
HAL Id: hal-04328468
https://hal.science/hal-04328468v1

Submitted on 7 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Red Team LLM: towards an adaptive and robust
automation solution

Christophe Genevey-Metat, Dorian Bachelot, Tudy Gourmelen, Adrien
Quemat, Pierre-Marie Satre, Loïc Scotto, Di Perrotolo, Maximilien Chaux,

Pierre Delesques, Olivier Gesny

To cite this version:
Christophe Genevey-Metat, Dorian Bachelot, Tudy Gourmelen, Adrien Quemat, Pierre-Marie Satre,
et al.. Red Team LLM: towards an adaptive and robust automation solution. Conference on Artificial
Intelligence for Defense, DGA Maîtrise de l’Information, Nov 2023, Rennes, France. �hal-04328468�

https://hal.science/hal-04328468v1
https://hal.archives-ouvertes.fr


Red Team LLM: towards an adaptive and robust
automation solution

Christophe Genevey-metat
R&D AI / Cyber Team

Silicom
Rennes, France

cgeneveymetat@silicom.fr

Dorian Bachelot
R&D AI / Cyber Team

Silicom
Rennes, France

dbachelot@silicom.fr

Tudy Gourmelen
R&D AI / Cyber Team

Silicom
Rennes, France

tgourmelen@silicom.fr

Adrien Quemat
R&D AI / Cyber Team

Silicom
Rennes, France

aquemat@silicom.fr

Pierre-Marie Satre
R&D AI / Cyber Team

Silicom
Rennes, France

pmsatre@silicom.fr

Loı̈c Scotto Di Perrotolo
R&D AI / Cyber Team

Silicom
Rennes, France

lscottodiperrotolo@silicom.fr

Maximilien Chaux
R&D AI / Cyber Team

Silicom
Rennes, France

mchaux@silicom.fr

Pierre Delesques
R&D AI / Cyber Team

Pr0ph3cy
Guyancourt, France

pdelesques@pr0ph3cy.com

Olivier Gesny
R&D AI / Cyber Team

Pr0ph3cy
Rennes, France

ogesny@silicom.fr

Abstract—Artificial intelligence has become really popular in
recent years, especially its embedding in cybersecurity appli-
cations. Today, studies have shown that reinforcement learning
agents are able to find the optimal sequence of actions in order
to attack a network. However, these agents are often over-trained
and can neither adapt nor be robust to different networks from
the ones they were trained on. We propose a new agent based
on a zero-shot approach that adapts itself to any given network
and that is robust to parameters and objectives changes without
requiring another training phase. We introduce a new metric
that better measures the ability of agents to attack a network
without prior knowledge. In this paper, we also discuss about
the first steps towards explainability for our model and its future
improvements.

Index Terms—pentesting automation, attack simulation, zero-
shot classification, transformers, large language model, adapt-
ability, robustness, explainability

I. INTRODUCTION

Pentesting is an operation that consists in discovering the
weaknesses of a network that an attacker could use to harm
a company. In the research field, pentesting is often seen as
an optimisation problem where the goal is to compromise
a machine inside a network within a minimum number of
actions. The actions are unit attacks that can be chosen
by the agent. Several researchers [1], [3], [11], [14], [16]
have already studied the use of reinforcement algorithms
to solve this optimisation problem and several simulators,
such as NASim [6], or Cyborg [8], have been developed to
facilitate working on such algorithms. In a real-world situation,
when an intruder attacks a network, having access to the
entire network’s arrangement beforehand is quite rare. Indeed,
each network has its own topology with its own layout of
subnetworks (subnets) and machines. As a result, an attacker
needs to navigate between exploring the network in search
of information about the target, exploiting machines and in
some cases, bypassing firewall’s restrictions. Thus, we believe
that pentesting cannot be considered like a simple optimisation

problem due to the presence of changing sets of actions and
heavy interdependence between obtained answers and new
actions at each step. The simulator NASim [6] developed by
J. Schwartz is one of the most complex simulators that exist
and represents well certain aspects and constraints that a real
attacker may encounter. We developed a variant of NASim that
can produce a natural textual representation of the network
used by our model. We also use this modified NASim to
calculate our own metric that better represents the agent’s
ability to use discoStovered information before exploiting an
unknown machine.

