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Cohérence spectrale et test de corrélation en grande dimension

 

Introduction

Détecter la présence de corrélation entre plusieurs séries temporelles est un problème fondamental en traitement du signal, dont les applications courantes concernent par exemple le traitement multi-capteurs, le radar ou encore les télécommunications.

Dans ce travail, nous considérons le cas où l'on observe M séries temporelles (y 1,n ) n∈Z , . . . , (y M,n ) n∈Z , supposées conjointement gaussiennes complexes circulaires et stationnaires. En notant r i,j (h) = E[y i,n+h y j,n ], on s'intéresse ici à déterminer la présence de corrélations entre les M séries, qui se formalise comme le test binaire dont l'hypothèse nulle est donnée par :

H 0 : r i,j (h) = 0 ∀ h ∈ Z, 1 ≤ i < j ≤ M. (1) 
Le test (1) a fait l'objet de nombreux travaux dans le cadre des approches dites « temporelles », pour lesquelles des statistiques de test basées sur des estimées empiriques de la fonction de covariance r i,j ont été proposées, voir par exemple [START_REF] Haugh | Checking the independence of two covariancestationary time series : a univariate residual cross-correlation approach[END_REF][START_REF] Hong | Testing for independence between two covariance stationary time series[END_REF][START_REF] Ramírez | Detection of spatially correlated gaussian time series[END_REF]. De manière équivalente, le test (1) peut être reformulé dans le domaine spectral ; définissons à ce titre pour tout ν ∈ [0, 1], s i,j (ν) = h∈Z r i,j (h)e -2iπνh , la densité spectrale et

c i,j (ν) = s i,j (ν) s i,i (ν)s j,j (ν)
, la cohérence spectrale associées aux séries (y i,n ) n∈Z et (y j,n ) n∈Z . On aboutit alors au test équivalent d'hypothèse nulle :

H 0 : c i,j (ν) = 0 ∀ν ∈ [0, 1], 1 ≤ i < j ≤ M. (2) 
Les approches dites « fréquentielles » pour résoudre (2) utilisent quant à elles des statistiques de test basées sur des estimées empiriques de s i,j ou c i,j , voir par exemple [START_REF] Wahba | Some tests of independence for stationary multivariate time series[END_REF][START_REF] Eichler | Testing nonparametric and semiparametric hypotheses in vector stationary processes[END_REF][START_REF] Wu | Asymptotic theory for spectral density estimates of general multivariate time series[END_REF]. Le cadre d'étude de ces travaux se place dans le régime asymptotique dit des « petites dimensions » où M est supposé fixe et où le nombre d'observations N de chaque série tend vers l'infini, et les méthodes développées sont pertinentes dans un contexte pratique où M ≪ N . De nombreuses applications actuelles mettant en jeu des données de grande dimension, il apparaît nécessaire de considérer un régime asymptotique des « grandes dimensions » où M tend également vers l'infini. Dans ce contexte, les travaux autour du test (2) sont encore peu nombreux. Dans [START_REF] Loubaton | Properties of linear spectral statistics of frequency-smoothed estimated spectral coherence matrix of high-dimensional gaussian time series[END_REF], une statistique de test basée sur un périodogramme lissé est proposée, et étudiée dans le régime des grandes dimensions. Notons ξ i la transformée de Fourier normalisée de (y i,n ) n=1,...,N donnée par 1) , ainsi que ŝi,j l'estimateur lissé de s i,j donné par

ξ i (ν) = 1 √ N N n=1 y i,n e -i2πν(n-
ŝi,j (ν) = 1 B + 1 B 2 b=-B 2 ξ i ν + b N ξ j ν + b N ,
où B est un entier pair représentant la largeur de la fenêtre de lissage fréquentiel. Notons également ĉi,j (ν) = ŝi,j (ν) ŝi,i (ν)ŝ j,j (ν) , l'estimateur associé de c i,j (ν) et Ĉ(ν) = (ĉ i,j (ν)) i,j=1,...,M l'estimateur de la matrice de cohérence spectrale C(ν) = (c i,j (ν)) i,j=1,...,M . Les travaux de [START_REF] Loubaton | Properties of linear spectral statistics of frequency-smoothed estimated spectral coherence matrix of high-dimensional gaussian time series[END_REF] montrent alors que dans le régime asymptotique où M, B, N → ∞ tel que M B → c > 0 et B N → 0, sous l'hypothèse nulle H 0 , la distribution empirique des valeurs propres λ 1 ( Ĉ(ν)) m=1,...,M de Ĉ(ν) converge vers la loi de Marcenko-Pastur µ, i.e.

