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SYSTOLICALLY EXTREMAL NONPOSITIVELY CURVED

SURFACES ARE FLAT WITH FINITELY MANY

SINGULARITIES

MIKHAIL G. KATZ AND STÉPHANE SABOURAU

Abstract. The regularity of systolically extremal surfaces is a notori-
ously difficult problem already discussed by M. Gromov in 1983, who
proposed an argument toward the existence of L2-extremizers exploit-
ing the theory of r-regularity developed by P. A. White and others by
the 1950s. We propose to study the problem of systolically extremal
metrics in the context of generalized metrics of nonpositive curvature.
A natural approach would be to work in the class of Alexandrov sur-
faces of finite total curvature, where one can exploit the tools of the
completion provided in the context of Radon measures as studied by
Reshetnyak and others. However the generalized metrics in this sense
still don’t have enough regularity. Instead, we develop a more hands-
on approach and show that, for each genus, every systolically extremal
nonpositively curved surface is piecewise flat with finitely many coni-
cal singularities. This result exploits a decomposition of the surface into
flat systolic bands and nonsystolic polygonal regions, as well as the com-
binatorial/topological estimates of Malestein–Rivin–Theran, Przytycki,
Aougab–Biringer–Gaster and Greene on the number of curves meeting
at most once, combined with a kite excision move. The move merges
pairs of conical singularities on a surface of genus g and leads to an
asymptotic upper bound g4+ǫ on the number of singularities.

1. Introduction

The systole of a Riemannian manifold M , denoted sys(M), is the least
length of a noncontractible loop in M . A seminal text in this area is Gro-
mov’s paper Filling Riemannian manifolds [14]. It deals in particular with
the problem of the existence of systolically extremal surfaces, i.e., surfaces
with maximal systole for a fixed area, or equivalently minimal area for a
fixed systole. There is a discussion of systolically extremal surfaces without
curvature assumptions in [14, pp. 64–65]. The proposed existence of the sur-
faces in question is only in a weak sense as it relies on the theory of r-regular
convergence of P. A. White and others, introduced in the thirties; see [41].
More precisely, systolically extremal surfaces are endowed with a length
metric structure along with a (possibly vanishing) L2-limit of the conformal

2010 Mathematics Subject Classification. Primary 53C23; Secondary 53C20.
Key words and phrases. systole, systolic inequalities, extremal metrics, nonpositively

curved metrics, piecewise flat surfaces with conical singularities.

1



2 M. KATZ AND S. SABOURAU

factors of some approximating Riemannian metrics. Despite this preliminary
result, the existence of more regular systolically extremal surfaces without
curvature assumptions remains an open problem, except for the torus [21],
the projective plane [31] and the Klein bottle [5], where systolically extremal
metrics have been determined (for other optimal Loewner-type inequalities
see [4], [19], [22]). No conjecture is available for other surfaces, except in
genus 3 where Calabi constructed nonpositively curved piecewise flat metrics
with systolically extremal-like properties; see [12], [34] (and [35] for related
systolic-like properties in genus 2). Partial results concerning systolically op-
timal metrics were obtained by Bryant [8] using PDE techniques, assuming
regularity.

1.1. Statement of the problem. We will study the extremality problem
in the context of surfaces endowed with a Riemannian metric of nonpositive
curvature. The systolic area σ of a surface M with a fixed metric is defined
as

σ(M) =
area(M)

sys(M)2
.

The optimal systolic area in genus g for nonpositive curvature is defined as

σH(g) = inf
M

σ(M) (1.1)

where the infimum is taken over all nonpositively curved genus g surfaces M .
Here, the subscript H alludes to Hadamard as the surfaces considered are
locally CAT(0). For a recent study of Hadamard spaces see Bačák [3].

For surfaces of nonpositive curvature of genus g = 2, we showed in [23]
that the metric realizing the infimum σH(2) of the systolic area is flat with
finitely many conical singularities, in the conformal class of the smooth
completion of the affine complex algebraic curve w2 = z5 − z, and one
has σH(2) = 3 tan(π8 ).

1 A similar result holds for the metric realizing the
infimum of the systolic area among all nonpositively curved metrics on the
surface homeomorphic to the connected sum of three projective planes, also
known as Dyck’s surface; see [24].

The purpose of the present text is to extend this result to surfaces of
arbitrary genus. We will need a few more definitions to cover the case of
local infima, and not just global infima.

