
HAL Id: hal-04328539
https://hal.science/hal-04328539

Submitted on 7 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Securing Intellectual Property in Federated Learning
Mohammed Lansari, Reda Bellafqira, Katarzyna Kapusta, Vincent

Thouvenot, Olivier Bettan, Gouenou Coatrieux

To cite this version:
Mohammed Lansari, Reda Bellafqira, Katarzyna Kapusta, Vincent Thouvenot, Olivier Bettan, et al..
Securing Intellectual Property in Federated Learning. Conference on Artificial Intelligence for Defense,
DGA Maîtrise de l’Information, Nov 2023, Rennes, France. �hal-04328539�

https://hal.science/hal-04328539
https://hal.archives-ouvertes.fr


Securing Intellectual Property in Federated Learning
Mohammed Lansari∗†, Reda Bellafqira∗, Katarzyna Kapusta†,

Vincent Thouvenot†, Olivier Bettan†, Gouenou Coatrieux∗

∗ Inserm UMR 1101, IMT Atlantique
Brest, France

name.surname@imt-atlantique.fr

† ThereSIS, Thales SIX GTS
Palaiseau, France

name.surname@thalesgroup.com

Abstract—Federated Learning (FL) is a technique that allows
multiple participants to collaboratively train a Deep Neural
Network (DNN) without the need to centralize their data and
therefore comes with privacy-preserving properties making it at-
tractive for application in sensitive contexts. However, it requires
sharing participant models during the training process which
makes them vulnerable to theft or unauthorized distribution
by malicious actors. To address the issue of ownership rights
protection in the context of Machine Learning (ML), DNN
Watermarking methods have been developed during the last
five years. Most existing works have focused on watermarking
in a centralized manner, but only a few methods have been
designed for FL and its unique constraints. In this paper,
we provide an overview of recent advancements in Federated
Learning watermarking, shedding light on the new challenges
and opportunities that arise in this field.

Index Terms—ML Watermarking, Federated Learning, Intel-
lectual Property, Security.

I. INTRODUCTION

Sophisticated ML models require good and non-synthetic
data that are often hard and costly to acquire. Government
regulations, such as the European General Data Protection
Regulation, have made the training process even harder by
requiring to preserve privacy of the data subjects. Thus, com-
panies and institutions have to face the issue of lack of data on
the one hand and the complexity of usage of sensitive data on
the other. Indeed, very often the data exists but is distributed
over multiple locations and/or belongs to different owners.
Centralizing it would be very costly in terms of bandwidth.
Moreover, it is almost impossible if the decentralized data is
private or classified.

Federated Learning [1] is a promising solution that allows
multiple data owners (or distributed agents belonging to one
data owner) to train a global Deep Neural Network (DNN)
without directly sharing their data. It opens new possibilities
in domains such as health or military, as it allows to train a
model over multiple distributed datasets without centralizing
the local data. Combined with privacy-preserving techniques,
such as Homomorphic Encryption, Multi-Party Computation,
or Differential Privacy, it can ensure a high level of protection
of sensitive data. In the civil domain, it may be applied

by a consortium of hospitals, where each of the hospitals
possesses its own data that is impossible to share due to
regulation constraints. In the military domain, it could find
application for instance in the case of predictive maintenance,
where multiple cooperating parties would like to benefit from
the information collected by others but fear about revealing
classified information.

From the point of view of ownership rights protection,
the complex context combining both AI and collaboration of
owners and users raises new challenges. ML watermarking
techniques have been proposed since 2018. They enable to
identify a ML model and thus can be applied for model
theft detection. However, the majority of them address the
problem of local training of a single model. The collaborative
setting of FL raises new challenges in the context of ownership
protection. How to identify that a participant contributed to the
training of a model resulting from FL? How to be sure that
the final model will not be misused by the aggregation party
that coordinates the FL? These issues may slow down parties
from joining the learning consortium.

II. OUTLINE

We start with a brief presentation of the FL and DNN
watermarking concepts in Section III. Then, we proceed with
a definition of watermarking for FL in Section IV followed by
an overview of the six existing works combining FL and DNN.
In Section V, we analyze the different elements that have to
be taken into consideration while designing a watermarking
scheme for collaborative training settings. We identify the
unsolved challenges and thus give an insight into possible
future works.

