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Abstract—Understanding how human trust in AI evolves over
time is essential to identify the limits of each party and provide
solutions for optimal collaboration. With this goal in mind, we
examine the factors that directly or indirectly influence trust,
whether they come from humans, AI, or the environment. We
then propose a summary of methods for measuring trust, whether
subjective or objective, to show which ones are best suited
for longitudinal studies. We then focus on the main driving
force behind the evolution of trust: feedback. We justify how
learning feedback can be transposed to trust and what types of
feedback can be applied to impact the evolution of trust over
time. After understanding the factors that influence and how to
measure trust, we propose an application example on a maritime
surveillance tool with an AI-based decision aid.

Index Terms—Trust in Automation, Maritime Patrol, Longi-
tudinal Experiment, Feedback, Human Factors, Cognitive Engi-
neering

I. INTRODUCTION

With the emergence of AI several years ago in the world of
research and then a sudden acceleration in its accessibility to a
large part of the population in the civilian or military sectors,
it is becoming essential to determine the level of trust that a
human should be able to place in these intelligent systems. To-
day, used in the medical world to detect disease, in the banking
sector to detect fraud, in IT to develop ultra-fast applications,
or in the military to assist operators in high-risk operations, AI
is becoming a central element in boosting performance. This
integration is not without consequences, since humans tend to
become over- or under-confident in automation [1] over time,
this can lead to catastrophic results such as fatal accidents [2].
Confidence can generally be distinguished from trust in the
following sense: confidence is defined as the expectation of a
certain level of performance, while trust is a human attitude
based on the perception of an agent’s ability to help him
perform a task in a situation characterized by uncertainty and
vulnerability [3]. Trust is obviously not unique to the Human-
AI pairing, but is present in all areas of our society, whether
it is trust in our institutions, trust in science, trust in business,
trust in justice, or trust in others. The same is true for research

with a wide variety of disciplines that have been working on
this subject for many years, including sociology, psychology,
philosophy, neurology, informatics, etc. What is interesting
about this diversity is that it is becoming clear that trust cannot
be dealt with by a single discipline. This is what Lee & See
have attempted to do with the transposition of concepts related
to Human-Human trust to Human-Automation trust. A model
in which trust is ultimately just one state in a cycle of cognitive
evolution in humans has been proposed. The current question
is not ”Is the human trustworthy?” but ”Is AI trustworthy?” For
this first question, which may be essential in mission-critical
systems, studies are underway, such as Hou’s [4] article on
the integration of decision-support AI, in which the AI can
make a decision when the Human is no longer in a position
to do so, in order to complete a mission. We propose to
address the second question in the following sections, with
a focus in Section 2 on trust in automation, its influencing
factors, and how to measure it. In Section 3, we transpose
learning feedback to feedback as a driver of trust evolution.
In Section 4, we define a synthetic model based on models
in the literature and enhanced by the notion of feedback. In
the final section, Section 5, we propose an example of an
application for maritime surveillance. Finally, we conclude
this paper by summarizing our proposals and talking about
our future experiments.

II. STATE OF THE ART

A. Trust

Trust, a term at the core of Human-AI cooperation, is a
major issue to be understood in the future to optimize Human
and AI performance in rich and varied contexts. Humans
are strong in contexts requiring nuance, while AI can handle
large amounts of generic data. We explore different processes
impacting trust that have a unique influence and occur at
different temporalities. We will also show that the decision to
trust is not solely impacted by trust but can also be influenced
by factors specific to each context. To understand what trust is,
let us go back to Lee & See’s [3] definition, which is ”trust is



a human attitude based on the perception of an agent’s ability
to help them perform a task in a situation characterized by
uncertainty and vulnerability” [3]. In the context of human-
autonomy teams, this definition highlights the three groups
of factors that influence trust: trustor factors (human), trustee
factors (AI), and environmental factors. [5]–[7].
These three sets of factors can be described as follows:

• Trustor factors: These factors are related to human opera-
tors, including their personality traits, previous experience
with AI systems, cognitive abilities, and emotional states
[8]. For the same experience with an AI, an operator with
specific features of personality [9] - such as extroversion,
for instance - can reveal to be more trustful than someone
with another personality profile.

