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Modeling and Numerical Analysis of Kangaroo Lower Body based on
Constrained Dynamics of Hybrid Serial-Parallel Floating-Base Systems

Enrico Mingo Hoffman, Andrea Curti, Narcis Miguel,
Sai Kishor Kothakota, Adria Roig, and Luca Marchionni

Abstract— This paper presents the modeling and numerical
analysis of the Kangaroo lower body prototype, a novel bipedal
humanoid robot developed and manufactured by PAL Robotics.
Kangaroo features high-power linear electric actuators com-
bined with unique serial-parallel hybrid chains, which allow for
the positioning of all the leg actuators near the base of the robot
in order to improve the overall mass distribution. To model
and analyze such complex nonlinear mechanisms, we employ a
constrained formulation that is extended to account for floating-
base systems in contact with the environment. A comparison
is made to demonstrate the significant improvements achieved
with TALOS, another humanoid bipedal robot designed by PAL
Robotics, in terms of equivalent Cartesian inertia at the feet
and centroidal angular momentum. Finally, the paper includes
numerical experiments conducted through simulation and pre-
liminary tests performed on the actual Kangaroo platform.

I. INTRODUCTION

In recent years, significant advancements in mechanics
and control influenced the mechanical design of humanoid
biped robots, especially the incorporation of lightweight and
impact-resilient mechanics, coupled with powerful actuation
systems in the lower body. As a result, advanced control
techniques applied to locomotion have emerged, accompa-
nied by the capability of traversing challenging terrains with
the ultimate goal of bridging the gap between laboratory-
based research and the practical applicability of humanoid
biped robots in less structured real-world scenarios.

In the past, the design of biped humanoid robots has
predominantly relied on well-established systems, such as the
HRP series, [1], [2], or ASIMO, [3], characterized by stiff
position control, serial kinematics, electrical rotary actuators,
and high reductions gearboxes, (see also [4], [5]), with
very few exceptions, e.g. LOLA [6] and TULIP [7]. While
these robots demonstrated the ability to perform complex
motions, their interaction with the environment and agility
were considerably limited.

During the DARPA Robotics Challenge (DRC), humanoid
torque-controlled robots with high-power capabilities were
specifically designed for intervention in disaster scenar-
ios [8], showcasing significant advancements, particularly
in terms of interaction capabilities. However, these systems
exhibited certain limitations, including slow movements and
low-impact resilience [9], [10], [11], [12]. The sluggishness
of these robots can be attributed to the heavy weight of the
platforms and their high inertia, which stemmed from the
utilization of actuators positioned near the moving joints.

All the authors are with PAL Robotics, Barcelona, Spain
email: {name.surname}@pal-robotics.com

REEM Series

A B C

TALOS Kangaroo

2005 2008 2013 2017 2022

Fig. 1: Humanoid bipedal robots designed and produced by
PAL Robotics since 2004.

Furthermore, the incorporation of gearboxes with high reduc-
tion ratios, such as harmonic drives, contributed to their low-
impact resilience. Another common characteristic of these
systems was the use of torsional elements or strain gauges
for joint torque measurement, rather than relying on current
measurements. This approach was primarily necessitated by
the high-friction nature of the high-reduction gearboxes,
which made it challenging to estimate and compensate.

After the DRC, novel humanoid platforms have been de-
veloped following different design paradigms, in particular:
relocating actuators to improve mass distribution, especially
on the legs, and employing different actuation units than clas-
sical electrical actuators with harmonic drivers, to enhance
impact robustness and torque/force control. Remarkable ex-
amples of this new generation of biped robots are the new
Atlas from Boston Dynamics, see [13], Cassie/Digit from
Agility Robotics [14], and UCLA’s Artemis [15]. While Atlas
relies on hydraulic actuation to achieve robustness and high-
power impulsive motions, Cassie/Digit and Artemis use high-
torque motors paired with high-efficiency low-reduction-ratio
gearboxes located near the main body of the robot, with the
motion transmitted through a series of closed linkages to
reduce foot inertia.

Following this new trend in humanoid bipedal robotics,
we present the modeling and analysis, of the lower body
prototype of the Kangaroo robot, a bipedal platform recently
developed in PAL Robotics (see Fig. 1), The mechanical
design of the Kangaroo’s anthropomorphic legs is based on
novel high-power and robust linear actuation units located
near the pelvis area with the actuation transferred to joints
through a complex system of serial-parallel hybrid chains.
Robotics systems designed with serial-parallel hybrid chains
entail multiple advantages such as robustness during impacts,



low inertia at the end-effectors, and lightweight leg structure.
The main contribution of this research paper is twofold.

Firstly, we present the analysis of the lower body of Kanga-
roo including all the Degrees of Freedom (DOFs) (a.k.a. full-
model), introducing a comprehensive study on floating-base
systems presenting serial-parallel hybrid chains in contact
with the environment, based on constrained multi-body mod-
eling. Secondly, we carry on a comparison with the TALOS
robot, focusing on dynamic quantities that are relevant in
humanoid bipedal platforms, i.e. equivalent Cartesian inertia
at the feet and Centroidal Angular Momentum.

The paper is organized as follows: Section II presents
related works on humanoid bipedal platforms using closed
linkages, their analysis, and control methods. Section III
introduces the background on kinematic and dynamic mod-
eling of floating-base robots presenting serial-parallel hybrid
linkages. Section IV presents the Kangaroo robot and its
lower-body kinematic structure, together with an analysis
of the closed sub-mechanisms present in the legs, including
joint limits and non-linear transmission effects. In Section V,
we carry out the comparison against the TALOS biped robot.
The full-model validation and preliminary experiments with
a prototype of the Kangaroo robot are reported in Section VI.
Finally, Section VII closes the paper with final remarks and
future development.

II. RELATED WORKS

The main reason to adopt serial mechanisms relies on
their straightforward structure, augmented workspace, and
simple manufacturing and maintenance processes, there-
fore representing most of the time the state-of-the-art in
robotics systems. For these reasons, most bipedal robots’
legs consist of 6 DOFs serial mechanisms with actuators
distributed along the whole kinematic chain, from the hip
to the ankle, see for example [1], [3], [4], [5]. However,
despite the aforementioned advantages, these types of robot
architectures generally present only limited precision, low
structural stiffness, and poor dynamic characteristics, related
to mass and inertia distribution. In particular, the latter
plays a fundamental role in agile locomotion and impact
handling and mitigation. On the other hand, a parallel robot
can provide higher stiffness, speed, accuracy, and payload
capacity, at the cost of a reduced workspace and complex
geometry, requiring careful analysis and control. [16] defines
a series-parallel hybrid robot as a robot constituted by a serial
or tree-type combination of serial and parallel mechanisms,
combining the advantages of both worlds, but also inheriting
their kinematic complexities.

The last few decades of research in humanoid bipedal
robotics have shown that achieving high dynamic perfor-
mance requires a stiff structure and good mass distribu-
tion [17]. These characteristics can be achieved using series-
parallel hybrid structures. In fact, more recently, several re-
search works started to introduce mechanical leg designs that
are based on series-parallel hybrid kinematics. In some cases,
sub-mechanisms are based on parallel kinematics to achieve
the lightweight, modular, and compact design of sub-parts. A

typical case is the ankle, where motors are relocated closer
to the knee by employing a four-bar linkage mechanism
with a reduction of inertia at the leg end-effector, as in [9],
[10], [18]. A first example of a humanoid bipedal robot
strongly based on series-parallel hybrid kinematics chains is
LOLA, from [6], which legs were designed mixing rotational,
linear actuators, and parallel/differential transmissions. Other
examples of humanoid bipedal systems where series-parallel
hybrid chains were extensively used for the upper and lower
body are HYDRA, [19], SAFFIR, [20], CARL, [21], and
Disney’s HYBRID LEG, [22], to name a few.

From the software and control point of view, the par-
allel mechanism is often handled by relying on an ab-
straction level that separates the parallel-closed chain com-
putation into specialized functions (e.g. transmissions in
ros control [23]), or approximates the system as a serial
chain.

In [24], is presented a Quadratic Programming (QP)-
based framework for whole-body control taking into account
closed kinematic loops. The authors show how approaches
that are based on serial-chain abstraction and separated
into specialized functions lead to theoretical and practical
disadvantages, in particular:

• the real physical limits induced by the mechanism can
not be modeled using a simple box constraint on the
serial model,

• the whole-body control solution may be less accurate as
it does not consider the correct dynamics of the system,

The proposed framework is applied to a full-size humanoid
robot with multiple series-parallel hybrid chains, named
RH5, see [25], [26].

