
HAL Id: hal-04328529
https://hal.science/hal-04328529

Submitted on 7 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Une implémentation GPU de la méthode de recherche
approximative FlyHash

Arthur da Cunha, Damien Rivet, Emanuele Natale, Aurora Rossi

To cite this version:
Arthur da Cunha, Damien Rivet, Emanuele Natale, Aurora Rossi. Une implémentation GPU de la
méthode de recherche approximative FlyHash. CAID 2023 - 5e Conference on Artificial Intelligence
for Defense, DGA Maîtrise de l’Information, Nov 2023, Rennes, France. �hal-04328529�

https://hal.science/hal-04328529
https://hal.archives-ouvertes.fr


Une implémentation GPU de la méthode de
recherche approximative FlyHash

Arthur da Cunha*

COATI, I3S & INRIA d’Université Côte d’Azur
Sophia Antipolis, France

arthur.carvalho-walraven-da-cunha@inria.fr

Damien Rivet*
COATI, I3S & INRIA d’Université Côte d’Azur

Sophia Antipolis, France
damien.rivet@inria.fr

Emanuele Natale*

COATI, I3S & INRIA d’Université Côte d’Azur
Sophia Antipolis, France
emanuele.natale@inria.fr

Aurora Rossi*
COATI, I3S & INRIA d’Université Côte d’Azur

Sophia Antipolis, France
aurora.rossi@inria.fr

Abstract—FlyHash is a locality-sensitive hashing algorithm
inspired by the nervous system of the Drosophila fly. It has
demonstrated to be particularly effective for similarity search,
especially in the federated context where multiple players collab-
orate to solve a statistical learning task. FlyHash mainly relies
on a process called winner-take-all, which is used to binarize
information. However, the implementation of this process is a
major challenge and limits the algorithm’s usage in processing
large data streams. In this paper, we propose a simple algorithm
to make the winner-take-all operation efficient on GPUs. We
create a FlyHash adaptation suitable for the CUDA architecture.
We assess the speed of this version experimentally and present
a comparison with the CPU version of FlyHash.

Index Terms—Data mining, Hashing, winner-take-all, Dis-
tributed algorithms, Federated learning, GPU

I. INTRODUCTION

Locality-sensitive hashing (LSH) is a technique in computer
science introduced in [IM98] for hashing data so that similar
data has a high probability of having similar hashes, while
different data is likely to have different hashes. It is widely
used, especially for similarity search in large databases using
faster heuristics than traditional approaches, such as nearest
neighbor searching. Locality-sensitive hashing is particularly
effective in real-time applications, where the speed of simi-
larity search is essential to handle a massive and continuous
flow of incoming data.

In nature, animals are constantly faced with similarity
recognition tasks. This is notably the case for fruit flies, which,
when encountering new odors, seek to identify similarities
with odors they have previously encountered in order to assess
the potential quality of the available food. Observation of
their olfactory nervous system revealed that some of these
neural circuits bore striking similarities to well-known LSH

This work has been supported by the French government, through the
UCA DS4H Investments in the Future project managed by the National
Research Agency (ANR) with the reference number ANR-17-EURE-0004,
and through the AID INRIA-DGA agreement n°2019650072. The authors are
grateful to the OPAL infrastructure from Université Côte d’Azur for providing
resources and support.

* Authors are listed in alphabetical order.

algorithms. Based on these observations, researchers propose
a new type of algorithm called FlyHash [SDN17].

FlyHash is based on the use of random projections followed
by a binarization process, as is notably the case of one of the
most well-known LSH heuristics SimHash [Cha02]. However,
unlike SimHash, the binarization used by FlyHash is not
based on thresholding, but on a process called winner-take-
all (WTA), which we describe in detail below.

The adoption of winner-take-all is motivated on the one
hand by its theoretical properties [YSRL11], and on the other
hand for modelling the brain, in particular in the model of
Assemblies of Neurons proposed by [PVM+20] as well as in
Spiking Neural Networks [Che17], artificial neural networks
that are biologically closer to the real ones.

Besides, the classical winner-take-all implementation is
known to represent a major bottleneck when one wants to
process multiple data at once, or using large hashlengths
(indeed the accuracy of such hashing algorithms improves
significantly with the increase of the size of the generated
hashes). In addition, the majority of data mining applications
are now massively parallelized, via the use of distributed
algorithms and the dominant hardware architecture is now the
Graphics Processing Unit (GPU).