1 M M k=1 φ λ k Ĉ(ν) p.s. --→ R φ(x)dµ(x),
pour toute fonction continue bornée φ. En exploitant le fait que sous certaines hypothèses alternatives, le comportement asymptotique de la distribution empirique des valeurs propres de Ĉ(ν) dévie de la loi de Marcenko-Pastur, une statistique de test basée sur les valeurs propres de Ĉ(ν) et la loi µ est proposée.

Dans cet article, nous explorons une approche alternative, non plus basée sur les valeurs propres de Ĉ(ν), mais sur l'étude du maximum des entrées non diagonales de Ĉ(ν), i.e. max |ĉ i,j (ν)| 2 : 1 ≤ i < j ≤ M, ν ∈ V , où V est un sous-ensemble fini de [0, 1] que nous détaillons en section suivante. En particulier, après un recentrage et une renormalisation convenables, nous montrons 1 que cette statistique converge en loi, sous l'hypothèse nulle H 0 et dans le régime où M, B, N → ∞ décrit précédemment, vers la distribution de Gumbel, et exploitons ce résultat pour construire une statistique de test dont le risque de 1ère espèce asymptotique est contrôlé. Notons qu'une étude similaire a été conduite dans [START_REF] Wu | Asymptotic theory for spectral density estimates of general multivariate time series[END_REF], dans le régime des petites dimensions (M = 2), en utilisant une estimée différente de ĉi,j (ν).

Hypothèses et résultats

Commençons par présenter formellement les hypothèses utilisées dans notre étude. On considère une suite de séries temporelles (y m,n ) n∈Z , m ≥ 1, mutuellement indépendantes et de loi gaussienne complexe circulaire. Notons r m (au lieu de r m,m ) la fonction de covariance de (y m,n ) n∈Z , pour laquelle on formule l'hypothèse de « mémoire courte » suivante.

Hypothèse 1. Les fonctions de covariance (r m ) m≥1 vérifient

sup m≥1 h∈Z (1 + |h|) |r m (h)| < ∞.
1. Les détails de la preuve sont disponibles dans [START_REF] Loubaton | On the asymptotic distribution of the maximum sample spectral coherence of gaussian time series in the high dimensional regime[END_REF].

En notant s m (au lieu de s m,m ) la densité spectrale de (y m,n ) n∈Z , l'hypothèse 1 assure en particulier que s m est uniformément bornée au sens où

sup m≥1 max ν∈[0,1] s m (ν) < ∞.
Afin que la cohérence spectrale c i,j soit bien définie, il est également nécessaire de garantir que les densités spectrales (s m ) m≥1 ne s'annulent pas. 

s m (ν) > 0.
Notons que les hypothèses 1 et 2 sont standards et sont notamment vérifiées par les processus ARMA dont le filtre générateur n'admet pas de pôle ou zéro sur le cercle unité. L'hypothèse suivante donne le régime des grandes dimensions adopté dans ce travail, en précisant les rythmes de croissance des paramètres M, N, B.

Hypothèse 3. B = B(N ), M = M (N ) sont fonctions de N tel qu'il existe C 1 , C 2 > 0, ρ ∈]0, 1[ et c > 0 tel que C 1 N ρ ≤ B, M ≤ C 2 N ρ et M B → c > 0 quand N → ∞.
L'hypothèse 3 appelle à quelques justifications. Dans un régime asymptotique où M, N → ∞ de telle sorte que M N → 0, on peut montrer que Ĉ(ν) est un estimateur consistant de C(ν) (pour la norme spectrale) sous réserve que B M → 0 et moyennant quelques hypothèses supplémentaires. En pratique, ce régime asymptotique traduit des situations où l'on peut choisir B tel que M ≪ B ≪ N . Néanmoins, lorsque la dimension M est potentiellement grande et que la taille N de l'échantillon est limitée, un tel choix de B devient complexe, et il apparaît alors plus raisonnable de choisir que B du même ordre de grandeur que M , ce que modélise l'hypothèse 3.

Muni des hypothèses précédentes, nous sommes à présent en mesure de présenter le résultat principal de cet article.