Recently, agile and dynamic walking has been achieved
with platforms based on parallel mechanism legs, e.g.
ATRIAS, [27], and series-parallel hybrid mechanism, e.g.
Cassie and Digit [28]. ATRIAS leg design is based on a four-
bar linkage driven by 2 motors for leg extension/retraction in
common mode, and swing in differential mode. The design
of ATRIAS has evolved in Cassie/Digit, employing a series-
parallel hybrid mechanism modeled by cutting the loops and
adding consistency constraints, see [29].

In [22] is proposed an IK approach to retarget motions
computed from a serial model onto a hybrid one to control
the Disney’s HYBRID LEG, see also [30]. However, the
proposed approach is only kinematics-based.

The work in [16] reports (in Table 1) a comparison among
different series-parallel hybrid humanoid robots, considering
the number of parallel sub-mechanism modules and the
provided free DOFs w.r.t. the total number of free DOFs. The
same table is reported in Table I, considering only humanoid
robots and augmented with the data for the Kangaroo robot.
It is worth noticing that among all the considered humanoid
bipedal systems, Kangaroo is the only one relocating the
ankle’s actuators at the back of the top rear femur, hence
not presenting any actuator nor electronics under the knee.
This unique feature makes Kangaroo a platform particularly
resilient against impacts and potentially ideal to perform
agile and dynamic locomotion.



TABLE I: Overview of parallel sub-mechanism based modules with different complexities in serial-parallel hybrid robots

Robot Number of Parallel mechanisms (Free DOFs) Composition Free DOFs
Name(year) 1-DOF 2-DOF 3-DOF 4-DOF 6-DOF Total Parallel
LOLA, [6] 2 2 – – – 25 6
AILA, [31] 2 2 – – – 20 6
Valkyrie, [10] – 5 – – – 35 10
TORO, [32] 2 – – – – 27 2
THOR, [33] 4 4 – – – 30 12
SAFFIR, [34] 4 4 – – – 30 12
LARMBOT, [35] – – 2 1 – 22 10
TALOS, [12] 2 – – – – 27 2
RH5, [26] 5 5 – – – 32 15
Disney Biped, [22] – – – – 2 12 12
Kangaroo (2022) 4 4 - - - 12 12

III. BACKGROUND ON MODELING SERIAL-PARALLEL
HYBRID CHAINS IN FLOATING-BASE SYSTEMS

Classical approaches in modeling parallel linkages are
based on geometrical analysis, leveraging case-specific an-
alytical expressions for the linkage kinematics, as in [36]
where the closed-form solution of a 2SPRR-U humanoid
ankle is presented. This solution permits embedding the
closed loop constraints directly in the equation of motions
eventually saving computational cost and improving numer-
ical accuracy. However, such closed-form solutions are not
always available and do not generalize to arbitrary serial-
parallel hybrid mechanisms.

According to [37], a more comprehensive and promising
method entails modeling these linkages as constrained multi-
body systems. This approach allows for the consideration
of intricate geometries and dynamic effects associated with
multiple serial-parallel hybrid chains. While the direct map
between the linkage parameters and the resulting motion is
no longer expressed analytically, it can still be determined
through numerical computation. In this section, we recall
this approach, including floating-base systems incorporating
generic series-parallel hybrid chains, with the aim of using
it for the modeling and analysis of the Kangaroo robot.

From now on, as we did in the previous sections, we will
call actuated DOFs the ones that can provide force/torque,
and passive DOFs the ones that can not. We will consider
mechanisms with the following assumptions:
Assumption 1 The motion of the passive DOFs is totally

constrained by the actuated DOFs;
Assumption 2 The number of free DOFs coincides with the

number of actuated DOFs.

A. Modeling of Serial-Parallel Hybrid Chains
Let’s consider a simple 1DOF RRPR closed mechanism

as the one depicted in Fig. 2. To model this closed linkage
as a constrained multi-body system, the mechanism is first
opened at one of the passive DOFs, represented by a dashed
line in Fig. 2, forming two open kinematic chains. In this
case, we have:

θ =

[
θu
θa

]
∈ Rn, (1)

with θu ∈ Rm the passive DOFs and θa ∈ Rn−m the
actuated DOF, m < n. For the 1DOF RRPR mechanism
considered, we have in particular n = 3 and with m = 2.

Fig. 2: 1DOF RRPR closed mechanism.

We denote with Fa and Fu the frames associated with
each open chain, placed at the removed DOF, as shown in
Fig. 2. Considering Assumption 1 and Assumption 2, we can
enforce a constraint in the form:

afu (θ) = 0 ∈ Rm. (2)

along the constrained directions to keep the two frames over-
lapped to close the linkage. With θa as known quantities, the
equation (2) consists in a non-linear system of m equations
in m unknowns θu. For example, for the considered closed
linkage, the motion is constrained on the local plane yz of
frame Fa, as shown in Fig. 2, resulting in the relative position
of frame Fu w.r.t. Fa, along the local yz directions, being
0. We can compute the constraint Jacobian from (2):

Jl (θ) θ̇ = 0, (3)

with Jl (θ) ∈ Rm×n being the relative Jacobian between the
frames Fu and Fa expressed in Fa, such that:

Jl (θ) θ̇ = aJa,u (θ) θ̇ = ava,u, (4)

where ava,u is the velocity along the constrained directions
of the frame Fu w.r.t. the frame Fa expressed in frame
Fa (please refer to Appendix I on how to compute relative
kinematics quantities). It is possible to divide the constraint
Jacobian into its actuated and passive parts:

Jl (θ) θ̇ =
[
Jl,u (θ) Jl,a (θ)

] [θ̇u
θ̇a

]
= 0, (5)



with Jl,u (θ) ∈ Rm×m the passive part, and Jl,a (θ) ∈
Rm×n−m the actuated part of the constraint Jacobian Jl (θ).
The constraint (3) can be written as:

Jl,u (θ) θ̇u + Jl,a (θ) θ̇a = 0, (6)

that permits to compute the passive velocities from the
actuated ones, a.k.a. Differential Forward Kinematics (DFK):

θ̇u = −Jl,u (θ)
−1

Jl,a (θ) θ̇a = Jm (θ) θ̇a, (7)

with Jm (θ) ∈ Rm×n−m named the mapping Jacobian, and
considering Jl,u (θ) invertible, thus not in singularity.

The passive accelerations θ̈u can be computed from the
(desired/measured) actuated accelerations θ̈a, positions θ and
velocities θ̇. In fact, the constraint (2) can be easily expressed
at the acceleration level:

Jl (θ) θ̈ + J̇l(θ, θ̇)θ̇ = 0, (8)

please refer to Appendix I-B for the computation of the
relative bias term J̇l(θ, θ̇)θ̇. Splitting (8) into its actuated
and passive parts leads to:[

Jl,u (θ) Jl,a (θ)
] [θ̈u

θ̈a

]
+ J̇l(θ, θ̇)θ̇ = 0, (9)

therefore:

θ̈u = −Jl,u (θ)
−1

(
Jl,a (θ) θ̈a + J̇l(θ, θ̇)θ̇

)
=

= Jm (θ) θ̈a − Jl,u (θ)
−1

J̇l(θ, θ̇)θ̇. (10)

The equations of motions consist of a constrained dy-
namic, see [38], and it can be written as:

M(θ)θ̈ + h(θ, θ̇) = Sτ + Jl (θ)
T
λ, (11)

with M(θ) ∈ Rn×n the inertia matrix, h(θ, θ̇) ∈
Rn non-linear terms consisting in Coriolis/Centrifugal and
gravitational forces, τ ∈ Rn−m the actuated torques/-
forces, λ ∈ Rm the constrained forces, and S =
[0m×n−m In−m×n−m]

T the passive selection matrix such
that Sτ ∈ Rn. The dynamics in (11) can be as well divided
into its actuated and passive parts:

Mu (θ) θ̈ + hu(θ, θ̇) = Jl,u (θ)
T
λ, (12a)

Ma (θ) θ̈ + ha(θ, θ̇) = τ + Jl,a (θ)
T
λ, (12b)

with Mu (θ) ∈ Rm×n, hu(θ, θ̇) ∈ Rm, Ma (θ) ∈ Rn−m×n

and ha(θ, θ̇) ∈ Rn−m. The constrained forces λ can be
removed by using equation (12a):

λ = Jl,u(θ)
−T

(
Mu(θ)θ̈ + hu(θ, θ̇)

)
. (13)

Let’s now define the quantity:

τa(θ, θ̇, θ̈, τ ) = τ −
(
Ma (θ) θ̈ + ha(θ, θ̇)

)
, (14)

the actuated torques, and

τu(θ, θ̇, θ̈) = Mu (θ) θ̈ + hu(θ, θ̇) (15)

the passive torques. Equation (12b) can be rewritten using
τa

1:
τa = −Jl,a (θ)

T
λ (16)

and substituting λ:

