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We prove an inequality of Bonnesen type for the real projective plane, generalizing Pu's systolic inequality for positivelycurved metrics. The remainder term in the inequality, analogous to that in Bonnesen's inequality, is a function of R -r (suitably normalized), where R and r are respectively the circumradius and the inradius of the Weyl-Lewy Euclidean embedding of the orientable double cover. We exploit John ellipsoids of a convex body and Pogorelov's ridigity theorem.

Pu, Bonnesen, and Weyl-Lewy

Pu's inequality asserts that area(g) -2 π sys 2 (g) ≥ 0 for every Riemannian metric g on RP 2 where equality is satisfied if and only if g has constant Gaussian curvature ( [START_REF] Pu | Some inequalities in certain nonorientable Riemannian manifolds[END_REF], 1952). The inequality has recently been strengthened [START_REF] Katz | A systolic inequality with remainder in the real projective plane[END_REF] to area(g) -2 π sys 2 (g) ≥ 2π Var µ (f ) (1.1) where the variance Var µ is with respect to the probability measure µ induced by the constant curvature unit area metric g 0 in the conformal class of g, so that g = f 2 g 0 . A similar strengthened version exists for Loewner's torus inequality; see [START_REF] Horowitz | Loewner's torus inequality with isosystolic defect[END_REF]. However, the remainder term Var µ (f ) in these inequalities does not exhibit any explicit relation to the geometry of the metric. In this paper we seek a strengthening of Pu's inequality where the relation to the metric is more explicit. Bonnesen's inequality and its analogs involve a strengthening of the isoperimetric inequality of the following type:

L 2 -4πA ≥ f (R, r), (1.2) 
where L is the length of a Jordan curve in R 2 , A is the area of the region bounded by the curve, R is the circumradius and r is the inradius [4, p. 3]. In Bonnesen's inequality, one has f (R, r) = π 2 (R -r) 2 . Additional inequalities exist with f dependent on parameters A or L,

namely f (R, r) = A 2 1 r -1 R 2 and f (R, r) = L 2 R-r R+r 2 (ibid.).
Now suppose (RP 2 , g) has positive curvature. Then by the generalisation of the Weyl-Lewy theorem [START_REF] Weyl | Über die Bestimmung einer geschlossenen konvexen Fläche durch ihr Linienelement[END_REF], [START_REF] Lewy | On the existence of a closed convex surface realizing a given Riemannian metric[END_REF], the orientable double cover S g admits a unique (up to congruence) isometric embedding as a convex surface S g ⊆ R 3 (Nirenberg [START_REF] Nirenberg | The Weyl and Minkowski problems in differential geometry in the large[END_REF], Lu [START_REF] Lu | On Weyl's embedding problem in Riemannian manifolds[END_REF]). Here, we seek an analog of the inequality (1.1) with a remainder term exhibiting a more explicit relation to the geometry of S g . The relation is expressed in terms of the difference R -r between the circumscribed and inscribed radii of S g , analogous to (1.2). Let R and r be the circumradius and inradius of S g ⊆ R 3 , respectively. Theorem 1.1. There exists a monotone continuous function λ(t) > 0 for t > 0 such that if (RP 2 , g) has positive Gaussian curvature, then area(g) sys 2 (g)

- 2 π ≥ λ R -r sys , (1.3) 
where λ(t) is asymptotically linear as t → ∞, and R and r are the circumscribed and inscribed radii of the Euclidean embedding of the orientable double cover S g ⊆ R 3 .

Our argument produces asymptotically linear bounds for the remainer term for large R -r (when the systole is normalized) that can easily be made effective. It would be interesting to develop effective lower bounds for the remainder term for small R -r as in Volkov [START_REF] Volkov | An estimate of the deformation of a convex surface as a function of the change in its intrinsic metric[END_REF].

Generalisations of Pu's inequality are studied in [START_REF] Babenko | Systolic freedom of orientable manifolds[END_REF], [START_REF] Guth | Systolic inequalities and minimal hypersurfaces[END_REF], [START_REF] Ivanov | Generalized degree and optimal Loewner-type inequalities[END_REF], [START_REF] Katz | Lusternik-Schnirelmann category and systolic category of low-dimensional manifolds[END_REF], [START_REF] Katz | Hyperelliptic surfaces are Loewner[END_REF], and elsewhere.