III. BACKGROUND

In this section, we remind the definition of FL and give
a brief overview of its different existing settings. Then we
introduce DNN watermarking.

A. Federated Learning
FL is a ML setting where K ∈ N∗ entities called clients

collaborate to train a global model MG while keeping the
training data DC = {DCi}Ki=1 decentralized [2].



The most popular framework is called Client-Server FL. In
this setting, the server train MG by receiving and aggregating
the client models weights WC = {WCi}Ki=1 (see e.g. [3]).
However, the presence of the server is not mandatory to
perform FL. In a decentralized setting, clients can perform FL
without the supervision of a server. BrainTorrent [4] proposes
a server-less and peer-to-peer Federated framework. In this
solution, a random client is selected to be the aggregator.
Then, it checks if other clients have an updated version of
the model. If yes, they send it to the aggregator who performs
an averaging of the model weights. Then it updates its own
model with the previous result.

The FL setting is also characterized by the features partition.
We distinguish three types of partition: horizontal, vertical,
and hybrid FL. In horizontal FL, all clients have the same
features but not the same samples. On the other hand, vertical
FL assumes that all clients have the same samples but not the
same features. Finally, hybrid FL supposes that samples and
features are different from one client to another.

In contrast with previous settings, Split-Learning [5] con-
sists of splitting the DNN between the server and the clients.
Many configurations are possible but the most common for
client privacy is the U-shaped configuration. The aim is that
each client has the first and last layers of the DNN and the
server has the rest of the layers. In such a way, clients perform
the forward/backward pass keeping their data (inputs and
labels) private, and send/receive only the activations/gradients
to update the whole model.

B. DNN Watermarking

DNN watermarking is a promising solution for the owner-
ship protection of ML models. Inspired by image watermark-
ing, it consists of introducing a secret change into the model
parameters or behavior during its training, in order to enable
its identification in the future. As image watermarking, DNN
watermarking must respect some requirements to be effective
for IP protection. Table I summarizes these requirements.
In general, a watermarking technique needs to preserve the
performances on the main task (Fidelity), while providing a
large insertion Capacity (enabling multiple verifications) and
a strong Robustness against watermarking removal techniques
[6].

DNN Watermarking can be distinguished into two types of
techniques: White-Box [7] [8] [9] [10] and Black-Box [8] [11]
[12] [13] [14] watermarking. Each technique is defined by the
type of access to the model during the verification process.

In the White-Box setting, we assume that the owner will
have full access to the model (architecture, weights, activa-
tions, etc.). In this way, to insert a watermark into a DNN,
the owner will hide a vector of bits b into the model’s
parameters or activations. One of the first proposed method
in [7], uses a regularization term to embed b with a secret key
S into the model’s parameters. Several techniques have been
published to meet the associated challenges. DeepSigns [8]
proposes to use the probability density function of the output
for selected layers to embed the information. Tartaglione et al.

[9] defines a strategy that consists in embedding the watermark
before the training and then training the model while adding
a constraint that penalizes the model for small perturbations
on the watermarked parameters.

On the other hand, Black-Box setting assumes that the
owner can perform the verification process only through an
API: he can interact with the model only by giving inputs
and receiving associated predictions. Knowing that the owner
watermarks the model by changing its behavior. The common
technique consists training of the model using a trigger set
T = (Xi, Yi)i=1, which is composed of crafted inputs Xi with
their associated outputs Yi [11]. Zhang et al. [12] propose to
use the same technique but with different types of inputs. In
addition to unrelated images, they use training examples with
two types of trigger: random noise and a textual pattern. The
trigger set can also be built using adversarial examples [13]
or a filter as a mapping function [14].

To evaluate the performances of the watermarking em-
bedding, White-Box setting relies on the Binary-Error-Rate
between the reconstructed message b̃ and the original one b.
In Black-Box watermarking, we evaluate the accuracy of the
model on the trigger set T .

