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VOLUME ENTROPY SEMI-NORM AND SYSTOLIC VOLUME SEMI-NORM

IVAN BABENKO AND STÉPHANE SABOURAU

Abstract. We introduce the volume entropy semi-norm and the systolic volume semi-norm
in real homology and show that they satisfy functorial properties similar to the ones of the
simplicial volume. Along the way, we also establish a roughly optimal upper bound on the
systolic volume of the multiples of any homology class. Finally, we prove that the volume
entropy semi-norm, the systolic volume semi-norm and the simplicial volume semi-norm are
equivalent in every dimension.
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1. Introduction

This article deals with topology-geometry interactions and the comparison of functorial geo-
metric semi-norms on the real homology groups of topological spaces. In his book [27, §5
G+-H+], M. Gromov pointed out directions where such geometric semi-norms might arise in
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relation with curvature (e.g., sectional, Ricci, scalar) properties for instance. Yet, the corre-
sponding invariants have not been properly defined or studied as semi-norms, except for the
simplicial volume which is a purely topological invariant. (General comparison results between
functorial topological semi-norms in relation with the simplicial volume semi-norm have recently
been established in [15] and [19].) As part of this program to investigate the interactions between
geometry and topology through the study of functorial geometric semi-norms, we introduce the
volume entropy semi-norm and the systolic volume semi-norm in real homology and carry out
a systematic study of these invariants. Both semi-norms require a substantial amount of work
in order to properly define them. The volume entropy semi-norm relies on the notion of volume
entropy, a geometric invariant of considerable interest closely related to the dynamics of the geo-
desic flow and the growth of the fundamental groups. The systolic volume semi-norm rests on a
new asymptotically optimal estimate in systolic geometry. Both the volume entropy semi-norm
and the systolic volume semi-norm share similar functorial properties with the simplicial volume
semi-norm (also called the Gromov semi-norm). The equivalence of the three semi-norms in real
homology is established in this article.

Let M be a connected closed m-dimensional manifold with a Riemannian metric g. Let
H � π1(M) be a normal subgroup of the fundamental group of M . The volume entropy (or
simply entropy) of (M, g) relative to H, denoted by entH(M, g), is the exponential growth rate
of the volume of balls in the Riemannian covering MH corresponding to the normal subgroup
H � π1(M), that is, π1(MH) = H. More precisely, it is defined as

entH(M, g) = lim
R→∞

1

R
log[volBH(R)] (1.1)

where BH(R) is a ball of radius R centered at any point in the covering MH . The limit exists
and does not depend on the center of the ball. When H is trivial, the covering MH is the

universal covering M̃ of M and we simply denote its volume entropy by ent(M, g) without any
reference to H. Note that

entH(M, g) ≤ ent(M, g)

for every normal subgroup H � π1(M). The definition extends to connected closed pseudo-
manifolds, see Definition 2.1, to connected finite graphs and more generally, to finite simplicial
complexes with a length metric.

The importance of this notion was first noticed by Efremovich [18]. Subsequently, Švarc [46]

and Milnor [38] related the growth of the volume of balls in the universal covering M̃ to the
growth of the fundamental group π1(M) of M . Note that the volume entropy of a connected
closed Riemannian manifold is positive if and only if its fundamental group has exponential
growth. The connection with the dynamics of the geodesic flow was established by Dinaburg [17]
and Manning [36]. More specifically, the volume entropy bounds from below the topological
entropy of the geodesic flow on a connected closed Riemannian manifold and the two invariants
coincide when the manifold is nonpositively curved; see [36].

The minimal volume entropy of a closed m-pseudomanifold M relative to a normal sub-
group H � π1(M) is defined as

ωH(M) = inf
g

entH(M, g) vol(M, g)
1
m

where g runs over the space of all piecewise Riemannian metrics on M . For convenience, we
also introduce

ΩH(M, g) = entH(M, g)m vol(M, g)
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and

ΩH(M) = inf
g

entH(M, g)m vol(M, g)

where g runs over the space of all piecewise Riemannian metrics on M . As previously, if H is
trivial, we drop the subscript H.

As an example, the minimal volume entropy of a closed m-manifold M which carries a hyper-

bolic metric is attained by the hyperbolic metric and is equal to (m−1) vol(M, hyp)
1
m ; see [31],[8]

for m = 2 and [9] for m ≥ 3. Furthermore, the minimal volume entropy of a closed manifold
which carries a negatively curved metric is positive; see [24].

For a connected closed orientable m-manifold M , the minimal volume entropy of M is a
homotopy invariant, see [1], which only depends on the image h∗([M ]) ∈ Hm(π1(M);Z) of
the fundamental class of M by the homomorphism induced by the classifying map h : M →
K(π1(M), 1) of M in homology; see [13].

This homological invariance leads us to consider the volume entropy of a homology class as
follows. Given a path-connected topological space X, the volume entropy of a homology class
a ∈ Hm(X;Z) is defined as

ω(a) = inf
(M,f)

ωker f∗(M) (1.2)

where the infimum is taken over all m-dimensional geometric cycles (M,f) representing a, that
is, over all maps f : M → X from an oriented connected closed m-pseudomanifold M to X such
that f∗([M ]) = a. As previously, we define

Ω(a) = ω(a)m.

For every map f : X → Y between two path-connected topological spaces and every a ∈ Hm(X;Z),
we have

Ω(f∗(a)) ≤ Ω(a). (1.3)

By [13, Theorem 10.2], every orientable connected closed m-manifold M with m ≥ 3 satisfies

Ω(M) = Ω(h∗([M ])) (1.4)

where h : M → K(π1(M), 1) is the classifying map of M .

The following result shows that Ω induces a pseudo-distance in homology.

Theorem 1.1. Let X be a path-connected topological space. Then for every a,b ∈ Hm(X;Z),
we have

Ω(a + b) ≤ Ω(a) + Ω(b).

In particular, the quantity Ω(a− b) defines a pseudo-distance between a and b in Hm(X;Z),

Thus, for every homology class a ∈ Hm(X;Z), the sequence Ω(k a) is sub-additive. As a
result, we can apply the following stabilization process and define

‖a‖E = lim
k→∞

Ω(k a)

k
. (1.5)

Note that ‖ · ‖E is homogenous, that is, ‖k a‖E = |k| ‖a‖E for every k ∈ Z. By homogeneity and
density of Hm(X;Q) in Hm(X;R), this functional extends to a functional on Hm(X;R), still
denoted by ‖ · ‖E .

For an orientable connected closed m-manifold M , define

‖M‖E = ‖[M ]‖E
where [M ] ∈ Hm(M ;Z) is the fundamental class of M .
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The following result, which is a direct consequence of Theorem 1.1, justifies the use of the
term volume entropy semi-norm to designate the functional ‖ · ‖E .

Corollary 1.2. Let X be a path-connected topological space. Then the functional ‖ · ‖E is a
semi-norm on Hm(X;R).

Functorial properties of the volume entropy semi-norm are described in Section 3, where it is
shown that the volume entropy semi-norm of a closed orientable manifold depends only on the
image of its fundamental class under the classifying map.

The simplicial volume is a much-studied topological invariant sharing similar properties with
the volume entropy semi-norm. Let us recall its definition and its basic properties, referring
to [24] for foundational constructions and results regarding this invariant. Let X be a path-
connected topological space. Every real singular m-chain c ∈ Cm(X;R) of X is a real linear
combination of singular simplices fs : ∆m → X, that is,

c =
∑
s

rs fs

where rs ∈ R. The `1-norm on the real chain complex is defined as

‖c‖1 =
∑
s

|rs|.

The simplicial volume of a real homology class a ∈ Hm(X;R) is defined as

‖a‖∆ = inf
c
‖c‖1

where the infimum is taken over all real singular m-cycles c representing a. The simplicial
volume of an integral homology class is defined as the simplicial volume of the corresponding
real homology class. It is clear that the simplicial volume ‖ · ‖∆ is a functorial semi-norm
on Hm(X;R). This means that the real homology of a topological space with its simplicial
volume semi-norm defines a functor from the category of topological spaces (whose morphisms
are continuous maps) to the category of semi-normed vector spaces (whose morphisms are semi-
norm-nonincreasing homomorphisms); see [10]. In other words, every continuous map between
topological spaces induces a semi-norm-nonincreasing homomorphism in real homology.

As previously, for an orientable connected closed m-manifold M , we let

‖M‖∆ = ‖[M ]‖∆
where [M ] ∈ Hm(M ;Z) is the fundamental class of M . By [24, §3.1], the simplicial volume of M
depends only on the image of its fundamental class under the classifying map.

The following inequality of M. Gromov [24, p. 37] connects the minimal volume entropy of
an orientable connected closed manifold to its simplicial volume (see [41] for other topological
conditions ensuring the positivity of the minimal volume entropy through a different approach).
Namely, every orientable connected closed m-manifold M satisfies

Ω(M) ≥ cm ‖M‖∆ (1.6)

for some positive constant cm depending only on m. Extending this inequality to the semi-norm
level, see Theorem 4.12, we obtain that every homology class a ∈ Hm(X;R) of a path-connected
topological space X satisfies

‖a‖E ≥ cm ‖a‖∆
with the same constant cm as in (1.6).
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A central question regarding the metrization of homotopy theory is to compare two given
semi-norms in homology; see [27, §5.41]. In particular, one can ask whether a reverse inequality
to (1.6) holds.

The following result affirmatively answers this question.

Theorem 1.3. Let m be a positive integer. Then there exist two positive constants cm and Cm
such that every homology class a ∈ Hm(X;R) of a path-connected topological space X satisfies

cm ‖a‖∆ ≤ ‖a‖E ≤ Cm ‖a‖∆.

We immediately deduce the following corollary.

Corollary 1.4. Let X be a path-connected topological space and a ∈ Hm(X;R) be a homology
class. Then ‖a‖E vanishes if and only if ‖a‖∆ vanishes.

In particular, for every orientable connected closed manifold M , the volume entropy semi-
norm ‖M‖E is zero if and only if the simplicial semi-norm ‖M‖∆ is zero.

In relation with Corollary 1.4, note that we do not know whether the volume entropy of an
orientable connected closed manifold with zero simplicial volume necessarily vanishes. See [6]
for polyhedral counterexamples.

In this article, we also introduce the systolic volume semi-norm, whose definition rests on a
new asymptotically optimal estimate in systolic geometry; see Theorem 1.5. Before stating this
result, we need to introduce various notions.

Let M be a closed m-dimensional manifold or pseudomanifold with a (piecewise) Riemannian
metric g. Let f : M → X be a map to a topological space X. The systole of M relative to f ,
denoted by sysf (M, g), is defined as the least length of a loop γ in M whose image by f is
noncontractible in X. The systolic volume of M relative to f is defined as

σf (M) = inf
g

vol(M, g)

sysf (M, g)m
(1.7)

where the infimum is taken over all (piecewise) Riemannian metrics g on M . When f : M → X
is π1-injective, for instance, when f : M → K(π1(M), 1) is the classifying map of M , we simply
denote its systolic volume by σ(M) without any reference to f . By [2], [3], [13], the systolic
volume of a closed orientable manifold depends only on the image of its fundamental class under
the classifying map.

As with (1.2), the systolic volume of a homology class a ∈ Hm(X;Z), where X is a path-
connected topological space, is defined as

σ(a) = inf
(M,f)

σf (M) (1.8)

where the infimum is taken over all m-dimensional geometric cycles (M,f) representing a.

Let us present some known estimates on the systolic volume. There exist two positive con-
stants A and B such that every closed genus g surface Σg satisfies

A
g

(log g)2
≤ σ(Σg) ≤ B

g

(log g)2
.

The first inequality was established by M. Gromov [25], [26]. The second inequality was proved
by P. Buser and P. Sarnak in [14], where they constructed hyperbolic genus g surfaces with a
systole roughly equal to log(g).
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In higher dimension, M. Gromov [25], [26] related the systolic volume σ(a) of a homology
class a ∈ Hm(X;Z) to its simplicial volume ‖a‖∆ through the following lower bound

σ(a) ≥ λm
‖a‖∆

(log(2 + ‖a‖∆))m
(1.9)

where λm is a positive constant depending only on m. In particular, for every a ∈ Hm(X;Z)
with nonzero simplicial volume, we have

σ(k a) ≥ λ k

(log k)m
(1.10)

where λ = λ(a) > 0.

In a different direction, one can ask for an asymptotic upper bound on σ(k a). This problem
was considered in [4], where a sublinear upper bound in k was established, and in [5], where the
upper bound was improved.

Using different techniques, we obtain an asymptotically optimal upper bound on σ(k a). When
the simplicial volume of a is nonzero, this upper bound shows that the lower bound (1.10) is
roughly optimal in k, which positively answers a conjecture of [5].

Theorem 1.5. Let X be a path-connected topological space. Then for every homology class
a ∈ Hm(X;Z), there exists a constant C = C(a) > 0 such that for every integer k ≥ 2, we have

σ(k a) ≤ C k

(log k)m
.

This estimate allows us to define the systolic volume semi-norm in real homology of dimen-
sion m ≥ 3 as follows. By [5, Corollary 5.3], the systolic volume induces a translation-invariant
pseudo-distance % on Hm(X;Z) with m ≥ 3, defined by %(a,b) = σ(a − b). Define a new
translation-invariant pseudo-distance %̂ on Hm(X;Z) given by

%̂(a,b) = lim sup
k→∞

(log k)m

k
%(k a, k b).

See Lemma 6.1 for further detail. Denote by

σ̂(a) = %̂(0,a)

the distance from the origin and apply a stabilization process to σ̂ as in (1.5). Namely, for every
a ∈ Hm(X;Z) with m ≥ 3, define

‖a‖σ = lim
k→∞

σ̂(k a)

k
. (1.11)

This functional extends to Hm(X;R) ' Hm(X;Z) ⊗ R in a canonical way and gives rise to a
semi-norm, still denoted by ‖ · ‖σ, on Hm(X;R), called the systolic volume semi-norm. Note
that this definition differs from the one proposed in [27, §5.41].

