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Abstract: This article presents a comprehensive review of the Active Simultaneous Localization
and Mapping (A-SLAM) research conducted over the past decade. It explores the formulation,
applications, and methodologies employed in A-SLAM, particularly in trajectory generation and
control-action selection, drawing on concepts from Information Theory (IT) and the Theory of Optimal
Experimental Design (TOED). This review includes both qualitative and quantitative analyses of
various approaches, deployment scenarios, configurations, path-planning methods, and utility
functions within A-SLAM research. Furthermore, this article introduces a novel analysis of Active
Collaborative SLAM (AC-SLAM), focusing on collaborative aspects within SLAM systems. It includes
a thorough examination of collaborative parameters and approaches, supported by both qualitative
and statistical assessments. This study also identifies limitations in the existing literature and suggests
potential avenues for future research. This survey serves as a valuable resource for researchers seeking
insights into A-SLAM methods and techniques, offering a current overview of A-SLAM formulation.

Keywords: SLAM; active SLAM; information theory; path planning; control theory

1. Introduction

Simultaneous localization and mapping (SLAM) is a set of approaches in which a robot
autonomously localizes itself and simultaneously maps the environment while navigating
through it. It can be subdivided into solving localization and mapping. Localization is a
problem of estimating the pose of the robot with respect to the map, while mapping makes
up the reconstruction of the environment with the help of visual, visual–inertial, and laser
sensors on the robot. Modern SLAM approaches adopt a graphical approach (bipartite
graph) where each node represents the robot or landmark pose and each edge represents
a pose-to-pose or pose-to-landmark measurement. Consider a robot with state x ∈ R2

describing its position and orientation (pose). The objective of the SLAM problem is to
find the optimal state vector x∗, which minimizes the measurement error ei(x) weighted
by the covariance matrix Ωi ∈ Rlxl , which encapsulates the measurement uncertainty in
pose, and l is the dimension of the state vector, as shown in Equation (1). For a detailed
discussion and review of SLAM methods, we can refer to [1–5]:

x∗ = arg min
x ∑

i
eT

i (x)Ωiei(x) (1)

SLAM algorithms are mostly passive, whereby the robot is controlled manually or
goes toward predefined waypoints and the navigation or path-planning algorithm does not
actively take part in robot motion or trajectory. A-SLAM, however, tries to solve the optimal
exploration problem of the unknown environment by proposing a navigation strategy that
generates future goal/target position actions that decrease the map and pose uncertainty,
thus enabling a fully autonomous navigation and mapping SLAM system. We will look
for further insight into A-SLAM in its designated Section 2. In Active Collaborative SLAM
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(AC-SLAM), multiple robots collaborate actively while performing SLAM. The application
areas of A-SLAM and AC-SLAM include search and rescue [6], planetary observations [7],
precision agriculture [8], autonomous navigation in crowded environments [9], underwater
exploration [10–12], artificial intelligence [13], assistive robotics [14], and autonomous
exploration [15].

The first implementation for an algorithm on A-SLAM was presented in [16], but the
initial name was drafted in [17]. However, A-SLAM and its roots can be further traced back
to the nineteen eighties from ideas coined by artificial intelligence and robotic exploration
techniques [18]. Reviews on A-SLAM can be traced back to [19]. Within this article itself,
A-SLAM is not the highlight of the research. Instead, the authors look at the whole topic of
SLAM in its totality. Recently, the works of [20,21] provide some promising insight into
A-SLAM formulation, methods, and future perspectives, as shown in Table 1. From Table 1,
we can conclude that this article provides a comprehensive review of active and Active Col-
laborative SLAM research conducted mainly over the last decade on problem formulation,
uncertainty quantification, optimal control, Deep Learning (DL), single- and multirobot
analysis, limitations, and future perspectives. The contributions can summarized as fol-
lows: (1) This article discusses the A-SLAM formulation, methods, limitations, and future
perspectives more comprehensively than most of the previous articles. (2) We provide a
novel, extensive, qualitative and quantitative analysis of AC-SLAM. (3) We analyze research
articles mostly from the last decade, which makes this review helpful for new researchers.
Section 2 provides our motivation to review A-SLAM and an introduction to A-SLAM. In
Sections 2.1 and 2.2, we discuss A-SLAM formulation, its principal components, and how
they are connected and related to each other. In Sections 2.3–2.5, we discuss the various
techniques and application domains and provide qualitative analysis results. Section 2.7
presents our statistical analysis on robot-sensor-type usage, real robot usage, result types
(simulation and analytical), the SLAM method adopted, the path-planning approach used,
drive type, dataset usage, loop closure applicability, Robot Operating System (ROS) [22]
usage, map type, and utility function usage. In Sections 3–3.5, we present the AC-SLAM
problem introduction, application domains, and qualitative and quantitative results, which
quantify the collaboration architecture, collaboration parameters, environment usage, and
utility functions apart from other parameters. In Section 4, we discuss the limitations of
existing approaches and elaborate future research directions. Section 4.1 discusses the
general limitations or open research problems. Sections 4.2 and 4.3 highlight the potential
limitations within the selected articles and future prospects for A-SLAM research. Finally,
we conclude by summarizing this article and presenting our contributions in Section 5.

Table 1. Comparison of topics addressed in previous surveys.

Topics [19] [20] [21] Ours

Problem formulation 7 7 3 3

Entropy, TOED Briefly Briefly 3 3

DRL, MPC, LQR Briefly 7 3 3

Single-robot analysis Briefly 3 3 3

Single-robot stat. analysis 7 Briefly Briefly 3

Multirobot methods 7 7 Briefly 3

Multirobot stat. analysis 7 7 7 3

Limitations Briefly Briefly 3 3

Future perspectives 7 7 3 3

2. Introduction to Active SLAM (A-SLAM)

As described earlier, SLAM is a process in which a robot maps its environment and
localizes itself to it. Referring to Figure 1, we observe that in SLAM, the front end handles
perception tasks, which involve implementing methods in signal processing and computer-
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vision domains to compute the estimated relative pose of the robot and the landmarks
(observed features). Data from the sensors, which are typically Light Detection and Ranging
(Lidar), camera, and Inertial Measurement Unit (IMU) data, are processed by the front-end
module, which computes feature extraction, data association, and feature classification
and applies methods such as Iterative Closest Point (ICP) and loop closure to compute the
estimated robot and landmarks pose with respect to the environment. The ICP is an iterative
approach that computes the relative robot pose/transformation that optimizes/aligns the
features and is used in scan-matching methods to map the environment. The back-end
module is responsible for high-computational tasks involving Bundle Adjustment (B.A) and
pose-graph optimization by using iterative solvers, e.g., Gauss–Newton [23] or Levenberg–
Marquardt [24] algorithms, to solve the nonlinear optimization problem for an optimal
estimate of the state vector x∗, as shown in Equation (1). The back-end module outputs the
global map based on its sensor measurements by using Lidar/a camera and pose estimates
of both the robot and landmarks.

Sensors

Waypoint planning

Front-end

Back-end

Robot Map+Pose

Controller

SLAM

A-SLAM

Trajectory planning

Figure 1. Architecture of SLAM and A-SLAM.

A-SLAM deals with designing robot trajectories to minimize the uncertainty in the
map representation and localization of the robot. The aim is to perform autonomous navi-
gation and exploration of the environment without an external controller or human effort.
A-SLAM can be referred to as an additional module or super set of SLAM systems that in-
corporates waypoints and trajectory planning and controller modules by using Information
Theory (IT), control theory, and Reinforcement Learning (RL) methods to autonomously
guide the robot toward its goal. During waypoint planning, A-SLAM chooses obstacle-free
waypoints/points for suitable trajectory. Trajectory planning integrates these points with
time and generates a trajectory for the robot to follow. The controller sends actuator com-
mands to the robot to follow the desired trajectory and reach the goal position. We will
discuss these components comprehensively in Section 2.2 and discuss the applications of
IT and RL methods in Sections 2.3 and 2.4, respectively.

In SLAM, environment exploration (to obtain better knowledge of the environment)
and exploitation (to revisit already-traversed areas for loop closure) are maximized for
better map estimation and localization. As a consequence, we have to perform a trade-off
between exploration and exploitation as the prior requires maximum coverage of the envi-
ronment and the latter requires the robot to revisit previously explored areas. These two
tasks may not always be applied simultaneously for a robot to perform autonomous navi-
gation. The robot might have to solve the exploration–exploitation dilemma by switching
between these two tasks.

In Sections 2.1 and 2.2, we provide the basic A-SLAM formulation and its main
components along with their brief definitions and functions in the A-SLAM pipeline.