IV. WATERMARKING FOR FEDERATED LEARNING

In this section, we introduce and define what is watermark-
ing for FL including the different possible scenarios. Then,
we formulate requirements for watermarking deployed in a FL
context. Finally, we analyze the six state-of-the-art methods.

A. Definition

In centralized DNN watermarking, the goal is to simply
prove the model’s ownership after the training process. In FL,
ownership rights protection becomes a more complex problem
due to the presence of multiple participants and multiple
exchanges between them that have to be taken into account
during the threat model formulation. To illustrate this issue,
[15] shows that existing methods can naively be applied to
FL in two manners. The first one consists of watermarking
the model after the training. For example, by using fine-
tuning to embed the watermark into the model. Without taking
the fidelity requirement into account, any participant who
receives the model (client or server) can steal the DNN before
the last round. The second way is to embed the watermark
before the training. Even if the watermark will resist during
the first rounds, it will be removed after several aggregation
rounds. Thus, it is important to design a specific watermarking
technique for FL that will be persistent from the first round
to the model deployment.

We define Watermarking for FL as the process for a
participant or multiple participants to insert a watermark into
the shared model.

Following the client-server FL framework, the first question
is to determine which part of the federation can watermark the
model. Is the server more to be trusted since it manages the
federation? Or the clients since their data are used? During
this study, we distinguish four watermarking scenarios for



Fidelity The watermarked model needs to have the same performances compared to the model without watermark
Capacity The capacity of a technique to embed multiple watermarks
Generality The capacity of a watermarking technique to be applied independently of the architecture of the model
Efficiency The performance cost generated by the embedding and verification process of the watermarking
Robustness The capacity to resist against attacks aiming at removing the watermark
Secrecy The watermark should be secret and undetectable

TABLE I: DNN Watermarking requirements

centralized FL, which we illustrate in Figure 1 according to
who is watermarking the model :
(S1) Server : The server is in charge of watermarking the

global model.
(S2) Clients : One or multiple clients among the federation

watermark their updates to spread that are embedded into
the global model.

(S3) Server and clients : The server and the clients collaborate
to watermark the global model together.

(S4) Clients in a decentralized context : Only clients collab-
orate to watermark the global model together (decentral-
ized FL).

Fig. 1: An example of each possible scenario of watermarking
in FL with one server and three clients. Green rectangles are
the participants who follow the same watermarking procedure
together. Red rectangles are those who are not enrolled in the
watermarking procedure.

All watermarking requirements defined in Table I are also
true in the federated context. However, due to the new con-
straints and the extension to several participants, we can add
precision to three of them:

1) Capacity : When multiple clients want to insert their own
message bCi

, the watermarking technique needs to avoid
possible conflict between the different inserted bCi

. The
number of bits needs to be enough.

2) Generality : In a real FL scenario, many additional
mechanisms are added for security and privacy such as
robust aggregation functions (Section V-B) or Differential
Privacy [16] (Section V-E). The watermarking technique
must be applied independently to these mechanisms.

3) Efficiency : The cost generated by the embedding process
is more crucial in FL. For example, in a cross-device

architecture, clients have low computation power and
they cannot perform many operations. The watermarking
techniques must take this parameter into account.

B. Related works

1) WAFFLE: WAFFLE [15] is the first DNN Watermarking
technique for FL. In this solution, the server embeds the
watermark (S1) using a black-box watermarking technique
using a trigger set. Any trigger set that does not need any
knowledge concerning the clients’ data can be used but the
authors present a specific set that is more suitable for FL:
the WAFFLEPattern. WAFFLEPattern is defined as a set of
images containing random patterns with a noisy background.
Basically, the server will embed the watermark into the global
model using the two following functions :

• PreTrain : Train an initialized model with the trigger set
until

• ReTrain : Fine-tune (using FTAL) the model with the
trigger set until

PreTrain is used to embed the watermark in the model before
the first round. During each round, after the aggregation
process, the server uses ReTrain to re-embed the watermark
into the model.

2) FedIPR: FedIPR [17] is both a Black-Box and White-
Box technique. This technique allows all clients to embed their
own watermark in the global model (S2) without sharing secret
information. Each watermark can be described as follow :

• Black-Box Watermark : Each client generates a trigger
set using Projected Gradient Descent technique in a small
CNN trained with the local data.