For an orientable connected closed m-manifold M , define

‖M‖σ = ‖[M ]‖σ
where [M ] ∈ Hm(M ;Z) is the fundamental class of M .

The systolic volume semi-norm satisfies similar functorial properties to the volume entropy
semi-norm and the simplicial volume semi-norm; see Theorem 6.4.

It follows from (1.9) that every homology class a ∈ Hm(X;Z) of a path-connected topological
space X satisfies

‖a‖σ ≥ λm ‖a‖∆
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with the same positive constant λm as in (1.9); see Section 7 for further detail and an alternate
approach based on a comparison between the systolic volume semi-norm and the volume entropy
semi-norm.

As previously, we show that the systolic volume semi-norm and the simplicial volume semi-
norm are equivalent in homology.

Theorem 1.6. Let m ≥ 3 be an integer. Then there exist two positive constants λm and µm
such that every homology class a ∈ Hm(X;R) of a path-connected topological space X satisfies

λm ‖a‖∆ ≤ ‖a‖σ ≤ µm ‖a‖∆.

Theorem 1.6 contrasts with the existence of a sequence of closed m-manifolds (e.g., closed
hyperbolic 3-manifolds) with bounded simplicial volume and arbitrarily large systolic volume;
see [40]. This illustrates the effect the double stablization process can have on the systolic
volume by significantly lowering its value.

Combining the recent result [30] on the spectrum of the simplicial volume with Theorem 1.3,
we immediately deduce that the volume entropy semi-norm and the systolic volume semi-norm
are not bounded away from zero in dimension greater than 3. (In dimension 2 and 3, there is a
gap in the simplicial volume spectrum, and so in the volume entropy spectrum and the systolic
volume spectrum by Theorem 1.3 and Theorem 1.6.) More generally, we have the following
result.

Corollary 1.7. Let m ≥ 4 be an integer. Then the sets of all volume entropy semi-norms ‖M‖E
and of all systolic volume semi-norms ‖M‖σ, where M is an orientable connected closed m-
manifold, are dense in [0,∞).

In his book [27, §5.41], M. Gromov suggests to study some functionals of geometric nature in
homology. These functionals measure the minimal volume of a singular Riemannian manifold
representing a given homology class with some constraint on the metric. After a stabilization
process as in (1.5) or (1.11), they should give rise to homology semi-norms. Our definitions of
the volume entropy semin-norms and the systolic volume semi-norm are inspired by this general
idea. However, they differ from the constructions sketched in [27, p. 310–311], which do not
consider relative volume entropy or relative systole and lead to a number of technical difficulties.

Articles about minimal volume entropy closely related to our paper include [1], [2], [3], [8], [9],
[13], [24], [37], [39], [41], [42], [43]. Connections between the systolic volume and the minimal
volume entropy can be found in [32], [39] and [13].

This article is organized as follows. In Section 2, we establish lower and upper bounds on
the minimal volume entropy of the connected sum of closed manifolds, and derive that the
functional ‖ · ‖E is a semi-norm in real homology. Functorial properties of the volume entropy
semi-norm are presented in Section 3. In Section 4, we show that the volume entropy semi-norm
of a homology class is bounded from above and below by its simplicial volume, up to some
multiplicative constants depending only on the degree of the homology class. Therefore, the
volume entropy semi-norm and the simplicial volume are equivalent homology semi-norms. Our
approach for the upper bound relies on a geometrization of the simplicial volume and the uni-
versal realization of homology classes established by A. Gaifullin [20], [21] regarding Steenrod’s
problem. More than the result about the universal realization of homology classes, we will need
to retrieve combinatorial features of the construction to apply our argument leading to an upper
bound on the volume entropy semi-norm of a homology class. The reverse inequality is obtained
through the use of bounded cohomology by adapting M. Gromov’s chain diffusion technique. In
Section 5, we bound from above the systolic volume of the multiple of a given homology class.
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The proof relies on topological properties of the universal realizators in homology used in the
previous section and on systolic estimates in geometric group theory. This optimal asymptotic
estimate allows us to define the systolic volume semi-norm in Section 6. Functorial properties
and comparison results of the systolic volume (semi-norm) are also presented. In Section 7, we
show that the systolic volume semi-norm and the simplicial volume semi-norm are equivalent
in every homology degree. In the last section, we derive the density of the volume entropy and
systolic volume semi-norm spectra in dimension at least four.

Acknowledgment. The second author thanks the Fields Institute and the Department of Math-
ematics at the University of Toronto for their hospitality while part of this work was carried
out. The authors thank the referees for their relevant comments, which helped improve the
exposition.

2. Entropy of connected sums

In this section, we first establish an additive formula of the functional Ω for the bouquet of
simplicial complexes. We also obtain lower and upper bounds on the minimal volume entropy of
the connected sum of two closed manifolds, and derive that the functional ‖ · ‖E is a semi-norm
in real homology. Finally, we present a couple of applications of these estimates.

2.1. Preliminaries.

Let us first recall the definition of a pseudomanifold.

Definition 2.1. A connected closed m-dimensional pseudomanifold is a finite simplicial com-
plex M such that

(1) every simplex of M is a face of some m-simplex of M ;
(2) every (m− 1)-simplex of M is the face of exactly two m-simplices of M ;
(3) given two m-simplices s and s′ of M , there exists a finite sequence s = s1, s2, . . . , sn = s′

of m-simplices of M such that si and si+1 have an (m− 1)-face in common.

The mth homology group Hm(M ;Z) of a connected closed m-dimensional pseudomanifold is
either isomorphic to Z or trivial; see [47]. In the former case, we say that the pseudomanifold M
is orientable.

Consider a finite simplicial complex K with a piecewise Riemannian metric g (also called
polyhedral Riemannian metric). Denote by ρ the distance induced by g on K and on all the
coverings of K. Let H�G where G = π1(K). The quotient group G/H acts by isometries on the
H-covering KH . Furthermore, the action of G/H on KH is proper, discontinuous, without any
fixed point. Fix q ∈ KH . The orbit of q under the action of G/H on KH is denoted by q ·(G/H).
Let also

BH(t, q; g) = {x ∈ KH | ρ(q, x) ≤ t}
be the ball of radius t centered at q in KH .

The volume entropy of K relative to H is equal to the exponential growth rate of the number of
points in the orbit of q under G/H, as stated in the following classical result; see [39, Lemma 2.3]
for instance.

Proposition 2.2. Let K be a finite simplicial complex with a piecewise Riemannian metric.
Let H �G where G = π1(K). Then

entH(K, g) = lim
t→∞

1

t
log |BH(t, q; g) ∩ q · (G/H)|. (2.1)
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2.2. Minimal volume entropy of a bouquet of simplicial complexes.

Let us recall a few results established in [1]; see also [39, Lemma 3.5].

Definition 2.3. A simplicial map f : K1 → K2 between twom-dimensional simplicial complexes
is m-monotone if for every point x2 in the interior of an m-simplex of K2, the preimage f−1(x2)
is connected (and so is either empty or a singleton).

We will need the following comparison principle proved in [1, §2].

Proposition 2.4. For i = 1, 2, let Ki be an m-dimensional simplicial complex and φi : π1(Ki)→ G
be an epimorphism. Suppose that there exists an m-monotone map f : K1 → K2 such that
φ1 = φ2 ◦ f∗. Then

ΩH1(K1) ≤ ΩH2(K2)

where Hi = kerφi.

Actually, Proposition 2.4 is a straighforward consequence of the following result proved in [1,
§2] and [2, Lemme 3.1], which will also be used in the sequel.

Lemma 2.5. Let f : K1 → K2 be an m-monotone map between two m-dimensional simplicial
complexes. Then for every polyhedral Riemannian metric g on K2 and every ε > 0, there exists
a polyhedral Riemannian metric gε on K1 with

vol(K1, gε) ≤ vol(K2, g) + ε

such that f is nonexpanding.

Let G be a finitely presented group. For every subgroup H of G, denote by 〈〈H〉〉 the normal
closure of H in G.

The following result provides a formula for the minimal volume entropy of the bouquet of two
simplicial complexes.

Theorem 2.6. Let m ≥ 2. For i = 1, 2, let Ki be a connected m-dimensional simplicial complex
and Hi � π1(Ki) be a normal subgroup. Then

Ω〈〈H1∗H2〉〉(K1 ∨K2) = ΩH1(K1) + ΩH2(K2) (2.2)

where the basepoint of the bouquet K1 ∨K2 is a vertex.

Proof. First we prove the inequality

ΩH1(K1) + ΩH2(K2) ≤ Ω〈〈H1∗H2〉〉(K1 ∨K2). (2.3)

Let K = K1 ∨K2. By van Kampen’s theorem [29, §1.2], we have

π1(K) ' π1(K1) ∗ π1(K2).

Let g be a polyhedral Riemannian metric on K and gi be its restriction to Ki for i = 1, 2.

Let K̂i and K̂ be the normal covers corresponding to the normal subgroups Hi � π1(Ki) and
〈〈H1 ∗ H2〉〉 � π1(K), with the lifted metrics ĝi and ĝ. Observe that the canonical inclusions

K̂i ⊆ K̂ are isometric. This implies

entHi(Ki, gi) ≤ ent〈〈H1∗H2〉〉(K, g).

Thus, for every i = 1, 2,

ΩHi(Ki) ≤ entHi(Ki, gi)
m vol(Ki, gi) ≤ ent〈〈H1∗H2〉〉(K, g)m vol(Ki, gi).

Adding the two inequalities so-obtained for i = 1, 2, and using the relation

vol(K, g) = vol(K1, g1) + vol(K2, g2)
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we finally derive
ΩH1(K1) + ΩH2(K2) ≤ Ω〈〈H1∗H2〉〉(K, g)

for every polyhedral Riemannian metric g on K. Hence the inequality (2.3).

Now, let us prove the reverse inequality

Ω〈〈H1∗H2〉〉(K1 ∨K2) ≤ ΩH1(K1) + ΩH2(K2). (2.4)

We proceed in two steps. Without loss of generality, we can assume that the two sub-
complexes K1 and K2 of K are glued at a common vertex. Let pi ∈ Ki be a vertex such
that

K1 ∨K2 = K1 ∪
p1=p2

K2.

Define the m-dimensional simplicial complex

P = K1 ∪
p1={1}

[1, 2] ∪
{2}=p2

K2. (2.5)

For the first step, let us show that

Ω〈〈H1∗H2〉〉(P ) = Ω〈〈H1∗H2〉〉(K1 ∨K2).

Contracting the interval [1, 2] in P to a point gives rise to an m-monotone simplicial map

P −→ K1 ∨K2

inducing a π1-isomorphism. By Proposition 2.4, we derive

Ω〈〈H1∗H2〉〉(P ) ≤ Ω〈〈H1∗H2〉〉(K1 ∨K2). (2.6)

For the reverse inequality, let θi be a triangulation of Ki for every i = 1, 2. Denote by St(pi)
the open star of pi for the triangulation θi. Let θ′i be the triangulation of Ki which agrees
with θi in Ki \ St(pi) and with the semi-barycentric triangulation of St(pi) in St(pi) (obtained
by adding a vertex at the barycenter of every simplex of St(pi)). The bouquet K1 ∨ K2 is
endowed with the triangulations given by θ′1 and θ′2. The complex P = K1 ∪ [1, 2] ∪ K2 is
endowed with the triangulation given by θ1, θ2 and the barycentric subdivision of [1, 2] into
I1 = [1, 3

2 ] and I2 = [3
2 , 2].

Consider the simplicial map
f : K1 ∨K2 → P

which agrees with the identity map on Ki\St(pi), and takes pi to the midpoint of [1, 2] and all the
vertices of θ′i corresponding to the barycenters of the simplices of St(pi) for the triangulation θi
to i. By construction, the map f is m-monotone and induces a π1-isomorphism.

The inequality obtained by applying Proposition 2.4 to f , combined with the inequality (2.6),
yields the relation

Ω〈〈H1∗H2〉〉(P ) = Ω〈〈H1∗H2〉〉(K1 ∨K2). (2.7)

For the second step, we need to show that

Ω〈〈H1∗H2〉〉(P ) ≤ ΩH1(K1) + ΩH2(K2). (2.8)

Fix βi > ΩHi(Ki)
1
m . By definition, there exists a metric hi on Ki such that

entHi(Ki, hi)
m vol(Ki, hi) < βmi . (2.9)

By scale invariance, this inequality holds for every homothetic metric λ2
ihi with λi > 0. Choose

the factors λ1 and λ2 so that

entH1(K1, λ
2
1h1) = entH2(K2, λ

2
2h2) (2.10)

and
vol(K1, λ

2
1h1) + vol(K2, λ

2
2h2) = 1. (2.11)
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Let α = entH1(K1, λ
2
1h1) = entH2(K2, λ

2
2h2). The relations (2.9) and (2.10) combined with (2.11)

show that

αm < βm1 + βm2 . (2.12)

Consider the metric gd on P which is defined on the three parts of P given by (2.5) as follows

gd =


λ2

1h1 on K1

4d2dx2 on [p1, p2]

λ2
2h2 on K2

(2.13)

where x is the coordinate on [p1, p2] = [1, 2] and d > 0 is a parameter. By construction, we have
lengthgd([p1, p2]) = 2d and vol(P, gd) = 1, where the second equality comes from (2.11).

We will need the following result.

Lemma 2.7. Let ε > 0. For d large enough, we have

ent〈〈H1∗H2〉〉(P, gd) < α+ ε.