In this paper, we use a pre-trained zero-shot classification
model [15]. We have developed a specific textual observable
environment to provide the model with a better level of
adaptability compared to other reinforcement learning algo-
rithms. Thus, this model is adaptive and able to attack other
networks, unseen during the training phase. This model uses
textual observables to take the most promising action. In these
textual observations, we provide the goal of the challenge,
some rules that the model has to follow to complete the
challenge and information about the state of the targeted
information system (e.g. machine state). We have also created
a naive metric for the training and evaluation phase in order
to know if the agent has taken the correct action thanks to
its past knowledge, meaning that it was based upon useful
information gathered prior to the execution. Or if it did by
chance, implying that the attack is successful but without the
agent exploiting the gathered information. For example, this
naive metric allows the agent to be rewarded if it discovers
that a certain vulnerable service is running on a machine
and attacks this machine. We compare the performances of
our reinforcement learning (RL) zero-shot model with other
reinforcement learning algorithms (DQN, PPO recurrent, and
CLAP) and discuss the results with our own metric further
in the paper. In addition to this comparison, we also provide
a preliminary explainability of our model based on the Shap



value [5]. We demonstrate our agent’s confidence based on the
observable textual environment (feasible actions included), as
well as the importance of certain words in the context that
allow the agent to take the right action. Since our model uses
textual information, it is possible to extract a certain degree
of explainability. Yet still limited, it opens up the discussion
for more.

II. RELATED WORKS

Schwartz and Kurniawati [6] proposed a benchmark en-
vironment to train and evaluate RL agents in the context
of pentesting. Their benchmark environment called ”NASim”
allows them to simulate a network with various subnets and
several machines per subnet. They include services, processes
and operating systems in the machine information. Their
environment also includes some restrictions of services to
support several types of firewall configurations. They propose
a list of actions that an RL agent can perform. Each action
has a certain cost (due to its level of furtiveness) and a
certain probability of success (for a non-deterministic aspect).
This environment is a pure simulation but it includes some
constraints found in the real world, these are discussed in
section III-A.

Another benchmark environment exists called CybORG
[9] developed for the CAGE (Cyber Autonomy Gym for
Experimentation) challenges from the Department of Defense
of the Australian government. This environment is better
equipped than NASim and able to support simulations as well
as emulation. It is even cited in the gap considerations page of
NASim as an alternative for more thorough tests. However, we
chose to go with NASim for several practical reasons. Firstly,
the emulation part of CybORG was of no interest for us at
this point and is not open sourced. Secondly, it was easier to
compare our model to existing techniques. Indeed, most of
the RL algorithms published up to this day use NASim and
its predefined topologies and scenarios for benchmarking.

In addition to the proposed NASim environment,
Schwartz [6] shows the performances of classical RL
agents (DQN, Tabular Q-learning) on miscellaneous simple
scenarios. They establish the performance of these RL
agents against the number of machines in the network. They
demonstrate how the performance decreases as network
complexity increases, and that after a certain number of
machines, a classical RL agent obtains a negative mean
episodic reward.

Zhou and Liu [16] propose an improvement of the deep
Q-network named NDSPI-DQN to solve the issue of sparse
rewards and large action space problems. Their model uses soft
Q-learning, duelling architecture, prioritised experience replay,
and intrinsic curiosity to improve the exploration efficiency.
They show that their model converges better than the baseline
DQN, and can achieve a positive average episodic return, while
the original DQN achieves a negative average episodic return.

Yizhou and Xin [14] propose a variant of the PPO algorithm
called CLAP that can handle multi-objective reinforcement
learning in a pentest context. They study the multi-objective

in order to provide a diversity of attacks and paths that can
compromise the network’s security. CLAP uses a coverage
mask mechanism that allows the model to keep track of
previous actions taken in the past. This mechanism encourages
the model to trigger an action based on both the previous
action and the current observation. The Clap model is trained
on three NASim scenarios described in table I. These three
scenarios have different topologies and objectives. They show
that their model converges quickly to the optimal sequence on
the three scenarios during the training phase compared to other
algorithms (DQN, Improved-DQN, HA-DQN). However, the
authors only show the performance during the training phase
and not for an evaluation phase. Thus, it raises questions about
the adaptability of their model regarding other networks and
during an evaluation phase.