• White-Box Watermark : Each client generates a random
secret matrix and a location in the Batch-Normalisation
layers to embed its message.

Both White-Box and Black-box watermarks are inserted using
an additional loss during the local training. For Black-Box
Watermark, the loss is exactly the same as the loss used for
the main task but with a batch of the trigger set as input. For
the White-Box Watermark, the loss used is a Hinge-like loss
between the original message and the reconstructed message.

3) FedTracker: FedTracker [18] is a watermarking tech-
nique that allows the server to embed a global Black-box
watermark (S1) but also a White-box watermark specific to
each client. Each watermark can be described as follow :



• Global Black-Box Watermark : A trigger set is gener-
ated using the WAFFLEPattern method [15].

• White-Box Watermark : Server generates a random
secret matrix and a fingerprint for each client.

After the aggregation, the server embeds the Global Black-
Box Watermark using the intuition of Continual Learning
[19] to avoid forgetting the main task. Then, for the White-
Box Watermark, the loss used is a Hinge-like loss between
the original message b and the reconstructed message b̃.

4) Client-side Black-box watermarking: Liu et al. [20] pro-
pose a client-side Black-box watermarking scheme (S2). This
technique is designed to embed a watermark only from one
client. The latter creates a trigger set composed of Gaussian
noise images with a given label as a trigger set. Then, the
client’s model will over-fit with this set like in [11]. To tackle
the fact that this particular client will probably not be selected
at each round, the authors introduce a scaling factor

λ =
N

n
,

where N is the number of clients and n is the number of
clients selected at each round. The client will then send its
model weights multiplied by λ. According to the authors, this
will be approximately equivalent to the case that this client is
selected every iteration and the watermark will be embedded
more easily.

5) Merkle-Sign: Merkle-Sign [21] is a framework focusing
on ownership verification in a collaborative Clients-Server
setting (S3). The authors propose a public verification protocol
that uses the Merkle-tree [22]. In this framework, the server
use at each round an embedding function to insert two
identity information (i.e keys) into MG : one that identify
the server and the other one the client that will receives the
model. In parallel, the server uploads the tuple of keys and
the tuple of verification function (which are generated by the
watermarking embedding function) into a Merkle-tree with
the recording time. At the final round, the server embeds
also all keys generated by the clients into MG and updates
the Merkle-tree. This framework is also compatible in a
Peer-to-Peer context. The associated Black-Box watermarking
schema relies on the training of an Auto-Encoder [23] (AE)
for each client. Then the server averages the received AE to
obtain a final AE from which it can generate a trigger set
using the keys as input for the decoder part.

6) FedRight: FedRight [24] is a solution for the server
to fingerprint the model in the FL framework (S3). DNN
fingerprinting is a process in which instead of embedding a
watermark in the model, we extract a fingerprint to identify
this model [25]. To do so, the server generates adversarial
examples from a set of inputs (key samples). Then the server

extracts the probability distribution of each prediction and
feeds it to a detector with the key samples target. Then, during
the verification process, this detector is used to predict whether
the corresponding model is the good one or not.

V. DISCUSSION

In this section, we identify and discuss specific challenges
related to watermarking in FL. In particular, we evaluate how
existing methods deal or not with these new challenges.

A. Black-Box watermarking in the Server side

Black-Box watermarking consists in changing the behavior
of the model. To do so, most methods let the model overfit
on the trigger set by adding a regularization term in the loss
function. Usual DNN watermarking techniques can easily be
applied in S2, S3 and S4. However, it is not so easy in S1.
When the client Ck wants to watermark its model MCk

, he
can rely on two things :

1) Have an access to its private dataset DCk

2) Train the model on both the main task dataset DCk
and

its trigger set TCk
at the same time

A large number of Black-Box watermarking techniques
need to build TCk

using DCk
= (Xi, Yi)i=1 (as discussed

in III-B). Using such techniques is motivated by the fact that
training the model from these datasets is a multi-task learning.
Building TCk

from DCk
helps to reduce the negative impact

on learning from two domains. Moreover, learning these two
tasks together avoids “catastrophic forgetting” [26].