Our contribution with this work is to demonstrate
that such WTA hashing schemes are compatible with the
GPU architecture, allowing to implement them on a pipeline
fully executable on GPU (Section III-B). Some works have
focused on GPU implementation of winner-take-all including
[MVSG+09], but this direction remains relatively unexplored.

II. MOTIVATIONS AND APPLICATIONS

The FlyHash has been first studied in [SDN17], based
on empirical observations of the functioning of the olfactory
system of a fruit fly. In this section, we first provide a brief
summary of such biological observations. We refer the reader
to [SDN17] for a more detailed description. A formal descrip-
tion of the FlyHash algorithm inspired by these observations,
together with our new implementation, is given in section



III-A. Subsequently, we illustrate two important applications
of FlyHash in Machine Learning, namely in an efficient and
secure classification scheme in Federated Learning and as
a potential subroutine to speed up the training of neural
networks.

a) Neurobiological basis for Flyhash: The neurons
which are activated by a given odor are determined by a three
step procedure which is exemplified in Fig. 1. The first step

Fig. 1. The three steps of the olfactory system of a fruit fly as illustrated in
[SDN17].

consists in direct nervous connections from odorant receptor
neurons (ORNs) in the fly’s nose to projection neurons (PNs)
in particular structures called glomeruli. There are circa 50
ORN types which are activated by different odors. Thus, each
input odor can be thought as having a corresponding location
in a 50-dimensional space determined by the 50 ORN. For
each odor, the distribution of ORN firing rates across the 50
ORN types follows an exponential distribution with a mean
that depends on the concentration of the odor [SDN17]. For the
PNs, such distribution of firing rates across the 50 PN types is
also exponential, but for all odors and all odor concentrations
the mean is approximately the same. The second step, which
is where neurobiology offer us the main algorithmic insight,
then involves an expansion in the number of neurons by a
factor roughly 40: Fifty PNs project to 2000 so-called Kenyon
cells (KCs), connected by a sparse binary random connection
matrix, with each KC receiving and summing the firing rates
from about six randomly selected PNs. The final third step
is then performed by strong inhibitory connections from a
single inhibitory neuron, called APL (anterior paired lateral
neuron), which results in the aforementioned winner-take-all
(WTA) operation. As a consequence, all but the highest-firing
KCs are silenced, with the firing rates of the still-active KCs
corresponding to the neurons activated by the input odor.

b) kNN-like classification in Federated Learning: Fly-
Hash has recently found an important application as the
basis of the FlyNN algorithm introduced in [SR21], who
exploited the work of [DSSN18], taking advantage once again
of biological observations, to design a classification algorithm
(see Fig. 2).

FlyNN has been deployed in the context of federated
learning in [RS22] and is currently the state of the art ap-

Fig. 2. Illustration of the FlyNN scheme to perform approximate k-Nearest
Neighbors classification using FlyHash [RS22]. Each party, here represented
by a square, hashes the data point it owns for each class (here orange squares
and blue triangles) and sums them into a single hash vector. The parties then
combine their hash vectors to obtain a single hash vector for each class across
the entire dataset, called filter. The class of a new data point is then determined
by the filter that has the highest similarity to the new data point’s hash vector.

proximation of the k-nearest neighbor classification algorithm
in the federated setting. FlyNN has in particular the advantage
of being usable in the context of one-shot federated learning,
where the communication among clients is restricted to a
single round, and to be readily combinable with differential
privacy schemes [RS22].

c) Speeding up neural network training via Locality-
sensitive Hashing: An important application of LSH schemes
has recently been provided in [DMZS21], in which such
schemes are leveraged to speed up training and inference of
large artificial neural network architectures on the CPU, based
on the empirical observation that only a small fraction of
neurons is activated per layer. A simplistic diagram of the
SLIDE framework proposed in [DMZS21] is outlined in Fig.
3. The purpose of the present work is not only to increase
the efficiency of the FlyHash algorithm as an alternative that
can be leveraged in SLIDE, but also to make it possible to
leverage the aforementioned framework to speed up training
on the GPU.

III. DESCRIPTION OF THE ALGORITHMS

A. FlyHash

Formally, the FlyHash algorithm takes as input a vector in
Rd and returns its hash, which is a binary vector of length N
(the hashlength parameter). The algorithm has two main parts,
a projection and a winner-take-all binarization part.