TABLE I
NETWORK SCENARIOS USED BY CLAP MODEL.

Subnets Hosts OS Services Processes
Small-linear 7 8 2 3 2
Medium 6 16 2 5 3
Large 8 23 3 7 3

In section III, we present the challenge for a RL agent
to attack a network without prior knowledge, the process of
decision-making, the observable environment developed for
our model, and our own metric. In section IV, we present
the performance of our model compared to other RL agents
(DQN, PPO recurrent, and CLAP), and a preliminary study
to observe the impact of certain words in the decision-making
process.

III. PRELIMINARY

In this section, we present the challenge of pentesting, the
process of decision-making of our agent inside an adapted
NASim environment, and our new metric for the training and
evaluation.

A. Challenge of pentesting

From our point of view, the role of a Red Team is complex
and is not limited to compromising a specific machine in a
known information system as quickly as possible.Indeed, a
RL agent does not have any prior knowledge about the target
network. It operates on a partially observable environment, and
its action space expands because a list of new actions appears
when it discovers a machine.

We identify other constraints that an RL agent must take into
account due to no prior knowledge about the target network.
These following constraints are not specific to a RL agent
and also exist for other machine learning agents that perform
pentesting:

• Machine choice: the agent must be able to select the right
machine to attack. If it discovers the target machine then
it has to focus onto it, otherwise it should focus on the
other machines of the network. For example, the machine



identifier may change from one network to another, as
may its operating system or services.

• Attack choice: the agent needs to be able to select the
right attack. If it doesn’t have enough information to do
so, it should keep going with the discovery stage; but if
it does have enough, it should exploit the machine.

• Probability of success: an action has a certain probability
of success. If the agent selects an action that fails, it needs
to try again or select another action. The probability of
success can vary from one network to another.

• Restriction of services: an action can fail due to some
restrictions from the system. The agent needs to be able to
select another path in order to compromise the machine,
should a restriction happen. In addition, the agent must
be able to make errors in order to discover this restriction.
The restriction of services can also vary from one network
to another.

• Choice of parameters: the agent must have the ability to
select the right action based on the information discov-
ered on the machine and the privilege levels available
after the attack. The privilege levels on one machine can
vary from one network to another.

These constraints may seem simple to manage for a human
operator, but represent a challenge for RL agents because most
of the time, RL agents will just repeat the optimal sequence
they learned during training. If the network changes and these
constraints also change, the RL agent will not be able to
act correctly. This is why we believe that pentesting cannot
be considered as a simple optimisation problem. We decided
to choose the NASim environment because it includes all of
these constraints. It can therefore be seen as a first pentesting
environment for RL agents to work on.

B. Decision-making

Our approach is based upon the work of Yin et al. [15].
They propose a method for using a pre-trained sequence-to-
sequence model and adapt it to a zero-shot classifier. Their
model takes as input a sequence to be classified and generates
a hypothesis from each candidate label. Their method can be
used with different large pre-trained models such as BART [4]
or Roberta [2] which are Transformers networks. We chose to
focus on the BART model and slightly adapt their approach to
play with a reinforcement learning environment. The Figure 1
illustrates the path and reasoning of our model when playing
in reinforcement learning environment, and especially in the
NASim environment [6]. Our model, in order to make a
decision, works with two main types of sub-decision: it first
chooses the target machine to attack, then it selects the action
to perform on it. The ”Overall context” is a description of
the goal to achieve supported by some advice. The ”machine
available” is a description of the status of each machine.
It represents the candidate labels. Thus, our model selects
one of these candidates based on the overall context. After
selecting the machine, our model must choose the action to
perform on it. The ”Machine’s context” is a description of
the current goal and the information found on the machine

(during the previous iteration). The ”Available actions” is a
description of the available attacks that can be launched by
our model. It is the new candidate labels that our model will
select based on the context of the machine. After selecting the
action, it is performed on the NASim environment and new
”Overall context”, ”machine available”, ”Machine’s context”
and ”Available actions” are generated.