In S1, since the server does not have its own dataset, it can-
not perform such type of watermarking. The choice is limited
by using unrelated or noise-based inputs as WafflePattern [15].

The problem is that this limitation leads to an exposure
to evasion attacks. During the Black-Box verification process,
the owner will ask the suspicious Application Programming
Interface (API) that possibly contains his DNN. However, the
attacker may evade this verification using a query detector
[27]. Since the trigger-set is built using images that are
qualified to be Out-Of-Distribution (OOD), this implies an
easier detection for the attacker [28]. WAFFLE [15] authors
confirm the intuition that the performances of such detector
depends a lot on the data quantity and capacities of the
attacker.

B. Aggregation functions

The most common aggregation function is FedAvg [1]
which consists on averaging clients’ weights after they perform
multiple epochs on mini-batches. Each client weight matrix
is multiplied by a scaling factor defined as nCk

n where nCk

is the number of samples in DCk
and n =

∑K
k nCk

. Many
aggregation functions emerged to meet various challenges
in FL. Since the clients do not necessarily know which
aggregation function the server is using, the proposed methods
must be independent of this parameter.

For the Byzantine-attacks problem in which one or multiple
clients try to disturb the FL process. These attacks can be
simple noise weights or complex label-flipping backdoors. To



leverage this problem, multiple aggregation functions appear
to select only benign updates such as Krum [29] Trim-mean
or Bulyan [30]. Since clients’ watermarking techniques are
sensitive to the embed message b and the trigger set T , they
keep their updates far from each other. A part of updates can
be rejected for this reason if we use defensive aggregation
techniques. As an example, FedIPR shows that the White-Box
Watermark results are similar to FedAvg with a detection
rate of 97.5% using Trim-mean. However, the Black-Box
Watermark reaches only 63.25% of the watermark detection
rate at the end of the FL process. Even if this score is enough
to detect plagiarism, using a defensive aggregation function
has a huge impact on the watermark. Liu et at. [20] have not
tested yet their solution with a defensive aggregation function
but we can guess that multiplying weights by a so big scaling
factor λ can be easy to detect for Krum as a Byzantine attack
as shown in similar example [31].

Another problem is that FedAvg performs well when the
data are statistically homogeneously distributed among the
clients. However, in real use cases, data are heterogeneous
which may lead to difficulty for the model to converge
to the global minimum or diverge using FedAvg. Existing
watermarking techniques for FL have not evaluated methods
that tackle this problem such as FedProx [32], FedNova
[33] or SCAFFOLD [34]. If we want to use the proposed
solution in a real Secure FL framework, these methods need
to be tested in such a context.

C. Client selection

For communication efficiency and when the number of
clients is too high, we introduce a client selection. To do so, we
simply randomly select cK clients with c ∈ ]0, 1[. This simple
mechanism can have a big effect on the watermarking. In (S1),
this effect should be insignificant, since the server embeds
the watermark at each round regardless of cK. Unfortunately,
WAFFLE and FedTracker have not tested this effect. On
the other hand, (S2) is more able to be sensitive to the
client selection process. Since each client wants to insert its
watermark, the watermark of not selected clients risks to be
degraded or removed in the global model. Authors of FedIPR
show that for c > 0.2 the detection rate for both White-Box
and Black-Box watermark is near to 100%. When c ≤ 0.2 the
detection rate associated with a feature-based watermark is
still near 100%. However, the detection rate for the backdoor
falls to 62%.

D. Cross-device setting

All proposed papers are treating the case in which we have
a small amount of clients. The worse scenario is tested in
Merkle-Sign in which 200 clients are enrolled in the feder-
ation. However, there is no solution that takes into account
the cross-device setting. In this setting, a large number of
clients (up to 1010 devices), are enrolled in the FL procedure
[2]. These clients are not always reachable and they have
a low dedicated computational power which is defined as a
performance condition by the authors of WAFFLE.