• Trustee factors: These factors relate to the AI system
itself, such as its performance [10], process [11], trans-
parency [12], and explainability [13]. An AI system that
continuously provides accurate recommendations and is
easy to understand will gain more trust from the operator.
Factors such as system errors, poor communication, or
lack of transparency can negatively impact trust [14].

• Environmental factors: These factors include the context
and conditions under which the Human-AI interaction
occurs. Factors such as task complexity, time pressure
[15], or situational risk [16] can influence the operator’s
trust or trust-related behavior toward the AI system. For
example, in high-risk environments, operators will be
more cautious when relying on the AI system, especially
if the potential consequences of an error are severe [16],
[17].

Although influenced by different actors, trust is part of a
cognitive cycle. Lee & See [3] propose a general model for
the evolution of trust, including beliefs, attitudes, intentions,
and behaviors. We synthesize this model in Fig.1. Beliefs are
initially formed with ”external” elements, such as rumors,
training, or knowledge of a similar system, and will evolve
over the course of the user’s experience. These latest influ-

Fig. 1. The simplified Lee & See [3] model describing the evolution of trust
in a cognitive cycle. Blue arrows represent influences outside the cycle, while
black arrows represent evolution within the cycle.

ence the user’s attitude which also depends on characteristics
specific to each individual (culture, predisposition to trust).
Trust will have an impact on an individual’s intention to use
the system or not. Factors related to the context (time pressure)
or the individual (perceived risk [16], workload [18]) can also
influence this intention. Intention is not directly observable
and may only be expressed through a behavior that is concrete

evidence of whether or not an individual trusts the system. The
most classical examples [19] of such behaviors are reliance,
compliance, and verification time. Reliance consists of asking
the system for a recommendation. Compliance consists of
changing one’s decision in response to a system proposal.
The characteristics of behavior, such as verification time,
are also meaningful: The shorter the time required to verify
a recommendation, the higher the level of trust. However,
intention can be influenced by many other factors, so observed
behaviors cannot be directly mapped onto trust itself. One
such example is the time pressure that can be encountered in
different operational contexts. Time pressure arises when indi-
viduals face limited time to perform tasks. In such instances,
the integration of AI becomes an important aid in improving
performance while reducing the risk of critical errors. Several
benefits can be observed, such as reduced workload, reduced
stress, and increased performance. However, the Rieger article
[20] confirms the findings of Rice and Keller [15]: time
pressure can result in excessive reliance and an escalation of
errors. Nonetheless, Rice and Keller [15] demonstrates that
under high time pressure, mitigate reliance on AI can enhance
overall performance compared to an operator working alone.

To measure human trust in AI over its evolution at different
moments, there are various subjective and objective methods
[19], each with its own advantages and disadvantages. Among
the subjective ones, self-report measures of trust, such as
the Checklist for Trust [21] or the Measures of Trust &
Trustworthiness [22] are easy to administer, but may be
intrusive when used during experimentation. It can be used
before or after an experiment to capture the attitude of trust
and the beliefs. Behavioral and physiological measures, such
as electroencephalography (EEG) [23], [24], provide more
objective data but can be influenced by factors not related
to trust and can require specialized equipment. It may be used
during the experiment and will give online data about the
behaviors but also on the attitude and intention. Researchers
often use a combination of these methods to obtain a com-
plete understanding of the dynamics of trust [1], [19], [25].
Currently, there is no general computational model of the
evolution of trust, although some attempt to predict how trust
evolves based on controlled variables limited to a specific
context and with limited precision [?], [26], [27]. The gap
lies in the fact that each context has unique variables with
various impacts on the level of individuals trust. They are
trying to estimate the level of trust at each point in time.
Each event perceived by the system will change the value
of trust or another variable. Estimating trust is important for
regulating it. If a computational model is able to detect that an
operator is becoming over- or under-confident towards the AI,
then methods can be put in place to adjust it to the expected
level before it is reached. General methods are proposed, for
example, by de Visser [14] with apologies, explanation of
repair, expression of system limits, or regular alerts for trust
reduction. Certain methods are not applicable to all systems,
and the appropriate ones must be selected for each context.