2.1. A-SLAM Formulation

A-SLAM is formulated in a scenario where the robot has to navigate in a partially
observable/unknown environment by selecting a series of future actions in the presence of
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noisy sensor measurements that reduce its state and map uncertainties with respect to the
environment. Such a scenario can be modeled as an instance of the Partially Observable
Markov Decision Process (POMDP), as discussed in [21,25,26]. The POMDP is defined
as a seven tuple (X, A, O, T, ρo, β, γ), where X ∈ R represents the robot state space and is
represented as the current state x ∈ X and the next state x

′ ∈ X; A ∈ R is the action space
and can be expressed as a ∈ A; O represents the observations where o ∈ O; T is the state-
transition function between an action (a), present state (x), and next state (x

′
); T accounts

for the robot control uncertainty in reaching the new state x
′
; ρo accounts for sensing

uncertainty; β is the reward associated with the action taken in state x; and γ ∈ (0, 1) takes
into account the discount factor ensuring a finite reward even if the planning task has
an infinite horizon. Both T and ρo can be expressed by using conditional probabilities as
Equations (2) and (3):

T(x, a, x
′
) = p(x

′ | x, a) (2)

ρo(x, a, o) = p(o | x
′
, a) (3)

We can consider a scenario where the robot is in state x and takes an action a to move
to x

′
. This action uncertainty is modeled by T with an associated reward modeled by β, and

then it takes an observation o from its sensors that may not be precise in their measurements,
and this sensor uncertainty is modeled by ρo. The robot’s goal is to choose the optimal
policy α∗ that maximizes the associated expected reward (E) for each state–action pair, and
it can be modeled as Equation (4):

α∗ = argmax
t

∞

∑
t=0

Eγtβ(xt, at) (4)

where xt, at, and γt are the state, action, and discount factor evolution at time t, respectively.
Although the POMDP formulation of A-SLAM is the most widely used approach, it is
considered computationally expensive as it considers planning and decision making under
uncertainty. For computational convenience, A-SLAM formulation is divided into three
main submodules which identify the potential goal positions/waypoints, compute the cost
to reach them, and then select actions based on utility criterion, which decreases the map
uncertainty and increases the robot’s localization. We will discuss these submodules briefly
in Section 2.2.

2.2. A-SLAM Components

To deal with the computational complexity of A-SLAM, it is divided into three main
submodules, as depicted in Figure 2. The robot initially identifies potential goal positions to
explore or exploit its current estimate of the map. The map represents the environment per-
ceived by the robot by using its onboard sensors, and it may be classified as (1) topological
maps, which use a graphical representation of the environment and provide a simplified
topological representation; (2) metric maps, which provide environment information in the
form of a sparse set of information points (landmarks) or full 3D representation of the envi-
ronment (point cloud); and (3) semantic maps, which provide only segmented information
about environment objects (like static obstacles) to the robot. Interested readers are directed
to [1,19] for a detailed discussion on mapping approaches. Once the robot has a map of its
environment by using any of the above approaches, it searches for potential target/goal
locations to explore. One of the most widely used methods is frontier-based exploration
initially used by [27], where the frontier is the border between the known and unknown
map locations. Figure 3 shows frontiers detected by using Lidar measurements on the
occupancy grid map in a simulation environment. Using frontier-based exploration has the
advantage that all the environment may be covered, but no exploitation task (revisiting
already-visited areas for loop closure) is performed, which affects the robot’s map estimate;
we will discuss the application of this approach in Section 2.3.2.



Sensors 2023, 23, 8097 5 of 29

Identification Of 

Goal  Positions

Frontier 

Based 

Enviroment 

Rep.
Entropy KLD TOED PRM MPC, LQR DRL

Cost To Reach 

To The Goal
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Figure 2. A-SLAM submodules.

(a) AWS small house world (b) Computed occupancy grid map and frontier detection

Figure 3. (a) AWS-simulated house environment: red= robot and blue = Lidar scans. (b) Frontier
detection on the occupancy grid map: red = robot, green = detected frontiers (centroids), white = free
space, gray = unknown map area, and black = obstacles [28].

Once the goal position is identified, the next step is to compute the cost or utility
function to that position based on the reward value of the optimal action selected from a
set of all possible actions according to Equation (4). Ideally, this utility function should
consider a full joint-probability distribution of map and robot poses, but this method is
computationally expensive. Since we have a probabilistic estimation of both the robot
and map, we can treat them as random variables with associated uncertainty in their
estimation. The two most common approaches used in the quantification of this uncertainty
are Information Theory (IT), initially coined by Shannon in 1949, and the Theory of Optimal
Experimental Design (TOED) [29].

In IT, entropy measures the amount of uncertainty associated with a random variable
or random quantity. Higher entropy leads to less information gain and vice versa. Formally,
it is defined for a random variable X asH(X), as shown in Equation (5):

H(X) = − ∑
x∈X

p(x) log2 p(x) (5)

Since both the robot pose and the map are estimated as a multivariate Gaussian, the
authors of [30] formulate the Shannon’s entropy of the robot pose as in Equation (6), where
n is the dimension of the robot pose vector and Ω ∈ Rnxn is the covariance matrix. The
map entropy is defined as Equation (7), where the map M is represented as an occupancy
grid and each cell mi,j is associated with a Bernoulli distribution P(mi,j). The objective is to
reduce both the robot pose and map entropy. Relative entropy is also be used as a utility
function that measures the probability distribution along with its deviation from its mean.
This relative entropy is measured as the Kullback–Leibler divergence (KLD). The KLD for
two discrete distributions A and B on probability space X can be defined as Equation (8):

H[p(x)] =
n
2
(1 + log(2π) +

1
2

log(detΩ) (6)
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H[p(M)] = −∑
i,j
(p(mi,j)log(p(mi,j)) + (1− p(mi,j))log(1− p(mi,j)) (7)

DKL(A | B) = ∑
x∈X

A(x) log
A(x)
B(x)

(8)

When considering information-driven utility functions, entropy or KLD can be used as
a metric to target binary probabilities in the grid map (occupancy grid map). Alternatively,
if we consider task-driven utility functions where the uncertainty metric is evaluated by
reasoning over the propagation of uncertainty in the pose-graph SLAM covariance matrix,
we can quantify the uncertainty in the task space. TOED provides many optimal criteria,
which transform the mapping of the covariance matrix to a scalar value. Hence, by using
TOED, the priority of a set of actions for A-SLAM is based on the amount of covariance
in the joint posterior. Less covariance contributes to a higher weight of the action set.
The “optimality criterion” used in TOED can be defined for a covariance matrix Ω ∈ Rnxn

and eigenvalues ζn as (1) A-optimality, which deals with the minimization of the average
variance, as shown in Equation (9); (2) D-optimality, which deals with minimizing the
volume of the covariance ellipsoid and is defined in Equation (10); and (3) E-optimality,
which intends to minimize the maximum eigenvalue and is expressed in Equation (11):

A−Opt ∆
=

1
n
(

n

∑
k=1

ζk) (9)

D−Opt ∆
= exp(

1
n

n

∑
k=1

log(ζk)) (10)

E−Opt ∆
= min1≤i≤n(ζi) (11)

TOED approaches require both the robot pose and map uncertainties to be represented
as a covariance matrix and may be computationally expensive, especially in landmark-
based SLAM where its size increases as new landmarks are discovered. Hence, IT-based
approaches are preferred over TOED. We will discuss the application of these approaches
in Section 2.3.

Once the goal positions and utility/cost to reach these positions have been identified,
the next step is to execute the optimal action, which eventually moves/guides the robot to
the goal position. Three approaches are commonly deployed:

1. Probabilistic Road Map (PRM) approaches discretize the environment representation
and formulate a network graph representing the possible paths for the robot to select
to reach the goal position. These approaches work in a heuristic manner and may
not give the optimal path; additionally, the robot model is not incorporated in the
planning phase, which may result in unexpected movements. Rapidly exploring
Random Trees (RRT) [31], D* [32], and A* [33] are the widely used PRM methods. We
identify these methods as geometric approaches, and in Section 2.3, we discuss the
application of these methods.

2. Linear Quadratic Regulator (LQR) and Model Predictive Control (MPC) formulate
the robot path-planning problem as an Optimal Control Problem (OCP) and are
used to compute the robot trajectory over a finite time horizon in a continuous-
planning domain. Consider a robot with the state-transition equation given by
x(k + 1) = f (x(k), u(k)), where x, u, and k are the state, control, and time, respec-
tively. The MPC controller finds the optimal control action u∗(x(k)) for a finite
horizon N, as shown in Equation (12), which minimizes the relative error between
the desired state xr and desired control effort ur, weighted by matrices Q and P for
the penalization of state and control errors, respectively, as shown in Equation (13).
The MPC is formulated as minimizing the objective function JN as defined in (14),
which takes into account the costs related to control effort and robot state evolution
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over the entire prediction horizon. MPC provides an optimal trajectory incorporating
the robot state model and control and state constraints, making it suitable for path
planning in dynamic environments:

u∗(x(k)) := (u∗(k), u∗(k + 1), ....u∗(k + N− 1), ) (12)

l(x, u) = ‖xu − xr‖2
Q + ‖u− ur‖2

R (13)

minimize
u

JN(x0, u) =
N−1

∑
k=0

l((xu(k), u(k))) (14)

3. Reinforcement Learning (RL) is modeled as a Markov Decision Process (MDP) where
an agent at state s interacts with the environment by performing an action a and
receiving a reward r. The objective is to find a good policy π(s, a) which maximizes
the aggregation of the rewards in the long run following a value function Vπ(st0), as
shown in Equation (15), that maximizes the expected reward attained by the agent,
weighted by the discount factor γt ∈ [0, 1]. In the case of visual A-SLAM, the policy
may be to move the robot to more feature-rich positions to maximize the reward
(observed features). Deep Reinforcement Learning (DRL) replaces the agent with a
deep neural network that parameterizes the policy π with some weighting parameter
θ and is given as πθ(s, a) to maximize the future rewards of each state–action pair
during the evolution of the robot trajectory. We will further discuss the application of
these approaches in Section 2.4:

Vπ(st0) =
∞

∑
t=t0

γtr(st, π(st, at)) (15)

The choice of selecting a suitable waypoint candidate is weighted by using IT and
TOED, as discussed in previous sections. In these methods, information gain or entropy
minimization between the map and robot path guides the decision for the selection of these
future waypoint candidates. To generate a trajectory or a set of actions for these future
waypoint candidates, two main methods are adopted, namely geometric and dynamic
approaches, respectively. These methods involve the usage of traditional path planners
along with the DRL and nonlinear optimal control techniques. In Sections 2.3–2.5, we will
discuss these two methods and their utilization in the research articles that are a part of
this survey.