τa = −Jl,a (θ)
T
Jl,u (θ)

−T
(
Mu (θ) θ̈ + hu(θ, θ̇)

)
=

= −Jl,a (θ)
T
Jl,u (θ)

−T
τu = Jm (θ)

T
τu (17)

with:

Jm (θ)
T
= −

(
Jl,u (θ)

−1
Jl,a(θ)

)T

=

= −Jl,a(θ)
TJl,u(θ)

−T , (18)

where equation (17) permits to map generic torques on the
passive DOFs into the actuated ones. The inverse dynamics
can finally be computed from (12b), plugging (13):

τ = Ma(θ)θ̈ + ha(θ, θ̇)− Jl,a (θ)
T
λ =

= Ma(θ)θ̈ + ha(θ, θ̇)−

− Jl,a (θ)
T
Jl,u (θ)

−T
(
Mu(θ)θ̈ + hu(θ, θ̇)

)
=

(19)

= Ma(θ)θ̈ + ha(θ, θ̇) + Jm(θ)T
(
Mu(θ)θ̈ + hu(θ, θ̇)

)
,

where we have used the (18).
The constrained approach can be extended to complex

mechanisms formed by multiple closed sub-mechanisms by
stacking constraint Jacobians associated with each closed
sub-mechanism, such that the total number of constraints will
be equal to the number of passive DOFs. For example, the
2DOFs U-2RRPU differential mechanism depicted in Fig. 3a
is modeled introducing a total of m = 8 constraints, split in
2 closed sub-mechanims, each one introducing 4 constraints:

ap1
u (θ) = 0 ∈ R3 for the relative position,

aϑ1
u (θ) = c ∈ R for the relative orientation,

(20)

between the frames Fa,1 and Fu,1 depicted in Fig. 3b, with
θ ∈ R10, modeling relative rotations using Euler angles
(ϕ ϑ φ) for simplicity2.

Finally, given a joint-space selection matrix P ∈ Rn−m×m

which selects a subset of the passive DOFs such that:

q̇ = Pθ̇u, τj = Pτu, (21)

it is possible to compute the DIK problem w.r.t. (7):

θ̇a = (PJm(θ))
−1

q̇d (22)

and the inverse torque mapping problem w.r.t. (17):

τj =
(
Jm(θ)TPT

)−1
τ . (23)

Equation (22) can be used to impose a desired behavior to the
passive DOFs, while equation (23) can be used to compute
the equivalent virtual torque acting on these passive DOFs.

1Here we drop dependencies of τa and τu
2In our implementation and in the experimental results we use a

quaternion-based parameterization



(a) Full mechanism.

(b) Right brace of the mechanism.

Fig. 3: 2DOFs U-2RRPU differential mechanism.

B. Floating-Base Dynamics including Serial-Parallel Hybrid
Chains

To model a floating-base system presenting hybrid serial-
parallel kinematic chains, we augment the generalized co-
ordinates in (1) with a parameterization in SE(3) of the
pose of the floating-base, and we denote with ν ∈ Rn+6 the
generalized velocities:

q =

pρ
θ

 , ν =

ṗω
θ̇

 , (24)

with p ∈ R3 and ρ ∈ S3 =
{
ρ ∈ R4 : ∥ρ∥ = 1

}
, using

quaternions for the orientation.
The robot can only exert forces from the contact points

c, we denote with Fi ∈ R3 the contact force vectors, with
i = 1, ..., c, c = 8 in the case of double support when both
feet are on the ground. The floating-base inverse dynamics
model of this system consists of a set of equations:

M(q)ν̇ + h(q,ν) = Sτ + Jc(q)
TF+ Jl(q)

Tλ, (25a)

Jc(q)ν̇ + J̇c(q,ν)ν = 0, (25b)

Jl(q)ν̇ + J̇l(q,ν)ν = 0, (25c)

with M(q) ∈ Rn+6×n+6 the floating-base inertia ma-
trix, h(q,ν) ∈ Rn+6 the floating-base non-linear terms,

Jc(q) ∈ R3c×n+6 contacts Jacobians, F =
[
FT

1 , . . . ,F
T
c

]T
,

Jl(q) ∈ Rm×n+6 closed linkages constraint Jacobians and
λ ∈ Rm the associated closed linkages constraint forces,
J̇c(q,ν)ν ∈ R3c and J̇l(q,ν)ν ∈ Rm the acceleration bias
terms for contacts and closed linkages kinematics constraint,
respectively, and finally S ∈ Rn+6×a the selection matrix
for the actuated torques.

We can divide the dynamics in (25a) into its actuated, pas-
sive, and underactuated, i.e. the floating-base, components:

Mb(q)ν̇ + hb(q,ν) = Jc,b(q)
TF, (26a)

Mu(q)ν̇ + hu(q,ν) = Jc,u(q)
TF+ Jl,u(q)

Tλ, (26b)

Ma(q)ν̇ + ha(q,ν) = τ + Jc,a(q)
TF+ Jl,a(q)

Tλ,
(26c)

with Mb(q) ∈ R6×n+6 and hb(q,ν) ∈ R6, Mu(q) ∈
Rm×n+6 and hu(q,ν) ∈ Rm, Ma(q) ∈ Rn−m×n+6 and
ha(q,ν) ∈ Rn−m, the inertia matrices and non-linear terms
associated to the (underactuated) floating base, the passive
part of the closed linkages and the remaining actuated part,
respectively; Jc,b(q) ∈ R3c×6 and Jc,u(q) ∈ R3c×m the
underactuated and passive parts of the contact Jacobian
associated to the floating-base and the closed kinematic
chains respectively and, Jc,a(q) ∈ R3c×n−m its actuated
part; Jl,u(q) ∈ Rm×m the passive part of the constraint
Jacobian and Jl,a(q) ∈ R3c×n its actuated part.

Taking inspiration from [39], a possible inverse dynamics
(ID) scheme can be composed of the following three steps:

1) computation of the generalized accelerations ν̇ and
contact forces F using (26a) and the constraints (25b)
and (25c),

2) computation of Lagrange multipliers λ using (26b),
3) computation of actuation torques τ using (26c).

The first step can be addressed using a QP, constraining the
contact forces inside linearized friction cones3:

min
ν̇,F

∥∥∥Jb(q)ν̇ − ab,d + J̇b(q,ν)ν
∥∥∥+ ϵ ∥ν̇∥+ γ ∥F∥

s.t. (26a), (25b), (25c) (27)
F̄t ≥ 0, |F̄t| ≤ µF̄n,

with Jb(q) ∈ R6×6+n the task Jacobian to move the floating
base and ab,d ∈ R6 a proper Cartesian acceleration reference
for the base, F̄t ∈ Rc and F̄n ∈ R2c the tangential and
normal components, respectively, of the contact forces F
rotated in the contact local frames, µ the friction cone
coefficient, ϵ and γ scalar parameters for regularisation. Once
optimal ν̇ and F are computed, the second step permits to
compute the Lagrange multipliers:

λ = Jl,u(q)
−T

(
Mu(q)ν̇ + hu(q,ν)− Jc,u(q)

TF
)
.
(28)

Finally, the third step returns the actuated torques:

τ = Ma(q)ν̇ + ha(q,ν)− Jc,a(q)
TF− Jl,a(q)

Tλ. (29)

3Here we do not report further constraints which may include torque
limits (by including equations (28) and (29)), joint limits, [40], and self-
collision avoidance, [41], to name a few



Notice that the QP in (27) can be rewritten projecting the
passive part into the actuated one and therefore considering
only in the actuated quantities since the passive ones are
dependent variables (for more details see Appendix II).

IV. ANALYSIS OF KANGAROO LOWER BODY

Fig. 4 shows the prototype of the Kangaroo robot high-
lighting the location of the linear actuators, which are all
placed near the pelvis area. The lower body of the Kangaroo

ankle pitch/roll 
actuators

hip yaw 
actuator

leg length 
actuator

hip pitch/roll 
actuators

Fig. 4: Prototype of the lower body of the Kangaroo robot.

robot consists of two legs, each one modeled with 32 passive
rotational DOFs and 6 actuated linear DOFs. Therefore, the
total number of DOFs in the Kangaroo model is 76, com-
prising of 64 passive DOFs and 12 active DOFs.4. The lower
body prototype weighs ≈ 42 [kg] with the protection cages
for the torso, not present in Fig. 4, and ≈ 36 [kg] without
them. All the linear actuators, except for those located at the
thighs, are equipped with relative linear encoders, while the
thigh actuators are equipped with absolute linear encoders.
To calibrate the relative linear encoders, an initial calibration
is performed using absolute encoders mounted at certain
passive DOFs.