Proof. Let K̂i and P̂ be the normal covers corresponding to the normal subgroups Hi � π1(Ki)

and 〈〈H1 ∗H2〉〉� π1(P ). The cover P̂ of P = K1 ∪ [p1, p2] ∪K2 can be described as follows

(1) the cover P̂ decomposes into the union of the lifts of the subsets K1 and K2 of P , also

called leaves of P̂ , and the lifts of [p1, p2];

(2) every lift of [p1, p2] in P̂ is adjacent to two leaves homeomorphic to K̂1 and K̂2;

(3) removing a lift of [p1, p2] from P̂ separates the cover into two connected components.

The group G = π1(P )/〈〈H1 ∗H2〉〉 where

π1(P ) ' π1(K1 ∨K2) ' π1(K1) ∗ π1(K2)

decomposes into

G ' G1 ∗G2,

where Gi = π1(Ki)/Hi (this relation is left to the reader as an exercice in group theory). With

this decomposition, the action of G on P̂ can be described as follows. Let F ' K̂i be a leaf

of P̂ . The subgroup Gi = π1(Ki)/Hi of G acts on F ⊆ P̂ . For every lift qi of pi in F , the orbit

qi ·Gi of qi in F is composed of all the lifts of pi lying in F under the cover P̂ → P .

Denote by ρ̂i the distance on K̂i induced by λ2
ihi and denote by ĝd the metric on P̂ induced

by gd; see (2.13). Let [q1, q2] be a lift of [p1, p2] in P̂ and q be the midpoint of [q1, q2]. In view
of (2.1), the desired bound on ent〈〈H1∗H2〉〉(P, gd) will follow from a bound on v(t; d) = |V (t; d)|,
where

V (t; d) = B〈〈H1∗H2〉〉(t, q; gd) ∩ (q ·G). (2.14)

By the normal form theorem for free product of groups, see [34], every element γ ∈ G ' G1∗G2

can be uniquely written in normal form as

γ = γ1γ2 . . . γl (2.15)

where γs is a nontrivial element of G1 or G2 for s ∈ {1, . . . , l}, and γs and γs+1 do not lie in the
same factor G1 or G2 for s ∈ {1, . . . , l − 1}. For s ∈ {1, . . . , l}, denote by is ∈ {1, 2} the index
such that γs ∈ Gis . The length l(γ) of γ is the number l of elements in the decomposition (2.15).

It follows from the description of the cover P̂ , see (1)-(3), and of the action of Gi on every

leaf F ' K̂i of P̂ that every path from q to q ·γ, where γ is of length l, passes through the points

q, . . . , qis · (γs−1 . . . γ1), qis · (γs . . . γ1), qs+1 · (γs+1 . . . γ1), . . . , q · γ
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where s runs over {1, . . . , l−1}. Indeed, removing any of these points between q and q ·γ from P̂

disconnects q and q ·γ. Since G acts by isometries on P̂ , the ĝd-distance between qis ·(γ1 . . . γs−1)
and qis · (γ1 . . . γs) is equal to distĝd(qis , qis · γs). Since the restriction of the distance distĝd to

a leaf F ' K̂i of P̂ agrees with the distance ρ̂i on K̂i and since the action of Gi on F as a

subgroup of G coincides with its action on K̂i under the identification F ' K̂i, we have

distĝd(qis , qis · γs) = ρ̂i(pis , pis · γs).
Thus,

distĝd(q, q · γ) = d+ ρ̂i1(pi1 , pi1 · γ1) + 2d+ ρ̂i2(pi2 , pi2 · γ2) + 2d+ · · ·+ ρ̂il(pil , pil · γl) + d.

Hence,

distĝd(q, q · γ) = 2dl +

l∑
s=1

ρ̂is(pis , pis · γs). (2.16)

To estimate the exponential growth rate of the orbit of G in P̂ , it will be useful to decompose G
by the filtration induced by the length on G. Under this filtration, the group G decomposes into
the disjoint union

G =
∞⋃
l=1

G(l)

where G(l) is formed of the elements of G of length l. We derive from (2.14) that

V (t; d) =
⋃
l≥1

V (l)(t; d) (2.17)

where

V (l)(t; d) = B〈〈H1∗H2〉〉(t, q; gd) ∩ (q ·G(l)).

Since the union (2.17) is disjoint, we can write

v(t; d) =
∑
l≥1

v(l)(t; d)

where v(l)(t; d) = |V (l)(t; d)|.

Suppose q · γ ∈ V (l)(t; d). Let ts be the smallest integer greater or equal to ρ̂is(pis , pis · γs).
Then pis · γs ∈ Vis(ts), where

Vi(t) = BHi(t, pi; ρ̂i) ∩ (pi ·Gi) .
Furthermore,

ts < ρ̂is(pis , pis · γs) + 1.

By (2.16), this inequality leads to

l∑
s=1

ts <

l∑
s=1

ρ̂is(pis , pis · γs) + l

< t− 2dl + l = t− (2d− 1)l. (2.18)

Therefore, every element γ ∈ G with q · γ ∈ V (t; d) decomposes into a product γ = γ1 . . . γl
with γs ∈ Gis , see (2.15), such that pis · γs ∈ Vis(ts), where the integers ts defined from γs
satisfy (2.18). The number of elements γ ∈ G of length l with q · γ ∈ V (t; d) and given
integers ts satisfying (2.18) is at most

|Vi1(t1)| · |Vi2(t2)| · · · |Vil(tl)|.
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By definition of α, see below (2.11), the exponential growth rate of |Vis(t)| agrees with α.
Thus, for every α1 > α (arbitrarily close to α, which will be specified afterwards), there exists
t0 > 0 such that |Vis(t)| < eα1t for every t > t0.

Let I be the subset of L = {1, . . . , l} given by

I = {s ∈ L | ts ≤ t0}.
Let C = max{V1(t0), V2(t0)}. For every s ∈ L, we have

|Vis(ts)| ≤ C if s ∈ I
|Vis(ts)| ≤ eα1ts if s /∈ I.

These estimates yield an upper bound on the product

|Vi1(t1)| · |Vi2(t2)| · · · |Vil(tl)| ≤ C
|I|e

α1

(∑
s/∈I

ts

)
≤ C leα1(t−(2d−1)l) (2.19)

where the last inequality follows from |I| ≤ l and the bound (2.18).
Now, the number of l-uplets τ = (t1, t2, . . . , tl) with nonnegative integral coordinates satisfy-

ing (2.18) is bounded by

[t− (2d− 1)l]l

l!
.

Combined with (2.19), this leads to

v(l)(t; d) ≤
∑
τ

|Vi1(t1)| · |Vi2(t2)| · · · |Vil(tl)| ≤ C
leα1(t−(2d−1)l) [t− (2d− 1)l]l

l!

where τ runs over all l-uplets satisfying (2.18). For d > 1
2 , we have t− (2d− 1)l ≤ t and so

v(l)(t; d) ≤ C leα1te−α1(2d−1)l t
l

l!
=
eα1t

l!

(
Cd

eα1(2d−1)

)l ( t
d

)l
.

For d large enough, we have
Cd

eα1(2d−1)
< 1. (2.20)

Thus,

v(l)(t; d) ≤ eα1t

l!

(
t

d

)l
.

Therefore,

v(t; d) =
∑
l≥1

v(l)(t; d) ≤
∑
l≥1

eα1t

l!

(
t

d

)l
= eα1t+

t
d .

Hence,

lim
t→∞

log v(t; d)

t
≤ α1 +

1

d
. (2.21)

For α1 < α + ε and d > 1
ε large enough so that the inequality (2.20) is satisfied, we deduce

from (2.21) that
ent〈〈H1∗H2〉〉(P, gd) < α+ 2ε

which finishes the proof of the lemma. �

Let us resume the proof of Theorem 2.6. Since βmi can be arbitrarily close to ΩHi(Ki), the
inequality (2.12) combined with Lemma 2.7 leads to

Ω〈〈H1∗H2〉〉(P ) ≤ ΩH1(K1) + ΩH2(K2).

Along with (2.7), this inequality yields the desired result. �
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2.3. Upper bound on the minimal volume entropy of connected sums.

The following result compares the minimal volume entropy of the connected sum of two
(pseudo)manifolds with the minimal volume entropy of the two (pseudo)manifolds. Here, the
connected sum of the two connected m-pseudomanifolds is defined in the usual way by removing
an m-simplex ∆m from each pseudomanifold and by identifying the boundary ∂∆m of the
resulting pseudomanifolds.

Theorem 2.8. For i = 1, 2, let Mi be a connected closed pseudomanifold of dimension m ≥ 3
and Hi � π1(Mi) be a normal subgroup. Then

Ω〈〈H1∗H2〉〉(M1]M2) ≤ ΩH1(M1) + ΩH2(M2). (2.22)

Remark 2.9. In dimension 2, the result remains valid by replacing the normal subgroup
〈〈H1 ∗H2〉〉 with f−1(〈〈H1 ∗H2〉〉), where f : M1]M2 −→ M1 ∨ M2 is the canonical projec-
tion.

Remark 2.10. Inequality (2.22) is the analogue for the volume entropy of a similar bound
holding for the systolic volume; see [5, Proposition 3.6] and Proposition 6.6. Note however that
the proof is more intricate with the minimal volume entropy than with the systolic volume.

Proof of Theorem 2.8. Consider the canonical m-monotone map

f : M1]M2 →M1 ∨M2

obtained by collapsing the attaching sphere to a point (in order to get a simplicial map, we
may have to take two barycentric subdivisions of M1 and M2). Since m ≥ 3, the induced
homomorphism f∗ : π1(M1]M2)→ π1(M1 ∨M2) is an isomorphism. The comparison principle,
see Proposition 2.4, and Theorem 2.6 yield

Ω〈〈H1∗H2〉〉(M1]M2) ≤ Ω〈〈H1∗H2〉〉(M1 ∨M2) = ΩH1(M1) + ΩH2(M2).

�

Corollary 2.11. Let X be a path-connected topological space. Then for every a1,a2 ∈ Hm(X;Z),
we have

Ω(a1 + a2) ≤ Ω(a1) + Ω(a2).

In particular, the quantity Ω(a1−a2) defines a pseudo-distance between a1 and a2 in Hm(X;Z),
and the functional ‖ · ‖E is a semi-norm on Hm(X;R).

Proof. Let a1,a2 ∈ Hm(X;R). Fix ε > 0. There exists a map fi : Mi → X from an oriented
connected closed m-pseudomanifold Mi representing ai for i = 1, 2 such that

Ωker(fi)∗(Mi) ≤ Ω(ai) + ε.

Let M = M1]M2. Consider the canonical map f = f1 ∨ f2 : M → X obtained from f1 and f2

by first collapsing the attaching sphere to a point. Note that

ker f∗ ' 〈〈ker(f1)∗ ∗ ker(f2)∗〉〉.
Furthermore, by Theorem 2.8, we have

Ωkerf∗(M) ≤ Ωker(f1)∗(M1) + Ωker(f2)∗(M2)

≤ Ω(a1) + Ω(a2) + 2ε

Hence, Ω(a1 + a2) ≤ Ω(a1) + Ω(a2).
Replacing ai with k ai in the previous inequality, dividing by k and letting k go to infinity,

we obtain
‖a1 + a2‖E ≤ ‖a1‖E + ‖a2‖E .
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Since ‖ · ‖E is clearly homogeneous by the stabilization process, see (1.5), the functional ‖ · ‖E
is a semi-norm. �

2.4. Lower bound on the minimal volume entropy of connected sums.

In a different direction, taking the connected sum with an orientable pseudomanifold does
not decrease the minimal volume entropy as the following result shows.

Theorem 2.12. For i = 1, 2, let Mi be a connected closed pseudomanifold of dimension m ≥ 3
and Hi � π1(Mi) be a normal subgroup. Let H � π1(M1) ∗ π1(M2) be a normal subgroup such
that the canonical inclusion π1(M1) 6 π1(M1) ∗ π1(M2) induces an inclusion

π1(M1)/H1 6 (π1(M1) ∗ π1(M2))/H. (2.23)

Suppose M2 is orientable. Then

ΩH1(M1) ≤ ΩH(M1]M2). (2.24)

Combined with Theorem 2.8, we obtain

Corollary 2.13. For i = 1, 2, let Mi be a connected closed pseudomanifold of dimension m ≥ 3
and Hi � π1(Mi) be a normal subgroup. Suppose M2 is orientable and ΩH2(M2) = 0. Then

Ω〈〈H1∗H2〉〉(M1]M2) = ΩH1(M1).

In order to prove Theorem 2.12, we first establish the following result. For a CW -complex X,
denote by X(k) its k-skeleton.

Proposition 2.14. Let M be an orientable connected closed pseudomanifold of dimension m ≥ 3.
Suppose that

M = Dm ∪
φ
M(m− 1) (2.25)

is a cell decomposition with a single m-cell. Then the space

M ∪
M(m−2)

Cone(M(m− 2))

obtained by gluing the cone Cone(M(m− 2)) over M(m− 2) to M along M(m− 2) is homotopy
equivalent to a finite bouquet of spheres

M ∪
M(m−2)

Cone(M(m− 2)) '
∨
s

Sm−1
s

∨
Sm.

Proof. We have

M ∪
M(m−2)

Cone(M(m− 2)) 'M/M(m− 2) '
∨
s

Sm−1
s ∪

φ̂
Sm

where the number of (m− 1)-spheres Sm−1
s is equal to the number of (m− 1)-cells of M and

φ̂ : Sm−1 φ−→M(m− 1) −→M(m− 1)/M(m− 2) '
∨
s

Sm−1
s

is the projection of the attaching map φ.
To derive the proposition, we need to show that φ is null-homotopic. Consider the triple

(M,M(m− 1),M(m− 2)) and the corresponding long exact sequence with Z-coefficients

. . . 0
i∗−→Hm(M,M(m− 2))

j∗−→Hm(M,M(m− 1))
∂−→Hm−1(M(m− 1),M(m− 2)) −→ . . . .

From the long exact sequence of the pair (M,M(m− 2)), we obtain that

Hm(M,M(m− 2)) ' Hm(M).
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The orientability of M implies that

Hm(M,M(m− 1)) ' Hm(M).

