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A PU–BONNESEN INEQUALITY

MIKHAIL G. KATZ AND STÉPHANE SABOURAU

Abstract. We prove an inequality of Bonnesen type for the real
projective plane, generalizing Pu’s systolic inequality for positively-
curved metrics. The remainder term in the inequality, analogous
to that in Bonnesen’s inequality, is a function of R − r (suitably
normalized), where R and r are respectively the circumradius and
the inradius of the Weyl–Lewy Euclidean embedding of the ori-
entable double cover. We exploit John ellipsoids of a convex body
and Pogorelov’s ridigity theorem.

1. Pu, Bonnesen, and Weyl–Lewy

Pu’s inequality asserts that area(g) − 2
π

sys2(g) ≥ 0 for every Rie-

mannian metric g on RP2 where equality is satisfied if and only if g has
constant Gaussian curvature ([19], 1952). The inequality has recently
been strengthened [11] to

area(g)− 2

π
sys2(g) ≥ 2πVarµ(f) (1.1)

where the variance Varµ is with respect to the probability measure µ
induced by the constant curvature unit area metric g0 in the confor-
mal class of g, so that g = f 2g0. A similar strengthened version ex-
ists for Loewner’s torus inequality; see [8]. However, the remainder
term Varµ(f) in these inequalities does not exhibit any explicit relation
to the geometry of the metric. In this paper we seek a strengthening
of Pu’s inequality where the relation to the metric is more explicit.

Bonnesen’s inequality and its analogs involve a strengthening of the
isoperimetric inequality of the following type:

L2 − 4πA ≥ f(R, r), (1.2)
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where L is the length of a Jordan curve in R2, A is the area of the
region bounded by the curve, R is the circumradius and r is the inra-
dius [4, p. 3]. In Bonnesen’s inequality, one has f(R, r) = π2(R − r)2.
Additional inequalities exist with f dependent on parameters A or L,

namely f(R, r) = A2
(

1
r
− 1

R

)2
and f(R, r) = L2

(
R−r
R+r

)2
(ibid.).

Now suppose (RP2, g) has positive curvature. Then by the gener-
alisation of the Weyl–Lewy theorem [26], [14], the orientable double
cover Sg admits a unique (up to congruence) isometric embedding as
a convex surface Sg ⊆ R3 (Nirenberg [16], Lu [15]). Here, we seek an
analog of the inequality (1.1) with a remainder term exhibiting a more
explicit relation to the geometry of Sg. The relation is expressed in
terms of the difference R− r between the circumscribed and inscribed
radii of Sg, analogous to (1.2). Let R and r be the circumradius and
inradius of Sg ⊆ R3, respectively.

Theorem 1.1. There exists a monotone continuous function λ(t) > 0
for t > 0 such that if (RP2, g) has positive Gaussian curvature, then

area(g)

sys2(g)
− 2

π
≥ λ

(R− r
sys

)
, (1.3)

where λ(t) is asymptotically linear as t → ∞, and R and r are the
circumscribed and inscribed radii of the Euclidean embedding of the
orientable double cover Sg ⊆ R3.

Our argument produces asymptotically linear bounds for the re-
mainer term for large R− r (when the systole is normalized) that can
easily be made effective. It would be interesting to develop effective
lower bounds for the remainder term for small R− r as in Volkov [25].

Generalisations of Pu’s inequality are studied in [2], [7], [9], [12], [13],
and elsewhere.

2. Rigidity in Pu’s inequality for singular metrics

In this section, we review some aspects of Reshetnyak’s work on
Alexandrov surfaces (i.e., singular surfaces with bounded integral cur-
vature) focusing on nonnegatively curved metrics.

We refer to [21], [22], [24], [5] and [6] for a more detailed exposition.
Let (S2, gn) be a sequence of nonnegatively curved Riemannian met-

rics on S2 such that the curvature measures ωn = Kgn dgn weakly
converge to ω. The measure difference µ = ω−dg0 is a Radon measure
of zero total mass on S2. Suppose that µ({x}) < 2π for every x ∈ S2.
Then dgn → d for the uniform topology; see [24, Theorem 6.2] or [20].
Here d is the intrinsic distance induced by g = eug0, where u is the po-
tential of µ with respect to the canonical metric g0 on S2 (i.e., µ = ∆g0u
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in the distribution sense). Note that u is expressed via the Green func-
tion G : S2 × S2 → R ∪ {+∞} through the formula

u(x) =

ˆ
S2

G(x, y) dµ(y). (2.1)

For general Alexandrov surfaces, the potential u is the difference of two
subharmonic functions, and one has u ∈ ∩p<2W

1,p(S2); see [24] and ref-
erences therein (this won’t be needed though). Furthermore, area(gn)→
area(g) and

area(g) =

ˆ
S2

eu dg0.