Definition 1.1. A closed surface M with a Riemannian metric with conical
singularities is locally isometric to the complex plane endowed with the
metric

ds2 = e2u(z) |z|2β |dz|2

where β > −1 and u : C → R is a continuous function, smooth everywhere
except possibly at the origin.

1The same conformal class contains an optimal metric for a related first eigenvalue
problem; see [28]. This optimal metric similarly has finitely many conical singularities.
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See Troyanov [38] for a detailed description. Here, the point of M corre-
sponding to the origin in C is a conical singularity of total angle θ = 2π(β + 1).

Example 1.2. Gluing together n Euclidean angular sectors of angle θi, i =
1, . . . , n side by side in circular order gives rise to a conical singularity of
total angle θ1 + · · · + θn.

Such a surface M is nonpositively curved (in Alexandrov’s sense) if and
only if the Gaussian curvature of M is nonpositive away from the conical
singularities and the total angle at each conical singularity is greater than 2π.

Definition 1.3. The space Hg consists of nonpositively curved Riemannian
metrics (possibly with conical singularities) on a genus g surface. This space
will be endowed with either of the following nonequivalent distances, namely,
the Gromov–Hausdorff distance or the Lipschitz distance; see [16]. It fibers
over the conformal moduli space Mg (see [38]):

Hg

Mg

where the base is (6g − 6)-dimensional and the fiber infinite-dimensional.

Definition 1.4. A local infimum of the systolic area on Hg is a real num-
ber µ > 0 such that there exists an open set U ⊆ Hg satisfying a strict
inequality

µ = inf
M∈U

σ(M) < inf
M∈∂U

σ(M). (1.2)

Note that, though we use the term local, this definition is not entirely
local as the strict inequality (1.2) may hold for some open set U , but fail for
arbitrarily small ones.

Definition 1.5. A nonpositively curved surface M ∈ Hg (possibly with
conical singularities) is locally extremal for the systolic area if there exists
an open set U ⊆ Hg containing M such that

σ(M) = inf
M∈U

σ(M) < inf
M∈∂U

σ(M).

In such case we say that the local infimum µ = inf
M∈U

σ(M) is attained by M .

1.2. Main results. We can now state our main result concerning the exis-
tence of systolically extremal metrics.

Theorem 1.6. Every local infimum of the systolic area on the space Hg of
nonpositively curved genus g surfaces (possibly with conical singularities) is
attained by a nonpositively curved piecewise flat metric with at most N0 ≤
225 g4 log2(g) conical singularities.
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Remark 1.7. The upper bound N0 can be expressed in terms of the max-
imal number Q̄(g) of systolic homotopy classes on a closed nonpositively
curved surface of genus g with finitely many conical singularities; see The-
orem 8.1. In turn, the quantity Q̄(g) can be bounded in terms of the num-
berQ(g) of pairwise nonhomotopic simple closed curves on a genus g surface;
see Theorem 4.5 and Proposition 4.7.

Thus the number of conical singularities is uniformly bounded for all
locally extremal metrics of nonpositive curvature on a surface of fixed genus.
By Theorem 1.6 and the conformal representation of piecewise flat surfaces,
see [37, §5], every locally extremal metric has a well-defined conformal class
and a well-defined continuous conformal factor (with finitely many zeros).
Moreover, the space of locally extremal nonpositively curved metrics is finite-
dimensional of dimension at most 225 (6g − 6) g4 log2(g).

Corollary 1.8. For every genus g, the global infimum σH(g) is attained by
a nonpositively curved piecewise flat metric on a genus g surface with at
most N0 ≤ 225 g4 log2(g) conical singularities.

This type of result is apparently of interest in closed string theory; see
the work by Zwiebach and coauthors [42], [43], [17], [18], [27].

Systolically extremal surfaces without curvature assumptions, if they are
sufficiently regular (for instance, if they have bounded integral curvature in
Alexandrov’s sense; see [1], [33], [40]), are covered by their systolic loops.
This may no longer be the case for locally extremal nonpositively curved
surfaces. Still, by analyzing the geometry and shape of nonsystolic domains
of locally extremal nonpositively curved surfaces in Section 9, we obtain the
following.

Corollary 1.9. The union of the systolic loops of a locally extremal non-
positively curved surface is path-connected.

Remark 1.10. A important tool in our study is the kite excision trick
which merges pairs of conical singularities, while keeping the systole fixed
and strictly decreasing the area. More precisely, this trick consists in excising
a flat kite from a surface and identifying pairs of adjacent sides of the excised
surface; see Section 6 for details.