Définissons V = {k B+1 N : k ∈ N, k ≤ N B+1 } comme le sous-ensemble des fréquences de Fourier { k N : k ∈ N, k ≤ N -1} espacées de B+1 N . Théorème 1. Sous les hypothèses 1, 2 et 3, on a P   max 1≤i<j≤M ν∈V |ĉ i,j (ν)| 2 ≤ t + γ B + 1   ----→ N →∞
e -e -t pour tout t ∈ R, où γ = log N B+1 + log M (M -1)

2

.

Le théorème 1 montre donc que le maximum de la cohérence spectrale max |ĉ i,j (ν)| 2 : 1 ≤ i < j ≤ M, ν ∈ V , après renormalisation par B + 1 et recentrage par le terme γ, converge en loi vers la distribution de Gumbel. Le théorème 1 implique directement via l'hypothèse 3 que

max 1≤i<j≤M ν∈V |ĉ i,j (ν)| 2 = O P log(N ) B .
Cette erreur d'estimation est à comparer directement au résultat classique |ĉ i,j (ν)| 2 = O P (B -1 ) pour i, j, ν fixés (voir [START_REF] David R Brillinger | Time series : data analysis and theory[END_REF]), et on remarque que le maximum sur i, j, ν induit une perte logarithmique en log(N ). A ce titre, notons que les 2 termes logarithmiques contenus dans γ sont directement liés aux ensembles de maximisation V et {(i, j) : 1 ≤ i < j ≤ M }, dont l'ordre de grandeur de leurs cardinaux sont O( N B ) et O(M 2 ) respectivement. De plus, le théorème 1 peut être exploité pour construire une statistique de test dont le risque de 1ère espèce est contrôlé dans le régime asymptotique des grandes dimensions. En effet, considérons le seuil

η(α) = γ -log log 1 1-α B + 1 ,
obtenu par inversion de la f.d.r. de la loi de Gumbel, ainsi que la statistique

T = 1 ]η(α),∞[   max 1≤i<j≤M ν∈V |ĉ i,j (ν)| 2   . (3) 
Le théorème 1 montre alors que sous l'hypothèse H 0 ,

P (T = 1) ----→ N →∞ α,
i.e. la statistique de test T est de niveau asymptotique α.

Illustrations numériques

Nous présentons ici quelques simulations autour du théorème 1 et des performances de la statistique de test T définie en (3), en considérant divers scénarios pour les hypothèses nulle H 0 et alternative H 1 . On considère pour la suite que les séries temporelles suivent un modèle AR(1) multivarié, i.e. en notant y n = (y 1,n , . . . , y M,n ) T ,

y n = Ay n-1 + ϵ n (4) 
où (ϵ n ) n∈Z est un bruit blanc N C M (0, I) et où A sera ajustée suivant des scénarios précisés ci-dessous. Pour illustrer le théorème 1, nous considérons dans un premier temps A = diag(θ 1 , . . . , θ M ) avec θ 1 , . . . , θ M des variables distribuées uniformément sur le disque centré de rayon 0.9. La figure 1 représente le tracé de la fonction de répartition (f.d.r.) empirique de max i,j,ν (B + 1)|ĉ i,j (ν)| 2γ pour N = 20000, M = 500, B = 1000, évaluée sur 10000 tirages du modèle (4), et montre une bonne adéquation avec la loi de Gumbel. La table 1 représente quant à elle, toujours pour la même matrice A, la quantité P(T = 1) (évaluée sur 30000 tirages) pour un niveau α fixé à 5% et un jeu de valeurs pour (M, N, B) tel que ρ = 0.7 et c = 0.5 dans l'hypothèse 3. On constate que les valeurs de P(T = 1) sont effectivement proches de α à partir de M = 130.

Illustrons à présent les performances du test en considérant les scénarios suivants sous H 0 et sous deux hypothèses alternatives dites « locale » et « globale » définies comme suit. En notant e 1 , . . . , e M la base canonique de R M , -sous H 0 , on considère A = θ I, de telle sorte que les séries (y m,n ) n∈Z sont indépendantes ; -sous H 1,loc , on considère A = θ I + β e 2 e T 1 , de telle sorte que (y 1,n ) n∈Z et (y 2,n ) n∈Z constituent l'unique couple corrélé parmi les M séries ; -sous H 1,glob , on considère A = θ I + β i-j=1 e i e T j , de sorte que les M séries sont corrélées deux à deux. On choisira θ = 0.5 sous les trois hypothèses et β = 0.1 sous H 1,loc . Afin que les hypothèses H 0 et H 1,glob ne soient pas trivialement séparables quand M → ∞, on choisit sous H 1,glob le paramètre β fonction de M de sorte que le ratio r ci-dessous reste constant et égal à 0.1 :