Each leg of Kangaroo is a hybrid serial-parallel kinematic
chain formed by 4 closed sub-mechanisms:

• 1DOF RRPR Hip Yaw,
• 2DOFs U-2RRPU Hip Pitch/Roll,
• 1DOF RRRR-RRRP-R Knee,
• 2DOFs U-2(RRRP-RRR-UU) Ankle Pitch/Roll.

We will now discuss each sub-mechanism separately, intro-
ducing a brief analysis of the kinematics singularities and
the countermeasures taken to avoid them in the design of
the platform. Table II reports an overview of the closed sub-
mechanisms with the number of active and passive DOFs
(with the number of total passive DOFs), the number of
constraints to model the linkage, the actuators limits, the
DOFs limits, and the average human limits at the same DOF
(see [42], [43]). In Figure 5, we present the normalized

4Here, we are not considering the floating-base DOFs

manipulability index for the left leg. This evaluation is
conducted through a uniform sampling of the workspace,
achieved by varying the linear actuators within the Hip
Pitch/Roll and Knee sub-mechanisms.
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Fig. 5: Normalized manipulability of the left leg. Position
shown at the top, orientation at the bottom. View from the
front on the left, and rear view on the right.

1DOF Hip Yaw: The Hip Yaw closed sub-mechanism 3D
model, whose schematic is depicted in Fig. 2, is shown in
the left portion of Fig. 6. This sub-mechanism exhibits two

2 x absolute encoder

absolute encoder

Fig. 6: On the left is the Hip Yaw sub-mechanism, and on
the right is the Hip Pitch/Roll sub-mechanism. The green
arrows show the linear actuators, in blue the passive DOFs,
and in red the main passive DOF(s) of the sub-mechanisms.
The yellow arrow shows the position of the absolute rotary
encoders used for initial calibration.

configuration singularities, occurring when the passive DOF
θu,1 (see Fig. 2) is at 0 [rad] and −π [rad]. These singular-
ities correspond to the linear actuator being approximately
driven at 0.05 [m] and −0.05 [m] respectively, resulting in
the sub-mechanism being reduced to a linear configuration.



TABLE II: Overview of the number of parallel sub-mechanism based modules in Kangaroo lower body

Closed sub-mechanism #Active DOFs #Passive DOFs #Constraints Actuator Lims [m] DOFs Lims [deg] Average Human Lims [deg]
min max min max min max

Hip Yaw 1 2(3) 2 -0.02 0.02 -30 30 -30 60
Hip Roll
Hip Pitch 2 8(10) 8 -0.04 0.04 -27

-40
27
42

-30
-135

45
20

Knee 1 6(8) 6 0 0.15 0 120 0 130
Ankle Roll
Ankle Pitch 2 16(24) 16 -0.02 0.02 -27

-36
27
34

-45
-12

15
23

Nonetheless, due to the limitations of the linear actuator of
(−0.02, 0.02) [m], the sub-mechanism is unable to attain the
singular configurations.

2DOFs Hip Pitch/Roll: The Hip Pitch/Roll, whose 3D
model is shown in the right portion of Fig. 6, consists
of a hybrid serial-parallel sub-mechanism equivalent to the
schematic in Fig. 3a. This sub-mechanism introduces convex
non-linear joint limits that can be computed knowing both
the position limits in the linear actuator and passive DOFs,
if any. In particular, it is possible to cast a QP-based IK,
constrained by those limits, to explore the workspace of the
sub-mechanism:

min
θ̇

∥∥∥θ̇a,d − θ̇a

∥∥∥
s.t. Jl (θ) θ̇ = 0, (30)

θ − θ

dt
≤ θ̇ ≤ θ − θ

dt
,

with
[
θ,θ

]
the minimum and maximum DOFs limits, respec-

tively. By driving the linear actuators is possible to recon-
struct the shape of the interested joints, as shown in Fig. 7.
Recalling Fig. 3, a first set of singularities appear when the
constraint aϑ1

u and aϑ2
u reach the 0 [rad] and −π [rad]

configurations, respectively when the two linear actuators
are simultaneously driven to approximately −0.07 [m] and
0.05 [m]. Nevertheless, both singularities lie outside the
linear actuator limits, (−0.04, 0.04) [m]. Unfortunately, a
singularity arises when the two linear actuators are driven dif-
ferentially to their extremes, such as −0.04 [m] and 0.04 [m],
causing θu,8 to approach −π

2 [rad] or π
2 [rad]. To address

this issue, a physical constraint has been implemented for
the Hip Roll, which can be enforced at the actuator level via
the QP formulation in (30).

1DOF Knee: The Knee sub-mechanism is formed by
the three closed planar linkages depicted in Fig. 8. This is
the only mechanism that presents an absolute linear encoder
mounted directly on the linear actuator, thus not requiring
any initial calibration. The 3D model of the Knee is presented
in the left part of Fig. 10, providing an insight into the
thigh. The knee exhibits two primary singularities when
the passive DOF θu,2 (see Fig. 8) is in configurations of
0 [rad] and −π [rad], respectively. In these instances, the
linear actuator situated within the thigh is approximately
positioned at 0.095 [m] and −0.095 [m], and the sub-
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Fig. 7: Joint limits in 2DOFs U-2RRPU Hip Pitch/Roll. In
blue (continuous line) are the real joint limits projected into
the differential mechanism, while in red (dashed line) are the
joint limits, as box constraints, when not projected.

mechanism is reduced to a line5. Nonetheless, the linear
actuator is confined to a stroke of 0.15 m, bounded by limits
of (−0.075, 0.075) m, preventing the Knee from attaining
any singular configuration; furthermore the passive Knee
motion is additionally mechanically restricted by plastic
shells installed in front of the joint, serving the purpose of
safeguarding the robot in the event of a fall, as depicted in
Fig. 4.

2DOFs Ankle Pitch/Roll: The Ankle consists of a hy-
brid serial-parallel sub-mechanism formed by the three sub-
mechanisms depicted in Fig. 9. The right model in Fig. 10
shows the 3D visualization of the sub-mechanism. Joint
limits are computed using the same methodology as for
the 2DOFs Hip Pitch/Roll and reported in Fig. 11. The
first singularity encountered in the Ankle occurs within sub-
mechanism b. as depicted in Fig. 9 when the passive DOFs
θu,5 and θu,15 reach 0 rad, corresponding to drive indepen-
dently the linear actuators to approximately −0.035 m. A
second singularity arises within sub-mechanism a., where

5For this analysis we are considering the 0 of the linear actuator centered
at the −π

2
configuration of the θu,2 DOF, see Fig. 8



a. b. c.

Fig. 8: 1DOF RRRR-RRRP-R Knee simplified sub-
mechanisms: a. RRRR introducing 2 constraints; b. RRRP,
introducing 2 constraints; c. RRRRRR introducing 2 con-
straints. Some passive DOFs are shared between the linkages.

a. b. c.

Fig. 9: 2DOFs U-2(RRRP-RRR-UU) Ankle Pitch/Roll sim-
plified sub-mechanisms: a. 2RRRP placed at the hip, intro-
ducing 4 constraints; b. 2RRRR transferring the motion from
the hip to the knee introducing 4 constraints; c. U-2UR
introducing 8 constraints. Some passive DOFs are shared
between the linkages.

the passive DOFs θu,2 and θu,12 also assume values of
0 rad, coinciding with the separate actuation of linear ac-
tuators to approximately 0.027 m. Nevertheless, the linear
actuators of the Ankle are limited to a stroke of 0.04 [m],
with (−0.02, 0.02) [m] limits, preventing the aforementioned
singular configurations and any singularity in common mode.
The differential mode remains free of singularities within the
actuator limits. However, these singularities are linked to the
passive degree of freedom (DOF) θu,22 reaching π

2 [rad] and

2 x absolute encoder

absolute encoder

Fig. 10: On the left is the Knee sub-mechanism, and on
the right is the Ankle Pitch/Roll sub-mechanism. The green
arrows show the linear actuators, in blue the passive DOFs,
and in red the main passive DOF(s) of the sub-mechanisms.
The yellow arrow shows the position of the linear absolute
encoder for the Knee and the absolute rotary encoders for
the Ankle Pitch/Roll used for initial calibration.

−π
2 [rad] (see Fig. 9), arises when the linear actuators are

driven differentially, just slightly surpassing their limitations.

A. Non-Linear Transmission Analysis

The Ankle Pitch/Roll together with the Knee, form a non-
linear transmission (see Fig. 12) that permits keeping the
orientation of the foot constant w.r.t. the Hip when the Knee
linear actuator retracts/extends. In contrast with classical
leg kinematics, this is achieved without moving the Ankle
Pitch/Roll actuators, permitting, for example, in-place jumps
by moving only the linear actuator located at the thigh, as
shown in Fig. 13. On the contrary, to keep constant the value
of the Ankle Pitch joint when moving retracting/extending
the leg, it is necessary to actuate the Ankles linear actuators,
as shown in Fig. 14.