2.3. Geometric Approaches

These methods describe A-SLAM as a task for the robot whereby it must choose
the optimal path and trajectory while reducing its poses and mapping uncertainty for
efficient SLAM to autonomously navigate an unknown environment. The exploration
space is discretized with finite random waypoints and frontier-based exploration along
with traditional path planners like RRT*, D*, and A*, which are deployed with IT- and
TOED-based approaches including entropy, KLD, and uncertainty metrics reduction. We
can further classify the application of these approaches as follows in the sections below.

2.3.1. IT-Based Approaches

The authors of [34] address the joint-entropy minimization exploration problem and
propose two modified versions of RRT* [31] called dRRT* and eRRT*. dRRT* uses distance,
while eRRT* uses entropy change per distance traveled as the cost function. It is further
debated that map entropy has a strong relationship with coverage and path entropy has
a relationship with map quality (as better localization produces a better map). Hence,
actions are computed in terms of the joint-entropy change per distance traveled. The
simulation results proved that a combination of both of these approaches provides the best
path-planning strategy. An interesting comparison between IT approaches is given in [35],
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where particle filters are used as the back end of A-SLAM and frontier-based exploration
(a frontier is a boundary between the visited and unexplored areas) [27] is deployed to
select future candidate target positions. A comparison of these three methods used for
solving the exploration problem and evaluating the information is discussed in the relevant
sections below:

1. Joint entropy: The information gained at the target is evaluated by using the entropy of
both the robot trajectory and map carried by each particle weighted by each trajectory’s
importance weight. The best exploration target is selected, which maximizes the joint-
entropy reduction and hence corresponds to higher information gain.

2. Expected Map Mean: An expected mean can be defined as the mathematical expecta-
tion of the map hypotheses of a particle set. The expected map mean can be applied
to detect already-traversed loops on the map. Since the computation of the gain is
developing, the complexity of this method increases.

3. Expected information from a policy: Kullback–Leibler divergence [36] is used to drive
an upper bound on the divergence between the true posterior and the approximated
pose belief. Apart from the information consistency of the particle filter, this method
also considers the information loss due to inconsistent mapping.

It was concluded by using simulation results on various datasets, that most of these
approaches were not able to properly address the probabilistic aspects of the problem and
are most likely to fail because of a high computational cost and the map-grid resolution
dependency on performance.

The authors of [37] use an exploration space represented by primitive geometric shapes,
and an entropy reduction over the map features is computed. They use an entropy metric
based on Laplacian approximation and compute a unified quantification of exploration
and exploitation gains. An efficient sampling-based path planner is used based on a
Probabilistic Road Map approach, having a cost function that reduces the control cost
(distance) and collision penalty between targets. The simulation results compared to
the traditional grid-map frontier exploration show a significant reduction in position,
orientation, and exploration errors. Future improvements include expanding to an active
visual SLAM framework.

When considering topometric graphs and a less computationally expensive solution,
we can refer to the approach adopted by [38], which considers a scenario where we have
many prior topometric subgraphs and the robot does not know its initial position. A
novel open-source framework is proposed that uses active localization and active mapping.
A submap-joining approach is defined, which switches between active localization and
mapping. Active localization uses the maximum likelihood estimation to compute a motion
policy, which reduces the computational complexity of this method.

2.3.2. Frontier-Based Exploration

Frontiers are boundaries between the explored and unexplored space. Formally, we
can describe frontiers as a set of unknown points that each have at least one known space
neighbor. The work presented by [39] formulates a hybrid control-switching exploration
method of particle filter SLAM as the back end. It uses a frontier-based exploration method
with A* [33] as a global planner and the Dynamic Window Approach (DWA) reactive
algorithm as a local planner. Within the occupancy grid map, each frontier is segmented, a
trajectory is planned for each segment, and the trajectory with the highest map-segment
covariance is selected from the global-cost map. The work presented in [9] deals with
dynamic environments with multiple ground robots and uses frontier exploration for
autonomous exploration with graph-based SLAM (iSAM) [40] optimization as the SLAM
back end. Dijkstra’s algorithm-based local planner is used. Finally, a utility function
based on Shannon’s and Renyi entropy is used for the computation of the utility of paths.
Future work proposes to integrate a camera and use image-feature scan matching for
obstacle avoidance.
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2.3.3. Path-Planning Optimization

The method proposed by [10] exploits the relationship between the graphical model
and sparse matrix factorization of graphical SLAM. It proposes the ordering of variables
and a subtree-catching scheme to facilitate the fast computation of optimized candidate
paths weighted by the belief changes between them. The horizon selection criteria are
based on the author’s previous work utilizing an extended information filter (EIF) and
Gauss–Newton (GN) prediction. The proposed solution is implemented in a Hovering
Autonomous Underwater Vehicle (HAUV) with pose-graph SLAM. The work presented
in [12] deals with a similar volumetric exploration in an underwater environment with a
multibeam sonar. For efficient path planning, the revisit actions are selected depending on
the pose uncertainty and sensor-information gain.

The authors of [41] used an interesting approach that addresses the path-planning task
as D* [32] with negative edge weights to compute the shortest path in the case of a change
in localization. This exploration method is highly effective in dynamic environments with
changing obstacles and localization. When dealing with noisy sensor measurements, an
interesting approach is adopted by [42], which proposes a system that makes use of a
multihypothesis state and map estimates based on noisy or insufficient sensor informa-
tion. This method uses the local contours for efficient multihypothesis path planning and
incorporates loop closure.

2.3.4. Optimization in Robot Trajectory

The method proposed in [43] integrates A-SLAM with Ekman’s exploration algorithm [44]
to optimize the robot trajectory by leveraging only the global waypoints where loop closure
appears, and then the exploration canceling criterion is sent to the SLAM back end (based on
the information filter [45]). The exploration canceling criterion depends on the magnitude
of information gain from the filter, loop-closure detection, and the number of states without
an update. If these criteria are met, the A-SLAM causes the exploration algorithm to stop
and guides the robot to close the loop. We must note that in this approach, A-SLAM is
separated from the route-planning and -exploration process, which is managed by the
information filter. In a similar approach presented by [46], this study assumes that some
prior map information about the environment is available as a topological map. Then,
A-SLAM exploits this map information for active loop closure. The proposed method
calculates an optimal global plan as a solution to the Chinese Postman Problem (CPP) [47]
and an online algorithm that computes the maximum likelihood estimate (MLE) by using
nonlinear optimization, which computes the optimized graph with respect to the prior map
and explored map. The D-optimality criterion is used to represent the robot localization
uncertainty while the work presented by [7] incorporates active path planning with salient
features (features with a high entropy value) and ICP-based feature matching [48]. The
triggering condition of A-SLAM is based on an active feature revisit, and the path with the
maximum utility score is chosen based on its length and map data.

2.3.5. Optimal Policy Selection

The definition and comparison presented in [49] formulate A-SLAM as a task of choos-
ing a single or multiple policy type for robot trajectories, which minimizes an objective
function that comprises a reduction in the expected costs of robot uncertainty, energy con-
sumption, and navigation time among other factors. An optimality criterion by definition
quantifies the improvement in the actions taken by the robot to improve the localization
accuracy and navigation time. A comparison between D-optimality (proportional to the
determinant of the covariance matrix), A-optimality (proportional to the trace of the co-
variance matrix), and joint entropy is performed, and it is concluded that the D-optimality
criterion is more appropriate for providing useful information about the robot’s uncertainty
contrary to A-optimality. The authors of [50] proved numerically that by using differential
representations to propagate the spacial uncertainty, monotonicity is preserved for all the
optimality criteria A-opt, D-opt, and E-opt (the largest eigenvalue of the covariance matrix).
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In absolute representations using only unit quaternions, the monotonicity is preserved
only in D-optimality and Shannon’s entropy. In a similar comparison, the work presented
in [51] concludes that A-Opt and E-opt criteria do not hold monotonicity in dead reckoning
scenarios. It is proved by using simulations with a differential drive robot that the D-opt
criterion, under a linearized odometry method, holds monotonicity.

