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Recent advances in research show interesting potential in using deep neural networks to perform the task of radar target detection. For radar applications, especially in the military domain, the detection method is designed to follow the Neyman-Pearson criterion with the aim to maximise the detection probability while keeping the false detection rate controlled. While standard CFAR (Constant False Alarm Rate) detection is designed to fit this need, it is not the case of neural networks that do not naturally prioritize detection over false alarm rate. In this paper, we propose an overview and a comparison of different loss functions, namely Tversky Loss and a loss based on constrained optimization, for training deep CNNs on the problem of radar target detection, with the objective to get a better compromise between false alarm rate and detection. We then demonstrate that the models obtained with these methods outperform the baseline CNN model as well as classic CFAR detectors. The developed models are compared on the detection probability (PD) and false alarm probability (PF A) criteria on exoclutter 1 environments. Model evaluation on thermal noise is an important step for validating a detector and is rarely explored in related research. It is found that training the neural network with a loss function constrained by the expected false alarm probability provides higher detection probability at a fixed PF A than the baseline models. The advantages and shortcomings of training the detector with the Tversky loss function are also highlighted.

I. INTRODUCTION

Target detection is one of the most fundamental problems in radar signal processing. On exoclutter environments, target detection consists in solving the following binary decision problem :

H 0 : y(t) = ν(t) : absence of target H 1 : y(t) = x(t) + ν(t) : presence of target [START_REF] Scharf | Statistical signal processing: detection, estimation, and time series analysis[END_REF] where y(t) is the received signal, ν(t) is the thermal noise signal and x(t) is the signal of the target. This paper addresses 1 Exoclutter refers to a situation where there is an absence of unwanted echoes.

detection in the setting of a Pulse-Doppler radar. The problem of target detection is optimally solved with statistical signal processing methods such as CFAR [START_REF] Scharf | Statistical signal processing: detection, estimation, and time series analysis[END_REF], but these methods require strong assumptions about environment and target unicity that, in real situations, are not always observed.

The use of deep learning applied to radar target detection has risen in recent years, having shown promising results. However, a critical aspect that remains underexplored is the ability to build reliable detectors and provide performance guarantees. Our work contributes to filling this gap in research by investigating ways to train the model with the goal of satisfying a constraint on P F A . Moreover, scarce are the research works solely focusing on deep learning-based detector performance evaluation over exoclutter environments. This crucial assessment needs to be performed in order to validate neural detectors operationally.

It is found that radar detection performance improves when training the neural network with different loss functions than the ones that have been focused on in related research.

II. RELATED WORKS

In recent years, the ever-increasing available computation power and existence of large datasets have enabled deep learning models to revolutionize the way numerous problems are approached, including natural language processing, time series forecasting, computer vision, etc. In particular, convolutional neural networks (CNNs) have been successfully used to perform different vision tasks, such as image classification ( [START_REF] Krizhevsky | ImageNet Classification with Deep Convolutional Neural Networks[END_REF], [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF], [START_REF] He | Deep Residual Learning for Image Recognition[END_REF]) or segmentation ( [START_REF] Long | Fully Convolutional Networks for Semantic Segmentation[END_REF], [START_REF] Ronneberger | U-Net: Convolutional Networks for Biomedical Image Segmentation[END_REF], [START_REF] He | Mask R-CNN[END_REF]).

The problem of radar target detection on range-Doppler maps, in the operational setting used in this paper, can be expressed as a single-point image segmentation problem. Indeed, after signal processing, the target appears as a singular point in a 2D array. As such, the use of classic image segmentation architectures applied to radar signal processing is of particular interest. After neural network inference, the post-processing chain performs non-max suppression in order to prevent eventual small inaccuracies of around one pixel in the predicted segmentation map.

Today, radar target detection is performed using Constant False Alarm Rate (CFAR) detectors [START_REF] Scharf | Statistical signal processing: detection, estimation, and time series analysis[END_REF]. These detectors estimate the variance of thermal noise in a neighbourhood of the cell under test (CUT) and announce a detection if the value of the CUT is superior to a certain threshold, which is normalized with respect to the estimation of local noise power. The threshold is computed with respect to the estimated noise variance. CFAR detectors, under strong assumptions, are statistically optimal. However, the assumptions in which CFAR detectors are optimal (absence of clutter2 and/or side lobes, unicity of target, range resolution superior to target size. . . ) are seldom met, resulting in suboptimal target detection performance. Even tough techniques (GO-CFAR, SO-CFAR...) [START_REF] Gandhi | Analysis of CFAR processors in nonhomogeneous background[END_REF] have been developed to mitigate this, there exists a margin to develop detectors more polyvalent than CFAR-based detectors.