Finally, Fig. 15 reports the non-linear transformation be-
tween Leg Length actuator force to foot sole normal force,
while performing a squat motion and applying the maximum
force at the actuator (5000 N ). It is worth noticing that at
the nominal configuration, the foot’s sole normal force is
between its minimum and maximum, when completely com-
pressed it reaches its minimum, while at half compression, it
reaches its maximum. From these plots, we can see that the
non-linear transmission has been designed to be able to exert
its maximum force when half-squatting, for example during
a jump preparation. Being torque and speed inversely related,
the non-linear transmission design was optimized to achieve
high force when the robot is still standing at a normal height
and high speed when the leg is crouched to accelerate for
jumping efficiently.
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Fig. 11: Joint limits in 2DOFs U-2(RRRP-RRR-UU) Ankle
Pitch/Roll. In blue (continuous line) are the real joint lim-
its projected into the differential mechanism, while in red
(dashed line) are the joint limits, as box constraints, when
not projected.
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Fig. 12: In blue the (non-linear) relation between actuated
Leg Length linear actuator and rotational knee pitch joint,
retracting and extending the leg. The dashed line shows the
line fitting the curve.

V. COMPARISON WITH TALOS

In this section, we conduct a comparison with another full-
size humanoid bipedal system, the TALOS robot, developed
by PAL Robotics [12]. TALOS features a more traditional
serial kinematics design for its legs, encompassing 6 actuated
DOFs per leg, with motors distributed along the entire chain.
Fig. 16 illustrates a comparison of the lower bodies between
TALOS and Kangaroo. Notably, Kangaroo exhibits a lower
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Fig. 13: Passive and active DOFs come into play during
both the retraction and extension of the leg. The orange
line represents the variation in the Ankle pitch joint which
preserves the foot’s orientation w.r.t. the hip. Notice that this
adjustment is achieved with no intervention of the Ankle
actuators.
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Fig. 14: Passive and active DOFs during retraction and
extension of the leg while keeping constant the Knee pitch
joint. The violet and yellow lines show that to preserve
the joint’s position (orange line) throughout the motion,
adjustments to the actuated Ankle DOFs are also required.

total mass compared to TALOS, and its CoM is positioned
close to the pelvis. In contrast, TALOS has its CoM situated
at knee height.

Let’s now proceed to compare the equivalent Cartesian
inertia matrix at the foott of both the Kangaroo and the
TALOS robot. Considering an open-kinematic chain, the
equivalent Cartesian inertia matrix seen at a certain frame
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Fig. 15: Force Transmission from Knee Linear Actuator to
Foot Sole. The topmost plot illustrates the normal force at
the sole while performing a squat and applying a maximum
linear force (5000 N ) through the actuator. The maximum
output force is depicted in yellow, while the minimum is
shown in red. The middle plot displays the transformation
ratio. The bottom plot depicts the actuator’s position during
the squat. Observing the graphs, the highest normal foot force
is attained when the legs are half-compressed, whereas the
lowest force is experienced when fully compressed.
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Fig. 16: TALOS and Kangaroo lower-body comparison.

Fl w.r.t. the base frame Fb can be computed as:

Λ =
(
JM−1JT + ϵI

)−1
, (31)

with Λ ∈ R6×6, J the Jacobian of Fl in Fb, M the joint
space inertia matrix, I ∈ R6×6 identity matrix and ϵ a
regularisation term used when the Jacobian is near singu-
larities. For serial-parallel hybrid linkages, it is possible to
consider the same equation (31) using the projected versions
of the Jacobian and inertia matrices (see Appendix II). The
equivalent Cartesian inertia matrix at the left sole frame,
situated at the sole of the left foot, is calculated with respect
to the base link in a standard nominal configuration typically
adopted for walking. In this configuration, the legs are nearly
fully extended, as depicted in Fig. 17. The comparison

base_link

left_soleright_sole

base_link

left_soleright_sole

Fig. 17: On the left is the TALOS robot. The parts in
evidence are the ones considered for the comparison with
the Kangaroo robot, on the right.

involves evaluating the norm of the columns of the matrix
Λ. Let ΛT and ΛK represent the equivalent Cartesian inertia
matrices of TALOS and Kangaroo, respectively, computed at
the foot. We denote the j-th columns of these matrices as
λT,j and λK,j . The index χj is computed as:

χj =
∥λT,j∥
∥λK,j∥

, (32)

with χj > 1 representing an improvement (reduced) equiva-
lent Cartesian inertia along a certain direction.

Taking inspiration from the study conducted in [44], we
extend our comparison to encompass the Centroidal Angular
Momentum Matrices (CAMM) of Kangaroo and TALOS.
The CAMM can be computed from the System Momentum
Matrix (SMM), defined in [45] as the product between the
System Inertia and System Jacobian:

AS = BSJS , (33)

with AS ∈ R6N×n+6 the System Momentum, N + 1 is the
number of the links of the system, BS ∈ R6n×6n the System
Inertia matrix and JS ∈ R6n×n+6 the System Jacobian
(see [45] for details). The SMM in (33) can be projected
at the centroid of the system such that AG = XT

GAS , with
XG ∈ R6N×6 the stacking of adjoint matrices transforming
motions from centroidal coordinates to link coordinates, and
AG ∈ R6×n+6 defined as the Centroidal Momentum Matrix
(CMM), that maps joint velocities into centroidal momentum
h = AGν ∈ R6, with the CAMM the angular part of the
CMM. As for the equivalent Cartesian Inertia matrix, it is
possible to compute an equivalent CMM projected onto the
closed linkage constraints.

We define an index similar to (32) computed at the same
nominal configuration in Fig. 17:

γj =
∥αT,j∥
∥αK,j∥

, (34)



where α·,j is the j − th column of the CAMM with an
improvement (if > 1) in the mass distribution.

TABLE III: Comparison among Kangaroo and Talos

ΛLinear

∣∣
ϵ=1e−5

χx

χy

χz

3.6
4.1
4.6

ΛAngular

∣∣
ϵ=1e−5

χx

χy

χz

11.4
4.9
3.6

CAMM
γx
γy
γz

2.6
2.7
2.0

A succinct overview of the findings from this comparison
is presented in Table III. The results highlight a substantial
enhancement in the Kangaroo platform in comparison to
Talos. This improvement pertains to both the equivalent
Cartesian inertia observed at the feet and the Centroidal
Angular Momentum Matrix (CAMM).

VI. PRELIMINARY EXPERIMENTS WITH FULL-MODEL

This section reports preliminary experiments on the real
platform employing the full-model and applying algorithms
derived from the constrained modeling presented in Sec-
tion III. The Kangaroo full-model is constructed following
the Unified Robotics Description Format (URDF) guidelines.
However, the default URDF parser6 disallows joints with
identical parent or child links, preventing the direct modeling
of closed linkages. In contrast, the Simulation Description
Format (SDF)7 permits such joints, enabling the simulation
of closed linkages via the Gazebo Simulator [46]. For this
reason, we designed a configuration YAML file and a novel
parser that permits the use of the URDF of Kangaroo with
control libraries (e.g. the CartesI/O framework, by [47])
where all the necessary closed-linkage constraints are listed.
Finally, we developed a C++ library for the kinematics and
dynamics modeling of series-parallel hybrid chains named
Closed Linkage Library (CLL) based on RBDL [48] and
Eigen [49]. The following experiments have been carried out
using the CLL library on an Intel Core i7 CPU 2.30GHz ×
16 cores with 32 GiB RAM, and are presented in the video
accompanying this paper.

A. Computation of Passive Kinematics Quantities and Initial
Calibration

In general, when modeling serial-parallel hybrid linkages
as constrained multi-body systems, it is necessary to have
knowledge of the complete state vector denoted by θ and
θ̇. However, this information may not be entirely accessible
due to some passive quantities being either fully or partially
unmeasurable. On the other hand, the actuated quantities typ-
ically remain observable. Furthermore, the linear actuators in
Kangaroo are based on ball-screws, equipped with absolute
encoders at the motor side, permitting a relative measurement
of the linear displacement of the screw, hence working as

6https://github.com/ros/urdfdom
7http://sdformat.org/

linear relative encoders. For this reason, it is necessary to
properly offset the initial value of the linear actuators to
have a linear absolute reading, at every robot initialization.
This calibration is made according to the arrangement of the
closed kinematics and the measurements from the absolute
encoders mounted on some of the passive DOFs.