Overall context Available machines

Zero-shot classifier

Machine’s context Available actions

Zero-shot classifier

Environment

Action selection

Target machine selection

Fig. 1. Decision path taken by our model

C. Textual observables for decision support

In order to help our zero-shot model to select the right target
machine and the correct action, we create a certain global
context, a machine context, an action description and some
textual observables for decision support.

1) Overall context: In the overall context, we store infor-
mation about the potential path to the goal, a description of the
goal to reach, and rules that the zero-shot must follow. The
potential path to the goal is regularly updated by removing
discovered and exploited machines from the list of potential
paths. This textual observable helps the agent to focus solely
on machines not yet exploited. The objective is also updated
if it is composed of several sub-goals and if one of them is
achieved. Therefore, the agent is able to focus on the second
objective when the first one is accomplished. Unlike the other
textual observables, the rules that the zero-shot must follow
do not change. This element helps the agent to find another
path when a restriction appears, it also gives greater confidence
in the agent’s decision-making. In section IV-B, we will talk
more about this confidence in the decision making process.

Example of ’Overall context’: B,C,D,E,F are potentially
linked to F. The goal is to get privileges on F while remaining
undetected. We encourage to keep attacking machines where
you do not have full access.



2) Available machines: In the ”Available machines” part,
there is a descriptive list of all the discovered machines’
statuses. The status of the machine is updated on certain
conditions. Table II describes the conditions that make the
candidate labels changes. The conditions and labels we have
developed give the agent a better representation of the envi-
ronment helping it in making the right decision at all times.
We have chosen these labels in order to obtain decisions as
deterministic as possible. The impact of the words used in
these labels will be developed in section IV-B.

Example of ’Available machines’: A has already been
attacked, B is a new machine, C is a new machine, D is a new
machine, E is a new machine, F is one of the target machine.

Conditions Candidate labels (Actions)

Agent does not execute any action
on A A is a new machine

Agent executes at least one action
on A A has already been attacked

Agent discovers that A is the target
machine A is one of the target machine

Agent obtains root privileges on A A is totally corrupted
Agent executes at least one action
and receives a permission error A is a dead end

TABLE II
CONDITIONS TO UPDATE THE CANDIDATE LABELS THAT CAN BE PRESENT

IN THE LIST OF ’AVAILABLE MACHINE’

3) Machine context: Inside the machine context we have
information about the goal, the services, the processes, and
the operating system present on the machine. It also states if
the machine is compromised or not. The goal information is
updated as in the overall context. Most of this information is
also used by the other RL agents (DQN, CLAP) from the state-
of-the-art papers, except for the goal information part. Table III
describes the observables that represent all information about
a machine, and how it is updated after the agent triggers an
action. We only illustrate the update via a specific sequence
to give an overview, and to highlight the impacted data.

Example of ’Machine context’: The goal is to get
privileges on F while remaining undetected. No service found
on F. No operating system found on F. No process found on
F. No privilege obtained on F.

4) Available actions: In the available actions, we have
information about actions that can be executed on the targeted
machine. Table IV describes each action present in our
scenarios of NASim: Tiny, Small-linear, and Medium (defined
in the Table V). Currently, we have created 12 textual
labels that allow playing on different scenarios of NASim
but not all. Some of these actions also target an operating
system (Linux, or Windows) in addition to the machine,
and we take this into account in our labels. We have also
added information to some actions for the agent to execute
them when a certain status of a machine appears. This is
particularly true for the following actions: ”process scan”,

Conditions Observables

The agent does not execute any action on A

No service found on
A. No operating system
found on A. No process
found on A. No privilege
obtained on A.

The agent executes ’service scan’ on A

The service ssh is run-
ning on A. No operating
system found on A. No
process found on A. No
privilege obtained on A.

The agent executes ’os scan’ on A (in ad-
dition to the previous)

The service ssh is running
on A. The operating sys-
tem linux is running on
A. No process found on A.
No privilege obtained on
A.

The agent executes ’e ssh’ on A (in addition
to the previous)

The service ssh is running
on A. The operating sys-
tem linux is running on A.
No process found on A. A
is finally infected.

The agent executes ’process scan’ on A (in
addition to the previous)

The service ssh is running
on A. The operating sys-
tem linux is running on
A. The process tomcat is
running on A. A is finally
infected.