Thus, j∗ is an isomorphism, which implies that ∂ = 0.
Thinking of the homology groups Hk(M(k),M(k − 1);Z) as free abelian groups with basis

the k-cells ekα of M , the cellular boundary formula, see [29, §2.2], gives

∂(em) =
∑
s

deg(φs) e
m−1
s

where φs : Sm−1 → M(m − 1) → Sm−1
s is the composite of the attaching map φ of the m-

cell em = Dm with the quotient map collapsing M(m − 1) \ em−1
s to a point. (Note that φs

factorizes through φ̂.) Since ∂ = 0, every map φs is contractible. Hence φ is null-homotopic as
desired. �

We can now prove Theorem 2.12.

Proof of Theorem 2.12. Choose a cell decomposition of M2 with only one cell of maximal dimen-
sionm, which is coherent with the triangulation of the pseudomanifold. Denote by Cone(M2(m− 2))
the cone over the (m− 2)-skeleton M2(m− 2) of M2. By Proposition 2.14, the space

M2 ∪
M2(m−2)

Cone(M2(m− 2))

obtained by gluing the cone Cone(M2(m− 2)) to M2 along M2(m− 2) is homotopy equivalent
to a finite bouquet of spheres

M2 ∪
M2(m−2)

Cone(M2(m− 2)) '
∨
s

Sm−1
s

∨
Sm

with only one m-dimensional sphere Sm. Thus, the canonical inclusion M1 \ Bm ⊆ M1]M2

extends to the missing ball Bm and gives rise to an m-monotone map, see Definition 2.3,

f : M1 →M1]M2 ∪
M2(m−2)

Cone(M2(m− 2)). (2.26)

Fix ε > 0. Consider a metric g on M1]M2 with vol(M1]M2, g) = 1, which is ε-extremal, that is,

entH(M1]M2, g)m ≤ ΩH(M1]M2) + ε. (2.27)

Extend the metric g to a metric g′ on M1]M2 ∪
M2(m−2)

Cone(M2(m−2)) as follows. First, observe

that
Cone(M2(m− 2)) = M2(m− 2)× [0, 1]/M2(m− 2)× {1}.

The extension g′ of g, which agrees with g on M1]M2, is defined on Cone(M2(m− 2)) by

g′ =

{
g|M2(m−2) + 10Ddt2 if 0 ≤ t ≤ 1

2

4(1− t)2g|M2(m−2) + 10Ddt2 if 1
2 ≤ t ≤ 1

where D = diam
(
M2(m− 2), g|M2(m−2)

)
. Technically, the metric g′ is singular, but it still

induces a distance distg′ . Note also that by dimensional reasons

vol(M1]M2 ∪
M2(m−2)

Cone(M2(m− 2)), g′) = vol(M1]M2, g) = 1.

By construction of g′, the canonical inclusion

i : M1]M2 ↪→M1]M2 ∪
M2(m−2)

Cone(M2(m− 2)) (2.28)

is distance-preserving. That is, for every p1, p2 ∈M1]M2, we have

distg(p1, p2) = distg′(i(p1), i(p2)).
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Since m ≥ 3, the composite map

M1 \Bm ⊆M1]M2 ↪→M1]M2 ∪
M2(m−2)

Cone(M2(m− 2)) (2.29)

induces an isomorphism between the fundamental groups. Denote by G1 6 G = π1(M1]M2) the
image of π1(M1) in π1(M1]M2).

Let q1 ∈M1 \Bm ⊆M1]M2. Since Cone(M2(m− 2)) is simply connected and the map (2.29)
is distance-preserving, every loop γ ⊆M1]M2 ∪

M2(m−2)
Cone(M2(m−2)) based at q1 is homotopic

to a loop γ′ ⊆M1]M2 based at the same point such that

lengthg(γ
′) ≤ lengthg′(γ). (2.30)

The group G/H acts on the cover M̂ of M1]M2 with fundamental group H. Similarly,

the group G1/H1 acts on the cover M̂ ′ of M1]M2 ∪
M2(m−2)

Cone(M2(m − 2)) with fundamental

group H1. Let ĝ and ĝ′ be the metrics on M̂ and M̂ ′ induced by g and g′. Fix some lifts q ∈ M̂
and q′ ∈ M̂ ′ of q1. Denote by BH(t, q; ĝ) and BH1(t, q′; ĝ′) the balls of M̂ and M̂ ′ of radius t
centered at q and q′. Since G1/H1 6 G/H, see (2.23), it follows from (2.30) that for every t ≥ 0

|BH1(t, q′; ĝ′) ∩ q′ · (G1/H1)| ≤ |BH(t, q; ĝ) ∩ q · (G/H)|. (2.31)

Applying Lemma 2.5 to them-monotone map f , see (2.26), we derive a polyhedral Riemannian
metric gε on M1 such that the map f is nonexpanding and

vol(M1, gε) < vol(M1]M2, g) + ε. (2.32)

The group G1/H1 acts both on M̂ ′ and on the cover M̂ ′′ of M1 with fundamental group H1.

Let ĝ′′ε be the metric on M̂ ′′ induced by gε. Fix a lift q′′ of q1 in M̂ ′′. The nonexpanding map f

lifts to a (G1/H1)-equivariant, nonexpanding map f̂ : M̂ ′′ → M̂ ′. This implies that the ball

BH1(t, q′′; ĝ′′ε ) of M̂ ′′ satisfies

|BH1(t, q′′; ĝ′′ε ) ∩ q′′ · (G1/H1)| ≤ |BH1(t, q′; ĝ′) ∩ q′ · (G1/H1)|. (2.33)

Combining the bounds (2.31) and (2.33), we derive the following inequalities on the exponen-
tial growth rates of the orbits of G1/H1 and G/H

entH1(M1, gε) ≤ entH1(M1]M2 ∪
M2(m−2)

Cone(M2(m− 2)), g′) ≤ entH(M1]M2, g)

Since vol(M1]M2, g) = 1 and vol(M1, gε) < 1 + ε, see (2.32), this estimate combined with (2.27)
yields the desired bound

ΩH1(M1) ≤ ΩH(M1]M2).

�

Remark 2.15. The proof of Theorem 2.12 does not apply when M2 is nonoriented. The
conclusion is unclear in this case.

2.5. Fundamental class of finite order.

The following result is a direct application of Theorem 2.12.

Proposition 2.16. Let M be an oriented connected closed manifold of dimension m ≥ 3 and
f : M → K(π1(M), 1) be its classifying map. Suppose f∗([M ]) ∈ Hm(π1(M);Z) is a finite order
homology class. Then

Ω(M) = 0.
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Proof. Let N = M] . . . ]M be the manifold obtained by taking the connected sum of k copies
ofM . Consider the map F = f∨· · ·∨f : N → K(π1(M), 1) obtained by collapsing each attaching
sphere to a point and by applying f to each term M in the bouquet M ∨ · · · ∨M . The class
F∗([N ]) is equal to k a, where a = f∗([M ]). Suppose k a = 0. Since N is an oriented connected
closed manifold and the homomorphism F∗ : π1(N) → π1(M) induced by F is surjective, we
derive from [13, Theorem 10.2], see (1.4), that

ΩkerF∗(N) = 0.

Apply Theorem 2.12 to M1 = M and the connected sum M2 = M] . . . ]M of k − 1 copies of M
by taking H = kerF∗. This immediately leads to the desired result. �

Remark 2.17. In order to contextualize this result, recall that under the assumption of Propo-
sition 2.16, the volume entropy semi-norm of M (and its simplicial volume) vanishes. Proposi-
tion 2.16 asserts that the volume entropy of M also vanishes, without any stabilization process.

Example 2.18. Every manifoldM with fundamental group SL(2,Z) ' Z4∗Z2Z6 or PSL(2,Z) '
Z2 ∗Z3 has zero minimal volume entropy, that is, Ω(M) = 0. Indeed, the homology of an amal-
gamated product can be computed through a Mayer-Vietoris sequence involving the homology
groups of its factors. Since the homology of every cyclic group is composed of finite groups
(except in dimension zero), the same holds for the homology groups of SL(2,Z) and PSL(2,Z);
see [33, Theorem 4.1.1].

2.6. Volume entropy semi-norm comparison.

Let us give an application of Corollary 2.13.

Theorem 2.19. Let G be a finitely presented group and H be a finite index subgroup of G. Let
m ≥ 3. Suppose that the canonical inclusion i : H ↪→ G induces a monomorphism between the
m-dimensional rational homology groups

(i∗)m : Hm(H;Q)→ Hm(G;Q).

Then for every homology class a ∈ Hm(H;Z)

‖a‖E = ‖i∗(a)‖E .

Proof. Still denote by i : K(H, 1) → K(G, 1) the classifying map induced by the canonical
inclusion i : H ↪→ G. By (1.3), for every integer k ≥ 1, we have

Ω(k i∗(a)) = Ω(i∗(k a)) ≤ Ω(k a).

Hence

‖a‖E ≥ ‖i∗(a)‖E .
Thus, we only have to show the converse inequality. The idea is to start with an almost extremal
geometric cycle of K(G, 1) representing k i∗(a), to add handles to it to make sure it is π1-
surjective and to take a lift corresponding to the subgroup H 6 G. The resulting geometric
cycle is almost extremal and represents dka up to some torsion element, where d = [G : H].

Denote by p the number of generators in G and by d = [G : H] the index of H on G. Let

M2 = (S1 × Sm−1)](S1 × Sm−1)] . . . ](S1 × Sm−1)

be the connected sum of p copies of S1 × Sm−1. Let f2 : M2 → K(G, 1) be a map inducing
a surjective homomorphism between the fundamental groups. Observe that Ω(M2) = 0 and
(f2)∗([M2]) = 0 ∈ Hm(G;Z).
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Fix ε > 0. By definition of ‖·‖E , for every integer k ≥ 1, there exists a map f1 : M1 → K(G, 1)
defined on an oriented connected closed m-pseudomanifold representing the class k i∗(a) ∈
Hm(G;Z) such that

Ωker(f1)∗(M1) ≤ k (‖i∗(a)‖E + ε).

Consider the connected sum M = M1]M2 and the canonical map f = f1 ∨ f2 : M → K(G, 1)
obtained from f1 and f2 by collapsing the attaching sphere into a point. Note that

ker f∗ ' 〈〈ker(f1)∗ ∗ ker(f2)∗〉〉.

Since (f2)∗([M2]) = 0 ∈ Hm(G;Z), the map f : M → K(G, 1) still represents the class k i∗(a) ∈
Hm(G;Z). Since Ωker(f2)∗(M2) = 0, we deduce from Corollary 2.13 that

Ωker f∗(M) ≤ k (‖i∗(a)‖E + ε). (2.34)

Since f2 induces a surjective homomorphism between the fundamental groups, the same holds

for the map f . Let M̂ be the cover of M of fundamental group f−1
∗ (H). Denote by

f̂ : M̂ → K(H, 1)

the corresponding lift of f . Let b = f̂∗([M̂ ]) ∈ Hm(H;Z). Since H is of index d in G, the cover

π : M̂ → M is of degree d. Thus, π∗([M̂ ]) = d [M ]. Still denote by i : K(H, 1) → K(G, 1) the
classifying map induced by the canonical inclusion i : H ↪→ G. It follows from the commutation

relation i ◦ f̂ = f ◦ π that

i∗(b) = i∗(f̂∗([M̂ ])) = d f∗([M ]) = dk i∗(a).

Since the canonical inclusion i : H ↪→ G induces a monomorphism between the m-dimensional
rational homology groups, we deduce that b = dk a + c where c ∈ TorHm(H;Z). Thus,

‖b‖E = dk ‖a‖E .

Let g be an ε-extremal metric on M , that is,

Ωker f∗(M, g) ≤ Ωker f∗(M) + ε. (2.35)

Denote by ĝ the lift of g on M̂ . The cover of (M, g) of fundamental group ker f∗ is isometric

to the cover of (M̂, ĝ) of fundamental group ker f̂∗. Thus, the exponential growth rates of the

volume of balls in the two coverings are equal. Since π : M̂ → M is of degree d, we have

vol(M̂) = d vol(M). Therefore,

Ω
ker f̂∗

(M̂, ĝ) = dΩker f∗(M, g).

Now, by construction, (M̂, f̂) represents b. Hence,

dk ‖a‖E = ‖b‖E ≤ Ω
ker f̂∗

(M̂, ĝ) = dΩker f∗(M, g).

This inequality combined with the bounds (2.34) and (2.35) yields

‖a‖E ≤ ‖i∗(a)‖E + 2ε.

Hence the desired inequality ‖a‖E ≤ ‖i∗(a)‖E by letting ε go to zero. �
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3. Functorial properties of the volume entropy semi-norm

In this section, we present functorial properties of the volume entropy semi-norm and observe
similarities with the ones satisfied by the simplicial volume.

Theorem 3.1.

(1) Let f : X → Y be a continuous map between two path-connected topological spaces. Then
for every a ∈ Hm(X;R)

‖f∗(a)‖E ≤ ‖a‖E .

(2) Let f : M → K(π1(M), 1) be the classifying map of an orientable connected closed
manifold M . Then

‖f∗([M ])‖E = ‖M‖E .

(3) Let f : M → N be a degree d map between two oriented connected closed manifolds.
Then

‖M‖E ≥ |d| ‖N‖E .

(4) Let f : M → N be a d-sheeted covering map between two orientable connected closed
manifolds. Then

‖M‖E = d ‖N‖E .

(5) Let M1 and M2 be two orientable connected closed manifolds of dimension m ≥ 3. Then

‖M1]M2‖E ≤ ‖M1‖E + ‖M2‖E . (3.1)

(6) Let M be an orientable connected closed m-manifold with a negatively curved locally
symmetric metric g0. Then

‖M‖E = Ω(M, g0).

In particular, if M is a closed genus g surface then

‖M‖E = π‖M‖∆ = 4π(g − 1).