While there is currently no exact answer to the question



of how trust evolves, studies have highlighted the main fac-
tors that have an impact on trust [3], [5], [8], such as AI
performance, its process, or its initial purpose. The impact of
AI performance on trust has been demonstrated in numerous
studies [5], [6], [10]. Few studies have been conducted to date
on the process [28] or purpose [7].

• Performance is easily identifiable by comparing an ex-
pected result with the result obtained, or the speed with
which a task is completed, with or without AI. Three met-
rics of performance are observable: Human performance
(without AI), AI performance (without human) and team
performance (Human + AI). Avril [10] studies the impact
of AI performance on trust, and, indeed, trust increased
when AI performance was high (87. 5%) compared to low
(67.5%). Other information can be observed, such as the
more information the AI gives about its choices, the better
the Human-AI pairing performs. A change in behavior
can also be observed when the information about a case
is very precise and when no information is provided.
No differences were observed when there was little or
no information about potential errors. However, humans
tend to see fewer AI errors with a high-performance AI
(87.5%) than with a low-performance AI (67.5%). No
correlation was found between self-confidence and AI
performance.

• Concerning the process, which corresponds to the way
the AI works or the steps it takes, this is not necessarily
visible to the operator, and this is what studies on
explainability and transparency are trying to resolve, to
shed light on what are known as ”black boxes”.

• Purpose refers to how the AI is used, and more specif-
ically how it is used in relation to its initial task. The
operator perceives whether the AI’s purpose is to help
him in the task at hand, or whether it has not been
developed to perform this task. A difference between
the developers’ initial goal and the goal expected by
users can create disillusionment, which can reduce trust
in automation. It is therefore important to communicate
the latter’s limits, with the goal of optimal collaboration.

Particular difficulties occur when trying to apply these kinds
of indicators for the long-term analysis of operator trust,
which is still a largely unexplored sub-field of research [29].
Among the rare references related to this topic, one can
mention Beggiato’s [11] study, which lasted two months. The
research examined the evolution of trust and acceptance as
drivers learned about the system. The results showed that
trust and acceptance increased with familiarity, emphasizing
the importance of learning in shaping users relationships with
automation.

Our assumption, given Beggiato’s findings on the simi-
larities between the learning curve and the trust evolution
curve, and Lee and See’s model describing beliefs (perceived
performance, process, and purpose) as the antecedents of
trust, is that feedback, which is essential to learning, can
be transposed to trust, since beliefs evolve with experience.

Based on this premise, we turned to Bosc Miné’s [30] article
on feedback in a learning context. It describes all forms of
feedback and allows us to target the ideal feedback for each
context and need. To learn, feedback is necessary and essential
for each learner (student, professional, expert, etc.). Using Lee
& See’s simplified model, behavior is linked to an outcome.
This outcome is caused by the decision to trust or not. It
can either agree with what was expected or create dissonance.
In the former case, it will reinforce the initial beliefs; in the
latter, it will modify the beliefs about the system. Therefore,
we propose that the result is the feedback from our decision.
Feedback is the element that allows beliefs to evolve. The
particularity of feedback is that it can take different forms to
reflect the state of the element impacted by the system user’s
decision. The final result of the decision to trust or not can
therefore be interpreted by external actors and formatted to
reflect, from a certain point of view, the whole process put
in place by the human or AI leading to the final decision.