TABLE III
CONDITIONS TO UPDATE THE OBSERVABLES THAT CAN BE PRESENT IN A

’MACHINE CONTEXT’

”subnet scan”, ”pe daclsvc”, ”pe tomcat”, and ”pe schtask”
which will be executed once the machine is infected.

NASim Actions Candidate labels (Actions)

service scan reveal service on A
os scan reveal operating system on A
process scan reveal process by infecting A
subnet scan discover subnet by infecting A
e ftp [linux,windows] exploit ftp [linux,windows] on A
e http [linux,windows] exploit http [linux,windows] on A
e ssh [linux,windows] exploit ssh [linux,windows] on A
e samba [linux,windows] exploit samba [linux,windows] on A
e smtp [linux,windows] exploit smtp [linux,windows] on A

pe daclsvc get highest privileges by infecting A with
daclsvc windows

pe tomcat get highest privileges by infecting A with
tomcat linux

pe schtask get highest privileges by infecting A with
schtask windows

TABLE IV
LABELS USED TO REPRESENT THE NASIM ACTIONS

Example of ’Available actions’: reveal service on F,
discover subnet by infecting F, reveal process by infecting F,
exploit ssh linux on F, exploit http on F, exploit ftp windows
on F, get highest privileges by infecting F with tomcat linux,
get highest privileges by infecting F with daclsvc windows.



D. Evaluation metric

As presented in section III-A, we suggest that measuring the
performance of a RL agent based on the number of actions
done to compromise the target machine is not an efficient
metric because it does not encourage actions that reflect the
behaviour of a human pentester confronted with an IS that
he does not know. Indeed, pentesters tend to want to be as
discreet as possible and to obtain as much useful information
about a machine as possible before attacking it. We choose to
evaluate the ability to attack a network with a new metric that
encourages the RL agent to discover the necessary information
before attacking a machine.

At the end of the challenge, we return the basic reward plus
a bonus. Equation 1 describes this new metric which allows
to better evaluate the performance of our model during the
training and evaluation phase. The basic reward called Rbase

is the sum of the cost of all the actions carried out. The
bonus is the sum of At

c (multiplied by a factor α) which is
the one-hot incorporation of the action taken by the agent at
time t after having discovered the right information. α is a
configurable factor that compensates for the cost of discovery
actions. RL agent using information from discovery actions
to exploit machines obtain reward bonuses. This factor must
be higher than 3 because the attacker needs to discover at
least three elements per machine: operating system, services,
processes and each discovery cost -1. This metric is used
with all agents (CLAP, DQN, PPO, Zero-shot) and we have
a safeguard that prevents discovery actions that have already
been positively rewarded from being rewarded again.

Rfinal = Rbase +

t∑
i=1

At
c ∗ α (1)

IV. CONTRIBUTIONS

A. Experiments on NASim

In this section, we present the performances of our zero-
shot model compared to the PPO recurrent network and the
CLAP model.

TABLE V
NETWORK SCENARIOS USED BY OUR MODEL.

Subnets Hosts OS Services Processes
Tiny 4 3 1 1 1
Small-linear 7 8 2 3 2
Medium 6 16 2 5 3

We also present the performances of our model with our new
metric used during the evaluation phase. Refer to Appendix
10 for a comparison of the performance of our model against
other Reinforcement Learning agents, using the traditional
reward.

For the experiments, we choose to compare the DQN, PPO
recurrent, and CLAP with our model. The DQN and CLAP
were chosen because they are mentioned in several state-of-
the-art papers [6], [14]. We also decided to add the PPO

recurrent since we wanted a classical RL agent that can handle
partially observable environment. We had to train the other
models in order to compare them with ours. This training
took 100,000 steps for the DQN and PPO recurrent models,
and 5,000,000 for the CLAP model. It is important to note
that our model did not require any training at all because it
is a pre-trained model, therefore we haven’t re-trained it on
the NASim environment. We have noticed that the DQN and
PPO recurrent do not converge after 100,000, this is why the
training steps are set to this value. For CLAP, we took the
same hyperparameters as the authors chose [14].