Remark 3.2. The properties (1)-(5) are also satisfied by the simplicial volume. However, the
simplicial volume is additive under connected sum in dimension at least 3; see [24]. That is, there
is equality in (3.1) if one replaces the volume entropy semi-norm with the simplicial volume. This
leads to the following questions. Is there equality in (3.1)? Similarly, is there equality in (2.22)?
A difficulty to overcome is that, contrarily to the simplicial volume, there is no cohomological
interpretation of the volume entropy semi-norm.

Remark 3.3. It follows from (3) that both the simplicial volume and the volume entropy semi-
norm of an orientable connected closed manifold admitting a map to itself of degree different from
0 and ±1 are equal to zero. In a different direction, by Theorem 4.12, both the simplicial volume
and the volume entropy semi-norm do not vanish for orientable connected closed manifolds
admitting a negatively curved Riemannian metric; see [24].
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Proof of Theorem 3.1.
(1) Observe that if (M,ϕ) is a geometric cycle representing a ∈ Hm(X;R) then (M,f ◦ ϕ) is

a geometric cycle representing f∗(a) ∈ Hm(Y ;R). Moreover, ωker f∗(M) ≥ ωker(ϕ◦f)∗(M) since
ker f∗ 6 ker(ϕ ◦ f)∗. This immediately implies (1).

(2) For m = 2, the assertion is obvious since the classifying map is the identity map when
M 6= S2. In case M = S2, all the terms of the relation vanish.

Suppose that m ≥ 3. The inequality ‖f∗([M ])‖E ≤ ‖M‖E follows from (1). For the reverse
inequality, consider the manifold Mk = M] · · · ]M defined as the connected sum of k copies
of M and the degree k map fk : Mk → M contracting all attaching spheres into a point. By
definition,

Ωker (fk)∗
(Mk) ≥ Ω(k [M ]). (3.2)

The composite map

Fk = f ◦ fk : Mk → K(π1(M), 1)

represents the class k f∗([M ]) ∈ Hm(π1(M);Z), that is, (Fk)∗([Mk]) = k f∗([M ]). Observe also
that it is π1-surjective. By [13, Theorem 10.2], this implies that

Ω(k f∗([M ])) = Ωker (Fk)∗
(Mk). (3.3)

Since f is π1-injective, Ωker (Fk)∗
(Mk) = Ωker (fk)∗

(Mk). Combined with (3.2) and (3.3), we derive

Ω(k f∗([M ]))

k
≥ Ω(k [M ])

k
.

By letting k go to infinity, we obtain ‖f∗([M ])‖E ≥ ‖M‖E , which implies (2).

(3) By definition, the assertion (3) immediately follows from (1).

(4) Let (Q,ψ) be a geometric cycle representing the class k [N ] ∈ Hm(N ;Z). By adding
handles to Q and mapping them to a generating set of π1(N) if necessary (contracting the
meridian spheres of the handles to points), we can assume that the map ψ : Q → N is π1-
surjective. By Theorem 2.8 (and Remark 2.9 when m = 2), adding such handles does not
increase the (relative) minimal volume entropy of the geometric cycle. Now, denote by P → Q
the covering of Q corresponding to the subgroup (ψ∗)

−1(Im f∗). Note that P is an oriented
connected closed m-pseudomanifold and that the covering map P → Q is of degree d. The map
ψ : Q→ N lifts to a map ϕ : P →M such that the following diagram

P M

Q N

ϕ

f

ψ

commutes. Observe that the geometric cycle (P,ϕ) represents the class k [M ] ∈ Hm(M ;Z).
Fix a piecewise Riemannian metric on Q and lift it to P . Since P → Q is a d-sheeted covering

map and kerϕ∗ = kerψ∗, we have Ωkerϕ∗(P ) ≤ dΩkerψ∗(Q). Thus,

Ω(k [M ]) ≤ dΩ(k [N ]).

Dividing this inequality by k and letting k go to infinity, we obtain

‖M‖E ≤ d ‖N‖E .

The reverse inequality ‖M‖E ≥ d ‖N‖E follows from (3).

(5) The idea is to realize [M1]M2] as the sum of [M1] and [M2] in a common topological space
and to apply Corolllary 2.11. Let Ki = K(π1(Mi), 1) be a classifying space for Mi. Since m ≥ 3,
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the bouquet K = K1 ∨K2 is a classifying space for M1]M2. By the Mayer-Vietoris theorem, we
have

Hm(K;Z) ' Hm(K1;Z)⊕Hm(K2;Z).

Denote by [Mi]K ∈ Hm(K;Z) the image of the fundamental class of Mi under the homology
homomorphism induced by the map fKi : Mi → K, which is defined as the composite of the
classifying map fi : Mi → Ki and the inclusion map Ki ↪→ K = K1 ∨K2. Observe that

f∗([M1]M2]) = [M1]K + [M2]K

where f : M1]M2 → K is the classifying map of M1]M2. By (2) and the triangle inequality of
the volume entropy semi-norm, see Corollary 2.11, we derive

‖M1]M2‖E = ‖f∗([M1]M2])‖E ≤ ‖[M1]K‖E + ‖[M2]K‖E .

By (1), we also have ‖[Mi]K‖E ≤ ‖[Mi]‖E = ‖Mi‖E . Hence the result.

(6) The proof proceeds from a mild improvement on the minimal volume entropy estimate
for closed manifolds admitting nonzero maps onto closed negatively curved locally symmetric
manifolds; see [9]. This mild improvement, leading to (3.6), was carried out in [42, Theorem 2.5]
for n ≥ 3 with the construction of a nonexpanding-volume map following [9]. Our approach
is similar, except that it rests on the calibration argument of [9] (which can be applied to
pseudomanifolds) and applies to both cases n ≥ 3 and n = 2. We refer to [9] for the notations
(accordingly renaming M to X), the definitions and further details.

Let f : Y → X = M be a map from an oriented connected closed m-pseudomanifold rep-
resenting k [X]. The map f lifts to a map f : Y → X̃, where Y is the covering of Y with

π1(Y ) = ker f∗. (This is the main difference with [9, §8], where the map is lifted to Ỹ → X̃.)
Given a piecewise Riemannian metric g on Y , denote by g the lifted metric on Y . Fix c > 0.
Consider the π1(Y )/ ker f∗-equivariant map Ψc : Y → S∞+ ⊂ L2(∂X̃, dθ) defined as

Ψc(y, θ) =

(∫
Y e
−c dg(y,z)p0(f(z), θ) dvg(z)∫
Y e
−c dg(y,z) dvg(z)

) 1
2

where p0 is the Poisson kernel of (X̃, g̃0); see [9]. The arguments of [9] show that the map Ψc is
only defined when c > entker f∗(Y, g) and that√

detg(gΨc) ≤
cm

(4m)m/2
(3.4)

where gΨc is the pull-back under Ψc of the Hilbert metric on L2(∂X̃, dθ). Loosely speak-

ing, the equivariant map Ψc converges to the composite of f with the embedding
√
p0 of X̃

into L2(∂X̃, dθ) given by the Poisson kernel when c goes to entker f∗(Y, g). The Poisson embed-

ding
√
p0 is an isometry up to some factor (i.e., g√p0

=
entker f∗ (Y,g)

4m g0) admitting an equivariant
calibration form in the infinite dimensional sphere S∞+ as explained below.

Denote by π : S∞+ → X̃ the barycenter map, i.e., π(ρ) = bar(ρ2(θ) dθ); see [9]. The following
calibration result was established in [9, Proposition 5.7] for m ≥ 3 and in [9, Theorem 6.2] for

m = 2. Let ω0 be the volume form on (X̃, g̃0). The π1(X)-equivariant closed m-form π∗ω0

on S∞+ calibrates the embedding Φ0 : X̃ → S∞+ ⊂ L2(∂X̃, dθ) defined as Φ0(x) =
√
p0(x, ·).

Furthermore,

comass(π∗ω0) =
(4m)m/2

ent(X, g0)m
. (3.5)
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Now, the map π ◦ Ψc is homotopic to π ◦ Ψ0, where Ψ0 = Φ0 ◦ f , through equivariant maps
from Y to X̃. By (3.4) and (3.5), we derive

|(π ◦Ψc)
∗(ω0)| = |Ψ∗c(π∗ω0)| ≤

(
c

ent(X, g0)

)m
|ωg|.

By a calibration argument, we deduce that

|deg(f)| · vol(X, g0) ≤
∫
Y
|(π ◦Ψc)

∗(ω0)| ≤
(

c

ent(X, g0)

)m
vol(Y, g)

passing the volume form to the quotient. As c go to entker f∗(Y, g), we obtain

Ω(X, g0) ≤
Ωker f∗(Y, g)

k
. (3.6)

Taking the infimum over all piecewise Riemannian metrics g on Y and over all geometric cy-
cles (Y, f) representing k [X], we derive Ω(X, g0) ≤ ‖X‖E after letting k go to infinity.

The reverse inequality is obvious. �

Remark 3.4. The assertion (6) can be extended to the following case. If M is an orientable
connected closed 2m-manifolds given by a compact quotient of the product of m hyperbolic
planes H2 then

‖M‖E = Ω(M, g0)

where g0 is the unique locally symmetric metric of minimal volume entropy on M among all
locally symmetric metrics of given volume. Indeed, the proof can be adapted to follow the argu-
ment of [37] based on the same calibration method as [9]. Loosely speaking, we replace X̃

by the m-product H2 × · · · × H2, ∂X̃ by the Furstenberg boundary ∂F (H2 × · · · × H2) =
Tm, dθ by the product Lebesgue probability measure on Tm, and p0(x, θ) by the product
p0(x1, θ1) · · · p0(xm, θm) of the Poisson kernel of ∂H2. The main difference is that the calibra-
tion form π∗ω0 of the π1(X)-equivariant embedding Φ0 is not constructed from the barycenter
map π, but is given by a combinatorial (2m− 1)-cocycle of Tm; see [37] for the detail.

We need a couple of definitions to present the next result.

Definition 3.5. For i = 1, 2, let Vi be a R-vector space endowed with a semi-norm ‖.‖i. The
tensor product V1⊗V2 inherits the semi-norm ‖.‖⊗ given by the tensor product of ‖.‖1 and ‖.‖2;
see [44]. By definition, for every u ∈ V1 ⊗ V2, we have

‖u‖⊗ = inf

{∑
s

‖xs‖1 ‖ys‖2 | u =
∑
s

xs ⊗ ys

}
(3.7)

where the infimum is taken over all the representations of u by finite sums of simple tensor
products.

In the sequel, we endow the direct sum of semi-normed vector spaces with the direct sum of the
semi-norms. With this convention, the graded vector space of the real homology H∗(X;R) of a
path-connected topological space X is endowed with the graded volume entropy semi-norm ‖.‖∗E
given on each homogenous component by

‖a‖mE =
1

mm
‖a‖E

for every a ∈ Hm(X;R).
The real homology of the direct product X1×X2 of two path-connected topological spaces X1

and X2 is canonically endowed with two semi-norms. The first one is the usual volume entropy
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semi-norm ‖.‖∗E . The second one is defined via Künneth’s formula

Hm(X1 ×X2;R) '
⊕
i+j=m

Hi(X1;R)⊗Hj(X2;R)

as the tensor product norm, see (3.7), of the graded volume entropy semi-norms ‖.‖(i)∗E onH∗(Xi;R).

It is denoted by ‖.‖⊗E .

We can now state our next result.

Theorem 3.6. Let X1 and X2 be two path-connected topological spaces. Then, for every a ∈
H∗(X1 ×X2;R), the following inequality holds

‖a‖∗E ≤ ‖a‖⊗E .

Proof. It is enough to prove the inequality for homogeneous elements. Every homology class
a ∈ Hm(X1 ×X2;R) admits a representation as a sum of simple tensor products

a =
∑
s

xs ⊗ ys (3.8)

where xs ∈ His(X1;R) and ys ∈ Hjs(X2;R) with is + js = m. By the triangle inequality,

‖a‖∗E ≤
∑
s

‖xs ⊗ ys‖∗E . (3.9)

By multiplying if necessary the homology class a by an appropriate natural number, we can
suppose that all classes xs and ys in (3.8) are represented by closed manifolds. Proposition 2.6
of [1] implies that

‖xs ⊗ ys‖∗E ≤ ‖xs‖∗E ‖ys‖∗E .
Plugging this bound in (3.9) and minimizing over all the simple tensor product representa-
tions (3.8), we obtain the desired inequality. �

4. Volume entropy semi-norm and simplicial volume

In this section, we show that the volume entropy semi-norm of a homology class is bounded
from above and below by its simplicial volume, up to some multiplicative constants depending
only on the dimension of the homology class. Therefore, the volume entropy semi-norm and the
simplicial volume are equivalent homology semi-norms.

4.1. Geometrization of the simplicial volume.

Let us introduce some topological invariants.

Definition 4.1. Let K be an m-dimensional topological space supplied with a finite pseudo-
triangulation (also referred to as a pseudo-simplicial complex or a ∆-complex ; see [29, §2.1]).
Loosely speaking, the space K is a finite cell complex where the closure of each cell is home-
omorphic to the standard simplex of the same dimension. In comparison with usual simplicial
complexes, a simplex in a pseudo-triangulation is not uniquely defined by its vertices. An m-
dimensional geometric ∆-cycle is a disjoint finite union of m-dimensional ∆-complexes whose
pseudo-triangulations satisfy the conditions (1), (2) and (3) of Definition 2.1.

The geometric complexity of K, denoted by κ(K), is the number of m-simplices of K. Define
the geometric complexity of a homology class a ∈ Hm(X;Z) as

κ(a) = inf
P
κ(P )

where P runs over the m-dimensional geometric ∆-cycle representing a. That is, there is a map
h : P → X such that h∗([P ]) = a, where the class [P ] is the sum of the fundamental classes
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of the connected components of P with the appropriate orientations. Define also the average
geometric complexity of a as

κ∞(a) = lim
n→∞

κ(na)

n
. (4.1)

Note that the function κ(na) is subadditive in n, which ensures the existence of the limit (4.1).