This result readily applies to a sequence of smooth convex spheres
Sn ⊆ R3 converging to a convex sphere S (bounding a convex body) for
the Hausdorff topology in R3. Equivalently, it applies to a sequence of
nonnegatively curved metrics gn on S2 Gromov-Hausdorff converging
(without collapse) to a metric on S2 with nonnegative curvature in
Alexandrov’s sense. Indeed, in this case, the distance on Sn uniformly
converges to the distance on S; see [1, §III.1] or [3, Lemma 10.2.7].
Furthermore, the condition µS({x}) < 2π, where x ∈ S, is always
satisfied on the boundary S of a convex body in R3; see [1, §V.3].
Thus, the metric on S can be written as g = eug0 for some weakly
regular function u on S as above.

For such singular metrics, the characterization of the equality case
in Pu’s inequality still holds. More generally, we have

Theorem 2.1. Let RPn be the projective n-space with a singular Rie-
mannian metric g = f̄ 2g0 with nonzero systole, where g0 is the standard
round metric and f̄ ∈ Ln is a nonnegative function. Then

vol(RPn, g)

sys(RPn, g)n
≥ vol(RPn, g0)

sys(RPn, g0)n
.

Furthermore, when n = 2 and f̄ = eu, where u is the potential of a
Radon measure µ of zero total mass given by (2.1), equality holds if
and only if g is a metric of constant Gaussian curvature.

Proof. Denote by f the lift of f̄ to the double orientable cover Sn

of RPn. Let us recall a simple version of Santaló’s formula on the
standard sphere Sn; see [23, IV.19.4]. The space Γ of closed oriented
geodesics on Sn is a (2n−2)-dimensional manifold admitting a natural
symplectic structure whose corresponding natural volume measure is
denoted by ν. Every integrable function F : Sn → R satisfiesˆ

Sn

F dgSn =
1

vol(Sn−1, g0)

ˆ
γ∈Γ

ˆ
S1

F (γ(t)) dt dν(γ). (2.2)
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Taking F ≡ 1, we observe that ν(Γ) = 1
2π

vol(Sn−1, g0) vol(Sn, g0).
Applied to F = fn, Santaló’s formula yields

vol(Sn, g) =

ˆ
Sn

fn dg0 =
1

vol(Sn−1, g0)

ˆ
γ∈Γ

ˆ
S1

f(γ(t))n dt dν(γ).

By Hölder’s inequality

(2π)
n−1
n

(ˆ
S1

f(γ(t))n dt

) 1
n

≥
ˆ
S1

f(γ(t)) dt = lengthg(γ),

we deduce

vol(Sn, g) ≥ 1

(2π)n−1 vol(Sn−1, g0)

(ˆ
γ∈Γ

lengthg(γ) dν(γ)

)n

≥ 2nν(Γ)

(2π)n−1 vol(Sn−1, g0)
sys(RPn, g)n

since lengthg(γ) ≥ 2 sys(RPn, g) for every γ ∈ Γ. Combined with the
value of ν(Γ), we derive

vol(RPn, g) ≥
1
2

vol(Sn, g0)

πn
sys(RPn, g)n

as desired. Furthermore, equality holds if and only if equality holds in
Hölder’s inequality, that is, if f is constant almost everywhere.

Suppose that n = 2 and f = eu, where u is given by (2.1). Since f ,
and so u, are constant almost everywhere, we have µ = ∆g0u = 0.
By (2.1), this implies that u, and so f , are constant everywhere. Hence
the extremal metric has constant curvature. �

Specifically, we have

Corollary 2.2. Let RP2 be the projective plane with a singular Rie-
mannian metric g = eug0, where u is the potential of a Radon mea-
sure µ of zero total mass given by (2.1). Then

area(RP2, g) ≥ 2

π
sys(RP2, g)2

with equality if and only if g is a metric of constant Gaussian curvature.

3. Pu’s inequality with an R− r remainder

In this section, we present two proofs of Theorem 1.1. The first
one follows an extrinsic geometry approach, while the second relies on
intrinsic geometry arguments.



A PU–BONNESEN INEQUALITY 5

First proof of Theorem 1.1. We will exploit John ellipsoids as well as
Pogorelov’s rigidity theorem.

Step 1. Consider a pair of John ellipsoids E ⊆ Sg ⊆
√

3E as in [10].
Let a ≤ b ≤ c be the principal axes of E ⊆ R3. Then up to a uniform
multiplicative constant, each nonnegative curved metric g on RP2 has
the following properties:

(1) sys(g) ∼ b;
(2) the inradius r of Sg satisfies r ∼ a;
(3) the circumradius R of Sg satisfies R ∼ c;
(4) area(g) ∼ bc.

Here, we write α ∼ β if there exist two positive constants C and C ′

(which do not depend on g) such that Cα ≤ β ≤ C ′α.
This follows from the existence of distance-decreasing nearest-point

projections from
√

3E to Sg and from Sg to E, due to the convexity
of Sg.