Fig. 2. Comparison of performances from RL agents (DQN, CLAP, PPO
recurrent and zero-shot) trained and evaluated with the new evaluation metric

Figure 2 shows the performance of our zero-shot model
compared to other RL agents (CLAP, PPO recurrent). The
episodic return is the final reward given to the agent at the end
of the challenge. This reward is computed with the new metric
evaluation introduced in the previous section. We compare all
algorithms on three scenarios (tiny, small-linear, and medium)
using a mean episodic return. It is the mean value obtained
after five runs.

In the following results 2, we can see that the DQN, PPO
recurrent and CLAP obtain good results. However, we would
like to remind that these models are not adaptive and they
are evaluated on the same network they trained on. Whereas
our zero-shot approach does not require training and therefore
does not know the targeted network in advance.

For the tiny scenario (on the left-hand side of the figure 2),
we observe that the four models have positive episodic returns.
The DQN model has a mean episodic return of 163, the PPO
model gets a mean episodic return equal to 207, the CLAP
model obtains a mean episodic return of 230, and the zero-
shot model reaches a mean episodic return equal to 239. Thus,
our model outperforms the DQN, PPO recurrent and CLAP
network, even if these models have seen the network during
the training phase.

For the small-linear scenario (on the middle of the figure 2),
we observe that only the CLAP and zero-shot models have
positive episodic returns. The DQN model reaches a mean



episodic return of –746, the PPO model has a mean episodic
return equal to -355, the CLAP model obtains a mean episodic
return of 235, and the zero-shot model gets a mean episodic
return equal to 244. The DQN has difficulties to converge due
to the partially observable environment and the complexity of
the network. The PPO recurrent obtains a better score than the
DQN thanks to its recurrent layer that better handles partially
observable environment. Finally, we observe that our model is
61 points better compared to the CLAP model.

For the medium scenario (on the right-hand side of the
figure 2), we also observe that only CLAP and zero-shot mod-
els have positive episodic returns. The DQN model reaches
a mean episodic return of -2260, the PPO model obtains a
mean episodic return equal to -1471, the CLAP model has
a mean episodic return of 234, and the zero-shot model gets
a mean episodic return equal to 225. We observe that CLAP
outperforms our model, our model is -9 points worst compared
to the CLAP model. In this case, CLAP performs better, which
is not surprising, because it should be pointed out that it saw
the network during its training phase, whereas our model did
not.

These results show that our zero-shot approach outperforms
other RL agents (PPO and CLAP) in terms of mean episodic
returns. We can conclude that our model can handle different
networks without needing a new training.

B. Towards explainability

We are aware that the work we present cannot lead to a
complete explainability of our model. However, this work has
allowed us to better understand the importance of the words
that are given to the algorithm. The choice of words also
helped in the decision making process to get more accurate
and deterministic answers. This is why we present, in this
section, a preliminary study on the importance of words in
decision making.

We start by looking at the confidence that our model gives
to each candidate labels. We then look at the Shap value whose
interest is to explain the influence of inputs on model outputs.
In our case, we can thus see the influence of the input words on
the decision-making of the actions (selection of the machine
and selection of the action).

1) Machine selection: In this section, we will show how the
words in the list of available machines impact the decision
of our models. In order to illustrate this, we have created
five distinct contexts called ”Context 1” to ”Context 5” and
three candidate labels per context. These new contexts and
candidate labels are illustrated and described in the Table VI
and IX. In the Figure 3, we can observe the probability of each
action A1, B1, C1 for the different contexts. In the context 1,
we can select three new machines represented by the three
actions A1, B1, C1. There is no advantage in selecting one
over the other, this is why we can observe close probabilities
between actions A1, B1, and C1. Thus, our model decides
to choose the machine A (by selecting the action A1). In the
context 2, the agent has previously launched one action on
the machine A. Therefore, we can observe that the action A1

Fig. 3. Decision confidence for different contexts about selecting the machine

Fig. 4. Shap value of the action ”A has already been attacked”