Furthermore, κ∞(a) ≤ κ(na)
n for every n ≥ 1.

We will also need the following definition extension the notion of simplicial volume to homol-
ogy classes with coefficients in more general rings.

Definition 4.2. Let X be a topological space and A = Z or Q. For every a ∈ Hm(X;A), define

‖a‖A∆ = inf
c
‖c‖1

where the infimum is taken over all m-cycles c ∈ C(X;A) with coefficients in A representing a.

We present a couple of known results, including the proofs for the sake of completeness. The
first result can be found in [45, Lemma 2.9]. See [27, 5.41.(a)] for a previous statement.

Lemma 4.3. Every homology class a ∈ Hm(X;Z) satisfies

‖a‖∆ = ‖a‖Q∆.

Proof. Let σ (resp. σ′) be a real (resp. rational) m-cycle representing the real homology class
induced by a. The difference σ − σ′ is the boundary of an (m+ 1)-chain c ∈ Cm+1(X,R), that
is,

σ − σ′ = ∂c.

By density of Q in R, there is a rational (m + 1)-chain c′ (with the same support) such that
‖c − c′‖1 is arbitrarily small. Since the boundary of every (m + 1)-simplex is formed of m + 2
simplices of dimension m, we have

‖∂z‖1 ≤ (m+ 2) ‖z‖1
for every (m+ 1)-chain z ∈ Cm+1(X;R). Thus,

‖σ − (σ′ + ∂c′)‖1 ≤ ‖∂(c− c′)‖1 ≤ (m+ 2) ‖c− c′‖1
is arbitrarily small. Therefore, the real cycle σ and the rational cycle σ′ + ∂c′, which both
represent the real homology class induced by a, have arbitrarily closed ‖ · ‖1-semi-norms. Hence
the result. �

Proposition 4.4. Every homology class a ∈ Hm(X;Z) satisfies

‖a‖Z∆ = κ(a) (4.2)

‖a‖∆ = κ∞(a). (4.3)

Proof. The inequality ‖a‖Z∆ ≤ κ(a) is obvious and the reverse inequality κ(a) ≤ ‖a‖Z∆ can be
found in [35, Proposition 2.1] (and also follows from [29, p. 108-109]). Hence the relation (4.2).

Applying the average procedure of (4.1) to the obvious inequality ‖a‖∆ ≤ κ(a) yields the
bound ‖a‖∆ ≤ κ∞(a). For every ε > 0, we also have

κ(na)

n
=
‖na‖Z∆
n

≤ ‖a‖Q∆ + ε

for some positive integer n, where the first equality follows from (4.2). Thus, κ∞(a) ≤ ‖a‖Q∆ + ε
by subadditivity of the function κ(na) with respect to n. By Lemma 4.3, this yields the bound
κ∞(a) ≤ ‖a‖∆ + ε for every ε > 0. Hence the relation (4.3). �
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4.2. Universal realization of homology classes.

Let us introduce some results in geometric topology following [20], [21] and [22], which rely
on C. Tomei’s work [49].

Definition 4.5. The m-permutahedron Πm is the convex hull of the (m+1)! points obtained by
permutations of the coordinates of the point (1, 2, . . . ,m + 1) of Rm+1. It is an m-dimensional
simple convex polytope of Rm+1 with 2m+1 − 2 facets, i.e., (m − 1)-faces, that lies in the
hyperplane

x1 + · · ·+ xm+1 =

m+1∑
j=1

j =
(m+ 1)(m+ 2)

2
.

Here, an m-polytope is simple if each of its vertices is contained in exactly m facets.
From a more geometric point of view, see [23], the m-permutahedron Πm can be obtained by

truncating the standard simplex ∆m ⊆ Rm+1 given by

x1 + · · ·+ xm+1 = 1

with xi ≥ 0 as follows. First, truncate the vertices of ∆m by the hyperplanes xi = 1− 1
4 . Then,

truncate the edges of ∆m by the hyperplanes

xi1 + xi2 = 1−
(

1

4

)2

.

At the k-th step, truncate the (k − 1)-faces of ∆m by the hyperplanes

xi1 + · · ·+ xik = 1−
(

1

4

)k
.

The resulting polytope is combinatorially equivalent to the m-permutahedron Πm. The faces F
of Πm correspond to the faces ∆ = ∆F of ∆m after truncation of which they appear.

Consider the canonical piecewise linear map Θ : Πm → ∆m which takes every face F of Πm

to its corresponding face ∆F in ∆m. More precisely, define Θ on the barycenters bF of the faces
of Tm by sending bF to the barycenter of ∆F . Then extends this map linearly to every simplex
of the barycentric subdivision of Tm; see [22]. Note that Θ is a degree one map which is injective
in the interior of Πm.

Definition 4.6. Consider the manifold M0 of real symmetric tridiagonal matrices of size m+ 1
with eigenvalues λi = i, for i = 1, . . . ,m+ 1. Here, a matrix A = (ai,j) is tridiagonal if ai,j = 0
whenever |i− j| > 1. The manifold M0 will be referred to as the isospectral m-manifold.

It was proved by C. Tomei [49] that the isospectral manifold M0 is an orientable closed
aspherical m-manifold. By [49], [16], [20], [21] and [22], the isospectral m-manifold M0 is tiled
by 2m copies of the m-permutahedron Πm. More precisely, the manifold M0 can be decomposed
as

M0 ' (Zm2 ×Πm)/∼
where the equivalence relation is generated by (s, x) ∼ (r|ω|s, x) whenever x ∈ Fω. Here, the
elements ri are the standard generators of Zm2 .

We will rely on the following universal property established by A. Gaifullin [20], [21] regarding
Steenrod’s problem and the realization of cycles by closed manifolds.

Theorem 4.7 ([20], [21]). Let X be a path-connected topological space. Then for every homology

class a ∈ Hm(X;Z), there exist a connected finite-fold covering M̂0 → M0 of the isospectral

manifold and a map f : M̂0 → X such that

f∗([M̂0]) = q a



VOLUME ENTROPY SEMI-NORM AND SYSTOLIC VOLUME SEMI-NORM 27

for some positive integer q depending on a.

Remark 4.8. When m = 2, the isospectral surface M0 is the genus 2 surface. More precisely,
the permutahedron is an hexagon, the surface M0 is tiled with 4 copies of this hexagon and
these 4 copies surround every vertex of M0; see [49].

4.3. Homology norm comparison: upper bound on the volume entropy semi-norm.

Let us state the main theorem of this section.

Theorem 4.9. Let m be a positive integer. Then there exists a constant Cm > 0 such that every
homology class a ∈ Hm(X;Z) of a path-connected topological space X satisfies

‖a‖E ≤ Cm ‖a‖∆.

Proof. Let a ∈ Hm(X;Z). By Proposition 4.4, see (4.3), for every ε > 0 and every integer s large
enough, there exists a map h = hs : P → X from an m-dimensional geometric ∆-cycle P = Ps
such that

h∗([P ]) = sa (4.4)

s‖a‖∆ ≤ κ(P ) ≤ s(‖a‖∆ + ε). (4.5)

The second barycentric subdivision of P gives rise to a simplicial structure on P ; see [29].
In general, the complex P is not connected. After the second barycentric subdivision, we can
take the connected sum of the connected components by omitting out some m-simplices and
gluing together the components to obtain an orientable connected closed pseudomanifold, still
denoted by P . Note that this operation does not increase the number of m-simplices. Taking
a third barycentric subdivision ensures that the simplicial structure admits a regular coloring
in m + 1 colors (that is, any two vertices connected by an edge are of distinct colors) in order
to apply some constructions of [22]. Recall that the barycentric subdivision of a simplicial
complex admits a regular coloring where every vertex which is the barycenter of an r-simplex
of the original triangulation is of color r. The pseudomanifold P with this simplicial structure
is denoted by Z. Since the barycentric subdivision of an m-simplex gives rise to m! simplices of
dimension m, we obtain

κ(Z) ≤ (m!)3 κ(P ). (4.6)

By Theorem 4.7, there exists a map f : M̂0 → Z from a finite covering M̂0 of M0 such that

f∗([M̂0]) = q [Z] ∈ Hm(Z;Z) (4.7)

for some positive integer q.

Consider the piecewise flat metric on M0 where all permutahedra are isometric to the standard
permutahedron Πm with its canonical Euclidean metric. The volume of M0 is equal to 2mvm,
where vm is the Euclidean volume of Πm.

By construction, see [20], [21] and [22], the map f : M̂0 → Z satisfies the following features.

The map f : M̂0 → Z takes every permutahedron Πm of M̂0 to a simplex ∆m of Z and its
restriction to Πm agrees with the canonical piecewise linear map Θ : Πm → ∆m introduced in

Definition 4.5. Furthermore, the number of permutahedra of the covering M̂0 is equal to q κ(Z),
where q is the degree of f ; see the end of the proof of Proposition 5.3 of [22]. Therefore, the

volume of M̂0 satisfies

vol(M̂0) = q κ(Z) vm (4.8)

where vm is the Euclidean volume of Πm.
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Consider the composite map ϕ = h ◦ f : M̂0 → Z ' P → X. We derive from (4.7) and (4.4)
that

ϕ∗([M̂0]) = qsa.

By definition of the volume entropy semi-norm, we have

‖qsa‖E ≤ entϕ(M̂0)m vol(M̂0).

It follows from (4.8), (4.6) and (4.5) that

vol(M̂0) ≤ q (m!)3 s(‖a‖∆ + ε) vm.

Since entϕ(M̂0) ≤ ent(M0), we deduce that

qs ‖a‖E ≤ qs (m!)3C ′m (‖a‖∆ + ε)

where C ′m = ent(M0)m vm is a constant which only depends on m. Simplifying by qs and
letting ε go to zero, we obtain

‖a‖E ≤ Cm ‖a‖∆
where Cm = (m!)3C ′m. �

Remark 4.10. An estimate on the volume entropy ent(M0) of the isospectral m-manifold
provides an estimate on the constant Cm in Theorem 4.9.

Remark 4.11. A referee pointed out to us that Theorem 4.9 can be derived from [15, Propo-
sition 7.11] combined with Theorem 3.1.(4), once the notion of the volume entropy semi-norm
is well established. The current presentation allows us to make a connection with the proof of
Theorem 5.1.

4.4. Homology norm comparison: lower bound on the volume entropy semi-norm.

Let us show a reverse inequality to Theorem 4.9.

Theorem 4.12. Let m be a positive integer. Then there exists a constant cm > 0 such that
every homology class a ∈ Hm(X;Z) of a path-connected topological space X satisfies

‖a‖E ≥ cm ‖a‖∆.

In order to prove this theorem, we will need the following classical interpretation of the
simplicial volume in terms of bounded cohomology; see [24] for the definitions.

Proposition 4.13. Let X be a topological space. Then every homology class a ∈ Hm(X;R)
satisfies

‖a‖∆ = sup

{
1

‖α‖∞
| α ∈ Hm

b (X;R), 〈α,a〉 = 1

}
where Hm

b (X;R) denotes the bounded cohomology of X of degree m.

The following result is a technical extension of M. Gromov’s inequality (1.6).

Proposition 4.14. Let m be a positive integer. Then there exists a constant cm > 0 such that
for every map Φ : M → X from an oriented connected closed m-manifold M to a path-connected
topological space X, we have

Ωker Φ∗(M) ≥ cm ‖Φ∗([M ])‖∆.
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Proof. Fix a Riemannian metric g on M . Let M̄ →M be the covering of M with fundamental
group ker Φ∗. The quotient group Γ = π1(M̄)/ ker Φ∗ acts by deck transformations on M̄ .
Denote by M(M̄) the Banach space of finite (signed) measures µ on M̄ with the norm

‖µ‖ =

∫
M̄
|µ|.

Denote also byM+(M̄) ⊆M(M̄) the cone of positive measures. Following [24, §2.4], a smooth-
ing operator on M̄ is a smooth Γ-equivariant map S : M̄ →M+(M̄). Define

[S ] = sup
x∈M̄

‖dxS ‖
‖S (x)‖

.

Let α ∈ Hm
b (X;R) such that 〈α,Φ∗([M ])〉 = 1, where 〈·, ·〉 is the the bilinear pairing between

cohomology and homology given by the Kronecker product. Define β = Φ∗(α) ∈ Hm
b (M ;R).

Clearly, ‖β‖∞ ≤ ‖α‖∞ and 〈β, [M ]〉 = 1. By [24, Proposition, p.33], there exists a closed
m-form ω on M representing the cohomology class β ∈ Hm(M ;R) such that

‖ω‖ ≤ m! ‖β‖∞ [S ]m (4.9)

for every smoothing operator S : M̄ →M+(M̄).
For λ > entker Φ∗(M), define S = Sλ,R : M̄ →M+(M̄) as

S (x) =
(
e−Rdḡ(x,·) − e−λR

)
1Bḡ(x,R)(·) dvolḡ(·).

By [24, §2.5], see also [7] for further details, there exists a positive constant Am depending only
on m such that

[S ] ≤ Am λ (4.10)

for R large enough. Technically speaking, the bound is stated in [24] and [7] when M̄ is the
universal covering of M , but the proof is exactly the same for intermediate coverings.

Integrating ω on M using the relation 〈ω, [M ]〉 = 1 and the combination of (4.9) with the
bounds ‖β‖∞ ≤ ‖α‖∞ and (4.10), we obtain

1 ≤ m! (Am)m ‖α‖∞ entker Φ∗(M)m vol(M).

Hence,
cm ‖Φ∗([M ])‖∆ ≤ Ωker Φ∗(M)

by Proposition 4.13, with cm = (m! (Am)m)−1, where Am is the multiplicative constant in (4.10).
�

We can now proceed to the proof of Theorem 4.12.