Radar signal processing has also been subject to deep learning-based innovation. Deep learning has been successfully used to perform radar waveform recognition [START_REF] Wang | Automatic radar waveform recognition based on time-frequency analysis and convolutional neural network[END_REF], automatic target recognition [START_REF] Sehgal | Automatic Target Recognition Using Recurrent Neural Networks[END_REF], among others. The works of [START_REF] Brodeski | Deep Radar Detector[END_REF], [START_REF] Wang | A Study on Radar Target Detection Based on Deep Neural Networks[END_REF] leverage convolutional neural networks (CNNs) to detect targets in the 4D space (range, Doppler, azimuth and elevation), while [START_REF] Yavuz | Radar Target Detection with CNN[END_REF] and [START_REF] Wang | Deep Learning-Based UAV Detection in Pulse-Doppler Radar[END_REF] focus on CNN detectors on range-Doppler maps. The works of [START_REF] Pan | A Novel Approach for Marine Small Target Detection Based on Deep Learning[END_REF] implement a Faster R-CNN network ( [START_REF] Shaoqing Ren | Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[END_REF]) in order to automatically detect marine targets.

The development of neural networks capable of guaranteeing a fixed P F A has also been the object of research. Research by [START_REF] Diskin | Learning to Detect with Constant False Alarm Rate[END_REF] promotes a CFAR neural detector by training a network to minimize a statistical distance between the network output of two examples belonging in the H 0 hypothesis (Equation 1). The work of [START_REF] Lin | DL-CFAR: A Novel CFAR Target Detection Method Based on Deep Learning[END_REF] leverages a CNN that detects and masks a target from a range-Doppler map in order to improve the noise estimation performed by a classic CFAR detector. Finally, [START_REF] Baird | A Neyman-Pearson Criterion-Based Neural Network Detector for Maritime Radar[END_REF] introduces a novel constrained loss function related to the Neyman-Pearson criterion for marine target detection. The network of [START_REF] Baird | A Neyman-Pearson Criterion-Based Neural Network Detector for Maritime Radar[END_REF] outperforms CFAR detector and a CNN trained using the cross-entropy loss. We propose to extend this comparison of a constrained loss against other loss functions. Furthermore, even though we aim to develop a polyvalent detector, the scope of our analysis is restrained to the exoclutter scenario, where comparing detection and false alarm performances is straightforward.

III. METHODOLOGY

A simulation model that is able to generate realistic radar echoes is used to create the data necessary for training the model. The radar signal generation tool is validated and generates data which is representative of real data. The benefits of using such a generator are threefold : first, our ability to generate data is only limited by computation and time constraints. Second, it can be chosen to produce data that represents the distribution of real-world applications. Finally, the correctness of the ground truth labels is guaranteed.

The data consists in 100000 range-Doppler maps on which have been added 5 simulated targets. The number of 5 is chosen with the aim of increasing the number of positive examples in the training dataset, thus reducing data imbalance. Varying the number of targets on a training example, by, for example, randomly choosing a number of targets during simulation, and shifting the variance of thermal noise might be of interest in future work. The range-Doppler maps are generated according to a number of scenarii, including both endoclutter and exoclutter situations. The motivation for training the model on various noise and clutter profiles resides in the will to create a model able to generalize detection on exoclutter environments to more complex ones. Each target has a distance and velocity that is randomly drawn inside the operational domain according to a bivariate uniform law. Additionally, the SNR (signal-tonoise ratio) of the generated images is tuned by varying the radar cross section (RCS) of the targets, thus effectively varying the reflected power received by the radar.