2.4. Dynamic Approaches

Instead of using traditional path planners like A*, D*, and RRT, these methods for-
mulate the A-SLAM as a problem with selecting a series of control inputs to generate a
collision-free trajectory and cover as much area as possible while minimizing the state-
estimation uncertainty and thus improve the localization and mapping of the environment.
The planning and action spaces are now continuous (contrary to being discrete in geometry-
based methods) and local optimal trajectories are computed. For the selection of optimal
goal positions, similar approaches to the geometric approach methods in Section 2.3 are
used with the exception that now the future candidate trajectories are computed by using
robot models, potential information fields, and control theory. A Linear Quadratic Regu-
lator (LQR), Model Predictive Control (MPC) [52], the Markov Decision Process [53], or
Reinforcement Learning (RL) [54] are used to choose the optimal future trajectories/set
of trajectories via metrics that balance the need for exploring new areas and exploiting
already-visited areas for loop closure.

The method used by [55] uses Reinforcement Learning in the path planner to acquire
a vehicle model by incorporating a 3D controller. The 3D controller can be simplified
to one 2D controller for forward and backward motion and one 1D controller for path
planning that has an objective function that maximizes the map reliability and exploration
zone. Therefore, the planner has an objective function that maximizes the accumulated
reward for each state–action pair by using the “learning from experience approach”. It is
shown through simulations that a nonholonomic vehicle learns the virtual wall-following
behavior. A similar approach presented in [13] uses fully convolutional residual networks
to recognize the obstacles and obtain a depth image. The path-planning algorithm is based
on DRL.

An active localization solution where only the rotational movement of the robot is
controlled in a position-tracking problem is presented by [56]. The Adaptive Monte Carlo
Localization (AMCL) particle cloud is used as the input, and robot-control commands are
sent to its sensors as the output. The proposed solution involves the spectral clustering of
the point cloud, building a compound map from each particle cluster, and selecting the
most informative cell. The active localization is triggered when the robot has more than
one cluster in its uncertainty estimate. The future improvements include more cells for
efficient hypotheses estimation and integrating this approach into the SLAM front end. In
an interesting approach by [57], the saccade movement of bionic eyes (rapid movement of
the center of one’s gaze within the visual field) is controlled. To leverage more features from
the environment, an autonomous control strategy inspired by the human vision system
is incorporated. The A-SLAM system involves two threads (parallel processes), a control
thread, and a tracking thread. The control thread controls the bionic eyes’ movement to
Oriented FAST and Rotated Brief (ORB) feature-rich positions while the tracking thread
tracks the eye motion by selecting the feature-rich keyframes.

2.5. Hybrid Approaches

These methods use the geometry and dynamic-based methods mentioned
in Sections 2.3 and 2.4 incorporating frontier-based exploration, Information Theory, and
Model Predictive Control (MPC) to solve the A-SLAM problem.

The approach used by the authors of [58] presents an open-source multilayer A-SLAM
approach where the first layer selects the informative (utility criterion based on Shannon’s
entropy [59]) goal locations (frontier points) and generates paths to these locations while the
second and third layers actively replan the path based on the updated occupancy grid map.
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Nonlinear MPC [60] is applied for local path execution with the objective function based
on minimizing the distance to the target and controlling the effort and cost of being close
to a nearby obstacle. One issue with this approach is that sometimes the robot stops and
starts the replanning phase of local paths. Future works should involve adding dynamic
obstacles and the usage of aerial robots.

An interesting approach mentioned in [8,61] presents a solution based on Model
Predictive Control (MPC) to solve the area coverage and uncertainty reduction in A-
SLAM. An MPC control-switching mechanism is formulated, and SLAM uncertainty
reduction is treated as a graph topology problem and planned as a constrained nonlinear
least-squares problem. Using convex relaxation, the SLAM uncertainty is reduced by a
convex optimization method. The area-coverage task is solved via the sequential quadratic
programming method, and Linear SLAM is used for submap joining.

2.6. Reasoning over Spectral Graph Connectivity

Recently, in the works of [62,63], the authors exploit the graph SLAM connectivity and
pose it as an estimation-over-graph (EoG) problem, where each node (state vector) and the
vertex (measurement) connectivity is strongly related to the SLAM estimation reliability.
By exploiting the spectral graph theory, which deals with the eigenvalues, Laplacian, and
degree matrix of the associated SLAM information matrix and graph connectivity, the
authors state that (1) the graph Laplacian is related to the SLAM information matrix and
(2) the number of Weighted Spanning Trees (WST) is directly related to the estimation
accuracy of the graph SLAM.

The authors of [64–66] extend [63] by debating that the maximum number of WST is
directly related to the maximum likelihood (ML) estimate of the underlying graph SLAM
problem formulated over lie algebra [67]. Instead of computing the D-optimality criterion
defined in Equation (10) over the entire SLAM sparse-information matrix, it is computed
over the weighted graph Laplacian where each vertex is weighted by using D-optimality,
and it is proven that the maximum number of WST of this weighted graph Laplacian is
directly related to the underlying pose-graph uncertainty.

Real robot experiments on both the Lidar and visual SLAM backbends prove the
efficiency and robustness of reasoning the uncertainty over the SLAM-graph connectivity.

2.7. Statistical Analysis on A-SLAM

Table 2 summarizes the sensor types, SLAM methods, path-planning approaches, and
publication years of the selected articles. We can further debate that in most A-SLAM
methods, (i) Lidar (62%), RGB (28%), and RGBD (19%) camera sensors are mostly used as
the main input data source to extract the point cloud and image features/correspondences.
(ii) Extended Kalman Filter (EKF)- or particle-filter-based SLAM methods are mostly
used (54%) as compared to pose-graph- or graph-based SLAM methods (45%) along with
g2o [68], incremental smoothing and mapping (iSAM) [40], and Georgia Tech Smoothing
and Mapping (GTSAM) [69] as the main graph-optimization frameworks/libraries. Hence,
we can conclude that although modern graph SLAM approaches are more robust, efficient,
and consume less memory as compared to filter-based methods, their usage in A-SLAM
is discouraged in comparison. (iii) Path-planning algorithms that discretize the search
space including A*, D*, and sampling-based approaches like RRT, RRT*, and Dijkstra’s
are used 19% and 25% of the time alongside DRL-based approaches while continuous
space-planning algorithms, which incorporate robot kinematics models like MPC, Timed
Elastic Band (TEB) [70], and Dynamic Window-Based (DWA) [71] approaches are only used
11% of the time.
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Table 2. A-SLAM sensors, SLAM methods, and path-planning approaches.

Article Year Sensors SLAM Method Path Planning

[7] 2017 Lidar EKF SLAM Active revisit path planning
[43] 2016 RGBD 1, Lidar 2, IMU 3, WE 14 ES-DSF (EKF based) 15 A*
[72] 2018 Lidar, RGB Hector SLAM Artificial potential fields
[58] 2022 Lidar 4, RGBD 5 Graph based NMPC 16, A*
[73] 2019 RGB Graph based CAO 20

[6] 2016 Lidar, RGB EKF-SLAM Maze solver algorithm
[35] 2011 Lidar Particle filter Joint entropy, EMMI 17

[56] 2021 Lidar ACML -
[34] 2015 Lidar Graph SLAM RRT*
[39] 2015 Lidar 6 FastSLAM A*, DWA 18

[74] 2018 Lidar Gmapping Sequential Monte Carlo
[8] 2020 RGB EKF based MPC
[46] 2019 Lidar Graph SLAM CPP 19

[75] 2016 Lidar, RGB IEKF SLAM Dijkstra, VSICP 21

[55] 2011 Lidar 7, RGB Metric-based scan-matching SLAM Reinforcement Learning
[42] 2020 Lidar, RGBD, IMU Graph SLAM (iSAM2) Straight line search for each hypothesis
[36] 2014 Lidar Particle filter Frontier-based exploration
[61] 2018 ORS 27 EKF SLAM MPC
[10] 2016 RGB Graph SLAM (GTSAM) Bayes tree , RRT*
[76] 2018 RGBD 8 ORB-SLAM2 RRT*
[37] 2016 RGB TFG SLAM Probabilistic Road Map
[9] 2019 Lidar Canonical scan matcher + iSAM2 Dijkstra, DOO 22

[49] 2012 RBS 28 EKF-SLAM A*
[77] 2019 - EKF localization A*
[41] 2018 Lidar 2D 9, 3D 10 Graph SLAM-based ESDSF 23 Modified D*
[11] 2019 MBS 29 Graph SLAM RRT*
[78] 2013 RGB EKF SLAM OCBN 24

[79] 2015 Lidar, IMU Sensor-based SLAM -
[13] 2020 RGBD, Lidar 11 FastSLAM DRL 25