In this section, we formulate an algorithm to estimate
the passive state, which is fundamental to reconstructing
the full state θ and θ̇. This algorithm can serve as well
as a systematic procedure for the initial calibration. We
consider having an initial estimation of the closed linkages
DOF positions θk and velocities θ̇k, and measured actuated
positions θ̄a and velocities ¯̇θa, at instant k. A new estimation
for the passive velocities θ̇u,k+1 can be obtained using:

θ̇u,k+1 = Jm (θk)
¯̇θa, (35)

that leads to the estimation of the new DOF velocities:

θ̇k+1 =

[
θ̇u,k+1
¯̇θa

]
. (36)

Considering equations (2) and (3), is possible to consider
as well a properly computed error el(θ) ∈ Rm associated to
the closed linkage:

Jl (θ) θ̇ = αel(θ), (37)

which define the error dynamics ėl+αel(θ) = 0 converging
to zero exponentially. Using (6) in (37) leads to the estimator:

θ̇∗
u,k+1 = Jm (θk) θ̇a,k + αJl,u (θk)

−1
el(θk), (38)

with θ̇a,k = ¯̇θa + β
(
θ̄a − θa,k

)
, and α and β two scalars,

positive, tunable gains.
A new estimation for the positions θk+1 can be obtained

using one-step Euler integration:

θk+1 = θk + dtθ̇∗
k+1, (39)

given the time step dt and

θ̇∗
k+1 =

[
θ̇∗
u,k+1

θ̇a,k

]
. (40)

The two terms in (38) consist of a correction for the
measurement and a correction for the constraint error. Both
these terms are used to mitigate the drift phenomena induced
by the discrete integration in (39), therefore the values of α
and β are bounded by the rate of the estimation loop.

It is possible to define a simple calibration procedure
based on the previous algorithm. We consider augmenting
the constraint Jacobian with the measurement matrix E:

J (θ) =

[
Jl (θ)
E

]
, (41)

and the constraint error with the measurement error em:

e (θ) =

[
el(θ)
em

]
. (42)

In the case of non-redundant measurements, as for the
Kangaroo robot, we will have J (θ) ∈ Rn×n with E ∈ Rl×n,

https://github.com/ros/urdfdom
http://sdformat.org/


such as l + m = n, and e (θ) ∈ Rn. Each row in the
measurement matrix E is a zero row with a single “1” placed
at the measured (passive) DOF. The measured error consists
of the error associated with each measurement ei = θj,m−θj ,
with em = [e0, e1, . . . , el]

T . Finally, it is worth noticing that
the reference for the closed linkage error el(θ) is computed
at a configuration where all the open linkages are properly
closed. The calibration procedure is based on the iterative
resolution of the linear system J (θ) θ̇ = αe (θ), equivalent
to (37), until the norm of the error is above a certain threshold
ϵ: ∥e (θ)∥ < ϵ. In Fig. 18 is reported the norm of the
closed-linkage error, for 6 different initial measurements. It
is possible to see that the initialization procedure converges
below 1e−4 global error norm in a few iterations.

     2        4        6        8        10        12   
     0   

     0.1   

     0.2   

     0.3   

     0.4   

     0.5   

     Iterations   

   [m
] 

  

     Norm of Closed-Linkage Constraint Error   

Fig. 18: Calibration procedure validation. Notice that the
constraint error contains both linear and angular parts.

Concerning the computation of passive kinematics quan-
tities, it is worth noticing that it can be seen as a tracking
problem of the measured actuated positions, constrained by
the closed linkages. The validation is therefore performed
using sinusoidal position and velocity reference (measured)
trajectories for the actuated DOFs, at 1 [kHz], that is tracked
by the estimator algorithm, running as well at 1 [kHz], with
parameters α = 1 and β = 1000. In Fig. 19 are reported
the position and velocity tracking between the estimated
and measured actuated quantities, and the norm of the error
of the closed linkage constraint. The average computation
time for the algorithm, together with the update of the
full-model, and computation of inverse dynamics torques
using equations (28) and (29) without contact forces, is
≈ 0.38 [ms], using the partialPivLu8 method from the
Eigen software library, and dense matrices representation.
The motion performed in this numerical validation, together
with results achieved on the real Kangaroo prototype is

8https://eigen.tuxfamily.org/dox/classEigen_1_
1PartialPivLU.html
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Fig. 19: The top plot reports the tracking of measured
(dashed) versus estimated (continuous) position and velocity,
respectively, of the actuated DOFs. In the bottom plot the
norm of the closed linkage constraint error (linear and
angular).

reported in the accompanying video. Fig. 20 shows the
kinematic estimation algorithm running on the real robot.

Fig. 20: The kinematic estimation running on the real Kan-
garoo platform.

B. Quasi-Static Contact Wrench Estimation

As of the current writing of this paper, the Kangaroo robot
prototype does not incorporate any direct force/torque sensor
measurements at its feet. By not housing electronics from
the feet to the thigh, the robot becomes less vulnerable to
impacts. However, in light of this design approach, there
arises a need to estimate contact wrenches based on the
force measurements of the actuators, all while considering
the serial-parallel hybrid kinematics.

Assuming ν = 0 and ν̇ = 0, equations (28) and (29)
become respectively:

λ = Jl,u(q)
−T

(
gu(q)− Jc,u(q)

TF
)
, (43a)

τ = ga(q)− Jc,a(q)
TF− Jl,a(q)

Tλ. (43b)

https://eigen.tuxfamily.org/dox/classEigen_1_1PartialPivLU.html
https://eigen.tuxfamily.org/dox/classEigen_1_1PartialPivLU.html


Substituting (43a) in (43b), leads to:

τ = ga(q)− Jc,a(q)
TF+ Jm (q)

T (
gu(q)− Jc,u(q)

TF
)
,

(44)
where we have used (18). Reorganizing leads to:

τ − ga(q)− Jm (q)
T
gu(q) =

= −Jc,a(q)
TF− Jm (q)

T
Jc,u(q)

TF =

= −
(
Jc,a(q)

T + Jm (q)
T
Jc,u(q)

T
)
F =

= Jc,m(q)TF, (45)

that can be used to statically estimate contact forces given
measured force/torques τ̄ :(

Jc,m(q)T
)† (

τ̄ − ga(q)− Jm (q)
T
gu(q)

)
= F, (46)

with Jc,m(q) ∈ R3c×a and (·)† a properly computed
pseudo-inverse. Notice that velocity measurements could be
included to consider the effect of Coriolis/centrifugal terms.
From the wrench estimation, we compute the Zero Moment
Point (ZMP) being a fundamental quantity used in bipedal
locomotion for stabilization, see [50], [51].

We conclude by showcasing an experiment involving the
robot executing lateral swinging motions (see Fig. 21). In this
experiment, although the motion of each sub-mechanism is
individually controlled through geometric calculations, we
utilize the full model for estimating the contact wrenches.
The estimation of the axial force τ̄ in each linear actuator is
computed from the measured motor torque τm as:

τ̄ =
τm · 2π · η

L
, (47)

with η = 0.95 the efficiency of the ball screw provided by
the constructor, and L the screw lead, that for the leg length
actuator is 0.1 [m] and for the hip and ankle actuators is
0.05 [m]. Fig. 22a reports the reconstructed contact wrench
filtered using a low-pass second-order Butterworth filter with
cuttoff frequency 5 [Hz]. It is possible to see that the
estimated tangential forces correctly sum up at the weight
of the robot without the cage, approximately 36 [kg]. In
Fig. 22b are reported the computed ZMP and feet Centers of
Pressure (COPs) using the estimated contact wrenches. The
contact wrench algorithms estimation time is ≈ 0.03 [ms],
using the fullPivLu9 method from the Eigen library, and
dense matrices representation, allowing for fast real-time
implementation.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we presented the kinematic and dynamic
modeling, and study of the lower body of Kangaroo, a
novel humanoid bipedal robot designed and manufactured by
PAL Robotics. Distinguished by its incorporation of series-
parallel hybrid chains, Kangaroo’s unique design prompted
us to delve into constraint-based modeling techniques for
serial-parallel hybrid systems We conducted an in-depth

9https://eigen.tuxfamily.org/dox/classEigen_1_
1FullPivLU.html

Fig. 21: In the top picture, the Kangaroo robot demonstrates
lateral swing motions. In the bottom picture, RVIZ visualizes
the estimated full configuration and contact wrenches.

analysis of Kangaroo’s kinematics, such as the non-linear
transmission mechanisms within the knee and differential
parallel components governing hip and ankle movements.
Furthermore, we computed the equivalent Cartesian inertia
at the end-effector and the Centroidal Momentum matrix in
the context of serial-parallel hybrid chains. This involved
a comparative analysis with the Talos robot, a preceding
humanoid creation from PAL Robotics. Our examination un-
derscored the advancements achieved in Kangaroo’s design.
To facilitate our research, we introduced a suite of software
tools designed to model, analyze, and control both fixed and
floating-base robots housing serial-parallel hybrid chains as
constrained multi-body systems. An example of our software
contributions is the Closed Linkage Library, that facilitated
the analyses and preliminary real-world experiments under-
taken with the Kangaroo platform.