Proof of Theorem 4.12. For every ε > 0, there exists a positive integer k such that

Ω(k a) ≤ k (‖a‖E + ε).

Thus, there exists a map ϕ : P → X defined on an oriented connected closedm-pseudomanifold P
such that ϕ∗([P ]) = k a and

Ωkerϕ∗(P ) ≤ Ω(k a) + ε ≤ k ‖a‖E + (k + 1)ε. (4.11)

By Thom’s theorem [48], there exists a map f : M → P defined on an oriented connected
closed m-manifold M such that

f∗([M ]) = d [P ] ∈ Hm(P ;Z)

for some suitable nonzero integer d. Extend f : M → P by handle attachements into a π1-
surjective map f ′ : M ′ → P where

M ′ = M]
(
]li=1S

1 × Sm−1
)
.
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Clearly, f ′∗([M
′]) = f∗([M ]) = d [P ]. By [1, Proposition 2.2], we have

Ωker Φ∗(M
′) ≤ dΩkerϕ∗(P ) (4.12)

where Φ : M ′ → X is the composite map Φ = ϕ ◦ f ′.
Now observe that Φ∗([M

′]) = dk a. By Proposition 4.14, we derive

cm dk ‖a‖∆ ≤ Ωker Φ∗(M
′). (4.13)

Combining the inequalities (4.11), (4.12) and (4.13), dividing by dk and letting ε go to zero,
we obtain

cm ‖a‖∆ ≤ ‖a‖E
as desired. �

Remark 4.15. By a density argument, it follows from Theorem 4.9 and Theorem 4.12 that the
volume entropy semi-norm and the simplicial volume semi-norm are equivalent in real homology,
and not only in integral homology A natural question would be to determine whether or not
the two semi-norms are proportional or not in every degree, though we do not have any strong
evidence for that.

5. Systolic volume of a multiple homology class

The following asymptotically optimal upper bound on the systolic volume of the multiples of
a given homology class positively answers a conjecture of [5], where a sublinear upper bound
was established.

Theorem 5.1. Let m be a positive integer. For every homology class a ∈ Hm(X;Z) of a path-
connected topological space X, there exists a constant C = C(a) > 0 such that for every k ≥ 2,
we have

σ(k a) ≤ C k

(log k)m
.

The proof of Theorem 5.1 rests on some systolic estimates in geometric group theory based
on the following notion.

Definition 5.2. Let G be a finitely generated group and S be a finite generating set of G.
Denote by dS the word distance induced by S. For every finite index subgroup Γ 6 G, define

sys(Γ, dS) = inf
γ∈Γ\{e}

dS(e, γ).

The systolic growth of finitely generated linear groups has been described by K. Bou-Rabee
and Y. Cornulier; see [11]. Originally stated in terms of residual girth rather than in terms of
systolic growth, their result can be written as follows.

Theorem 5.3. Let G be a finitely generated linear group over a field and S be a finite symmetric
generating set of G. Then there exist a constant C0 > 0 and an infinite sequence of subgroups
Γk 6 G of finite index k such that

sys(Γk, dS) ≥ C0 log k.

Remark 5.4. A similar estimate has been previously stated without proof by M. Gromov for
finitely generated subgroups G of SLd(Z) under the extra assumption that no unipotent element
lies in G; see [26, Elementary Lemma, p. 334].
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We need to review some features of the isospectralm-manifoldM0 introduced in Definition 4.6.

It was proved by C. Tomei [49] that M0 is an orientable closed aspherical m-manifold. By
M. Davis [16], its fundamental group G = π1(M0) is isomorphic to a torsion-free subgroup of
finite index of the Coxeter group

W = 〈s1, . . . , sm, r1, . . . , rm | s2
i = r2

i = 1, sisj = sjsi for |i− j| > 1,

sisi+1si = si+1sisi+1, rirj = rjri, sirj = rjsi for i 6= j〉.

Recall that J. Tits showed that every Coxeter group admits a faithful linear representation into
a finite-dimensional vector space; see [12, Chap. V, §4, Corollary 2]. Thus, the group G is linear.
This is an important feature in view of Theorem 5.3.

We can now proceed to the proof of Theorem 5.1.

Proof of Theorem 5.1. Let G = π1(M0). Fix a finite symmetric generating set S of G once and
for all. The metric on M0 induced by the Hilbert-Schmidt metric (also called the Frobenius
metric) on the space Mm+1(R) of square matrices of size m+ 1 lifts to a metric d0 on the

universal covering M̃0 of M0. (Here, the choice of the metric does not matter. We simply fix one

once and for all.) Since M0 is compact, its universal covering M̃0 is quasi-isometric to (G, dS);
see [28, IV.B, Theorem 23]. More precisely, there exist some constants A0 > 1 and B0 > 0 such

that for every γ ∈ G and every x ∈ M̃0, we have

A−1
0 dS(e, γ)−B0 ≤ d0(x, γ · x) ≤ A0 dS(e, γ) +B0. (5.1)

Note that A0 and B0 only depend on m.

By Theorem 4.7, there exist a map f : M̂0 → X from a finite covering M̂0 of M0 and a
positive integer q such that

f∗([M̂0]) = q [a]. (5.2)

Let Γ 6 Ĝ := π1(M̂0) be a finite index subgroup of Ĝ. Denote by fΓ : M̃0/Γ → X the lift of

f : M̂0 → X under the canonical projection πΓ : M̃0/Γ → M̂0. By the first inequality of (5.1),
we have

A−1
0 sys(Γ, dS)−B0 ≤ sys(M̃0/Γ) ≤ sysfΓ

(M̃0/Γ). (5.3)

Now, apply Theorem 5.3 about the systolic growth of linear groups to the finitely generated

linear group Ĝ. Thus, there exists a sequence of subgroups Γk 6 Ĝ of finite index [Ĝ : Γk] = k ≥ 2
such that

sys(Γk, dS) ≥ C0 log k (5.4)

for some C0 > 0 which does not depend on k.

Let M̂k = M̃0/Γk. We derive from (5.3) that

sysfk(M̂k) ≥ A−1
0 C0 log k −B0 ≥ D0 log k (5.5)

where fk : M̂k → X is the lift of f : M̂0 → X and D0 > 0 does not depend on k. Since Γk is of

index k in Ĝ and the map f : M̂0 → X represents q a, we deduce that

(fk)∗([M̂k]) = kq a.

Since vol(M̂k) = k vol(M̂0), this yields the inequalities

σ(kq a) ≤ σfk(M̂k) ≤ C ′
k

(log k)m
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for every k ≥ 2, where C ′ = C ′(a) does not depend on k. Since σ is sub-additive, see [5,
Proposition 3.6], we derive

σ(k a) ≤ σ
(⌈k

q

⌉
q a

)
≤ C k

(log k)m

for every k ≥ 2, where C = C(a) does not depend on k. �

6. Systolic volume semi-norm and functorial properties

In this section, we define the systolic volume semi-norm and present its functorial properties
along with some comparison results.

6.1. Systolic volume semi-norm.

Theorem 5.1 allows us to define the systolic volume semi-norm in real homology of dimen-
sion m ≥ 3. This definition is based on the following observation, whose proof is left to the
reader.

Lemma 6.1. Let M be a Z-module endowed with a translation-invariant pseudo-distance %.
Given a function h : N→ R+ with limk→∞ h(k) =∞, suppose that for every a ∈M, there is a
positive constant C = C(a) such that %(0, k a) ≤ C h(k) for every k ∈ N. Then

%̂(a,b) = lim sup
k→∞

%(k a, k b)

h(k)
(6.1)

defines a translation-invariant pseudo-distance on M.

Let X be a path-connected topological space. Apply Lemma 6.1 with h(k) = k
(log k)m (see

Theorem 5.1) to the translation-invariant pseudo-distance % defined on Hm(X;Z) with m ≥ 3
by %(a,b) = σ(a − b); see [5, Corollary 5.3]. This yields a new translation-invariant pseudo-
distance %̂ on Hm(X;Z). Define the systolic volume semi-norm of a ∈ Hm(X;Z) as

‖a‖σ = lim
k→∞

σ̂(k a)

k
(6.2)

where σ̂(a) = %̂(0,a).

Remark 6.2. The behavior of σ(k a) as a function of k can be quite irregular; see [5, §5.4].
This suggests it may not be possible to replace the lim sup in (6.1) by the usual limit for
%(a,b) = σ(a− b). It is also unclear, though unlikely, whether the second stablization process
in (6.2) can be omitted in the definition of the systolic volume semi-norm.

We following lemma is useful to establish upper bounds on the systolic volume semi-norm.

Lemma 6.3. Let a,b ∈ Hm(X;Z) with m ≥ 3, where X is a path-connected topological space.

(1) Suppose that there exists λ ≥ 0 such that

σ(k a) ≤ λσ(k b)

for every integer k ≥ 1. Then ‖a‖σ ≤ λ ‖b‖σ.
(2) Suppose that there exists σ0 ≥ 0 such that

σ(k a) ≤ k

(log k)m
σ0

for every integer k ≥ 2. Then ‖a‖σ ≤ σ0.
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Proof.

(1) By assumption, replacing k by kp, we have σ(kpa) ≤ λσ(kpb). Dividing this inequality
by k

(log k)m and letting k go to infinity, we obtain σ̂(pa) ≤ λ σ̂(pb). Dividing this inequality by p

and letting p go to infinity, we derive the desired bound ‖a‖σ ≤ λ ‖b‖σ.

(2) By assumption, replacing k by kp, we have

σ(kpa) ≤ kp

(log k + log p)m
σ0.

Dividing this inequality by k
(log k)m and letting k go to infinity, we derive σ̂(pa) ≤ p σ0. Dividing

this inequality by p and letting p go to infinity, we obtain ‖a‖σ ≤ σ0 as desired. �

6.2. Functorial properties of the systolic volume semi-norm.

As in Section 3, we establish functorial properties of the systolic volume semi-norm similar
to the ones satisfied by the simplicial volume.

Theorem 6.4. Let m ≥ 3 be an integer.

(1) Let f : X → Y be a continuous map between two path-connected topological spaces. Then
for every a ∈ Hm(X;R)

‖f∗(a)‖σ ≤ ‖a‖σ.

(2) Let f : M → K(π1(M), 1) be the classifying map of an orientable connected closed
manifold M . Then

‖f∗([M ])‖σ = ‖M‖σ.

(3) Let f : M → N be a degree d map between two oriented connected closed manifolds.
Then

‖M‖σ ≥ |d| ‖N‖σ.

(4) Let f : M → N be a d-sheeted covering map between two orientable connected closed
manifolds. Then

‖M‖σ = d ‖N‖σ.

(5) Let M1 and M2 be two orientable connected closed manifolds of dimension m ≥ 3. Then

‖M1]M2‖σ ≤ ‖M1‖σ + ‖M2‖σ. (6.3)

Remark 6.5. As in Remark 3.2, we can ask whether equality holds in (6.3). Here is a consider-
ation suggesting this question might be rather subtle. By Theorem A of [4], for every essential
m-manifold M1 with m ≥ 4, there exists an essential m-manifold M2 such that

σ(M1]M2) < σ(M1) + σ(M2).

Now, it is unclear whether this strict inequality subsists or not under the double stabilization
process in the definition of the systolic volume semi-norm. More generally, the inequalities (3.1),
(6.3) and the one for the simplicial volume reflect convexity properties of the semi-norms. Even if
the three semi-norms are equivalent (as we will see), we have no strong evidence that the volume
entropy semi-norm and the systolic volume semi-norm satisfy the same additivity property as
the simplicial volume.
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Proof of Theorem 6.4. We argue as in the proof of Theorem 3.1, pointing out only the differences.

(1) Observe that if (M,ϕ) is a geometric cycle representing a ∈ Hm(X;R) then (M,f ◦ ϕ) is
a geometric cycle representing f∗(a) ∈ Hm(Y ;R). Since every (f ◦ϕ)-noncontractible loop of M
is f -noncontractible, we derive sysf (M) ≤ sysf◦ϕ(M). Hence, σf (M) ≥ σf◦ϕ(M). This implies
that σ(f∗(a)) ≤ σ(a). Replacing a by k a and applying Lemma 6.3.(1), we obtain the desired
inequality ‖f∗(a)‖σ ≤ ‖a‖σ.

(2) We consider the degree k map fk : Mk → M defined on the connected sum Mk =
M] . . . ]M of k copies of M . By definition, σfk(Mk) ≥ σ(k [M ]). Consider also the composite
map Fk = f ◦ fk : Mk → K(π1(M), 1), where (Fk)∗([Mk]) = k f∗([M ]). Note that Fk is
π1-surjective. By [13, Theorem 10.2], this implies that σFk

(Mk) = σ(k f∗([M ])). Since f is
π1-injective, sysFk

(Mk) = sysfk(Mk). Hence, σFk
(Mk) = σfk(Mk). Combining the previous

estimates, we obtain

σ(k f∗([M ])) ≥ σ(k [M ]).

By Lemma 6.3.(1), we derive ‖f∗([M ])‖σ ≥ ‖M‖σ. Since the reverse inequality follows from (1),
this implies (2).

(3) By definition, the assertion (3) immediately follows from (1).

(4) Construct a geometric cycle (Q,ψ) representing k [N ] ∈ Hm(N ;Z) with ψ : Q → N π1-
surjective, whose (relative) systolic volume σψ(Q) is arbitrarily close to σ(k [N ]). Consider the
geometric cycle (P,ϕ) representing k [M ] ∈ Hm(M ;Z) where P is the cover of Q corresponding
to the subgroup (ψ∗)

−1(Im f∗) and ϕ : P → M is the lift of ψ : Q → N . Since P → Q is a
d-sheeted covering map and kerϕ∗ = kerψ∗, we have σϕ(P ) ≤ d σψ(Q). Thus,

σ(k [M ]) ≤ d σ(k [N ]).