The projection matrix is a random binary matrix M of size
N×d with a fixed number s (the projection parameter) of ones



Fig. 3. Diagram illustrating the core idea of the SLIDE framework, in which
activating neurons are predicted by computing the scalar product between the
projection of the input x̃ and the projection of the layer weight matrix W̃
via a Locality-sensitive Hashing scheme. The actual input of the neurons that
are predicted to activate is then computed via the original input x and the
corresponding rows of the original weight matrix W .

in each row. The first part of the algorithm is the multiplication
between M and the input vector.

The winner-take-all binarization is then applied to the
outcome of the previous step, which is in RN , and transformed
into a {0, 1}N vector by setting the k highest entries to one
and the others to zero. The parameter k is also called number
of winners parameter.

Algorithm 1 contains the FlyHash pseudocode. The WTA
function is explained in detail in the next section.

Algorithm 1 FlyHash
Input: X ∈ Rd×b, M ∈ {S ∈ {0, 1}N×d :

each row of S contains s ones}, k ∈ [1, N ]
Output: X ∈ {0, 1}N×b

A = M ×X
return WTA(A, k)

B. A parallelized winner-take-all

We implement the FlyHash algorithm on the GPU to process
large amounts of data. Our main contribution is a parallelized
winner-take-all binarization algorithm that, rather than taking
as input a single vector as mentioned before, processes a
batch of vectors in a matrix X of size N × b, where b
is the batch size. The binarization step is thus applied to
each column simultaneously. More specifically, we perform

a parallel binary search for the values that, when used to
threshold the respective columns, give the desired number of
ones k.

Algorithm 2 contains the winner-take-all pseudocode. It
starts by computing, for each column, the lower bound lb
and the upper bound ub of the search interval by taking,
respectively, the minimum and the maximum with a small
margin ε > 0 to allow for strict inequalities. It then calculates
the middle value mid and updates the extremes according to
the current number of ones tot (corresponding to the number
of values greater than mid): if they are greater than k, we
increase the lower bound of the interval by setting it equal to
the middle value; instead, if they are less than k, we decrease
the upper bound to be equal to the middle value. The process
is repeated a given number of times, which is at most 278
for single-precision floats, but in practice it can be set to 64
if a small fraction of erroneous entries can be tolerated (for
example, the average fraction of erroneous entries caused by
such a limitation is around 2.095 × 10−7 when the output is
of size 20000× 5000).

Algorithm 2 Winner-take-all (WTA). Functions preceded or
followed by a dot (Julia’s broadcasting operator) are applied
element-wise.
Input: X ∈ RN×b, k ∈ [1, N ]
Output: X ∈ {0, 1}N×b

lb = minimum(X, dims = 1).− ε
ub = maximum(X, dims = 1).+ ε
mid = (lb.+ ub)./2
for _ in 1 : 64 do

tot = count(X. > mid, dims = 1)
lb = ifelse.(tot. > k,mid, lb)
ub = ifelse.(tot. < k,mid, ub)
mid = (lb.+ ub)./2

end for
return X. > mid

IV. EXPERIMENTS

In our experiments, we compare the performance of
the FlyHash algorithm on an Intel(R) Xeon(R) Gold
6240 CPU @ 2.60GHz CPU and a NVIDIA Quadro
RTX 8000 GPU with CUDA version: 11.8, focusing
on the processing of large amounts of data. We implemented
the algorithms in the Julia programming language, which is
now one of the most popular languages for scientific comput-
ing, and we relied on CUDA.jl package for the GPU part. On
the algorithm engineering side, some optimizations have been
made to speed up the process, such as pre-allocating variables
for the GPU version. As for the CPU implementation, it uses
efficient partial sorting algorithms to select the k winners
[RS22]. Our code is available in the following Github reposi-
tory: https://github.com/AInnervate/flyhash.jl, along with the
code to replicate the experiments explained in more detail
below.

https://github.com/AInnervate/flyhash.jl


Fig. 4. Comparison on two popular datasets. Hash factor parameter is set to
h = 32.

Fig. 5. Comparison as batchsize increases with fixed hash factor h = 128
and input dimension d = 1024.