1.3. Some open problems. We conclude this introduction with a few open
problems of varying levels of difficulty.

(1) By Corollary 1.9, the systolic region of a locally extremal nonposi-
tively curved surface is connected. Does this result still hold for the
interior of the systolic region?

(2) As we show in this article, the set of locally extremal nonpositively
curved metrics on a given genus g surface lies in a finite-dimensional
space. A natural question to ask is whether the set of locally ex-
tremal surfaces is finite, as it is the case for hyperbolic surfaces,
see [6] for a general setting.
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(3) Continuing with the previous item: do isosystolic deformations (i.e.,
deformations preserving the systolic area) of locally extremal non-
positively curved surfaces exist?

(4) To what extent can one relax the nonpositive curvature condition?
For instance, what can be said about extremal metrics of curvature
at most ε with unit systole for small ε > 0?

Acknowledgements. The second author would like to thank Thomas Richard
and Marc Troyanov for interesting discussions about Alexandrov surfaces.
We are grateful to Barton Zwiebach for helpful comments on an earlier
version of the manuscript.

2. Strategy

Let us comment on the strategy of the proof of Theorem 1.6. We first
discuss the general idea on a sufficiently smooth extremal surface pointing
out the main difficulties. After presenting a natural attempt to overcome
these difficulties in the context of Alexandrov surfaces, we finally develop
the strategy of the proof, sketching the argument.

2.1. Local perturbation of extremal surfaces. Suppose first that an
extremal metric with nonpositive curvature exists on a given surface and
that this metric is sufficiently smooth. By the flat strip theorem (see [7,
§II.2.13]), two homotopic systolic loops on a nonpositively curved surface
bound a flat annulus foliated by systolic loops. Away from these flat systolic
bands, in regions where no systolic loop passes, the extremal surface must
be flat, for otherwise its curvature would be negative and its area could be
decreased by a local perturbation of the conformal factor, affecting neither
the systole, nor the sign of curvature, and contradicting the extremality of
the surface. Of course, this argument only holds for regions where the metric
is smooth enough. In particular, it does not shed any light on the nature
of the singularities of the extremal metric, which necessarily exist in genus
at least two, otherwise the extremal surface would be flat. Thus, though
appealing, this argument does not prove anything if we cannot establish the
existence of a smooth enough extremal metric a priori, which amounts to a
classical issue in the calculus of variations.

The existence of extremal metrics in a given conformal class can be
derived from compactness results on the conformal factor using its log-
subharmonicity in nonpositive curvature. However, the regularity of the
metrics thus obtained is too weak for our purposes. Moreover, it is unknown
whether the systolically optimal metric in a given conformal class has finitely
many singularities or not. The advantage of our technique based on the kite
excision move (see Section 6) is that it has the mobility of moving about
freely in the moduli space of conformal classes and is not constrained to a
single class.
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2.2. Alexandrov surfaces. From a different (more geometric) point of
view, the theory of Alexandrov surfaces with bounded integral curvature
provides the desired features regarding curvature measure, compactness re-
sults and conformal representation; see [1], [33], [40]. Loosely speaking, every
Alexandrov surface with bounded integral curvature can be described by its
conformal structure, represented by a (hyperbolic) Riemannian metric h of
curvature Kh, and a curvature measure

dω = Kh dAh + dµ

where µ is a Radon measure of total mass zero. Here, the function u in
the conformal factor e2u of the surface satisfies ∆hu = µ in the distribution
sense. Therefore, it is determined by the inverse of the Laplacian on (M,h)
given by the Green function G, namely

u(x) =

∫

M
G(x, y) dµ. (2.1)

Arguing as before, we seek to show that the curvature measure vanishes in a
neighborhood of a point where no systolic loop passes, by a perturbation of
the conformal factor. For this purpose, we consider variations of the Radon
measure µ in a neighborhood of this point, leaving us with the following
problem: even though the support of the measure variation is localized
in this neighborhood, we have no control on the support of the variation
of the conformal factor given by (2.1). This could affect the value of the
systole and, therefore, the validity of the argument. If the conformal factor
is modified in a given region the curvature measure is affected only in this
region, but it is not clear how to read off this property from the curvature
measure variation.