Research works such as [START_REF] Sehgal | Automatic Target Recognition Using Recurrent Neural Networks[END_REF] and [START_REF] Brodeski | Deep Radar Detector[END_REF] have shown that neural networks, and especially CNNs, are adapted to the task of radar target detection. In accordance with these findings, a CNN architecture is used to perform the task. As the problem of target detection on range-Doppler maps can be formulated as an image segmentation problem, a classic U-Net encoderdecoder structure [START_REF] Ronneberger | U-Net: Convolutional Networks for Biomedical Image Segmentation[END_REF] is leveraged. The U-Net architecture consists in several encoding stages that express the input in a lower-dimensional latent space, which are followed by decoding stages that take the input back to its original resolution. Any two pair of encoding and decoding stages of the same rank k are connected by a shortcut connection, that brings back the necessary spatial information. The shortcut connection is an Add operator taking as inputs the features map for rank k of the encoder and decoder. The range-Doppler maps are resized to the classical tensor dimensions of 256 × 256 and given as input to the model. The architecture of the network is detailed in Figure 1. The sigmoid activation function is applied to the final layer activation values, outputting a value between 0 and 1 representing a confidence value of classifying the pixel as background noise or as a target. The neural network has a total of 2, 121, 481 parameters.

The network is trained on the aforementioned simulated range-Doppler maps. A training / validation split of 80/20% is used. The test data is generated on-the-fly, and therefore has not been used during training. It consists in a singular target in a simulated exoclutter environment. Neural network testing is performed with 20,000 generated images. The performance metrics such as detection probability P D and false alarm probability P F A are computed after the detection post-processing chain used in the radar detection pipeline. As such, these metrics are representative of detection performance in real scenarii.

Network training is performed on a Nvidia GTX 1080 Ti using the Adam optimizer and a learning rate decreasing from 7 × 10 -3 to 5 × 10 -5 for 150 epochs. Model values with 

Loss function

A large number of research works applying CNNs to the task of radar target detection use popular loss functions such as cross-entropy, weighted cross-entropy or the Dice coefficient for training. Even though these choices are valid and lead to good detection performances, they are not designed to fit the very specific radar detection problem. As such, it remains to be seen whether training the network with a different loss function can improve P D at a fixed P F A over baseline models. It has been previously shown [START_REF] Milletari | V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation[END_REF] that using the Dice coefficient (2) as a loss function during model training leads to improved segmentation accuracy over weighted cross-entropy loss in the case of imbalanced data. Due to the sparse nature of the data, where the positive-to-negative label ratio is 7.6 × 10 -5 , it has been chosen to use Dice coefficient as a baseline.

D(ŷ, y) = 2 N i ŷi y i N i ŷ2 i + N i y 2 i (2)
where ŷi and y i are respectively predicted pixels and ground truth pixels. N is the total number of pixels in an image. ŷi belongs to the interval ]0; 1[, while y i belongs to the set {0, 1}. When using mini-batch stochastic gradient descent, which is the case of this research work, the value D is calculated as the average of the Dice coefficient for every image in a batch of size m. The CNN trained using the Dice Loss DL = 1 -D as a cost function will be referred to further as NN-Dice.

We formulate the hypothesis that convolutional neural networks trained using the Dice coefficient as a loss function show limits in performance due to the fact that the Dice coefficient aims to maximize the intersection over union of ground truth and prediction pixels. As such, the loss function assigns the same weight to false negatives (missed detections) and false positives (false alarms). As the results presented in Section IV show, a network trained using the Dice coefficient results in a high-precision and low-recall detector. It is then of interest to train a detector that exhibits a higher recall, while staying under the required maximum number of false alarms.

We introduce the use of the Tversky Loss [START_REF] Sadegh | Tversky loss function for image segmentation using 3D fully convolutional deep networks[END_REF] during training of the model. Tversky Loss is an extension of Dice loss with added coefficients which enable to control the importance that is given to false positives and false negatives during training. Tverksy Loss has been investigated in automotive radar applications in [START_REF] Franceschi | Deep learning-based radar detector for complex automotive scenarios[END_REF]. Using previous notation, the Tversky Index T I can be written as follows :

T I = N i ŷi y i N i ŷi y i + α N i ŷi (1 -y i ) + (1 -α) N i (1 -ŷi )y i
The cost function that is optimized during training is T L(ŷ, y) = 1 -T I(ŷ, y). It may be noticed that The hyperparameter α is found using a grid search and selecting the model that maximizes P D at a fixed P F A . To the best of the authors' knowledge, Tversky Loss has not been used during the training of neural networks in the context of radar target detection.

The neural network trained using T L will be referred to as NN-Tversky. As it shall be demonstrated in the results section, using Tversky Loss improves the detection probability of the algorithm. However, even though the false alarm rate remains inferior to the value at which the CFAR detector is calibrated, it remains unclear how to guarantee an expected false alarm rate for neural detectors.