First, we test the speed of the two versions of the algorithm
on well-known datasets taken from the Machine Learning
Datasets Julia library MLDatasets.jl. One of the two datasets
we examine is the FashionMNIST dataset, which is a collec-
tion of 60000 greyscale images with a size of 28 × 28. We
therefore transform each image into a vector of dimension
d = 28× 28 = 784 and collect them in a matrix of dimension
784 × 60000. Then we pass it as input to the FlyHash
algorithm, choosing the following parameters according to
previous work [SDN17]: the hash length N is equal to the
hash factor h = 32 multiplied by the input dimension d, the
projection parameter s is set to 5% of the input dimension d
and the number of winners k is set to 5% of the hash length
N . The same configuration is used to compute the time to
process the CIFAR10 dataset, which is a collection of 50000
coloured images with a size of 32×32, so the input dimension
of the matrix is d × b, where d = 32 × 32 × 3 = 3072 (the
factor 3 comes from the fact that the images are coloured) and
the batchsize is b = 50000.

In addition to those datasets, we perform experiments on

synthetic data, where each entry is uniformly sampled in [0,1].
To understand how the two architectures behave when dealing
with large amounts of data, we run the code varying the
batchsize b in the range {21, ..., 215} and fixing the other
parameters: the projection parameter and number of winners
are as above, the hash factor is set to h = 128 and the input
dimension is d = 1024.

The results are shown in Figure 4 and Figure 5. They are
obtained by averaging 10 independent runs after first running
the code without taking the time to avoid Julia’s just-in-time
compilation overhead. Both plots show low standard deviation
values, in the first case as bars and in the second as shadows.

V. CONCLUSIONS

In this work, we proposed a GPU implementation of the fa-
mous FlyHash locality sensitive algorithm. Experiments show
that our GPU version can run one order of magnitude faster
than the best CPU version, thus allowing to speed up the use
of the FlyHash algorithm in settings where GPUs are more
easily available than dozens of CPU cores. In future work, we
expect that the GPU code can be further improved in terms of
performance by writing a lower-level CUDA kernel.

Important directions consist in exploring the implications
of our implementations for the use of FlyHash in real-world
applications, such as the ones mentioned in Section II.

REFERENCES

[Cha02] Moses Charikar. Similarity estimation tech-
niques from rounding algorithms. In Proceed-
ings on 34th Annual ACM Symposium on Theory
of Computing. ACM, 2002.

[Che17] Yanqing Chen. Mechanisms of winner-take-all
and group selection in neuronal spiking net-
works. Frontiers in computational neuroscience,
2017.

[DMZS21] Shabnam Daghaghi, Nicholas Meisburger,
Mengnan Zhao, and Anshumali Shrivastava.
Accelerating SLIDE Deep Learning on Modern
CPUs: Vectorization, Quantizations, Memory
Optimizations, and More. Proceedings of
Machine Learning and Systems, 3:156–166,
March 2021.

[DSSN18] Sanjoy Dasgupta, Timothy C. Sheehan,
Charles F. Stevens, and Saket Navlakha. A
neural data structure for novelty detection.
Proceedings of the National Academy of
Sciences, 2018.

[IM98] Piotr Indyk and Rajeev Motwani. Approximate
nearest neighbors: Towards removing the curse
of dimensionality. In Proceedings of the Thirti-
eth Annual ACM Symposium on Theory of Com-
puting, STOC ’98. Association for Computing
Machinery, 1998.

[MVSG+09] O. Moslah, A. Valles-Such, V. Guitteny, S. Cou-
vet, and S. Philipp-Foliguet. Accelerated multi-
view stereo using parallel processing capababil-



ities of the gpus. In 2009 3DTV Conference,
2009.

[PVM+20] Christos Papadimitriou, Santosh Vempala,
Daniel Mitropolsky, Michael Collins, and
Wolfgang Maass. Brain computation by
assemblies of neurons. Proceedings of the
National Academy of Sciences of the United
States of America, 2020.

[RS22] Parikshit Ram and Kaushik Sinha. Federated
nearest neighbor classification with a colony of
fruit-flies. In Thirty-Sixth AAAI Conference on
Artificial Intelligence. AAAI Press, 2022.

[SDN17] Charles F. Stevens Sanjoy Dasgupta and Saket
Navlakha. A neural algorithm for a fundamental
computing problem. Science, 2017.

[SR21] Kaushik Sinha and Parikshit Ram. Fruit-fly
inspired neighborhood encoding for classifica-
tion. In KDD ’21: The 27th ACM SIGKDD
Conference on Knowledge Discovery and Data
Mining. ACM, 2021.

[YSRL11] Jay Yagnik, Dennis Strelow, David A. Ross,
and Ruei-sung Lin. The power of comparative
reasoning. In 2011 International Conference on
Computer Vision, 2011.


	Introduction
	Motivations and applications
	Description of the algorithms
	FlyHash
	A parallelized winner-take-all

	Experiments
	Conclusions