Rigidity in Pu's inequality for singular metrics

In this section, we review some aspects of Reshetnyak's work on Alexandrov surfaces (i.e., singular surfaces with bounded integral curvature) focusing on nonnegatively curved metrics.

We refer to [START_REF] Reshetnyak | Two-dimensional manifolds of bounded curvature[END_REF], [START_REF] Reshetnyak | On the conformal representation of Alexandrov surfaces[END_REF], [START_REF] Troyanov | Les surfaces à courbure intégrale bornée au sens d'Alexandrov[END_REF], [START_REF] Debin | A compactness theorem for surfaces with bounded integral curvature[END_REF] and [START_REF] Fillastre | An introduction to Reshetnyak's theory of subharmonic distances[END_REF] for a more detailed exposition. Let (S 2 , g n ) be a sequence of nonnegatively curved Riemannian metrics on S 2 such that the curvature measures ω n = K gn dg n weakly converge to ω. The measure difference µ = ω -dg 0 is a Radon measure of zero total mass on S 2 . Suppose that µ({x}) < 2π for every x ∈ S 2 . Then d gn → d for the uniform topology; see [START_REF] Troyanov | Les surfaces à courbure intégrale bornée au sens d'Alexandrov[END_REF]Theorem 6.2] or [START_REF] Reshetnyak | Isothermal coordinates on manifolds of bounded curvature I, II. Sibirsk[END_REF]. Here d is the intrinsic distance induced by g = e u g 0 , where u is the potential of µ with respect to the canonical metric g 0 on S 2 (i.e., µ = ∆ g 0 u in the distribution sense). Note that u is expressed via the Green function G :

S 2 × S 2 → R ∪ {+∞} through the formula u(x) = ˆS2 G(x, y) dµ(y). (2.1) 
For general Alexandrov surfaces, the potential u is the difference of two subharmonic functions, and one has u ∈ ∩ p<2 W 1,p (S 2 ); see [START_REF] Troyanov | Les surfaces à courbure intégrale bornée au sens d'Alexandrov[END_REF] and references therein (this won't be needed though). Furthermore, area(g n ) → area(g) and area(g) =

ˆS2

e u dg 0 .

This result readily applies to a sequence of smooth convex spheres S n ⊆ R 3 converging to a convex sphere S (bounding a convex body) for the Hausdorff topology in R 3 . Equivalently, it applies to a sequence of nonnegatively curved metrics g n on S 2 Gromov-Hausdorff converging (without collapse) to a metric on S 2 with nonnegative curvature in Alexandrov's sense. Indeed, in this case, the distance on S n uniformly converges to the distance on S; see [1, §III.1] or [3, Lemma 10.2.7]. Furthermore, the condition µ S ({x}) < 2π, where x ∈ S, is always satisfied on the boundary S of a convex body in R 3 ; see [1, §V.3]. Thus, the metric on S can be written as g = e u g 0 for some weakly regular function u on S as above.

For such singular metrics, the characterization of the equality case in Pu's inequality still holds. More generally, we have Theorem 2.1. Let RP n be the projective n-space with a singular Riemannian metric g = f 2 g 0 with nonzero systole, where g 0 is the standard round metric and f ∈ L n is a nonnegative function. Then vol(RP n , g)

sys(RP n , g) n ≥ vol(RP n , g 0 ) sys(RP n , g 0 ) n .
Furthermore, when n = 2 and f = e u , where u is the potential of a Radon measure µ of zero total mass given by (2.1), equality holds if and only if g is a metric of constant Gaussian curvature.