The previous section highlighted most of the components
of trust in AI. The aim was to understand the processes by
which trust evolves, the indirect influences on its behavior,
and how to measure trust with different tools that have their
own characteristics. In the following section, we will focus on
feedback and its central role in the evolution of trust, including
ways of integrating a type of feedback to a specific temporality
(during the task and afterward). We then propose to integrate
these different types of feedback into a general model of trust
evolution, based in part on models found in the literature. We
end by proposing an applicative framework in the context of
maritime surveillance, where we will see, in particular, their
constraints, how they work, and how to integrate the previous
theoretical parts into this specific case.

B. Feedback

In each of the models in the literature on trust in automation,
the concept of outcome is present. This result is the element
that enables the modification of a human’s belief in his
autonomous system. In particular, it is the result of human-
induced behavior in the use or non-use of automation. In the
Mayer & Davis model, for example, it is described as an
outcome. In its sense, this term refers to performance feedback
on whether the task has succeeded or failed. It is simplifying
and does not allow us to describe the elements that can
constitute feedback being more than a success or failure. Then
we have Lee’s & See model, where the outcome is described
as a ”display”, i.e. it is an integral part of the system, since it
returns the result of using the system via an interface. What we
are proposing brings nuance to the possible feedback given to
the user to modify his initial knowledge of the system. In this
approach, feedback is strongly associated with user learning.
It provides an assessment or creates dissonance in the learner
concerning his use of a system and its integration into his
environment. The definition of beliefs shows that they evolve
according to the use of the system and its results. This includes
the notion of learning, since beliefs are what humans perceive
of the system, including its performance, process, and purpose.



Over time and interactions, this perception evolves, and so
does his or her knowledge. As feedback is a central element
of learning and beliefs are being directly linked to learning, it
seems obvious for us to transpose the descriptions of feedback
for learning in our case on trust. In Bosc Miné’s [30] article,
she describes the different types of feedback applied to various
contexts and shows the advantages and disadvantages of each.
For example, some feedback is more suitable for experts, while
others are more suitable for novices. We find groups of factors
such as Human, System, and Environment at the source of
the different feedback. The operator can provide himself with
auto-feedback, i.e. it necessitates a kind of expertise to provide
himself with feedback to learn from something observed. The
system can provide direct or delayed performance feedback
on its use, e.g., you succeeded in doing this or failed in doing
that. As far as the environment is concerned, several types of
feedback can be provided like physical feedback, such as a car
accident, or feedback provided by a teacher (not linked to the
operator-system pair) during a learning phase. These types of
feedback are not necessarily independent of each other and can
all be provided for the same event. Let us take the example of
an autonomous car accident, in which different temporalities
may exist:

• Before the accident, the car’s automated system can
trigger indicators (alarms, for example) to warn of an
incoming accident;

• Just after the accident, the operator will question himself
or the system, via auto feedback, which has not reacted
as he expected;

• Several days later, an expert having analyzed the car’s
black box will be able to tell the driver everything
what was done wrong, and thus provide the driver with
elaborated feedback.

To provide some guidance, we need to be able to describe all
types of feedback and understand the role of each. These three
main types are elaborated feedback, verification feedback, and
elaborated verification feedback. An overview of the feedback
tree is given in Fig.2.

• Elaborated feedback comes from an external source and is
intentional, the aim is to train the receiver of the feedback
by providing clues to guide the individual towards a
correct response;

• Verification feedback is an information concerning the
correctness or incorrectness of the response, it can be
separated into intentional feedback, external unintentional
feedback and auto feedback;

– Intentional feedback comes from something or some-
one that is external to the individual, such as a
teacher or a device enabling the transmission of
information; it allows the learner to have a teacher
directly providing the necessary information;

– Unintentional external feedback is the direct conse-
quence of natural interactions with the physical or
social environment. They can provoke auto feedback
in the individual, giving him or her food for self

Fig. 2. Translation of the Bosc-Miné [30] model of feedback in learning.
Feedback is divided into different sub-feedbacks. Each sub-feedback is
associated with certain characteristics and contexts. The black arrow represents
an heirloom. The source of the arrow is a subpart of the destination.

interpretation;
– Auto feedback is generated by the individual directly

during or at the end of the action. These are the
individual’s own feelings and thoughts about the
processes involved in performing the task. Its impact
is difficult to calibrate, given the subjectivity of
thought.