r = i̸ =j 1 0 |s i,j (ν)| 2 dν i,j 1 0 |s i,j (ν)| 2 dν .
Nous prenons comme point de comparaison la statistique de test développée dans [START_REF] Loubaton | Properties of linear spectral statistics of frequency-smoothed estimated spectral coherence matrix of high-dimensional gaussian time series[END_REF] donnée par 

S = 1 ]κ,+∞[ (∆) , où ∆ = max ν∈[0,1] 1 M M k=1 φ λ k Ĉ(ν) - R φ(x)dµ(x) ,
(x) = 1 - 1 c + δ 0 (dx) + (x + -x)(x -x -) 2πcx 1 [x -,x + ] (x)dx, avec x ± = (1 ± √ c) 2 . On considèrera les fonctions φ(x) = log(x) et φ(x) = (x -1)

Hypothèse 2 .

 2 Les densités spectrales (s m ) m≥1 vérifient inf m≥1 min [0,1]
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 23 Figure 2 -Courbes ROC de T, S log , S frob pour H 1,loc

Table 1 -

 1 Risque de 1ère espèce pour α = 0.05 en fonction de M, B, N
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	Figure 1 -Comparaison entre la f.d.r. empirique du
	maximum de la cohérence spectrale et la f.d.r. de la loi
	de Gumbel.				
		N	B	M	P(T = 1)	
		42	20	10	0.012	
		316	100	50	0.035	
		659	180	90	0.037	
		1044	260	130	0.045	
		1459	340	170	0.046	
		1901	420	210	0.048	
		5623 1000 500	0.048	
		13374 2000 1000	0.049	

Table 2 -

 2 2 , et les statistiques de test associées seront notées S log et S frob . Comme la loi asymptotique de S sous H 0 n'est pas connue, on fixera le seuil κ de telle sorte à contrôler le risque de 1ère espèce empirique évalué par simulation Monte-Carlo (10000 tirages). Par mesure d'équité, on procédera de même pour fixer le seuil η de la statistique T définie en[START_REF] Haugh | Checking the independence of two covariancestationary time series : a univariate residual cross-correlation approach[END_REF].Les Figures 2 et 3 fournissent les courbes ROC empiriques des statistiques T, S log , S frob où M = 290, N = 2846, B = 580. Comme attendu, on observe que sous H 1,loc , la statistique T présente les meilleures performances, puisque l'opération de maximum utilisée dans T est spécialement indiquée pour détecter les entrées non nulles de la cohérence spectrale C(ν) dans un contexte parcimonieux. A contrario, sous H 1,glob où les corrélations sont réparties sur tous les couples de séries, les statistiques basées sur les valeurs propres de Ĉ(ν) sont plus adaptées. Nous présentons également en Tables 2 et 3 la puissance des tests sous H 1,loc et H 1,glob (évaluées sur 10000 tirages) Puissance des statistiques T, S log , S frob sous H 1,loc à un niveau 5%

	N	M	B	S frob	S log	T
	42	10	20 0.049 0.049 0.061
	316	50 100 0.038 0.044 0.352
	659	90 180 0.038 0.041 0.881
	1044 130 260 0.034 0.038 0.999
	1459 170 340 0.034 0.038 1.000
	1901 210 420 0.035 0.039 1.000
	2364 250 500 0.031 0.039 1.000
	2846 290 580 0.032 0.036 1.000
	N	M	B	S frob	S log	T
	42	10	20 0.050 0.049 0.052
	316	50 100 0.036 0.042 0.067
	659	90 180 0.067 0.065 0.086
	1044 130 260 0.142 0.122 0.133
	1459 170 340 0.339 0.255 0.214
	1901 210 420 0.601 0.462 0.328
	2364 250 500 0.836 0.682 0.503
	2846 290 580 0.960 0.852 0.672

Table 3 -

 3 Puissance des statistiques T, S log , S frob sous H 1,glob à un niveau 5% pour différentes valeurs de M, N, B et un niveau fixé à 5 %. Des conclusions similaires peuvent être tirées quant aux performances des statistiques sur les deux scénarios.