Fig. 5. Shap value of the action ”A is a dead end”

gains in confidence in the decision (compared to the previous
context). With the rule given in the context (”We encourage to
keep attacking machines where you do not have full access.”),
the confidence in the selection of machine A increases. In
the context 3, the word ”dead end” is used when the agent
discovers a restriction of service. Thus, we can observe that
the confidence about A1 is the lowest. We found that the
use of particular words (”dead end”, ”arrested”, or ”stop”)
in the observation of an action has a negative effect and
reduces the probability of choosing that action. Figures 4 and
5 show the Shap value and confirm this effect. We observe
that without the term ”dead end”, many keywords from the
context are used (red colour) however when the sequence ”is
a dead end” is given, no more words from the context is used.
Thus, when our agent discovers a restriction, we include this
word into the context in order to avoid that our agent gets
blocked and therefore selects another machine. This behaviour
is confirmed in the context 3, where our agent prefers to select
the machine B since the machine A is a dead-end. In the
context 4, the action B1 is selected because the machine A is
totally corrupted. Thus, our agent selects a new machine such



as B or C. Finally, in the context 5, our agent discovered that
the target machine is C, the confidence is then higher for the
action C1.

Fig. 6. Confidence in decision for different contexts when selecting actions

Fig. 7. Shap value of the action ”exploit ssh linux on A”

Fig. 8. Shap value of the action ”exploit ftp linux on A”

Fig. 9. Shap value of the action ”exploit http linux on A”

2) Services selection: In this section, we show how the
words that correspond to the name of service impact the
decision of our model. In order to illustrate this, we have
created three other contexts called ”Context 6”, ”Context
7”, and ”Context 8” and three candidate labels per context.
These new contexts and candidate labels are illustrated and
described in Table VIII and IX. In the Figure 6, we can

observe the probability of each action A1, B1, C1 for the
different contexts. In the context 6, the service ssh is running
on the machine. The action with the highest probability is
A1, ”exploit ssh”, since the model knows that the associated
service is running. In the other contexts, we can observe the
same results. So if we change the name of the service running
on the machine, the action exploiting this service will have
a higher probability to be picked than the others. We also
confirm that our model uses the name of services available
in the context with the different Shap values present in the
figures 7, 8, and 9. In the Figures 8 and 9, we observe that
the word ”http” and ”ftp” are used to take a decision.

V. DISCUSSION / FUTURE WORKS

In this paper, we have presented a more robust and adaptive
approach based on a zero-shot classification that outperforms
the other RL agents (DQN, PPO recurrent, and CLAP) in the
reference NASim environment according to our new metric.
We have made sure that our solution for building the environ-
ment is easily adaptive to any simulated network topology. We
already have first conclusive results when exploiting the model
in a realistic cyberrange environment. In order to improve the
generalisation of the model, the next step is to test it in a
more realistic and complex environment. We also want to
improve our approach by using a more powerful AI archi-
tecture. Indeed, we plan on using Text2Text generation such
as Llama [10], Huggingchat [7], FLAN [12], or Bloom [13]
models instead of a zero-shot classifier with the BART model.
We hope that using one of these models will reduce the amount
of help we currently give in the observable environment. Doing
so would also improve handling more complex pentesting
challenges with more constraints, restrictions and services.

Our version of NASim and our naive evaluation metric
will be available at the following URL: https://github.com/
silicom-hub/zero-shot-pentesting-paper.

REFERENCES

[1] Alessandro Confido, Evridiki V. Ntagiou, and Marcus Wallum. Rein-
forcing penetration testing using ai. In 2022 IEEE Aerospace Conference
(AERO), pages 1–15, 2022.

[2] Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, and Alexis
Conneau. Larger-scale transformers for multilingual masked language
modeling. CoRR, abs/2105.00572, 2021.

[3] Zhenguo Hu, Razvan Beuran, and Yasuo Tan. Automated penetration
testing using deep reinforcement learning. In 2020 IEEE European
Symposium on Security and Privacy Workshops (EuroS&PW), pages 2–
10, 2020.

[4] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdel-
rahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer.
BART: denoising sequence-to-sequence pre-training for natural language
generation, translation, and comprehension. CoRR, abs/1910.13461,
2019.

[5] Scott M Lundberg and Su-In Lee. A unified approach to interpreting
model predictions. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc.,
2017.

[6] Jonathon Schwartz and Hanna Kurniawati. Autonomous penetration
testing using reinforcement learning. CoRR, abs/1905.05965, 2019.

[7] Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu,
and Yueting Zhuang. Hugginggpt: Solving ai tasks with chatgpt and its
friends in huggingface, 2023.