• Elaborated verification feedback is a mixture of the
two previous sub-categories. They provide the correct
answer, information explaining why the given answer is
incorrect and why the expected answer is correct. This
makes it possible to compare the answer given with
an expert answer. An example would be the case-based
reasoning feedback. This takes the current given answer
and searches the database for past (or expert) answers,
proposing the nearest ”neighbor” for comparison. It has
the ability to recall what the expert had proposed in this
case, with parameters as close as possible.
Each context and task allow one to define the appropri-
ate answer for each question. Customized solutions for
each category of learners are also necessary to optimize
learning.

All these forms of feedback have common characteristics:
from whom should it be given ? (itself,something,someone),
how is it connoted ? (positively, negatively), what is focused
on ? (task, process, self-regulation, person), presented with ?
(alone, several), when should it be given ? (immediately, de-
layed), how should it be formalized ? (the solution, assessment
criteria, individual characteristics).
Therefore, we propose to sort and integrate these different
characteristics into a synthetic model of trust evolution. Our
interest is to show that there are two temporalities in the
evolution of trust and that different types of feedback need
to be put in place to have a relevant effect on trust. This will
be discussed in the next section.



III. MODEL

Our model incorporates elements from the literature such
as the Parasuramann, Mayer, Lee & See and Hoff models, to
which we add elements from the feedback description. Our
interest lies in showing two types of feedback that affect trust
over the course of interactions. These types of feedback act on
two different temporalities, during the task and afterward (see
Fig.3). The aim of immediate feedback is to maintain the

Fig. 3. Changes to the basic outcome. Feedback applies to two timeframes,
each with its own specificities.

operator’s awareness [18] on the mission. We want to avoid
deterioration in mood or fatigue, which would degrade the
operator’s performance and make him less attentive to more
critical tasks. Then, we have post-interaction feedback. This
provides details on various elements encountered during the
mission and highlights any disagreements. If the final state of
an event is unknown, then this feedback would be constructed
by an expert providing an inferred ground truth. This feedback
incorporates the notion of learning.

There are a number of points to bear in mind. Immediate
feedback must not be over-soliciting, i.e. it must not add work-
load on operator’s in contexts that may already be overloaded.
In terms of design integration, it must be simplistic and clear.
It is also important to ensure that the first recommendations are
not errors, as this could reduce the operator’s trust to a level
that would block further action [1]. For elaborate feedback, we
need to be able to take into account the limitations of the field
during experiments. Some knowledge are unknown, and we
must not make the mistake of integrating it into experiments
to establish whether a type of end-of-mission feedback is more
effective than another. Being precise in the feedback certainly
enables the learner to better integrate knowledge, but being as
close as possible to the field gives a better understanding of
the processes encountered.

We propose that immediate feedback should be in the form
of a AI recommendation. Having direct feedback from the
trustee seems to us to be important for the evolution of
trust. This recommendation comes after the operator’s initial
choice and is there either to validate or refute the operator’s
initial decision. It fulfills the role of a decision-support AI,
while the human still has the final decision. Therefore, this
recommendation can influence human beliefs in AI. If the
recommendation appears to be a mistake for the operator, then
the beliefs through performance, process, and perceived goal
will be degraded, while if the AI gives a recommendation in
line with the initial decision, then its beliefs will be reinforced.
No ground-truth information can be established at this stage
of the interaction.

Regarding elaborated feedback, this takes as input all in-
teractions captured by the system, including the event to be
categorized (including all traces available up to that point),
the operator’s initial decision, the AI’s recommendation, and
the operator’s final decision. Behavioral values such as re-
liance, compliance, and verification time are also captured.
The aim is to compare, on the basis of all these factors,
what decision an expert would have made in this specific
case. This feedback contains a section on explicability that
is essential for optimizing the way we explain what happened
at a precise moment. The approach to explicability needs to be
calibrated according to the target audience: some will prefer
a mathematical approach, others a schematic or literary one.