2.3. A priori bounds. We will follow a different strategy enabling us to
establish a priori upper bounds on the number of conical singularities. The
argument proceeds as follows. In Section 3, we first recall that every non-
positively curved surface can be approximated by a nonpositively curved
piecewise flat surface with conical singularities. We also show that the sys-
tolic area defines a proper functional when restricted to the moduli space of
nonpositively curved piecewise flat metrics whose number of conical singu-
larity is uniformly bounded. This compactness result will allow us to derive
the existence of locally extremal surfaces from an a priori upper bound on
the number of conical singularities of an almost locally extremal piecewise
flat surface. Such an upper bound follows from a polynomial bound on the
number of systolic loops up to homotopy; see Section 4.

More specifically, flat systolic bands and isolated systolic loops decompose
any nonpositively curved piecewise flat surface into nonsystolic polygonal
regions whose number of edges is related to the number of systolic homotopy
classes, and is therefore uniformly bounded; see Section 5. We introduce the
kite excision trick in Section 6. We exploit the trick to deduce that each
nonsystolic polygonal region of an almost locally extremal piecewise flat
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surface has at most one conical singularity; see Sections 8 and 9. It follows
that the number of conical singularities of this surface is uniformly bounded
as desired.

The kite excision trick has the effect of moving a pair of singularities lying
in the same nonsystolic region closer and closer until they merge into a single
nonpositively curved conical singularity, while keeping the systole fixed and
strictly decreasing the area. More precisely, it consists in excising a flat kite
from a surface and identifying pairs of adjacent sides of the excised surface;
see Sections 6 and 7. Moreover, this construction gives a way of reaching a
locally extremal surface.

We will assume throughout that all surfaces are of genus at least 2 to
avoid the torus case where the extremal systolic problem was completely
solved by Loewner; see [21, Theorem 5.4.1].

3. Metric approximation and compactness

We present a few classical results which will be used in the proof of the
existence of locally extremal nonpositively curved piecewise flat metrics for
each genus g; see Theorem 8.1. We start with the following metric approxi-
mation result.

Proposition 3.1. For every genus g ≥ 2, the infimum of the systolic area
over the following three spaces yields the same value σH(g):

(1) over all nonpositively curved Riemannian metrics;
(2) over all nonpositively curved Riemannian metrics with conical sin-

gularities in the sense of Definition 1.1;
(3) over all nonpositively curved piecewise flat metrics with conical sin-

gularities.

Proof. A metric M ∈ Hg (e.g., a nonpositively curved metric with conical
singularities) can be approximated by a smooth one of nonpositive curva-
ture by smoothing out each of the conical singularities, without significantly
affecting the area and the systole.

Next, rescale the smooth surface M (without changing the systolic area)
so that its Gaussian curvature K satisfies −1 ≤ K ≤ 0. For every ε > 0, we
can partition M into sufficiently small right-angled geodesic triangles ∆ ⊆
M so that area(∆) ≥ (1 − ε) area(∆0), where ∆0 is the corresponding flat
triangle with the same sidelengths. Indeed, by the Alexandrov–Toponogov
comparison theorem, comparing M with the spaceform of smaller constant
curvature (namely, −1), the area of ∆ is at least the area of the compar-
ison right-angled hyperbolic triangle. The area of the hyperbolic triangle
is 2 arctan(tanh a

2 tanh
b
2) where a, b are the two sides. Thus the lower bound

on area(∆) can be made as close to 1
2ab as we wish for a, b small enough,

exploiting the developments of arctan and tanh.
By the Alexandrov–Toponogov comparison theorem, comparing with the

spaceform of greater constant curvature (namely, 0), the angles of ∆0 are
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no smaller than the corresponding angles of ∆. Hence the total angles of
the conical singularities of the piecewise flat surface M0 obtained from M
by replacing each ∆ by ∆0 are at least 2π, so that M0 has nonpositive
curvature.

Since area(∆0) ≤
1
2ab, replacing ∆ by ∆0 increases the area by a factor at

most 1+ε, so that we have tight control on the area of M0. Meanwhile, each
loop in M0 decomposes into paths where each path is contained in a suitable
triangle ∆0 ⊆ M0 with endpoints on the boundary of ∆0. The corresponding
path in ∆ ⊆ M is necessarily shorter by the Alexandrov–Toponogov com-
parison of M with the spaceform of greater constant curvature (namely, 0)
and therefore sys(M0) ≥ sys(M) and thus σ(M) ≥ (1− ε)σ(M0). �

More generally, one has the following result on metric approximation,
announced by Reshetnyak [32] and proved by Yu. Burago [9, Lemma 6], in
the more general setting of Alexandrov surfaces.