False alarm control

Radar detection systems operate under the constraint of producing a fixed number of false alarms during a period of time. The classical value is set at 1 false alarm (FA) per minute. On exoclutter backgrounds, the dynamic threshold computation guarantees -notwithstanding CFAR loss-a statistically maximal P D at a fixed P F A . Thus, CFAR detectors are, in that sense, reliable. However, deep learning detectors do not classically take into account the constraint on P F A . Neural detectors trained using Dice Loss or Tversky Loss can be calibrated with respect to P F A by applying a threshold filter over the output layer activations : indeed, the network's output layer activations represent the classification of each pixel as a confidence value between 0 (background noise) and 1 (target). Applying a threshold transforms these values into a binary prediction map. In order to determine this threshold, the neural network is then evaluated on a test set S 1 containing varying thermal noise profiles but no target. The pre-threshold confidence indexes of the network are stored and P F A is computed applying a sliding threshold to these values. The threshold is finally selected according to the desired P F A . A representation of this false alarm threshold tuning for the network trained using the baseline Dice loss function is presented in Figure 3.

The research work of [START_REF] Baird | A Neyman-Pearson Criterion-Based Neural Network Detector for Maritime Radar[END_REF] shows that it is possible to develop a loss function based on the Neyman-Pearson criterion in order to train a neural network with respect to a fixed constraint, in our case the false alarm probability. The goal of this constrained optimization is to penalize the neural network for producing an unwanted number of false alarms. As such, the constrained detection problem (P) may be formulated as the following :

minimize w L(ŷ, y) = T L(ŷ, y) s.t. F P (ŷ, y) ≤ s (P)
where w are the neural network weights, T L(ŷ, y) is the Tversky Loss T L for prediction ŷ and ground truth y, and

F P (ŷ, y) = N i ŷi (1 -y i ).
The inequality constraint can be reformulated as an equality one:

minimize w L(ŷ, y) = T L(ŷ, y) s.t. g(ŷ, y) = ( 1 s (F P (ŷ, y) -s)) 2 = 0
This cost function differs from the one used in [START_REF] Baird | A Neyman-Pearson Criterion-Based Neural Network Detector for Maritime Radar[END_REF] in the fact that the network is also penalized for producing a number of false alarms that is largely inferior to the threshold. Indeed, setting the penalty to 0 for F P (ŷ, y) < s may result in convergence to local minima where both P F A and P D are close to 0. Particularly, when s is very low, the network may struggle to address the constraint and fall into those local minima. Furthermore, incentivizing the model to produce a number of false alarms closer to the threshold incorporates the idea of threshold calibration that is performed on classical CFAR methods.

The constraint g(ŷ, y) may now be incorporated alongside the objective function, in order to go from a constrained problem to an unconstrained one. As such, the updated objective function L P , using Tversky Loss as a proxy for detection probability, is :

L P (ŷ, y, λ) = T L + λg(ŷ, y) (3) 
where λ is an estimate of the Lagrange multiplicator. The neural network trained using Equation 3 will be further referred to as NN-Lagrange.

IV. RESULTS

Fig. 4. P F A at various thresholds for NN-Tversky

Figure 4 shows the false alarm probability P F A for different threshold values, for CNN detectors trained using the Tversky loss function with α ∈ {0.1, 0.2, ..., 0.9}. It may be observed that, for high values of α, the P F A stays high and only decreases at a large threshold value. The differences between P F A curves for various α is of interest in the setting of radar target detection, as it shall be expanded upon in Section V. For the scenario of this research work, with a singular target on an exoclutter environment, it is decided to choose NN-Tversky with the following hyperparameters : α = 0.6 and threshold = 0.8. It can be seen, from Figure 6, that NN-Lagrange provides the best detection performances across all methods. All neural detectors improve P D over the CFAR detector, which detection probability is decreased by the CFAR loss resulting from a potentially imprecise noise variance estimation due to the limited number of noise samples. NN-Lagrange noticeably outperforms NN-Tversky and NN-Dice. Indeed, while the It is then straightforward to note that there is less information loss with NN-Lagrange. It may also be seen that NN-Tversky boasts a slightly higher detection performance than NN-Dice. Again, this is due to the fact that the network has been trained to produce a higher number of detections, which can be leveraged by fine-tuning the detection threshold.