[12] 2020 RGB, IMU Graph SLAM RRT
[38] 2022 RGB ORB-SLAM RPP 26

[80] 2021 Lidar, IMU RIEKF SLAM-based A-SLAM -
[80] 2021 RGB Object SLAM -
[57] 2019 RGBD 1 ORBSLAM 2 TEB local planner
[65] 2022 Lidar Gmapping Deep Q learning
[26] 2020 RGBD 12,13, IMU Graph SLAM -
[64] 2023 Lidar OpenKarto (g2o) DWA 18

[81] 2020 Lidar Gmapping DDPG 30

[82] 2023 Lidar Graph SLAM A*
[66] 2021 Lidar Open Karto (g2o) Dijkstra
[83] 2022 Lidar 31 EKF SLAM A*
[84] 2022 RGBD 5, IMU ORBSLAM 3, VINS Fusion -

1 Microsoft Kinect. 2 SICK LMS-100. 3 X-Sense MTI-G-700. 4 Hokuyo A2M8. 5 Intel RealSence D435i. 6 SLICK
LMS 200. 7 Hokuyo URG-04LX. 8 Microsoft Kinect. 9 SICK LMS 100-10000. 10 Volodyne. 11 RpLidar A2. 12 Bionic
eyes. 13 Intel RealSence T265. 14 Wheel Encoders. 15 Exactly Sparse Delayed State Filter. 16 Nonlinear Model
Predictive Control. 17 Expected map mean information. 18 Dynamic Window Approach. 19 Chinese Postman
Problem. 20 Cognitive-Based Adaptive Optimization. 21 Visual Servoying using successive ICP. 22 Dynamic
obstacle avoidance. 23 Extremely Sparse Delayed State Filter. 24 Optimal-control-based navigation. 25 Deep
Reinforcement Learning. 26 Rural Postman Problem. 27 Omnidirectional Range Sensor. 28 Range-Bearing sensor.
29 Multibeam sonar. 30 Deep Deterministic Policy Gradient. 31 LD-OEM1000.

Table 3 summarizes the robots and their drive types (locomotion mechanisms), dataset
usage, loop closure, and ROS [22] implementations used in the selected A-SLAM articles.
The information can be summarized as the following: (i) Most implementations for ex-
perimental validation use about 80% of the commercially available ground robots. This
reliance motivates their usage for research purposes. (ii) Drive mechanisms that define
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the kinematic model and robot movement in the environment can be characterized into
(a) differential drive (two fixed wheels and one caster wheel); (b) skid-steering four-wheel
drive (four fixed wheels); (c) Ackerman drive (car-like robots with two fixed wheels and
two steerable wheels); (d) traction drive (a chain structure used for movement instead
of wheels); and (e) omnidirectional drive (which uses special wheels for holonomic mo-
tion), where the position and orientation of the robot can be controlled independently.
We can deduce that most approaches use physical robots (55%), differential dive (25%),
and skid-steering drive mechanisms (20%). The differential drive is preferred because
of the simple kinematic model as compared to Ackerman and omnidirectional drives.
(iii) Dataset usage is limited to only 20%. This reduced usage of available open-source
datasets motivates the fact that, in A-SLAM, it is difficult to provide a dataset since the
control commands are also incorporated, which makes the usage impractical in different
environments. (iv) Loop closure is incorporated in 51% of implementations. Loop closure
greatly enhances the SLAM efficiency, and its usage should be encouraged. (v) ROS, which
is a popular open-source software platform used for educational purposes, is used only 45%
of the time for most implementations, and its usage should be encouraged. (vi) Occupancy
grid maps (53.1%) and topological maps (37.5%) are mostly used as compared to point
clouds for environment representation because of their simplistic nature and computational
requirements as compared to dense point-cloud maps. (vii) For the computation of the
utility function, entropy (28.1%) and D-optimality (21.8%) are mostly used along with
FD (15.6%).

Table 3. A-SLAM robot types, drive type, datasets, loop closure, ROS, map type, and utility func-
tion usage.

Articles Robots Drive Type Dataset Loop Closure ROS Map Type Utility Function

[72] CD 6 SS 1 - - X OG 7 and PC 8 FD 9

[58] Robotino OD 3 - X X OG Entropy
[73] Survyer SVS TD 4 - - - OG and PC Visual features
[6] Khepra DD 2 - - - OG Image corners
[35] - - ACES, Intel Research Labs, Friburg 079 - - OG Entropy
[56] TurtleBot 2 DD - - X OG Particle clustering
[34] - - Friburg 079 X - OG Entropy
[39] Pioneer 3-DX DD - - X OG FD
[46] - DD MIT CSAIL, Intel Research Lab, AutoLab ROS - - TM 10 D-optimality
[75] Pioneer DX3 DD - - - TM Entropy
[42] - - - X - TM FD
[36] - - ACES, Intel Research Labs, Friburg 079 X - OG KLD
[61] - - - X - TM D-optimality
[76] Jackal Robot SS - X X OG FD
[37] TurtleBot DD - - X TM Entropy

[9] Pioneer 3-DX,
Pepper

DD,
Humanoid

type
- X X OG D-optimality

[49] - - DLR Dataset - - TM D-optimality
[41] Clearpath Huskey DD - X X TM Distance based
[11] Girona 500 AUV 5 - - - TM Entropy
[13] TurtleBot 3 DD - - - OG Exploration
[38] - - - X - TM Distance
[85] - - - X - TM Distance
[80] - - - X - Segmented Entropy
[57] CD SS - X - PC ORB Features
[65] TurtleBot 3 DD - X X OG D-optimality
[26] TurtleBot 3 DD - - X OG Entropy
[64] TurtleBot 3 DD Friburg 079, CSAIL, FRH, MIT, INTEL X X TM D-optimality
[81] Husarion ROSbot SS - - X TM Entropy

[82] JackalRobot,
custom designed SS, DD - X X 3D OG FD

[66] TurtleBot DD FRH X X OG D-optimality

[83] Omnidirectional
robot OD - - - OG Distance based

1 Skid-steering (four-wheel drive). 2 Differential drive. 3 Omnidirectional drive (Mecanum wheels). 4 Traction
drive. 5 Autonomous Underwater Vehicle. 6 Custom designed. 7 2D occupancy grid. 8 3D point cloud. 9 Frontier
detection. 10 Topometric.

In Figure 4, the per annum selection of A-SLAM articles and the usage of ROS is
depicted. Referring to Figure 4a, the per annum percentage of the selected articles is shown,
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depicting the dataset used in this survey. We can observe that almost 69% of the articles are
selected from the last seven years, providing the latest information on A-SLAM research.
In Figure 4b, although ROS is a popular environment for robots, its application should be
encouraged as it is deployed only in 39% of A-SLAM solutions.

(a) Per annum article selection (b) ROS usage

Figure 4. A-SLAM per annum article selection, Robot Operating System (ROS) applicability.

Figure 5 shows the percentage of real robots used and the annual distribution of
articles showing results from using actual robots in their experiments. From Figure 5a, we
can observe that only 47% of articles use real robots for experimental validation while 53%
do not. Although this is a narrow gap, still we encourage real robot usage to motivate
real-world applications. Figure 5b shows the annual distribution of articles using real
robots in their experiments. We can further debate that up until 2015, only 20% of articles
used real robots, while from 2016 to 2023 (last 8 years inclusive), the usage increased to 54%,
which is very encouraging and shows the real-world applications of the proposed methods.
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Figure 5. Real robot usage in A-SLAM and number of papers/articles.

Figure 6 elaborates on the percentage of simulation results and their annual distribu-
tion. In Figure 6a, we can observe that 85% of the articles provide simulation results as
compared to that of 15% which do not. This large percentage of simulation results indi-
cates the effectiveness of the proposed algorithms in the simulation environments. From
Figure 6b, we observe that from 2011 to 2015, almost 90% of the articles provided simulation
results, and from 2016 to 2023 (inclusive), around 87% provided the same. Hence, we can
observe a high percentage of simulation results, which promises the high applicability of
the proposed solutions in simulation environments.
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Figure 6. Simulation results used in A-SLAM and number of papers/articles.

Figure 7 presents the percentage of analytical results and their yearly disposition over
the last 12 years. From Figure 7a, we can infer that 88% of the articles give analytical
results while 12% provide either simulation or real robot experimental results. This large
percentage of analytical results is highly beneficial as it presents the necessary mathematical
foundations of the proposed algorithm. From Figure 7b, we observe that from 2011 to 2015,
almost 90% of the articles provided analytical results, while from 2016 to 2023 (inclusive),
the percentage was around 87%.
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Figure 7. Analytical results used in A-SLAM and number of papers/articles.

3. Active Collaborative SLAM (AC-SLAM)

In collaborative SLAM (C-SLAM), multiple robots interchange information to improve
their localization estimation and map accuracy to achieve some high-level tasks such as
exploration. This collaboration raises some challenges regarding the usage of computa-
tional resources, communication resources, and the ability to recover from network failure.
The exchanged information should detect inter-robot correspondences and estimate trajec-
tories while estimating the state of the robots. These inter-robot interactions should not
compromise the available computational and memory resources required by other SLAM
processes (loop closure and visual-feature correspondences). The robots should efficiently
utilize the limited communication bandwidth and range.