Future works will regard the deployment of Whole-Body
Inverse Dynamics on the Kangaroo platform together with
model predictive control algorithms to perform highly agile
and dynamic motions, such as running and jumping. In
particular, we envision the employment of a simplified, serial
model of the robot for the model predictive control, i.e.
considering only significative passive DOFs, and mapping
the control input onto the full model using the IK and ID
presented in this paper. We are also investigating the exten-
sion of passivity-based approaches, see [52], for Operational

https://eigen.tuxfamily.org/dox/classEigen_1_1FullPivLU.html
https://eigen.tuxfamily.org/dox/classEigen_1_1FullPivLU.html
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Fig. 22: Results of the estimated contact wrenches using data
from lateral swing experiment with the Kangaroo hardware.

Space Control to series-parallel hybrid chains. Finally, the
tools developed in this work will be the basis for the design
and development of the upper body for the Kangaroo robot,
to evaluate different kinematic structures for the torso and
the arms.
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[16] S. Kumar, H. Wöhrle, J. de Gea Fernández, A. Müller, and F. Kirchner,
“A survey on modularity and distributivity in series-parallel hybrid
robots,” Mechatronics, vol. 68, p. 102367, 2020.

[17] O. Stasse and T. Flayols, “An overview of humanoid robots technolo-
gies,” Biomechanics of Anthropomorphic Systems, pp. 281–310, 2019.

[18] F. Ruscelli, A. Laurenzi, E. Mingo Hoffman, and N. G. Tsagarakis,
“A fail-safe semi-centralized impedance controller: Validation on a
parallel kinematics ankle,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2018, pp. 1–9.

[19] H. Kaminaga, T. Ko, R. Masumura, M. Komagata, S. Sato, S. Yorita,
and Y. Nakamura, “Mechanism and control of whole-body electro-
hydrostatic actuator driven humanoid robot hydra,” in International
Symposium on Experimental Robotics. Springer International Pub-
lishing, 2017, pp. 656–665.

[20] D. F. Lahr, H. Yi, and D. W. Hong, “Biologically inspired design of a
parallel actuated humanoid robot,” Advanced Robotics, vol. 30, no. 2,
pp. 109–118, 2016.
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matics formulation for retargeting motions onto robots with kinematic
loops,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 943–
950, 2021.

[31] J. Lemburg, J. de Gea Fernández, M. Eich, D. Mronga, P. Kampmann,
A. Vogt, A. Aggarwal, Y. Shi, and F. Kirchner, “Aila-design of an
autonomous mobile dual-arm robot,” in IEEE International Conference
on Robotics and Automation, 2011, pp. 5147–5153.

[32] J. Englsberger, A. Werner, C. Ott, B. Henze, M. A. Roa, G. Garofalo,
R. Burger, A. Beyer, O. Eiberger, K. Schmid, et al., “Overview of the
torque-controlled humanoid robot toro,” in IEEE-RAS International
Conference on Humanoid Robots, 2014, pp. 916–923.

[33] B. K. T.-S. Lee, “Design of a humanoid robot for disaster response,”
Ph.D. dissertation, Virginia Tech, 2014.

[34] D. F. Lahr, “Design and control of a humanoid robot, saffir,” Ph.D.
dissertation, Virginia Tech, 2014.

[35] D. Cafolla, M. Wang, G. Carbone, and M. Ceccarelli, “Larmbot: a new
humanoid robot with parallel mechanisms,” in Symposium on Robot
Design, Dynamics and Control. Springer, 2016, pp. 275–283.

[36] S. Kumar, A. Nayak, H. Peters, C. Schulz, A. Müller, and F. Kirchner,
“Kinematic analysis of a novel parallel 2sprr+1u ankle mechanism in
humanoid robot,” in Advances in Robot Kinematics 2018 16. Springer,
2019, pp. 431–439.

[37] A. Laulusa and O. A. Bauchau, “Review of classical approaches for
constraint enforcement in multibody systems,” Journal of computa-
tional and nonlinear dynamics, vol. 3, no. 1, 2008.

[38] J. Carpentier, R. Budhiraja, and N. Mansard, “Proximal and Sparse
Resolution of Constrained Dynamic Equations,” in Robotics: Science
and Systems, July 2021.

[39] N. Mansard, “A dedicated solver for fast operational-space inverse
dynamics,” in IEEE International Conference on Robotics and Au-
tomation. IEEE, 2012, pp. 4943–4949.

[40] A. D. Prete, “Joint position and velocity bounds in discrete-time
acceleration/torque control of robot manipulators,” IEEE Robotics and
Automation Letters, vol. 3, no. 1, pp. 281–288, 2018.

[41] C. Khazoom, D. Gonzalez-Diaz, Y. Ding, and S. Kim, “Humanoid
self-collision avoidance using whole-body control with control bar-
rier functions,” in IEEE-RAS International Conference on Humanoid
Robots, 2022.

[42] C. L. Brockett and G. J. Chapman, “Biomechanics of the ankle,”
Orthopaedics and trauma, vol. 30, no. 3, pp. 232–238, 2016.

[43] B. Lee, C. Knabe, V. Orekhov, and D. Hong, “Design of a human-
like range of motion hip joint for humanoid robots,” in International
Design Engineering Technical Conferences and Computers and Infor-
mation in Engineering Conference, vol. 5B. American Society of
Mechanical Engineers, 2014.

[44] Y. Sim and J. Ramos, “Tello leg: The study of design principles and
metrics for dynamic humanoid robots,” IEEE Robotics and Automation
Letters, vol. 7, no. 4, pp. 9318–9325, 2022.

[45] D. E. Orin, A. Goswami, and S.-H. Lee, “Centroidal dynamics of a
humanoid robot,” Autonomous robots, vol. 35, no. 2, pp. 161–176,
2013.

[46] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, vol. 3, 2004, pp. 2149–
2154.

[47] A. Laurenzi, E. M. Hoffman, L. Muratore, and N. G. Tsagarakis,
“CartesI/O: A ROS Based Real-Time Capable Cartesian Control
Framework,” in IEEE International Conference on Robotics and
Automation, 2019, pp. 591–596.

[48] M. L. Felis, “Rbdl: an efficient rigid-body dynamics library using
recursive algorithms,” Autonomous Robots, vol. 41, no. 2, pp. 495–
511, 2017.

[49] G. Guennebaud, B. Jacob, et al., “Eigen v3,” http://eigen.tuxfamily.org,
2010.

[50] Z. Li, B. Vanderborght, N. G. Tsagarakis, L. Colasanto, and D. G.
Caldwell, “Stabilization for the compliant humanoid robot coman
exploiting intrinsic and controlled compliance,” in IEEE International
Conference on Robotics and Automation, 2012, pp. 2000–2006.

[51] S. Kajita, H. Hirukawa, K. Harada, and K. Yokoi, Introduction to
humanoid robotics. Springer, 2014, vol. 101.

[52] A. Albu-Schaffer, C. Ott, U. Frese, and G. Hirzinger, “Cartesian
impedance control of redundant robots: recent results with the dlr-
light-weight-arms,” in IEEE International Conference on Robotics and
Automation, vol. 3, 2003, pp. 3704–3709.

APPENDIX I
COMPUTATION OF RELATIVE KINEMATICS

Considering three frames, denoted as w, a, and b as
depicted in Fig. 23, our interest is in calculating relative
kinematic values associated with frame b w.r.t. frame a,
expressed in frame a, and using kinematics quantities of a
and b expressed in frame w.

w

a

b

wpa
wpb

wpa,b= wpb - 
wpa

Fig. 23: Frames and notation.

According to Fig. 23, we denote with wpa and wpb the
position of the frames a and b, respectively, w.r.t. the frame
w. The position of frame a w.r.t. frame b expressed in
frame w is denoted with wpa,b = wpb − wpa. As previ-
ously stated, we consider known the following kinematics
quantities relative to the frames a and b: wv·, wω·, wJ·,
wa·, wω̇·, and wJ̇·q̇, respectively, the linear and angular
velocities, Jacobian, linear and angular accelerations, and
Cartesian acceleration bias, expressed in frame w. In the
Jacobians, we denote with the superscript “→” the linear
part while with “∠” the angular part.