In the Black-Box setting, the problem can come from the
low computation power that does not allow the client to
perform more computations to increase the batch size using
trigger-set methods. For the White-Box setting, the bottleneck
would be the Capacity as mentioned in Section IV-A. In par-
ticular in cases where the proposed methods are tested using
Normalization layers such as FedIPR or FedTracker which
limits the overall embedding capacity. It leads to a difficulty
for each client to embed its vector b without conflicting in face
of other clients’ watermarks.

E. Differential Privacy

Since FL keeps the client’s data private, DNNs are shared
between the server and the clients or directly between clients.
The model himself can give to an attacker private information
in such a way that he can identify the presence of an exact data
point (such an attack is called membership inference) [35].
To tackle this problem, we can use Differential Privacy (DP)
which is a strong standard for providing privacy guarantees
for algorithms operating on aggregate databases [16]. In FL,
a usual DP technique consists of adding a Gaussian random
noise to the gradients sent to the aggregator. Among related
works, FedIPR is the only article for which the proposed
method is tested with a DP mechanism. The presented results
show that adding a small noise to the weights does not affect
a lot the watermarking accuracy.

F. Homomorphic Encryption

In Client-Server FL, the server has access to all client up-
dates. Then, it can use this privilege to try to learn information
about the private datasets. A cryptographic solution to prevent
such misuse from the server is, for the clients, to protect the
model using Homomorphic Encryption (HE). By using this
technique, clients can easily cipher their updates using public
keys. Then the server will perform the aggregation, in general
using FedAvg, in the cipher space. Then, when clients receive
the updated global model, they use their private key to decipher
the model weights.

In the context of watermarking, the use of HE fits perfectly
for (S2) since the clients can access their model weights to
watermark the model. However, so far no solution has been
provided for (S1) given the fact that the server cannot decipher
the model weights to perform watermarking embedding.

G. Watermarking for Non Client-Server framework

Decentralized FL (S2) is an interesting framework in which
clients do not need a server to perform the model aggregation.
The proposed methods seem to be applicable to this setting
since watermarking the model from the client side does
not require the server. However, Merkle-Sign is the unique
solution that extends to the decentralized setting (S4). We can
also cite Split-Learning in which the server has a part of the
network and clients have another part. Performing White-Box
watermarking as in [7] can be more difficult for the server
or clients. In both cases, they have access to a part of the
model weights that can be arbitrarily small. In the U-shape



Split Learning architecture, the server has only the middle
part of the model and the client has the first and last layers.
In this setting, performing a Black-Box watermarking on the
server side is hard since it cannot use its inputs and labels on
the model.

H. Attacks from clients and server

When we analyze (S1) and (S2) scenarios, we can see
that each one has different parameters to play with whether
for watermarking or disrupt it. The server can control the
selected participants or how to aggregate the weights. It has
also sometimes a clear view of clients’ weights at each round.
However, it does not have data and it cannot fully control if
clients are strictly following the training process. On the other
hand, clients have their private dataset and they can send the
weights that they want. Nevertheless, they have no control over
what happens with their updates in the server level.

If the server wants to avoid a subset of clients to watermark
the model, it can use methods proposed for Byzantine attacks
[36] detection. In particular, attacks that consist of multiplying
the weights by a scaling factor to replace or have a bigger
impact in the global model are easy to detect [31]. The
proposed method by Liu et al. [20] is then easily removable
and the global model will not be watermarked. A solution
to catch backdoor-ed models was presented in [37] [38].
Then all proposed solutions that rely on a backdoor-based
watermarking can be rejected.

Clients can also try to disturb the watermarking process.
FedIPR (S2) [17] authors present the free-riders problem in
which some clients do not contribute to the training of MG

and the watermarking process. Even if with their solution, they
have no important impact on the watermarking, no testing has
yet been done on (S1). Another attack that is specific to FL
as described in FedRight [24] and WAFFLE [15] consists of
the fact that multiple clients will use their models and private
datasets. As mentioned in Section V-A, evasion attack works
better when using multiple datasets to train the detector. But
it is also possible to fine-tune the model with the combined
dataset.