Proof. Denote by f the lift of f to the double orientable cover S n of RP n . Let us recall a simple version of Santaló's formula on the standard sphere S n ; see [START_REF] Santaló | Integral geometry and geometric probability[END_REF]IV.19.4]. The space Γ of closed oriented geodesics on S n is a (2n -2)-dimensional manifold admitting a natural symplectic structure whose corresponding natural volume measure is denoted by ν. Every integrable function F :

S n → R satisfies ˆSn F dg S n = 1 vol(S n-1 , g 0 ) ˆγ∈Γ ˆS1 F (γ(t)) dt dν(γ). (2.2) 
Taking F ≡ 1, we observe that ν(Γ) = 1 2π vol(S n-1 , g 0 ) vol(S n , g 0 ). Applied to F = f n , Santaló's formula yields

vol(S n , g) = ˆSn f n dg 0 = 1 vol(S n-1 , g 0 ) ˆγ∈Γ ˆS1 f (γ(t)) n dt dν(γ).
By Hölder's inequality

(2π) n-1 n ˆS1 f (γ(t)) n dt 1 n ≥ ˆS1 f (γ(t)) dt = length g (γ), we deduce vol(S n , g) ≥ 1 (2π) n-1 vol(S n-1 , g 0 ) ˆγ∈Γ length g (γ) dν(γ) n ≥ 2 n ν(Γ) (2π) n-1 vol(S n-1 , g 0 ) sys(RP n , g) n
since length g (γ) ≥ 2 sys(RP n , g) for every γ ∈ Γ. Combined with the value of ν(Γ), we derive vol(RP n , g) ≥ 1 2 vol(S n , g 0 ) π n sys(RP n , g) n as desired. Furthermore, equality holds if and only if equality holds in Hölder's inequality, that is, if f is constant almost everywhere. Suppose that n = 2 and f = e u , where u is given by (2.1). Since f , and so u, are constant almost everywhere, we have µ = ∆ g 0 u = 0. By (2.1), this implies that u, and so f , are constant everywhere. Hence the extremal metric has constant curvature. Specifically, we have Corollary 2.2. Let RP 2 be the projective plane with a singular Riemannian metric g = e u g 0 , where u is the potential of a Radon measure µ of zero total mass given by (2.1). Then

area(RP 2 , g) ≥ 2 π sys(RP 2 , g) 2
with equality if and only if g is a metric of constant Gaussian curvature.

Pu's inequality with an R -r remainder

In this section, we present two proofs of Theorem 1.1. The first one follows an extrinsic geometry approach, while the second relies on intrinsic geometry arguments.

First proof of Theorem 1.1. We will exploit John ellipsoids as well as Pogorelov's rigidity theorem.

Step 1. Consider a pair of John ellipsoids E ⊆ S g ⊆ √ 3 E as in [START_REF] John | Extremum problems with inequalities as subsidiary conditions. Studies and Essays Presented to R[END_REF]. Let a ≤ b ≤ c be the principal axes of E ⊆ R 3 . Then up to a uniform multiplicative constant, each nonnegative curved metric g on RP 2 has the following properties:

(1) sys(g) ∼ b;

(2) the inradius r of S g satisfies r ∼ a;

(3) the circumradius R of S g satisfies R ∼ c;

(4) area(g) ∼ bc. Here, we write α ∼ β if there exist two positive constants C and C (which do not depend on g) such that Cα ≤ β ≤ C α.

This follows from the existence of distance-decreasing nearest-point projections from √ 3 E to S g and from S g to E, due to the convexity of S g .

Since the relation (1.3) is scale-invariant, we can introduce a normalisation b = 1. Then the systole is uniformly bounded above and below by item [START_REF] Alexandrov | Part II. Intrinsic geometry of convex surfaces[END_REF]. For a sequence of metrics with c → ∞, we have area(g) ∼ c and therefore the inequality (1.3) follows from items ( 3) and ( 4), including the linear asymptotic behavior of the remainder term as t → ∞.