[8] Maxwell Standen, David Bowman, Son Hoang, Toby Richer, Martin
Lucas, Richard Van Tassel, Phillip Vu, Mitchell Kiely, KC C., Natalie
Konschnik, and Joshua Collyer. Cyber operations research gym. https:
//github.com/cage-challenge/CybORG, 2022.

[9] Maxwell Standen, Martin Lucas, David Bowman, Toby J. Richer, Junae
Kim, and Damian Marriott. Cyborg: A gym for the development of
autonomous cyber agents, 2021.

[10] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-
Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric
Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023.

[11] Khuong Tran, Ashlesha Akella, Maxwell Standen, Junae Kim, David
Bowman, Toby Richer, and Chin-Teng Lin. Deep hierarchical rein-
forcement agents for automated penetration testing, 2021.

[12] Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei
Yu, Brian Lester, Nan Du, Andrew M. Dai, and Quoc V. Le. Finetuned
language models are zero-shot learners, 2022.

[13] BigScience Workshop, :, Teven Le Scao, Angela Fan, Christopher Akiki,
Ellie Pavlick, Suzana Ilić, and Daniel Hesslow. Bloom: A 176b-
parameter open-access multilingual language model, 2023.

[14] Yizhou Yang and Xin Liu. Behaviour-diverse automatic penetration
testing: A curiosity-driven multi-objective deep reinforcement learning
approach, 2022.

[15] Wenpeng Yin, Jamaal Hay, and Dan Roth. Benchmarking zero-shot
text classification: Datasets, evaluation and entailment approach. CoRR,
abs/1909.00161, 2019.

[16] Shicheng Zhou, Jingju Liu, Dongdong Hou, Xiaofeng Zhong, and Yue
Zhang. Autonomous penetration testing based on improved deep q-
network. Applied Sciences, 11(19), 2021.

VI. ANNEXE

Fig. 10. Comparison of performances from RL agents (DQN, CLAP,
PPO recurrent and zero-shot) trained and evaluated with the NaSim metric
evaluation

Fig. 11. Comparison of performances from RL agents (DQN, CLAP, PPO
recurrent and zero-shot) trained with the NaSim metric and evaluate with the
new metric evaluation

Context Description

Context 1, 2, 3, 4,
5

A,B,C are potentially linked to F. The goal is
to get privileges on F while remaining unde-
tected.We encourage to keep attacking machines
where you do not have full access.

TABLE VI
LIST OF CONTEXTS FOR MACHINE SELECTION



Context Candidate label Description

Context 1 A1 A is a new machine
B1 B is a new machine
C1 C is a new machine

Context 2 A1 A has already been attacked
B1 B is a new machine
C1 C is a new machine

Context 3 A1 A is a dead end
B1 B is a new machine
C1 C is a new machine

Context 4 A1 A is totally corrupted
B1 B is a new machine
C1 C is a new machine

Context 5 A1 A is totally corrupted
B1 B is a new machine
C1 C is one of the target machine

TABLE VII
LIST OF CONTEXTS AND CANDIDATE LABELS FOR MACHINE SELECTION

Context Description

Context 6

The goal is to get privileges on F while remain-
ing undetected. The service ssh is running on A.
The operating system linux is running on A. No
process found on A. No privilege obtained on
A.

Context 7

The goal is to get privileges on F while remain-
ing undetected. The service ftp is running on A.
The operating system linux is running on A. No
process found on A. No privilege obtained on
A.

Context 8

The goal is to get privileges on F while remain-
ing undetected. The service http is running on
A. The operating system linux is running on A.
No process found on A. No privilege obtained
on A.

TABLE VIII
LIST OF CONTEXT FOR MACHINE SELECTION

Context Candidate label Description

Context 6 A1 exploit ssh linux on A
B1 exploit http linux on A
C1 exploit ftp linux on 1

Context 7 A1 exploit ssh linux on A
B1 exploit http linux on A
C1 exploit ftp linux on A

Context 8 A1 exploit ssh linux on A
B1 exploit http linux on A
C1 exploit ftp linux on A

TABLE IX
LIST OF CONTEXT AND CANDIDATE LABEL FOR MACHINE SELECTION