Let’s now turn to the integration of these terms into a model
of trust evolution. The first phase occurs during interaction.
A task is to be carried out, embodied either in a physical
manifestation or via a computerized interface. In both cases,
this task contains information that the AI can process so that it
can make a recommendation. This recommendation, whether
in dissonance or agreement with the initial decision, will
modify the operator’s beliefs (degrade or reinforce). The task
will be added to a pre-existing or null task list. This addition
increases the situational risk [16], as it increases the number
of iterations to be processed. If the operator perceives this
new iteration, then the perceived risk will also increase. There
may be a dissonance between ground-truth and perceived risk.
Perceived risk [2] is the only one that has an impact on a
decision to trust or not. Next, we have the behavior related to
trust. This behavior is affected by factors linked to the operator
(such as perceived risk [16], self-confidence [31], workload
[18], trust, beliefs), the environment (such as the event to be
treated) and the system (such as the AI recommendation [10]).
The elaborated feedback is fed by the trust-related behavior,
the AI’s recommendation, the initial decision, and the task
information to be performed. As long as the mission is in
progress, we have this interaction cycle.

The second phase takes place after the interaction. The
elaborated feedback, previously fed by all the events that
took place during the interaction, provides information to
analyze any inconsistencies or dissonances. This feedback
must be provided by an element external to the Trustor-Trustee
pair, like another human or a device deemed effective. This
feedback will have an impact not only on the trustor’s beliefs
towards the trustee but also on his self-confidence. It is a way
of taking a step back and reflecting on the events that took
place during the interaction.

In the following section, we propose to apply this model to
the application context we will be experimenting with in the
future: maritime surveillance.

IV. MARITIME SURVEILLANCE USE CASE

Maritime surveillance is a cognitively challenging work
domain that involves high operational tempo and informa-
tion overload. The crews of the maritime patrol aircraft are
tasked with carrying out missions to control human trafficking,
drugs, dangerous substances, illegal fishing, and sea rescue.



Fig. 4. Synthetic model of the evolution of trust. Two temporalities separate this model during (light orange) and after the task (light blue). The dynamics
of this model arise from a task-related event. Red rectangles represent an environment-related state, green a human-related state, and blue a mixture of the
three. Two types of arrow are visible. Solid arrows represent an influence on a process linked to the human, the system, or the environment. Orange is a
modification of a state, blue is an apparent influence, i.e. perceived by the operator, and brown is a non-perceptible (or at least non-intellectualized) influence.
The dotted arrows represent a transfer of information with no direct influence on any of the three actors.

Currently equipped with electronic surveillance equipment
used manually by maritime surveillance operators, Thales is
looking to integrating artificial intelligence tools to increase
mission performance over the long term, to reduce the risk of
missing illegal activities, and to increase operator resilience
during high-pressure phases. To validate the value of such
cooperation, we will re-use the application developed by
Thales Defence Mission Systems (Thales DMS) and Thales
Research Technology Canada (TRT Canada), which integrates
Cognitive Shadow (TRT Canada) with AMASCOS (Thales
DMS). AMASCOS is a tactical display that represents a
situational context for maritime surveillance (see Fig.5). Cog-
nitive Shadow (CS) [32] is a decision support AI composed
of seven different supervised learning algorithms including
Naive Bayes, Decision Tree, K-Nearest Neighbors, Support
Vector Machine, Logistic Regression, Neural Network, and
Random Forest. A configurable model evaluation and aggre-
gation method is integrated to select the best recommenda-
tion amongst these algorithms. All these algorithms can be
trained on classifications made by experts and developed in
consultation with them to determine which information is
relevant to a specific task (target classification in our case).
In figure 5, the operator is represented by the aircraft in
the middle of the map. A radar detection field is used to
detect vessels characterized by fourteen features that are a
mix of categorical and numerical attributes, which include:
platform type, speed, speed change, stationary, length, friend

