge lengths.

A piecewise flat Calabi surface M0 = (M, g0) is composed of Euclidean
equilateral triangles with the same side length. We can deform the met-
ric g0 into another piecewise flat metric by changing the lengths of the sides
of the Euclidean triangles of T tilling the surface, cf. Section 2. This yields
a 48-dimensional space of deformations for the Calabi surface modeled on
Fermat’s quartic and a 84-dimensional space of deformations for the one
modeled on Klein’s quartic. We consider a one-parameter family (gt)t≥0 of
such deformations, where the lengths of the sides of the Euclidean trian-
gles of T smoothly depend on t. We denote by Tt and T̃t the deformations
of the triangulations given by T and T̃ . For t small enough, the conical
singularities of the piecewise flat metric gt have nonpositive curvature in
Alexandrov’s sense and the Busemann functions of gt are differentiable ev-
erywhere off the conical singularities.

Proposition 12.4. Let ∆̃ be a triangle of T̃ and ξ ∈ S0 be a systolic
direction with basepoint in ∆̃. Then the metric family (gt)t≥0 satisfies

||(dβgtξ − dβ
gt
−ξ)− (dβg0

ξ − dβ
g0

−ξ)||L2(∆̃) = O(t). (12.4)

In particular, the one-parameter family of metrics (gt)t≥0 is a slow metric
variation.

Remark 12.5. The estimate (12.4) is stronger than the estimate (1.1) in
the definition of a slow metric variation, cf. Definition 1.1. Indeed, it yields
a O(t)-bound, which is stronger than a o(

√
t)-bound. This still leaves room

for improvement and for describing new slow metric variations.

It will be convenient to introduce the following definition.
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Definition 12.6. We will write that a(t) . b(t) if there exists a positive
absolute constant C (i.e., a constant depending only on g0 and the deriva-
tives of the metric family (gt) at t = 0, but not on t) such that a(t) . C b(t)
for t small enough. Similarly, we define a(t) & b(t). If both a(t) ≤ b(t) and
a(t) & b(t), we will write a(t) ' b(t).

We will also use this definition for functions a(x, t) depending on a vari-
able x. In this case, we require the absolute constant C to be independent
of x.

Proof of Proposition 12.4. As recalled in Section 12.1, the systolic band B̃ξ
of M0 induced by ξ is a flat strip in M̃0 composed of equilateral flat triangles
of T̃ . This band can also be seen as a horizontal strip in R2 endowed with
the Euclidean metric. Moving along cξ in the positive direction, we denote

by ∆̃1 the triangle of T̃ in B̃ξ adjacent to ∆̃0 = ∆̃, by ∆̃2 the triangle of T̃
in B̃ξ adjacent to ∆̃1, and so on. Similarly, we define ∆̃k for k negative by
moving along cξ in the negative direction.

As t varies, the triangles of Tt and T̃t are smoothly deformed. In order to
compare the geometry of g0 and gt, it will be convenient to consider the tri-
angles ∆̃k and their smooth deformations ∆̃t

k embedded in R2, cf. Figure 3.
(This will implicitly be used in the sequel.) This can be done by keeping

both the center of ∆̃t
0 and the direction of a given edge of ∆̃t

0 fixed in R2.

With this identification, the restriction of gt to the union B̃t
ξ of the ∆̃t

k agrees

with (more precisely, is the pullback of) the Euclidean metric of the plane.

Note that even for small t, the center of ∆̃t
k can be far from the center of ∆̃k

(of course, this occurs only for k large enough) and the band B̃t
ξ may no

longer be embedded in R2. However, we will later see that large portions of
the band B̃t

ξ do not overlap in R2.

A geodesic loop of a piecewise flat surface with conical singularities which
does not pass through a singularity can be translated without increasing
its length until it reaches a singularity. Thus, every homotopy class can be
represented by a shortest representative passing through a conical singular-
ity. In particular, the lift of some ξ-systolic loop of (M, gt) passes through

some vertex (conical singularity) x0 of B̃t
ξ at distance . 1 from ∆̃. Here, a

ξ-systolic loop of M is the projection of a systolic loop of M̃/〈αξ〉 on M .
Consider now the piecewise straight line c of R2 composed of the segments ci
of R2 with endpoints xi = αiξ · x0 and xi+1 in B̃t

ξ. Let ν be the angle be-

tween the directions of ci and ci+1 (it does not depend on i since αξ acts by

isometry on B̃t
ξ). Since the triangles ∆̃t

k smoothly vary in R2, we have |ν| . t.

Suppose that ν is different from zero. Then c lies outside the disk of R2

bounded by the circle Cρ of radius ρ = `
2 tan ν

2
' 1

t passing through the mid-

points of the segments ci, where ` is the length of ci, cf. Figure 3. Changing
the origin O of R2 if necessary, we can assume that the disk is centered
at O. Since the boundary component ∂0B̃

t
ξ of B̃t

ξ passing through x0 is at

Hausdorff distance . t from c in R2, it lies in a tubular neighborhood of Cρ
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O

ν

c0

c1

ρ

B̃t
ξ

Figure 3. In gray, a fundamental domain for the projection of B̃t
ξ

of width ' t, that is, an annulus A(r,R) of R2 centered at O of inner ra-
dius r and outer radius R, where ρ− r ' t and R − ρ ' t, cf. Figure 4. In
particular, the band B̃t

ξ is bounded in R2.