VI. CONCLUSION

Watermarking for FL is taking great interest since classical
DNN watermarking cannot be naively applied in a collabo-
rative context. In particular, constraints such as data distri-
bution, new distributed threat models, and additional security
mechanisms have to be taken into account while designing
an efficient solution for collaborative ML watermarking. This
paper provides a comprehensive overview of existing methods
and exposes the different problems they face off. Several of the
analyzed methods have tried their model against each Secure
FL mechanisms separately. Unfortunately, none of them has
tried to test their solutions in a complete and realistic Secure
FL framework, including defensive aggregation functions, non
I.I.D data, DP, and HE in the same experiment.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[2] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and open problems in federated learning,” Foundations and
Trends® in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021.

[3] H. Brendan McMahan, E. Moore, D. Ramage, S. Hampson, and
B. Agüera y Arcas, “Communication-efficient learning of deep networks
from decentralized data,” arXiv e-prints, pp. arXiv–1602, 2016.

[4] A. G. Roy, S. Siddiqui, S. Pölsterl, N. Navab, and C. Wachinger,
“Braintorrent: A peer-to-peer environment for decentralized federated
learning,” arXiv preprint arXiv:1905.06731, 2019.

[5] P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split learning
for health: Distributed deep learning without sharing raw patient data,”
arXiv preprint arXiv:1812.00564, 2018.

[6] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y.
Zhao, “Neural cleanse: Identifying and mitigating backdoor attacks in
neural networks,” in 2019 IEEE Symposium on Security and Privacy
(SP). IEEE, 2019, pp. 707–723.

[7] Y. Uchida, Y. Nagai, S. Sakazawa, and S. Satoh, “Embedding water-
marks into deep neural networks,” in Proceedings of the 2017 ACM on
International Conference on Multimedia Retrieval, 2017, pp. 269–277.

[8] B. Darvish Rouhani, H. Chen, and F. Koushanfar, “Deepsigns: An
end-to-end watermarking framework for ownership protection of deep
neural networks,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2019, pp. 485–497.

[9] E. Tartaglione, M. Grangetto, D. Cavagnino, and M. Botta, “Delving in
the loss landscape to embed robust watermarks into neural networks,”
in 2020 25th International Conference on Pattern Recognition (ICPR).
IEEE, 2021, pp. 1243–1250.

[10] Y. Li, B. Tondi, and M. Barni, “Spread-transform dither modulation
watermarking of deep neural network,” Journal of Information Security
and Applications, vol. 63, p. 103004, 2021.

[11] Y. Adi, C. Baum, M. Cisse, B. Pinkas, and J. Keshet, “Turning
your weakness into a strength: Watermarking deep neural networks by
backdooring,” in 27th USENIX Security Symposium, 2018, pp. 1615–
1631.

[12] J. Zhang, Z. Gu, J. Jang, H. Wu, M. P. Stoecklin, H. Huang, and
I. Molloy, “Protecting intellectual property of deep neural networks
with watermarking,” in Proceedings of the 2018 on Asia Conference
on Computer and Communications Security, 2018, pp. 159–172.

[13] E. Le Merrer, P. Perez, and G. Trédan, “Adversarial frontier stitching
for remote neural network watermarking,” Neural Computing and Ap-
plications, vol. 32, pp. 9233–9244, 2020.

[14] J. Guo and M. Potkonjak, “Watermarking deep neural networks for
embedded systems,” in 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 2018, pp. 1–8.

[15] B. G. Tekgul, Y. Xia, S. Marchal, and N. Asokan, “Waffle: Watermarking
in federated learning,” in 2021 40th International Symposium on Reliable
Distributed Systems (SRDS). IEEE, 2021, pp. 310–320.

[16] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, and L. Zhang, “Deep learning with differential privacy,” in
Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security, 2016, pp. 308–318.

[17] B. Li, L. Fan, H. Gu, J. Li, and Q. Yang, “Fedipr: Ownership verification
for federated deep neural network models,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2022.

[18] S. Shao, W. Yang, H. Gu, J. Lou, Z. Qin, L. Fan, Q. Yang, and
K. Ren, “Fedtracker: Furnishing ownership verification and traceability
for federated learning model,” arXiv preprint arXiv:2211.07160, 2022.

[19] M. De Lange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis,
G. Slabaugh, and T. Tuytelaars, “A continual learning survey: Defying
forgetting in classification tasks,” IEEE transactions on pattern analysis
and machine intelligence, vol. 44, no. 7, pp. 3366–3385, 2021.