list, AIS(on-off), nearest track distance, cluster size, coastal
proximity, interception, sea lane deviation, heading change,
and nationality. With this information, the operator must be
able to make decisions about the category of vessels such as
’Allied’, ’Neutral’, or ’Suspect’. At the end of an operation, the
operator team carries out debriefs to see if they have made any
mistakes or if they have made any clarifications that could help
them improve for the next time. The problem is that they have
to wait until the end of the mission to realize whether or not
they may have made mistakes. Here comes CS. It is integrated
in such a way that it checks an operator’s classification after
an initial decision has been made. If the check does not
agree with the operator’s decision, and a certain probability
threshold is exceeded, then CS provides a recommendation for
the operator to re-check this target. This enables the operator
to keep an eye on certain situations where he may be less
attentive due to factors linked to himself (fatigue, stress) or
to the environment (shake, noise, etc.). The recommendation
creates dissonance in the operator, enabling him to refocus on
the mission, to question himself, and to evolve his trust in
the AI. In this very specific case, the elaborated feedback
produced will be equivalent to the discussions operators have
at the end of a mission to discuss disagreements concerning
targets encountered. The point is to have a report to back up
discussions and to show when the operator was right to change
his mind or not. The ground-truth must be fed by another
expert. The linguistic content will be generated procedurally



Fig. 5. AMASCOS interface representing an operational situation with a
Cognitive Shadow recommendation showing that it is a suspect target.

to explain the data recovered during the mission.

V. CONCLUSION

The purpose of this study was to understand what trust
is and what implications this has for the Human-AI pair
when performing tasks in risky environments. The second
aim was to introduce feedback terms into a model of trust
evolution and to explain how different types of feedback can
be introduced to optimize trust over time. For trust, we have
drawn on general reference models covering all influencing
factors, with Lee & See’s [3] article as the main reference.
Regarding feedback, the central article is by Bosc-Miné [30],
in which feedback for learning is deconstructed to establish
what can best be transposed to trust. We then presented a
synthetic model of the evolution of trust, describing the main
antecedents that have an impact on trust, or its behavior,
over time. In particular, the perceived risk [16] described in
Lee & See’s [3] definition as a prerequisite for the study
of trust. Concerning behavior, it is therefore associated with
trust, but also with other factors such as self-confidence [31],
workload [18], perceived risk [16], or the type of event to
be dealt with. Two temporalities, during and after, allow
us to target the types of feedback to be provided that will
modify trust and self-confidence. The feedback from AI
during the interaction will help the operator stay alert over
time and reduce mental workload. Elaborated feedback from
either the system (non-AI) or a person (external to the pair)
helps to modify the operator’s perceived beliefs (the basis of
trust) of the AI and his own self-confidence. Other concepts
related to trust have not been addressed, or only very briefly,
such as explainability, transparency, acceptability, and so on.
Explainability [7] is a major topic on its own with the goal
of helping humans understand the basis of AI decisions.
Different forms are being explored to determine which
one will enable the most informed decisions to be made
in the one-way relationship that is the Human-AI couple.
Transparency, part of the explicability, aims to show what lies
behind AI models. A definition of transparency provided by
Chen [33] is ”the descriptive quality of an interface pertaining
to its abilities to afford an operator’s comprehension about

an intelligent agent’s intent, performance, future plans, and
reasoning process.”. It has been shown that transparency can
increase operator trust but, in return, can increase mental
workload, which implies a design choice to best balance
the impact of integrating transparency. Acceptability refers
to the degree of acceptance of a tool’s integration in a
particular environment. It can be considered as an attitude
or as behaviors [11]. The result is a level of trust in a tool.
Beggiato et al. [11] show that acceptance evolves in the same
way as trust during the learning phases. However, they are
two different terms.

To the end, a case study applied to maritime surveillance
was used to transpose the theory onto something more
concrete. In this case, we will conduct experiments to study
the evolution of trust over several weeks and validate this
theoretical model proposed in this article. We will compare
the impact of different types of feedback (immediate and
delayed) and AI performance on operator trust over time.
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