The area of ∆̃∩D(R+ t) is . t, where D(R+ t) is the disk of radius R+ t
centered at O. Thus, from Proposition 12.2,

||dβgtξ − dβ
g0

ξ ||L2(∆̃∩D(R+t)) . t
√
t.

Let us now bound the L∞-variations of dβgsξ − dβ
gs
−ξ between s = 0 and

s = t on ∆̃\D(R+ t). As in Lemma 12.1, for t small enough, every geodesic

of (M̃, g̃t) leaving B̃t
ξ diverges so fast that it does not stay at bounded

distance from cξ. (This is due to the angles of the singularities of gt which
are greater than 2π.) Thus, for t small enough, the trajectories of −∇gtβ

gt
ξ

arising from the points of B̃t
ξ \D(R+t) (which are geodesics possibly passing

through conical singularities) lie in B̃t
ξ. Since they are length-minimizing

geodesics, each of these trajectories lies in the convex cone bounded by two
semi-lines arising from the same starting point as the trajectory and pointing
in the same direction as ξ, where the first semi-line is tangent to Cr and the
second is tangent to CR, cf. Figure 4. Thus, for every x in ∆̃ \ D(R + t),
the vector −∇gtβ

gt
ξ (x) points into the convex cone previously described with
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vertex x. Using a simple trigonometric argument, we deduce that

r

R+ d
≤ cos θ ≤ R

R+ d
(12.5)

where θ = θ(x) is the angle between u(x) and −∇gtβ
gt
ξ (x) (here, u(x) is

the vector based at x orthogonal to the line Ox and pointing in the same
direction as ξ) and d is the distance from x to the disk bounded by CR.
Strictly speaking, we need to estimate the angle in R2 between −∇g0β

g0

ξ (x)

and −∇gtβ
gt
ξ (x), but since this angle agrees with θ up to some constant . t,

we can work with θ instead.

O

r
R

R+ t

c

θmin θmax

u(x)
x

Figure 4

As x lies in ∆̃ \ D(R + t), we have t ≤ d . 1. Combined with the esti-
mates on r and R, namely r ' R ' 1

t and r −R ' t, we derive from (12.5)

that t . θ .
√
t. This does not yield the desired o(

√
t)-bound on θ, only a

O(
√
t)-bound. To obtain a o(

√
t)-bound, we have to use a symmetry argu-

ment and deal with −ξ as well.

Set θ+ = θ. Replacing ξ with −ξ, we define θ− as the angle between −u(x)
(which almost agrees with −∇g0β

g0

−ξ(x)) and −∇gtβ
gt
−ξ(x). The angle θ−

satisfies the same relation t . θ− .
√
t and the same bound (12.5) as θ+.

Therefore, since |R− r| . t, we deduce that

| cos θ+ − cos θ−| ≤
|R− r|
R+ d

. t2.
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From the mean value theorem, there exists θc between θ+ and θ− (and so
θc & t) such that

| cos θ+ − cos θ−| = | sin θc| · |θ+ − θ−|
& t · |θ+ − θ−|

Hence, |θ+ − θ−| . t. Therefore,

|(dβgtξ − dβ
gt
−ξ)− (dβg0

ξ − dβ
g0

−ξ)| ' | cos θ+ + cos θ− − 2 + i(sin θ+ − sin θ−)|
. t

on ∆̃ \D(R+ t).

Suppose now that ν is equal to zero. Then c is a straight line in R2. Since
the boundary component ∂0B̃

t
ξ of B̃t

ξ passing through x0 is at Hausdorff

distance . t from c in R2, there exists a flat strip St, parallel to c, of
width wt with w0 − wt . t, contained in B̃t

ξ, where w0 is the width of B̃ξ.

The straight lines foliating St project to systolic loops of (M, gt). Therefore,
the trajectories of −∇gtβ

gt
ξ arising from the points of St lie in these straight

lines and so are parallel to c. As c0 smoothly varies with t, cf. [EL81] and
the beginning of Section 12.1, we derive that

||dβgtξ − dβ
g0

ξ ||L∞(∆̃∩St) . t.

On the other hand, the area of ∆̃\St is . t. Thus, from Proposition 12.2,

||dβgtξ − dβ
g0

ξ ||L2(∆̃\St) . t
√
t.

The desired estimate follows in this case too. Hence the result. �

Remark 12.7. For any oriented simple closed geodesic γ on M0, we can de-
fine a one-parameter family of metrics (gt) by twisting the metric g0 along γ.
More precisely, cutM0 open along γ and glue the boundary components back
together after making a twist of parameter t. The resulting metric on the
surface, denoted by gt, is piecewise flat with conical singularities of angles
greater than 2π. (The conical singularities of M0 may be split into two
conical singularities in the process if γ passes through some of them.) The
proof of Proposition 12.4 can easily be modified to show that (gt) is a slow
metric variation too.

Note that in the hyperbolic case, the metric variations obtained by twist-
ing along simple closed geodesics induce a dense set of directions in the
tangent space of the Teichmüller space at the initial metric.
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[Bav86] Bavard, C.: Inégalité isosystolique pour la bouteille de Klein, Math. Ann. 274
(1986) 439–441.
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