By Lemma 6.3.(1), we derive the inequality ‖M‖σ ≤ d ‖N‖σ. The reverse inequality follows
from (3).

(5) The proof of similar to the proof of the point (5) in Theorem 3.1. Simply replace the
volume entropy semi-norm ‖ · ‖E by the systolic volume semi-norm ‖ · ‖σ. �

6.3. Systolic volume comparison.

We present analogues of comparison results obtained for the minimal volume entropy (semi-
norm) in Section 2 to the systolic volume (semi-norm) case.

It is convenient to introduce the following definitions. LetM be a connected closedm-manifold
with a Riemannian metric g. Let H � π1(M) be a normal subgroup. Define the systole of M
relative to H, denoted by sysH(M, g), as the length of the shortest loop of M whose homotopy
class does not lie in H. As in (1.7), define the systolic volume of M relative to H as

σH(M) = inf
g

vol(M, g)

sysH(M, g)m

where the infimum is taken over all (piecewise) Riemannian metrics g on M . This is a slight
modification of the definition (1.7). For f : M → X and H = ker f∗, the invariants σf and σH
coincide. Note that the definition of σH extends to finite simplicial complexes.

Though Proposition 3.6 of [5] is stated with the absolute systolic volume, its short proof based
on the comparison principle [2, Proposition 3.2] can easily be adapted to cover the relative case.
Thus, we obtain
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Proposition 6.6. For i = 1, 2, let Mi be a connected pseudomanifold of dimension m ≥ 3 and
Mi � π1(Mi) be a normal subgroup. Then

σ〈〈H1∗H2〉〉(M1]M2) ≤ σH1(M1) + σH2(M2).

Theorem 2.12 holds true if one replaces the relative minimal entropy to the powerm, namely ΩH ,
with the relative systolic volume σH . (A previous version valid for “admissible” pseudomanifolds
can be found in [5, Corollary 3.5].) More precisely, we have

Theorem 6.7. For i = 1, 2, let Mi be a connected closed pseudomanifold of dimension m ≥ 3
and Hi � π1(Mi) be a normal subgroup. Let H � π1(M1) ∗ π1(M2) be a normal subgroup such
that the canonical inclusion π1(M1) 6 π1(M1) ∗ π1(M2) induces an inclusion

π1(M1)/H1 6 (π1(M1) ∗ π1(M2))/H.

Suppose M2 is orientable. Then

σH1(M1) ≤ σH(M1]M2).

Proof. The proof is similar to the one of Theorem 2.12, except that the bound on the volume
entropy entH1(M1, gε) at the end of the proof of Theorem 2.12 should be replaced with

sysH1
(M1, gε) ≥ sysH1

(M1]M2 ∪
M2(m−2)

Cone(M2(m− 2)), g′) ≥ sysH(M1]M2, g).

�

As previously, combining Theorem 6.7 and Proposition 6.6, we obtain the following analogue
of Corollary 2.13 for the (relative) systolic volume. In the case of “admissible” pseudomanifolds,
it follows from Corollary 3.5 and Proposition 3.6 of [5].

Corollary 6.8. For i = 1, 2, let Mi be a connected closed pseudomanifold of dimension m ≥ 3
and Hi � π1(Mi) be a normal subgroup. Suppose M2 is orientable and σH2(M2) = 0. Then

σ〈〈H1∗H2〉〉(M1]M2) = σH1(M1).

The analogue of Theorem 2.19 for the systolic volume semi-norm holds true. Note however
that its proof differs from the one of Theorem 2.19. This is due to the fact that the systolic
volume and the minimal volume entropy do not have the same behavior under finite coverings.

Theorem 6.9. Let G be a finitely presented group and H be a finite index subgroup of G. Let
m ≥ 3. Suppose that the canonical inclusion i : H ↪→ G induces a monomorphism between the
m-dimensional rational homology groups

(i∗)m : Hm(H;Q)→ Hm(G;Q).

Then for every homology class a ∈ Hm(H;Z)

‖a‖σ = ‖i∗(a)‖σ.

Proof. Let a ∈ Hm(H;Z). By Thom’s theorem [48], there exists an integer q ≥ 1 such that
q i∗(a) ∈ Hm(G;Z) can be represented by a geometric cycle f : M → K(G, 1) where M is a
closed m-manifold. By adding handles if necessary, we can further assume that f∗ : π1(M)→ G
is surjective. Arguing as in the proof of Theorem 2.19, we construct a commutative diagram

M̂ K(H, 1)

M K(G, 1)

f̂

f
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where the vertical maps are d-sheeted coverings, such that

f∗([M ]) = q i∗(a) and f̂∗([M̂ ]) = dq a + c,

where c ∈ TorHm(H;Z).
Denote by t the order of the torsion class c. For every integer k ≥ 1, consider the connected

sum Mk of kt copies of M and the map fk : Mk → K(G, 1) obtained by collapsing the attaching
spheres of the connected sum Mk to a point and by applying f : M → K(G, 1) to each term M
of the bouquet so-obtained. By construction, the map fk : Mk → K(G, 1) is π1-surjective with

(fk)∗([Mk]) = kt f∗([M ]) = ktq i∗(a).

Since Mk is a closed manifold and fk : Mk → K(G, 1) is π1-surjective, we derive from [2, 3]
or [13, Theorem 10.2] that

σfk(Mk) = σ(ktq i∗(a)).

The lift f̂k : M̂k → K(H, 1) of fk : Mk → K(G, 1) to the corresponding covers M̂k of Mk

represents

(f̂k)∗([M̂k]) = kt f̂([M̂ ]) = kt (dq a + c) = ktdq a.

Since the vertical map M̂k →Mk is a d-sheeted covering, we have σ
f̂k

(M̂k) ≤ d σfk(Mf ). Hence,

σ(ktdq a) ≤ σ
f̂k

(M̂k) ≤ d σfk(Mk) = d σ(ktq i∗(a))

for every k ≥ 1. By Lemma 6.3.(1) and the homogeneity of the systolic volume semi-norm, we
deduce that ‖a‖σ ≤ ‖i∗(a)‖σ.

The reverse inequality ‖i∗(a)‖σ ≤ ‖a‖σ follows from Theorem 6.4.(1). �

7. Systolic volume semi-norm and simplicial volume semi-norm

In this section, we show that the systolic volume semi-norm and the simplicial volume semi-
norm are equivalent in real homology.

Let us show that the systolic volume semi-norm bounds from above the simplicial volume
semi-norm and/or the volume entropy semi-norm (up to a multiplicative constant). Recall that
every homology class a ∈ Hm(X;Z) with m ≥ 3, where X is a path-connected topological space,
satisfies

σ(a) ≥ λm
‖a‖∆

(log(2 + ‖a‖∆))m

where λm is a positive constant depending only on m; see (1.9). Therefore,

(log k)m

k
σ(k a) ≥ λm ‖a‖∆

(
log k

log(2 + k ‖a‖∆)

)m
.

Letting k go to infinity, we obtain σ̂(a) ≥ λm ‖a‖∆ (arguing separately whether ‖a‖∆ is zero or
not). Thus, ‖a‖σ ≥ λm ‖a‖∆.

Alternatively, every homology class a ∈ Hm(X;Z) satisfies

σ(a) ≥ λ′m
Ω(a)

(log(2 + Ω(a)))m

for some constant λ′m > 0 depending only on m; see [39] and [13]. Therefore,

(log k)m

k
σ(k a) ≥ λ′m

Ω(k a)

k

(
log k

log(2 + kΩ(a))

)m
.

Again, letting k go to infinity, we obtain σ̂(a) ≥ λ′m ‖a‖E (arguing separately whether Ω(a) is
zero or not). Thus, ‖a‖σ ≥ λ′m ‖a‖E .
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We establish a reverse inequality in the following theorem.

Theorem 7.1. Let m ≥ 3 be an integer. Then there exists a constant µm > 0 such that every
homology class a ∈ Hm(X;Z) of a path-connected topological space X satisfies

‖a‖σ ≤ µm ‖a‖∆.

Proof. We argue as in the proof of Theorem 4.9 and Theorem 5.1. Let a ∈ Hm(X;Z). For every
ε > 0 and every integer s large enough, we consider the map h : Z → X from a closed connected
simplicial m-pseudomanifold Z to X such that

h∗([Z]) = sa

κ(Z) ≤ s (m!)3 (‖a‖∆ + ε)

obtained at the beginning of the proof of Theorem 4.9. By Theorem 4.7, there exists a map

f : M̂0 → Z from a finite covering M̂0 of M0 such that

f∗([M̂0]) = q [Z] ∈ Hm(Z;Z)

for some positive integer q. Applying Theorem 5.3 as in (5.4) yields a sequence of subgroups Γk
in the finitely generated linear group Ĝ := π1(M̂0) with finite index [Ĝ : Γk] = k ≥ 2 such that

sys(Γk, dS) ≥ C0 log k

for some positive constant C0 (which does not depend on k), by applying Theorem 5.3 as in (5.4).

Denote by fk : M̂k → Z the lift of f : M̂0 → Z to the cover M̂k = M̃0/Γk corresponding to the

subgroup Γk 6 Ĝ. Since Γk is of index k in Ĝ, we derive

(fk)∗([M̂k]) = kq [Z].

Define ϕk = h ◦ fk : M̂k → Z → X. Observe that

(ϕk)∗([M̂k]) = kqsa. (7.1)

As in (5.5), we have

sysϕk
(M̂k) ≥ sysfk(M̂k) ≥ D0 log k (7.2)

where D0 is a positive constant (which does not depend on k or a). As in (4.8), we also have

vol(M̂k) = k vol(M̂0) = kq κ(Z) vm ≤ kqs (m!)3 (‖a‖∆ + ε) vm. (7.3)

It follows from (7.1), (7.2) and (7.3) that

σ(qksa) ≤ σϕk
(M̂k) ≤

kqs (m!)3

Dm
0 (log k)m

(‖a‖∆ + ε) vm

By Lemma 6.3.(2), this implies

qs ‖a‖σ ≤ qs
(m!)3

Dm
0

(‖a‖∆ + ε) vm.

Hence, ‖a‖σ ≤ µn ‖a‖∆ , where µn = (m!)3

Dm
0
vm. �

Remark 7.2. By a density argument, the systolic volume semi-norm and the simplicial volume
semi-norm are equivalent in real homology, and not only in integral homology.
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8. Density of the volume entropy and systolic volume semi-norms of manifolds

The following density result can be deduced from the equivalence of the semi-norms given by
Theorem 1.3 and Theorem 1.6 with the recent work [30].

Corollary 8.1. Let m ≥ 4 be an integer. Then the sets of all volume entropy semi-norms ‖M‖E
and of all systolic volume semi-norms ‖M‖σ, where M is an orientable connected closed m-
manifold, are dense in [0,∞).

Proof. Denote by ‖·‖∗ the volume entropy semi-norm ‖·‖E or the systolic volume semi-norm ‖·‖σ.
Fix ε > 0. By [30, Theorem A], there exists an orientable connected closed m-manifold M with
0 < ‖M‖∆ < min{ ε

Cm
, ε
µm
}, where Cm and µm are the positive constants in Theorem 1.3 and

Theorem 1.6. Define
Mk = M] · · · ]M

as the connected sum of k copies of M . By additivity of the simplicial volume under connected
sums in dimension at least three, see [24], we have ‖Mk‖∆ = k ‖M‖∆. It follows from the
equivalence of the semi-norms, see Theorem 1.3 and Theorem 1.6, that the sequence ‖Mk‖∗ starts
from the interval (0, ε), with 0 < ‖M‖∗ < ε, and goes to infinity. Now, the map Mk+1 → Mk

collapsing one copy of M to a point is of degree 1. By the functorial properties of the volume
entropy semi-norm, namely (3) and (5) of Theorem 3.1 and Theorem 6.4, we derive

‖Mk‖∗ ≤ ‖Mk+1‖∗ ≤ ‖Mk‖∗ + ‖M‖∗.
Thus, the sequence ‖Mk‖∗ is nondecreasing and increases by at most ‖M‖∗ < ε at each step.
We deduce from the properties of the sequence ‖Mk‖∗ that every interval of [0,∞) of length ε
contains at least one term ‖Mk‖∗ . Hence the desired density result. �
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[49] Tomei, C.: The topology of isospectral manifolds of tridiagonal matrices. Duke Math. J. 51 (1984), no. 4,

981–996.
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Place Eugène Bataillon, Bât. 9, CC051, 34095 Montpellier CEDEX 5, France

E-mail address: ivan.babenko@umontpellier.fr

Univ Paris Est Creteil, CNRS, LAMA, F-94010 Creteil, France
Univ Gustave Eiffel, LAMA, F-77447 Marne-la-Vallée, France
E-mail address: stephane.sabourau@u-pec.fr


	1. Introduction
	2. Entropy of connected sums
	2.1. Preliminaries
	2.2. Minimal volume entropy of a bouquet of simplicial complexes
	2.3. Upper bound on the minimal volume entropy of connected sums
	2.4. Lower bound on the minimal volume entropy of connected sums
	2.5. Fundamental class of finite order
	2.6. Volume entropy semi-norm comparison

	3. Functorial properties of the volume entropy semi-norm
	4. Volume entropy semi-norm and simplicial volume
	4.1. Geometrization of the simplicial volume.
	4.2. Universal realization of homology classes.
	4.3. Homology norm comparison: upper bound on the volume entropy semi-norm
	4.4. Homology norm comparison: lower bound on the volume entropy semi-norm

	5. Systolic volume of a multiple homology class
	6. Systolic volume semi-norm and functorial properties
	6.1. Systolic volume semi-norm
	6.2. Functorial properties of the systolic volume semi-norm
	6.3. Systolic volume comparison

	7. Systolic volume semi-norm and simplicial volume semi-norm
	8. Density of the volume entropy and systolic volume semi-norms of manifolds
	References