In AC-SLAM, the TOED-, IT-, and control-theory-based approaches using A-SLAM
mentioned in Sections 2.3–2.5 are also applicable with additional constraints of managing
the communication and parameter exchange between robots as mentioned above. Table 4
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presents the collaboration parameters exchanged between the AC-SLAM robots. These
parameters are entropy, KLD, localization info, visual features, and frontier points. In addi-
tion to these parameters, AC-SLAM parameters may include (a) the parameters presented
by the authors of [86,87], incorporating the multirobot constraints induced by adding the
future robot paths while minimizing the optimal control function (which takes into account
the future steps and observations) and minimizing the robot state and map uncertainty
and adding them into the belief space (assumed to be Gaussian); (b) parameters relating
to exploration and relocalization (to gather at a predefined meeting position) phase of
robots as described by [88]; (c) 3D mapping info (OctoMap) used by the authors of [89]; and
(d) path and map entropy info, as used in [90], and relative entropy, as mentioned in [91].

Table 4. AC-SLAM network topology and collaboration parameters.

Articles Network Topology Collaboration Parameters

[86] D 1 Multirobot belief evolution by incorporating mutual observations and future measurements
[92] u 2 Relative observation between agents
[88] u Localization utility, information gain, cost of navigation
[93] u Visual features, map points
[94] D Weak edges in pose graphs of target agents
[95] D Frontier points and map information
[96] u Localization utility, information gain, cost of navigation
[89] u Visual features, optimized paths
[90] u Pose and map entropy, Kullback–Leibler divergence
[91] D Relative pose entropy
[97] D Visual features, chained localization
[87] D Multirobot belief evolution by incorporating mutual observations and future measurements
[98] u Frontier points and frontier-to-robot distances
[99] u Frontiers and relative-position estimates
[100] u, D Entropy and future measurements
[101] u, D Information vector and information matrix

1 Centralized. 2 Distributed.

3.1. Network Topology of AC-SLAM

A network topology (communication topology) describes how different robots/nodes
communicate and exchange data with each other and with a central computer/server.
Figure 8 summarizes different communication topologies. This communication may be
centralized, decentralized, or distributed. In a centralized communication network as
presented by the authors of [86,87,91,94,95,97], all the communication between the nodes
is routed through the central server. If the central server becomes unavailable/out of
service/out of range, then communication is broken, which makes this topology highly
vulnerable to communication loss in the case of server failure. Table 4 shows that about 50%
of the selected articles use this type of topology. A decentralized network may be considered
as a subset of a centralized one where a common central server routes communication with
different subcentralized networks, hence making the entire network highly dependent on
it. In a distributed network, as shown in [88–90,92,93,96,98–101], each node communicates
with each other without need for a central server. This topology is highly reliable and is
used by 62% of the articles, referring to Table 4. As communication is not rallied through any
central server and each node handles onboard computation and network communication,
this topology is less vulnerable to communication loss. Since there is dense communication
between nodes, managing the communication bandwidth, task allocation, and data packet
reduction considerations are the parameters that need to be optimized, as presented in the
work of [102]. Typical application scenarios include collaborative localization [87,92,94,97],
exploration and exploitation (revisiting already-explored areas for loop closure) [15,96],
and collaborative trajectory planning/trajectory optimization [90,91,95]. In the following
sections, we discuss these application scenarios in the selected literature.
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(a) Centralized (b) Decentralized (c) Distributed

Figure 8. AC-SLAM network topology.

3.2. Collaborative Localization

In these methods, the robots switch their states (tasks) between self/independent
localization and assistive localization to other robots. The method proposed by the authors
of [92] presents a novel centralized method in which a DRL-based task-allocation algorithm
is used to assist agents in a relative observation task. To learn the correspondence between
the quality function (Q) and state–action pair, a novel multiagent deep Q network is
deployed. Each agent can choose to perform its independent ORB-SLAM [103] or localize
other agents. The reward function incorporates the influence of the other agent’s transition
error in decision making. The observation function is derived from ORB-SLAM and
consists of map points, keyframes, and loop-closure-detection components. To compute
the relative observation between agents, the nonlinear optimization problem is solved
by using the Gauss–Newton algorithm to estimate the pose of the target agent. The
large associated computational cost of this method lacks real-time application and thus a
distributed learning approach is proposed in the future.

The method described in [87] presents the mutirobot state estimation problem as a
belief-space-spanning problem by exploiting the POMDP nature of A-SLAM. The authors
measured the robot belief as the probability distribution of its state from the entire group
and mapped environment. The proposed active-localization method can guide each robot
by using Maximum A Posteriori (MAP) estimation of future waypoints and reduce its
uncertainty by reobserving areas only observed by other robots. The proposed objective
function takes into account the evolution of predicted measurements over the planning
horizon and the trace of the covariance matrix associated with the robot-pose uncertainty.
In an interesting approach, the method presented in [97] uses multiple humanoid robots,
where each robot has two working modes, independent and collaborative. Each robot has
two threads running simultaneously: (a) the motion thread and (b) the listening thread.
With the motion thread, it will navigate the environment via the trajectory computed by the
organizer (central server) by using a D* path planner and a control strategy based on DRL
and a greedy algorithm. It also uploads its pose periodically to the organizer. With the lis-
tening thread, it will receive its updated pose from the organizer (via ORB-SLAM) and may
receive the command to help other robots in the vicinity improve their localization by using
a chained localization method. With this method, each robot’s localization is improved by
its preceding robot, and its covariance is updated depending on the measurement error be-
tween the two robots. In [94], the authors propose a method to rectify the weak connections
in the target robot’s pose graphs by the host robot. These weak connections are identified
when the covariance increases to a certain threshold and is communicated as a result of the
Edge Selection Problem (ESP) [63], whereby the host robots generate trajectories toward
them by using RRT to decrease uncertainty and improve their localization. This method
uses continuous refinement along with D-optimality criterion to collaboratively plan tra-
jectories that reduce pose uncertainty in pose-graph-based SLAM. A bidding strategy is
defined, which selects the winning robot based on the least computational cost, feasible
trajectory, and resource-friendly criterion.
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3.3. Exploration and Exploitation Tasks

As mentioned earlier, in A-SLAM, we need to balance exploration (maximizing the
explored area) and exploitation (revisiting already-explored areas for loop closure). This
balance is important to achieve good robot- and landmark-pose estimations and achieve
better localization and mapping. The authors of [96] describe a centralized exploration
problem by using frontier-based exploration and an efficiency-optimization problem where
the information gain and localization efficiency is maximized while navigation cost toward
the frontier is penalized. During the exploration phase, a global optimization strategy is
proposed, which divides the exploration task equally among robots. Sometime during
the exploration phase, the robot’s localization efficiency drops a certain threshold and it
switches to the relocalization phase. During the relocalization (exploitation) phase, each
robot is guided toward a known landmark or another robot with less localization uncer-
tainty. An adapted threshold criterion is defined, which is adjusted by the robots to escape
the exploring and exploitation loop if they get stuck. To manage the limited communication
bandwidth (because of a centralized architecture), a rendezvous method is proposed, which
relocates the robots to a predefined position if they get out of the communication range.
The future work proposed involves using distributed control schemes.

The method described in [15] formulates the problem in topological, geometrical space
(the environment which is represented by primitive geometric shapes). Initially, the robots
are assigned target positions, and exploration is based on the frontier method and utilizing
a switching cost function that takes into consideration the discovery of the target area of
a robot by another member of the swarm. When the target is inside the robot’s disjoint
explored subspace, the cost function switches from a frontier to a distance-based navigation
function to guide the robot toward the goal frontier.

3.4. Trajectory Planning

In these methods, the path entropy is optimized to select the most informative path
to collectively plan trajectories that reduce the localization and map uncertainties. In the
approach formulated in [90], the study presents a decentralized method for a long-planning
horizon of actions for exploration and maintains estimation uncertainties at a certain thresh-
old. The active path planner uses a modified version of RRT* in which (a) the nonfusible
nodes are filtered out because a nonholonomic robot is used and (b) the action is chosen that
best minimizes the entropy change per distance traveled. The authors performed entropy
estimation as a two-stage process. At first, the entropy in short horizons is computed by us-
ing square root information filter (SRIF) updates and that of the short horizon is computed
considering a reduction in the loop closures in the robot paths. The main advantage of this
approach is that it maintains good pose estimation and encourages loop-closure trajectories.
An interesting solution is given by a similar approach to the method proposed by [91]
using a relative entropy (RE)-optimization method which integrates motion planning with
robot localization and selects trajectories that minimize the localization error and associated
uncertainty bound. A planning-cost function is computed, which includes the uncertainty
in the state (a trace of the covariance matrix of the EKF state estimator) in addition to the
state and control cost. In a less computationally expensive approach, the method proposed
by [95] uses a Convolutional Neural Network (CNN) to fuse the Unmanned Aerial Vehicle
(UAV) and Unmanned Ground Vehicle (UGV) maps in a traversability-mapping scenario.
It formulates an active perception module that uses conditional entropy to guide the UAV
and UGV toward high-entropy paths.