Table I shows the false alarm probability P F A for the compared models. It can be appreciated that all neural network detectors exhibit a lower P F A than CFAR. P F A values gravitate around the same operating point, with the exception of NN-Lagrange, which remarkably achieves both the highest P D and the lowest P F A . The relative improvements of the studied loss functions over CFAR can thus be validated.

Ablation study

An ablation study is performed in order to understand the choice of the Tversky Loss T L instead of the Dice Loss DL in the objective function for the constrained optimization problem (P). Two networks are compared : NN-Lagrange, which has been introduced earlier, and a neural network trained by replacing the Tversky Loss T L by the Dice Loss DL :

L P (ŷ, y, λ) = DL + λg(ŷ, y) (4) 
Figure 7 shows that, for an identical P F A , the network trained using T L in the objective function displays a higher P D than the detector trained with DL. This difference in P D is explained by the fact that the former network proposes more detection candidates due to the nature of T L when α is close to 1. This higher number of detection candidates has no influence on P F A due to the constraint.

V. DISCUSSION

As it has been discussed in Section IV, NN-Tversky shows, at a fixed P F A , higher detection performance than NN-Dice. This superiority may be explained by the fact that the parameter α Tversky Loss incorporates provides an additional degree of liberty during the network calibration process. One is able to select both the optimal α and the optimal final layer activation threshold in order to maximize detection probability at a fixed P F A . This versatility can also be used to calibrate the network on other more difficult environments, containing perturbations and/or interactions. However, selecting an optimal value of α requires network retraining, while selecting an optimal threshold is performed after training. Whether model training for a specific α may be performed in little time, using, e.g., transfer learning, will be the subject of further investigations.

However, the hyperparameters yielding optimal performance for NN-Tversky are empirically found and tuned and are not backed by theoretical guarantees. NN-Lagrange addresses this shortcoming by bringing a notion of stability, as the network is trained to respect a given P F A . However, we show that the constraint, while satisfied during training, is not guaranteed to be at inference, because the loss function is not computed. Giving theoretical P F A guarantees for CNN detectors at inference time is still the object of research.

It is interesting to notice that, even though the network has been trained on a dataset containing thermal noise as well as ground clutter, in hopes of having a model capable of generalizing to complex environments, the detection performances do not decrease compared to a network that has been trained on thermal noise alone. This can be explained by the fact that adding ground clutter or other perturbations brings robustness to the model.

VI. CONCLUSION

In this paper, a deep learning model trained to perform radar target detection is proposed. Original loss functions that are not commonly used in deep learning-based model training for radar signal processing are introduced and their contributions to improvements on detection probability and false alarm control are highlighted.

The detection performances of the studied networks are determined on a singular target detection over exoclutter background scenario, which is the environment on which the performance gains are supposed to be minimal compared to the classical CFAR methods. It is shown that the neural detectors outperform the CFAR baseline in this setting. The next step, detection performance evaluation over more complex environments (presence of ground clutter, interferences, multiple targets, real data) will be the object of future research. Improvements of using neural detectors over CFAR detectors are expected to be much greater, as it has been noticed through early experiments.
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  ŷi y i represents true positives (TP), N i ŷi (1 -y i ) false positives (FP) and N i (1 -ŷi )y i false negatives (FN). Thus, the parameter α may be used to give more or less importance to one or the other during training.
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 5 Figure4shows the false alarm probability P F A for different threshold values, for CNN detectors trained using the Tversky loss function with α ∈ {0.1, 0.2, ..., 0.9}. It may be observed that, for high values of α, the P F A stays high and only decreases at a large threshold value. The differences between P F A curves for various α is of interest in the setting of radar target detection, as it shall be expanded upon in Section V. For the scenario of this research work, with a singular target on an exoclutter environment, it is decided to choose NN-Tversky with the following hyperparameters : α = 0.6 and threshold = 0.8. Figure 5 displays P F A curves against threshold value for the detectors that have been chosen for comparison : NN-Dice, NN-Tversky and NN-Lagrange. P F A for thresholds 0 and 1 are not computed, since values are identical for all models and would hamper figure readability. One may notice that NN-Lagrange exhibits a larger P F A variation across the threshold values in the computed range ([0.05; 0.95]) than NN-Dice and
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Clutter is defined as unwanted echos received by the radar, e.g. coming from the ground. In our operational setting, ground clutter is expected to cover roughly half of the range-Doppler map.