Since the relation (1.3) is scale-invariant, we can introduce a nor-
malisation b = 1. Then the systole is uniformly bounded above and
below by item (1). For a sequence of metrics with c → ∞, we have
area(g) ∼ c and therefore the inequality (1.3) follows from items (3)
and (4), including the linear asymptotic behavior of the remainder
term as t→∞.

Step 2. By the characterization of the equality case in Pu’s in-
equality (see Corollary 2.2), it remains to show that if for a sequence
of metrics (with b = 1) the difference area− 2

π
sys2 tends to 0 then Sg

converges to a round metric. For such a sequence, the major axis c is
uniformly bounded in view of estimates (1) and (4). We need to show
that the minor axis a stays away from zero in such a sequence of met-
rics. Suppose a→ 0. Then sys(g) tends to the width W of the Jordan
curve obtained as the boundary of the orthogonal projection of Sg to
the plane spanned by the principal axes b and c. Similarly, area(g)
tends to the area A of the planar region D ⊆ R2 bounded by the
curve. Since D is a centrally symmetric convex planar domain, we
have W 2 ≤ 4

π
A. Therefore, in the limit, we obtain

area− 2

π
sys2 = A− 2

π
W 2 ≥ A

(
1− 8

π2

)
> 0

which contradicts the assumption that area− 2
π

sys2 tends to 0. Hence,
the minor axis a stays uniformly away from 0.

Thus, for a family of metrics with the difference area− 2
π

sys2 tend-
ing to 0, the corresponding John ellipsoids have uniformly bounded
eccentricity.
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Step 3. Convex sets of uniformly bounded eccentricity form a com-
pact family by the Blaschke selection theorem. Let λ(t) be the min-
imum of area

sys2
− 2

π
among nonnegatively curved metrics with R−r

sys
≥ t.

Every metric which is not internally isometric to the metric of constant
curvature, satisfies R− r > 0.

Step 4. Now suppose the metric of the convex surface is internally
isometric to the metric of constant curvature. It follows that the surface
is congruent to the standard one by Pogorelov’s rigidity theorem [17,
p. 167] (see Prosanov [18] for a discussion of the status of the various
proofs of this ridigity result), and therefore R − r = 0. Thus λ(t) > 0
for t > 0. �

Our second proof of Theorem 1.1 relies on a more intrinsic argument.

Second proof of Theorem 1.1. Since the relation (1.3) is scale-invariant,
we can assume that sys(g) = 1.

Consider the lift γ on Sg ⊆ R3 of a systolic loop of (RP2, g). Note
that γ is a simple closed geodesic of Sg of length L = 2 sys(g). Further-
more, 2πr ≤ L. Thus, r ≤ 1

π
. Let p be a point of Sg at maximal intrin-

sic distance from γ. There exist at least two arcs of lengthD = dSg(p, γ)
starting at p and ending perpendicularly at γ. These two arcs along
with γ decompose the hemisphere of Sg bounded by γ into two isosceles
triangles ∆i. Now, consider the comparison triangles Ti with the same
side lengths in the Euclidean plane. By Toponogov’s theorem, the area
of ∆i is greater or equal to the area of Ti. Also, one of the edges of
one of the triangles ∆i (and so of Ti) is of length at least L

2
, and its

other two edges are of length D. If D goes to infinity (while the systole
of g is fixed), the area of Ti goes to infinity and so does the area of ∆i

(and RP2). More precisely, the area of g grows roughly as D. Note
that 2R ≤ diam(g) ≤ 2D+ L

2
. This implies that the remainder term λ

is asymptotically linear in (1.3).
Let λ(t) be the infimum of the difference area− 2

π
sys2 among non-

negatively curved metric with R−r
sys
≥ t. From the previous discus-

sion, we can assume that the diameter of g is bounded when con-
sidering λ(t). Since the space M(n,D, v) of n-dimensional compact
Alexandrov spaces of diameter at most D and of volume at least v > 0
is compact for the Gromov-Hausdorff topology (see Theorem 10.7.2 and
Corollary 10.10.11 of [3]), it follows from Perelman’s Stability Theorem
(see [3, Theorem 10.10.5]) that this infimum is attained by an extremal
metric with nonnegative curvature in Alexandrov’s sense. Such a (sin-
gular) metric can be written as g = eug0, where g0 is the canonical
metric on RP2 and u is the difference of two subharmonic functions;
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see Section 2. Suppose that λ(t) = 0. By the characterization of the
equality case in Pu’s inequality (see Corollary 2.2), the extremal met-
ric g is internally isometric to a metric of constant Gaussian curvature.
By Pogorelov’s rigidity theorem, such a convex surface is congruent to
the standard round sphere, so that R − r = 0. Therefore, λ(t) > 0
for t > 0. �
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[23] Santaló, L. Integral geometry and geometric probability. Second edition. With
a foreword by Mark Kac. Cambridge Mathematical Library. Cambridge Uni-
versity Press, 2004.

[24] Troyanov, M. Les surfaces à courbure intégrale bornée au sens d’Alexandrov.
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