3.5. Statistical Analysis on AC-SLAM

Table 5 summarizes the sensor types (with descriptions), SLAM methods, path-
planning approaches, and type of utility functions used in AC-SLAM approaches. Most
articles use (i) camera (RGB and RGBD), Lidar, and IMU sensor data for visual–inertial
odometry and dense 3D point clouds as input to the SLAM system. (ii) Most implemen-
tations use pose-graph SLAM (68.7%) as compared to filter-based SLAM (32%). This
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preference for graph SLAM over filter based is highly encouraged as graph SLAM has
many advantages [104]. Contrary to Table 2, we can infer that in AC-SLAM, graph SLAM
methods are mostly deployed. (iii) Discrete sampling algorithms, which work by perform-
ing a graph search of the environment, are mostly used by A*, D*, and RRT. (iv) Entropy
(37.5%), frontier information, and distance (43.7%) are deployed for the quantification
of utility at goal positions. The utility preference of frontier information and distance is
encouraged as it is computationally less expensive.

Table 5. AC-SLAM sensors, SLAM methods, path-planning approaches, and utility functions.

Papers Years Sensors SLAM Method Path Planning Utility Function

[86] 2018 Lidar, RGB Pose-graph SLAM Probabilistic Road Map Evolution of uncertainty
[92] 2020 RGBD 1, IMU ORB-SLAM2 - Subgraph info. and distance
[88] 2011 Lidar, IMU EKF-SLAM A* FI 3, distance, evolution of uncertainty
[93] 2019 Lidar, RGBD 1, magnetic compass, IMU Vision-based SLAM FSOTP 2, BIT*-H [105] FI
[94] 2020 RGB, IMU Pose-graph SLAM RRT Pose-graph connectivity
[95] 2015 Lidar, RGB Visual SLAM - Conditional entropy
[96] 2013 Lidar, RGB EKF-SLAM Frontier based FI, distance, evolution of uncertainty
[89] 2017 Lidar, RGBD 1, RGB, IMU Vision and Lidar SLAM FSOTP 2, BIT*-H FI, distance
[90] 2019 Lidar, IMU Graph SLAM - Entropy
[91] 2013 Lidar, IMU EKF SLAM - Relative entropy
[97] 2018 RGB ORBSLAM2 D* Localization uncertainty
[87] 2015 Lidar, IMU Graph SLAM RRT* Localization uncertainty
[98] 2020 Lidar Google Cartographer - FI, distance
[99] 2022 UWB, WiFi Graph SLAM - FI, mutual distance

[100] 2015 Lidar Information filter - Entropy, MI
[101] 2018 Lidar EKF - Entropy

1 Microsoft Kinect. 2 Fixed-Start Open Traveling Salesman Problem. 3 Frontier information.

Table 6 elaborates on analytical, simulation, and real robot experiments along with
the environment type, collaboration architecture, collaboration parameters, loop closure,
and ROS framework. The information can be summarized as the following: (i) All the
articles provide analytical and simulation-based results that are promising for bridging
the gap between theory and simulation. (ii) The use of real robots is only 37.5%, which
is very low compared to simulated robots. One of the possible reasons that real robot
usage is discouraged is their inherent constraints in communication range and power.
(iii) Heterogeneous real robots are used in 66.6% of the articles that use real robots. The
UGV-UAV collaboration is highly encouraged as it develops new research horizons. (iv) In
total, 62.5% of the articles implement loop closure, which is highly motivated by efficient
localization. (v) The usage of ROS has been limited to 31.2% of articles, which is somewhat
similar to the usage outlined in Table 3 and implies the declining usage of ROS in A-
SLAM research.

Table 6. AC-SLAM results, robot types, collaboration architecture, and parameters.

Papers Analytical Results Sim. Results Real Robots Env. MR 2 Robot Types Loop Closure ROS

[86] X X 7 � 1 Two - X -
[92] X X 7 � Four - X X
[88] X X 7 � Two - - -
[93] X X X � Two UAV, UGV (custom made) X X
[94] X X X � Two UAV (custom made) X -
[95] X X X + 3 Two UAV, UGV - -
[96] X X 7 � X - - -
[89] X X X � Two UAV, UGV X -
[90] X X 7 � X - - -
[91] X X 7 � X - X -
[97] X X 7 � X - X X
[87] X X 7 � X - X -
[98] X X 7 � Five - X X
[99] X X X � Two UGV (TurtleBot 3) X X

[100] X X 7 � X - - -
[101] X X X � Five UGV, UAV - -

1 Indoor environment. 2 Multirobot. 3 Outdoor environment.
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4. Discussion and Future Directions

We focused on A-SLAM and AC-SLAM methods, their implementation, and their
methodology applications in selected research articles. We performed extensive qualitative
and quantitative analyses on numerous parameters and discussed their merits/demerits.
We would like to bring into the limelight the limitations of the A-SLAM problem and future
research directions in the following sections.

4.1. General Limitations

These limitations can be considered as open problems persisting in A-SLAM research,
and we can further explain them as:

• Stopping criteria: Since A-SLAM is computationally expensive especially when the
utility function is computed over the entire mapped area (e.g., map entropy) or
in the case of TOED, the mapping of the full information matrix is required. The
quantification of uncertainties from TOED may be used as an interesting stopping
criterion, as discussed by [19]. The interesting approach proposed by [106] shows the
qualification of uncertainty, e.g., D-optimality and the amount of explored area to stop
autonomous exploration and mapping.

• Robust data associations: Contrary to SLAM where an internal controller is responsible
for robot action and the data association (the association between measurements and
corresponding landmarks) has less impact on robot actions, in A-SLAM, a robust data
association guides the controller to select feature-rich positions. The qualification of
these good feature/landmark positions may be difficult, especially beyond line-of-
sight measurements.

• Dynamic environments: In A-SLAM, the nature of the environment (static or dynamic)
and the characteristics of obstacles (static or dynamic) significantly influence the utility
function used to plan future actions. While the majority of the A-SLAM literature
primarily addresses static environments and obstacles, this focus may not align well
with the complexities of real-world scenarios marked by dynamic elements. This
article advocates for a broader exploration of A-SLAM in dynamic contexts, high-
lighting the need for adaptable and responsive robotic systems capable of thriving in
real-world conditions.

• Simulation environment: When considering DRL-based approaches, the model train-
ing is constrained to a simulated environment, and contrary to Deep Learning ap-
proaches, an offline dataset cannot be used. The trained model may not perform
optimally in real-world scenarios with high uncertainty.

4.2. Limitations of Existing Methods

The limitations existing with the A-SLAM and AC-SLAM methods analyzed in the
previous sections of this article can be summarized as:

1. Limited consideration of dynamic obstacles: As mentioned earlier in Section 2.2,
A-SLAM involves decision and planning in unknown environments. These environ-
ments may have dynamic obstacles, as in real-world scenarios. In such a case, the
SLAM algorithm must be able to detect dynamic obstacles and recompute its utility
and path. In [41], the authors employed a novel approach that leverages D* [32]
with negative edge weights for adaptive path planning in the presence of dynamic
obstacles. Keeping into consideration the robot localization uncertainty, this method
takes into account the obstacle Euclidean distance and updates the D* planner weights.
The approach in [9] detects dynamic obstacles in a crowded environment, and the
utility function takes into account the change in Shannon’s entropy [59] upon the
detection of dynamic obstacles.

2. High computational complexity: A-SLAM is computationally expensive, as men-
tioned in Sections 2.1 and 2.2. We find only a few approaches that tackle this issue.
The authors of [38] present a scenario with multiple prior topometric subgraphs, and
a novel approach is introduced. It alternates between active localization and mapping
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and uses maximum likelihood estimation to streamline the method’s computational
complexity. In an interesting approach using the methods in Section 2.3, the authors
of [34] tackle the joint-entropy minimization exploration problem by introducing two
versions of RRT* [31], which use distance and entropy change per distance traveled
in the utility function, hence lowering the computational complexity. In AC-SLAM,
the authors of [94] introduce a novel method for strengthening weak connections
in the target robot’s pose graphs by the host robot. Weak connections are identi-
fied when the covariance surpasses a predefined threshold and is resolved through
communication, addressing the 1-ESP problem [63]. The methods explained in
Section 2.6 provide a good basis for the development of less computationally ex-
pensive A-SLAM algorithms.

3. Real robot deployment: A-SLAM is necessary for real robot deployment because it
enables robots to make decisions about where and how to select informative goal
positions, adapt to changing environments, and operate effectively and autonomously
in complex and dynamic environments. From the results of Sections 2.7 and 3.5,
we recall that real robots are used only in 67% and 37% of A-SLAM and AC-SLAM
methods, respectively.

4. Limited implementation of loop closure: Loop closure [107] is important in SLAM
to ensure map consistency and integrity, minimize localization errors and drift, as-
sist with global map alignment, and optimize map accuracy. It is essential for the
reliable and accurate mapping and localization required in various robotic applica-
tions. In Sections 2.7 and 3.5, we recall that loop closure is implemented in only 51%
and 62.5% of A-SLAM and AC-SLAM methods, respectively. This limited use is
justified by the fact that it involves the heavy computation of minimizing the local-
ization error and exploitation (revisiting already-traversed areas of the environment),
which may not be suitable for A-SLAM, which is already computationally expensive
(Sections 2.1 and 2.2).