A. Relative Velocity and Jacobian

We first compute the relative linear and angular velocities
of the frame b w.r.t. the frame a expressed in frame a,



denoted respectively with ava,b and aωa,b:[
ava,b
aωa,b

]
=

[
aRw 0
0 aRw

] [
wvb
wωb

]
−A

[
wva
wωa

]
, (48)

with aRw the rotation matrix from a to w such that
aRw

wva = ava and wpa,b[×]
the skew-symmetric matrix

from wpa,b and:

A =

[
aRw −aRw

wpa,b[×]

0 aRw

]
. (49)

We can further expand (48) in its linear and angular parts:

ava,b =
aRw

wvb − aRw
wva +

aRw (wpa,b × wωa) =

= aRw (wvb − wva − wωa × wpa,b) , (50a)

aωa,b =
aRw

wωb − aRw
wωa = aRw (wωb − wωa) =

= aRw
wωa,b. (50b)

From equation (48) is finally possible to extract the relative
Jacobian aJa,b:

aJa,b =

[
aRw 0
0 aRw

]
wJb−

[
aRw −aRw

wpa,b[×]

0 aRw

]
wJa.

(51)

B. Relative Acceleration and Acceleration Bias

We want now to compute the relative linear and angular
accelerations of the frame b w.r.t. the frame a expressed in
frame a, denoted respectively with aaa,b and aω̇a,b.

Let begin with the relative angular acceleration obtained
deriving equation (50b) w.r.t. time:

aω̇a,b =
aṘw

wωa,b +
aRw

wω̇a,b. (52)

Notice that the derivative of the rotation matrix can be written
as:

aṘw = −aRw
wωa[×], (53)

that substituted in (52) gives the expression of the relative
angular acceleration aω̇a,b:

aω̇a,b =
aṘw

wωa,b +
aRw

wω̇a,b =

= −aRw
wωa × wωa,b +

aRw
wω̇a,b =

= aRw (wω̇a,b − wωa × wωa,b) =

= aRw (wω̇a,b − wωa × wωb +((((((wωa × wωa) =

= aRw (wω̇b − wω̇a − wωa × wωb) . (54)

From the expression (54) we can compute the angular part
of the relative Cartesian acceleration bias aJ̇∠

a,bq̇, reported
in equation (55).

Concerning the relative linear acceleration, its expression
is reported in equation (56), obtained deriving equation (50a)
w.r.t. time and using wâa,b = wab − waa and wv̂a,b =
wvb−wva. Finally, from expression (56) we can compute the
linear part of the relative Cartesian acceleration bias aJ̇→

a,bq̇,
reported in equation (57) with b = −2wωa×wv̂a,b+

wωa×
wωa × wpa,b.

APPENDIX II
PROJECTED FLOATING-BASE DYNAMICS

This appendix presents the derivation of the floating-base
dynamics projected into the closed linkage constraints. In
particular, the final expression will linearly depend only on
the actuated accelerations θa, base accelerations

[
pT ,ρT

]T
,

and contact forces F.
We first introduce the quantity qa =

[
pT ,ρT ,θT

a

]T
and

corresponding derivatives computed as for (24). Furthermore,
we consider the quantities q and ν as known. We want to
compute the equations of motions in the actuated accelera-
tions ν̇a. With these concerns, we can rewrite the floating-
base part of the floating-base dynamics (26a) as:

Mb,b(q)

[
p̈
ω̇

]
+Mb,u(q)θ̈u +Mb,a(q)θ̈a + hb(q,ν) =

Jc,b(q)
TF (58)

with Mb,b(q) ∈ R6×6, Mb,u(q) ∈ R6×m and Mb,a(q) ∈
R6×n−m. Substituting equation (10) and reorganizing leads
to the floating-base part of the projected dynamics:

Mb,m(q)ν̇a + hb,m(q,ν) = Jc,b(q)
TF, (59)

with:

Mb,m(q) =
[
Mb,b(q) Mb,u(q)Jm(q) +Mb,a(q)

]
,

(60a)

hb,m(q,ν) = hb(q,ν)−Mb,u(q)Jl,u(q)
−1J̇l(q,ν)ν,

(60b)

where Mb,m(q) ∈ R6×n−m+6 and hb,m(q,ν) ∈ R6.
Given a generic task in operational space at the accelera-

tion level:
Jt(q)ν̇ + J̇t(q,ν)ν = ad, (61)

also, this can be expressed only using the actuated acceler-
ation:

Jt,m(q)ν̇a + J̇t,m(q,ν)ν = ad, (62)

with:

Jt,m(q) =
[
Jt,b(q) Jt,a(q) + Jt,u(q)Jm(q)

]
,

(63a)

J̇t,m(q,ν)ν = J̇t(q,ν)ν − Jt,uJl,u(q)
−1J̇l(q,ν)ν (63b)

Equations (59) and (62) permits to rewrite the QP problem
in (27) only in the actuated and base accelerations, and
contact forces.

In the same way, it is possible to compute the Lagrange
multipliers λ only in the actuated accelerations:

λ = Jl,u(q)
−T

(
Mu,m(q)ν̇a + hu,m(q,ν)− Jc,u(q)

TF
)
,

(64)
with:

Mu,m(q) =
[
Mu,b(q) Mu,u(q)Jm(q) +Mu,a(q)

]
,

(65a)

hu,m(q,ν) = hu(q,ν)−Mu,u(q)Jl,u(q)
−1J̇l(q,ν)ν,

(65b)



aω̇a,b =
aRw (wω̇b − wω̇a − wωa × wωb) =

= aRw

(
wJ∠

b q̈+ wJ̇∠
b q̇− wJ∠

a q̈− wJ̇∠
a q̇− wωa × wωb

)
=

= aRw

(
wJ∠

b − wJ∠
a

)
q̈+ aRw

(
wJ̇∠

b q̇− wJ̇∠
a q̇− wωa × wωb

)
=

= aJ∠
a,bq̈+ aJ̇∠

a,bq̇, (55)

aaa,b =
aṘw

wva,b +
aRw

waa,b − aṘw (wωa × wpa,b)− aRw (wω̇a × wpa,b)− aRw (wωa × wva,b) =

= −aRw
wωa × wva,b +

aRw
waa,b +

aRw
wωa × (wωa × wpa,b)− aRw (wω̇a × wpa,b)− aRw (wωa × wva,b) =

= aRw [−wωa × wva,b +
waa,b +

wωa × (wωa × wpa,b)− (wω̇a × wpa,b)− (wωa × wva,b)] =

= aRw [waa,b − wω̇a × wpa,b − 2wωa × wva,b +
wωa × (wωa × wpa,b)] , (56)

aaa,b =
aRw (wab − waa − wω̇a × wpa,b + b) =

= aRw

[
wJ→

b q̈+ wJ̇→
b q̇− wJ→

a q̈− wJ̇→
a q̇−

(
wJ∠

a q̈+ wJ̇∠
a q̇

)
× wpa,b + b

]
=

= aRw

(
wJ→

b − wJ→
a + wpa,b × wJ∠

a

)
q̈+ aRw

(
wJ̇→

b q̇− wJ̇→
a q̇− wJ̇∠

a q̇× wpa,b + b
)
=

= aJ→
a,bq̈+ aJ̇→

a,bq̇. (57)

where Mu,b(q) ∈ Rm×6, Mu,u(q) ∈ Rm×m, Mu,a(q) ∈
Rm×n−m, and finally the actuated torques τ :

τ = Ma,m(q)ν̇a + ha,m(q,ν)− Jc,a(q)
TF− Jl,a(q)

Tλ.
(66)

with:

Ma,m(q) =
[
Ma,b(q) Ma,u(q)Jm(q) +Ma,a(q)

]
,

(67a)

ha,m(q,ν) = ha(q,ν)−Ma,u(q)Jl,u(q)
−1J̇l(q,ν)ν,

(67b)

where Ma,b(q) ∈ Rn−m×6, Ma,a(q) ∈ Rn−m×n−m,
Ma,u(q) = Mu,a(q)

T ∈ Rn−m×m.
The joint space part of the projected dynamics can be

rewritten as:

Mj,m(q)ν̇a + hj,m(q,ν) = τ + Jc,m,j(q)
TF, (68)

with Mj,m(q) ∈ Rn−m×n−m:

Mj,m(q) =
[
Mj,m,b(q) Mj,m,j(q)

]
, (69a)

Mj,m,b(q) = Ma,b(q) + JT
m(q)Mu,b(q), (69b)

Mj,m,j(q) = Ma,a(q) + JT
m(q)Mu,u(q)Jm(q)+

Ma,u(q)Jm(q) + Jm(q)TMu,a(q), (69c)

and hj,m(q,ν) ∈ Rn−m:

hj,m(q,ν) = ha(q,ν) + Jm(q)Thu(q,ν)−
−Ma,u(q)Jl,u(q)

−1J̇l(q,ν)ν−
− Jm(q)TMu,u(q)Jl,u(q)

−1J̇l(q,ν)ν, (70)

and Jc,m,j(q) = Jc,a(q) + Jc,u(q)Jm(q), the joint part of
the contact Jacobian projected as in (63a).
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