Step 2. By the characterization of the equality case in Pu's inequality (see Corollary 2.2), it remains to show that if for a sequence of metrics (with b = 1) the difference area -2 π sys 2 tends to 0 then S g converges to a round metric. For such a sequence, the major axis c is uniformly bounded in view of estimates (1) and (4). We need to show that the minor axis a stays away from zero in such a sequence of metrics. Suppose a → 0. Then sys(g) tends to the width W of the Jordan curve obtained as the boundary of the orthogonal projection of S g to the plane spanned by the principal axes b and c. Similarly, area(g) tends to the area A of the planar region D ⊆ R 2 bounded by the curve. Since D is a centrally symmetric convex planar domain, we have W 2 ≤ 4 π A. Therefore, in the limit, we obtain area -

2 π sys 2 = A - 2 π W 2 ≥ A 1 - 8 π 2
> 0 which contradicts the assumption that area -2 π sys 2 tends to 0. Hence, the minor axis a stays uniformly away from 0.

Thus, for a family of metrics with the difference area -2 π sys 2 tending to 0, the corresponding John ellipsoids have uniformly bounded eccentricity.

Step 3. Convex sets of uniformly bounded eccentricity form a compact family by the Blaschke selection theorem. Let λ(t) be the minimum of area sys 2 -2 π among nonnegatively curved metrics with R-r sys ≥ t. Every metric which is not internally isometric to the metric of constant curvature, satisfies R -r > 0.

Step 4. Now suppose the metric of the convex surface is internally isometric to the metric of constant curvature. It follows that the surface is congruent to the standard one by Pogorelov's rigidity theorem [17, p. 167] (see Prosanov [START_REF] Prosanov | Rigidity of compact Fuchsian manifolds with convex boundary[END_REF] for a discussion of the status of the various proofs of this ridigity result), and therefore R -r = 0. Thus λ(t) > 0 for t > 0.

Our second proof of Theorem 1.1 relies on a more intrinsic argument.

Second proof of Theorem 1.1. Since the relation (1.3) is scale-invariant, we can assume that sys(g) = 1.

Consider the lift γ on S g ⊆ R 3 of a systolic loop of (RP 2 , g). Note that γ is a simple closed geodesic of S g of length L = 2 sys(g). Furthermore, 2πr ≤ L. Thus, r ≤ 1 π . Let p be a point of S g at maximal intrinsic distance from γ. There exist at least two arcs of length D = d Sg (p, γ) starting at p and ending perpendicularly at γ. These two arcs along with γ decompose the hemisphere of S g bounded by γ into two isosceles triangles ∆ i . Now, consider the comparison triangles T i with the same side lengths in the Euclidean plane. By Toponogov's theorem, the area of ∆ i is greater or equal to the area of T i . Also, one of the edges of one of the triangles ∆ i (and so of T i ) is of length at least L 2 , and its other two edges are of length D. If D goes to infinity (while the systole of g is fixed), the area of T i goes to infinity and so does the area of ∆ i (and RP 2 ). More precisely, the area of g grows roughly as D. Note that 2R ≤ diam(g) ≤ 2D + L 2 . This implies that the remainder term λ is asymptotically linear in (1.3).

Let λ(t) be the infimum of the difference area -2 π sys 2 among nonnegatively curved metric with R-r sys ≥ t. From the previous discussion, we can assume that the diameter of g is bounded when considering λ(t). Since the space M(n, D, v) of n-dimensional compact Alexandrov spaces of diameter at most D and of volume at least v > 0 is compact for the Gromov-Hausdorff topology (see Theorem 10.7.2 and Corollary 10.10.11 of [START_REF] Burago | A course in metric geometry[END_REF]), it follows from Perelman's Stability Theorem (see [START_REF] Burago | A course in metric geometry[END_REF]Theorem 10.10.5]) that this infimum is attained by an extremal metric with nonnegative curvature in Alexandrov's sense. Such a (singular) metric can be written as g = e u g 0 , where g 0 is the canonical metric on RP 2 and u is the difference of two subharmonic functions; see Section 2. Suppose that λ(t) = 0. By the characterization of the equality case in Pu's inequality (see Corollary 2.2), the extremal metric g is internally isometric to a metric of constant Gaussian curvature. By Pogorelov's rigidity theorem, such a convex surface is congruent to the standard round sphere, so that R -r = 0. Therefore, λ(t) > 0 for t > 0.
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