5. Reasoning over graph connectivity: As mentioned in Section 2.6, new methods are
available to reduce the A-SLAM computational complexity, whereby debates over the
SLAM pose-graph connectivity metrics and new methods for uncertainty quantifica-
tion have occurred. The authors of [66] treat the underlying graph as an estimation-
over-graph (EoG) [62] SLAM problem and propose a new method of computing the
D-optimality criterion over the reduced weighted graph Laplacian matrix. In an AC-
SLAM approach, the method presented in [94] also exploits the graph connectivity to
find weak edges in the target robot pose graph and guides the host robot to localize it.

6. Limited ROS implementation: ROS [22] is an open-source framework for robotics
research. It provides a collection of libraries for sensor integration, perception, navi-
gation, control, visualization, and analysis for many robotics platforms [108]. From
Sections 2.7 and 3.5, we can infer that ROS usage has been limited to only 45% and
31.2% of articles on A-SLAM and AC-SLAM, respectively. This limited ROS usage is
related to the increased computational overhead on the A-SLAM algorithm, which
decreases the real-time and performance requirements.

7. Less usage of dynamic approaches: As discussed in Section 2.4, these approaches
treat path planning in A-SLAM as an Optimal Control Problem and work on con-
tinuous planning and action spaces. They have the advantage of incorporating the
robot kinematic and dynamic models into the cost function, resulting in a smooth
trajectory [109] with dynamic obstacle detection. Our analysis in Section 2.7 signifies
that only 11% of A-SLAM methods use this approach, mainly due to the associated
computational overhead.

8. Lack of usage of heterogeneous robots: Utilizing heterogeneous robots in AC-SLAM
can enhance the mapping accuracy, improve the system robustness, increase coverage,
enable multiperspective mapping, and support efficient exploration by leveraging
complementary sensor modalities and capabilities among the robots. Section 2.7
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shows that 66.6% of approaches use UGV and UAV collaboration for collaborative
mapping [89,93,95] and information gathering [101].

9. Managing robust communication: Robust communication implies the ability of a
network to function smoothly when one or many robots/servers fail. In the case
of A-SLAM, it is deduced to be a system that is immune to failure when any agent
loses localization or gets out of the communication range. Most of the AC-SLAM
approaches in Section 3 fail to address this issue. An interesting approach by the
authors of [96] proposes a rendezvous method to manage the limited communication
bandwidth by relocating robots to predefined positions when they move beyond the
communication range.

10. Communication bandwidth management: Communication bandwidth management
is vital in AC-SLAM for ensuring real-time collaboration, minimizing latency, con-
serving resources, and optimizing cost efficiency. From the analysis in Section 3, we
can infer that no AC-SLAM implementation addresses communication bandwidth
management. The approach presented in [110] proposes many different visual and
visual–inertial information-sharing schemes for SLAM and loop closure, which are
bandwidth friendly and can be applied in AC-SLAM.

4.3. Future Prospects

We believe that the following areas need more investigation and may provide promis-
ing future research directions.

1. Detection and avoidance of dynamic obstacles: Dynamic obstacle detection and
avoidance are crucial for autonomous robot navigation in unfamiliar or partially
known environments. The effective management of both static and dynamic obstacle
avoidance directly impacts uncertainty propagation and system entropy. In [111],
the authors introduce a perception-aware Next-Best Viewpoint Planner (NBVP) [112]
designed for dynamic obstacles incorporating active-loop closure. This planner em-
ploys a keypoint filtration and selection method based on the yaw angle, the number
of previously detected keypoints, and the UAV’s distance to choose optimal loop-
closure keypoints. Additionally, in a computationally efficient approach by [113], the
authors combine multiple obstacle detectors and utilize a Kalman filter for efficient
dynamic obstacle detection and tracking. For Lidar measurements, [114] proposes a
method involving dynamic object segmentation and classification based on kd-nearest
neighborhood search [115].

2. Lowering computational complexity for real-time applications: As discussed earlier,
the utility criterion in TOED and relative entropy computation are both computation-
ally extensive tasks, thus limiting the real-time performance of A-SLAM. Machine
learning approaches like CNNs can be used to reduce the computational overhead of
loop closure in SLAM, as proposed by the authors of [116]. Leveraging the advantages
of edge-cloud computing [117], the robot pose and local/global map can be estimated
by utilizing the edge-cloud processing capabilities, as used by the authors of [118].

3. Application of DRL methods: As mentioned in Section 2.4, DRL methods have the
capacity to handle complex decision-making processes in continuous states and
action spaces. They enable adaptive exploration–exploitation trade-offs, making
them well suited for the challenges encountered in real-world A-SLAM scenarios.
Deep Q networks (DQN) and double dueling (D3QN) are applications of such DRL
approaches used by [13,55]. A memory-efficient solution as compared to traditional
DRL approaches is presented by the authors of [119] where the robot already has a
partial map of the environment inside the external memory and uses a neural-network-
based navigation strategy for autonomous exploration. The method in [120] presents
an interesting DRL A-SLAM method that improves exploration by incorporating the
robot pose uncertainty in the reward function to favor loop closure.

4. Advanced simulators: The use of advanced simulators is crucial for A-SLAM due to
their realistic modeling, cost efficiency, and support for diverse scenarios. Commer-
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cially available simulators like AirSim [121], Carla [122], and Webots [123] provide
realistic modeling of urban environments for UGV, UAV, and cars. For multirobots,
MvSim [124], and for SLAM, the Virtual Reality (VR)-supported simulator proposed
in [125], can be used.

5. Multisensor fusion: Multisensor fusion enhances perception, adaptability, obstacle
detection, reliability, loop closure, tracking, and localization in real-world A-SLAM.
Sensor fusion is a very mature topic, and interested readers are directed to [126,127]
for review articles. When using Deep Learning (DL) approaches is concerned, the
authors of [128] present an actor–critic self-adopting agent for the weighing-sensors
(camera, Lidar, IMU, GPS) SLAM method. An interesting method for fusing light and
Lidar measurements to map and localize agents by using an Extended Kalman Filter
(EKF) is presented by the authors of [129].

6. Graph connectivity metrics: As explained in Section 2.6, a novel approach for assessing
A-SLAM uncertainty is presented. This approach involves quantifying the reliability
of SLAM through measures such as algebraic, degree, and tree connectivity within the
pose graph. It is noteworthy that this method, as demonstrated in [64–66], provides a
computationally efficient alternative to A-SLAM.

7. Advance embedded design: Advanced embedded design methods are essential for
real-time processing, low latency, sensor integration, robustness, real-world testing,
and the overall optimized performance of A-SLAM. Referring to Tables 3 and 6,
we can infer that most approaches use commercially available robots with limited
embedded processing capabilities. The authors of [130] propose an efficient Field
Programmable Gate Arrays (FPGA)-based vision system for obstacle detection in real
time at 30 Frames Per Second (FPS). To improve the computational capabilities for
navigation tasks, the authors of [131] propose a method to add an external embedded
board to the Khepra IV [132] robot.

8. Internet of Things (IoT) and cloud computing: IoT and cloud computing offer scalable
data processing, remote access, data fusion, and machine learning capabilities. The
approach adopted by the authors of [133] proposes a Deep Learning (DL) model
incorporated with cloud computing and IoT technologies and works with wearable
glucose-level-monitoring equipment for the efficient future prediction of blood glu-
cose levels.

5. Conclusions

This article focused on two emerging techniques applied in simultaneous localization
and mapping technology, i.e., A-SLAM and AC-SLAM. We reviewed papers published
in the past decade and collated their contributions. We started our work by recalling the
SLAM problem and its formal formulation, discussing submodules and presenting methods
applied for the deployment of modern active and Active Collaborative SLAM. We broadly
categorized A-SLAM into four categories: geometric, dynamic, hybrid approaches, and
reasoning over spectral graph connectivity depending on the trajectory-generation method,
environment representation, and uncertainty quantification. We presented an extensive
qualitative and quantitative analysis of the surveyed research articles and presented the re-
search domains and methodology. For AC-SLAM, we presented the network topology and
its application in collaborative localization, exploration, and trajectory-planning domains.
We also performed extensive qualitative and statistical analyses of various AC-SLAM
parameters. Lastly, we elaborated the limitations of the existing methods and proposed
some research axes that require attention. The previous studies of [19,20] did not focus
on A-SLAM problem formulation, the application of dynamic approaches, single- and
multirobot statistical analysis, and providing future perspectives. Only [21] addresses
these issues but does not address AC-SLAM statistical analyses and briefly comments on
AC-SLAM methods and A-SLAM statistical analysis. We believe that this article offers a
more-thorough exploration of the A-SLAM formulation, methods, limitations, and future
prospects compared to previous works. We present an innovative and in-depth qualitative



Sensors 2023, 23, 8097 24 of 29

and quantitative analysis of AC-SLAM, focusing on research articles primarily from the
past decade, making this review particularly valuable for emerging researchers.
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