[20] X. Liu, S. Shao, Y. Yang, K. Wu, W. Yang, and H. Fang, “Secure
federated learning model verification: A client-side backdoor triggered
watermarking scheme,” in 2021 IEEE International Conference on
Systems, Man, and Cybernetics (SMC). IEEE, 2021, pp. 2414–2419.



[21] F.-Q. Li, S.-L. Wang, and A. W.-C. Liew, “Towards practical water-
mark for deep neural networks in federated learning,” arXiv preprint
arXiv:2105.03167, 2021.

[22] G. Becker, “Merkle signature schemes, merkle trees and their cryptanal-
ysis,” Ruhr-University Bochum, Tech. Rep, vol. 12, p. 19, 2008.

[23] D. Bank, N. Koenigstein, and R. Giryes, “Autoencoders,” arXiv preprint
arXiv:2003.05991, 2020.

[24] J. Chen, M. Li, and H. Zheng, “Fedright: An effective model copyright
protection for federated learning,” arXiv preprint arXiv:2303.10399,
2023.

[25] X. Cao, J. Jia, and N. Z. Gong, “Ipguard: Protecting intellectual property
of deep neural networks via fingerprinting the classification boundary,”
in Proceedings of the 2021 ACM Asia Conference on Computer and
Communications Security, 2021, pp. 14–25.

[26] R. M. French, “Catastrophic forgetting in connectionist networks,”
Trends in cognitive sciences, vol. 3, no. 4, pp. 128–135, 1999.

[27] D. Hitaj and L. V. Mancini, “Have you stolen my model? evasion attacks
against deep neural network watermarking techniques,” arXiv preprint
arXiv:1809.00615, 2018.

[28] J. Yang, K. Zhou, Y. Li, and Z. Liu, “Generalized out-of-distribution
detection: A survey,” arXiv preprint arXiv:2110.11334, 2021.

[29] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Ma-
chine learning with adversaries: Byzantine tolerant gradient descent,”
Advances in neural information processing systems, vol. 30, 2017.

[30] R. Guerraoui, S. Rouault et al., “The hidden vulnerability of distributed
learning in byzantium,” in International Conference on Machine Learn-
ing. PMLR, 2018, pp. 3521–3530.

[31] Z. Gu and Y. Yang, “Detecting malicious model updates from federated
learning on conditional variational autoencoder,” in 2021 IEEE interna-
tional parallel and distributed processing symposium (IPDPS). IEEE,
2021, pp. 671–680.

[32] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” Proceedings of
Machine learning and systems, vol. 2, pp. 429–450, 2020.

[33] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, “Tackling the
objective inconsistency problem in heterogeneous federated optimiza-
tion,” Advances in neural information processing systems, vol. 33, pp.
7611–7623, 2020.

[34] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T.
Suresh, “Scaffold: Stochastic controlled averaging for federated learn-
ing,” in International Conference on Machine Learning. PMLR, 2020,
pp. 5132–5143.

[35] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting
unintended feature leakage in collaborative learning,” in 2019 IEEE
symposium on security and privacy (SP). IEEE, 2019, pp. 691–706.

[36] J. Shi, W. Wan, S. Hu, J. Lu, and L. Y. Zhang, “Challenges and
approaches for mitigating byzantine attacks in federated learning,” in
2022 IEEE International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom). IEEE, 2022, pp. 139–
146.

[37] V. Tolpegin, S. Truex, M. E. Gursoy, and L. Liu, “Data poisoning attacks
against federated learning systems,” in Computer Security–ESORICS
2020: 25th European Symposium on Research in Computer Security,
ESORICS 2020, Guildford, UK, September 14–18, 2020, Proceedings,
Part I 25. Springer, 2020, pp. 480–501.

[38] B. Xi, S. Li, J. Li, H. Liu, H. Liu, and H. Zhu, “Batfl: Backdoor detection
on federated learning in e-health,” in 2021 IEEE/ACM 29th International
Symposium on Quality of Service (IWQOS). IEEE, 2021, pp. 1–10.