Proposition 3.2. Let M be a surface of genus g. Every Riemannian metric
with conical singularities on M is bilipschitz close to a piecewise flat metric
with conical singularities. In particular, the systole and the area of the two
metrics are close.

Proof. The argument of [9, Lemma 6] proceeds as follows. Construct a
suitable partition T of M into small geodesic triangles, where the conical
singularities of M are located at the vertices and where each triangle of T
is bilipschitz close to its comparison flat triangle with the same side lengths.
Replacing each triangle of T with its comparison flat triangle gives rise to a
piecewise flat metric with conical singularities on M . Putting together the
bilipschitz maps between triangles yields a bilipschitz map between the two
metrics on M , with bilipschitz constant close to 1. �

Corollary 3.3. In Proposition 3.2, if the Riemannian metric with conical
singularities on M is nonpositively curved then the piecewise flat metric can
be assumed to be nonpositively curved, as well.

Proof. Examining the construction in the proof of Proposition 3.2, we note
that if the initial Riemannian metric with conical singularities on M is non-
positively curved, then an Alexandrov–Toponogov comparison of triangle
angles shows that the associated piecewise flat metric has nonpositive cur-
vature as at the end of the proof of Proposition 3.1. �

Remark 3.4. As mentioned earlier, the metric constructions in the proofs
of Proposition 3.2 and Corollary 3.3 go through in the class of Alexandrov
surfaces. Thus, these two results still hold for Alexandrov surfaces. In par-
ticular, the optimal systolic area σH(g) for nonpositive curvature agrees with
the infimum of the systolic area over all genus g surfaces with nonpositive
curvature in the sense of Alexandrov, or equivalently CAT(0) surfaces.
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The next result on conformal compactness (Proposition 3.6) is due to
Gromov [14, §5]. We present the proof since the original arguments are
somewhat scattered. We first state a result used in the proof.

Theorem 3.5 (The collar theorem). On a closed hyperbolic surface M , a
simple closed geodesic γ of hyperbolic length ℓ admits a tubular neighborhood

C = {x ∈ M | dhyp(x, γ) < w}

of width

w = arcsinh

(

1

sinh( ℓ2)

)

(3.1)

diffeomorphic to an annulus.

A proof can be found in [10, Theorem 4.1.1].

Proposition 3.6. Let M be a closed surface of genus g ≥ 2, and let K > 0.
The space of conformal classes of Riemannian metrics (possibly with conical
singularities) on M with systolic area at most K is a compact set in the
conformal moduli space Mg.

Proof. The capacity of an annulus C endowed with a Riemannian metric
possibly with conical singularities is a conformal invariant defined as

Cap(C) = inf
F

∫

C

|dF |2 dA

where F is a smooth function on C equal to 0 on one boundary component
of C and to 1 on the other. The capacity of an annulus C ⊆ M around a
noncontractible simple closed curve of M is related to the systolic area of M
by the inequality

Cap(C) ≥
1

σ(M)
; (3.2)

see [14, §5] and [15, §2.D.6] for further detail.
Let γ be a systolic loop of length ℓ for the hyperbolic metric conformally

equivalent to the metric M . By Buser–Sarnak [11, (3.4)], the capacity of
the collar provided by Theorem 3.5 is given by

Cap(C) =
ℓ

π − 2θ0

where

θ0 = arcsin

Ç
1

cosh(w)

å

with w as in (3.1). Therefore, the capacity of the annulus C tends to zero
with the (hyperbolic) length of γ.

Since the capacity is a conformal invariant, we deduce from (3.2) and
the assumption on the systolic area of M , that the systole ℓ of the hyper-
bolic metric conformally equivalent to M is bounded away from zero. By
Mumford [26], this implies that the conformal hyperbolic metric, and so the
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conformal class of M , varies through a compact set in the conformal moduli
space Mg. �

As a consequence of the previous result, we obtain that the systolic area
function is proper on a suitable moduli space, in the following sense.

Proposition 3.7. Let N be an arbitrary natural number. The space of
piecewise flat nonpositively curved metrics with at most N conical singular-
ities on a closed surface M of genus g ≥ 2 of systole normalized to 1 and
area bounded above is compact.

Proof. By Proposition 3.6, the conformal classes of the metrics considered
in Proposition 3.7 lie in a compact set K ⊆ Mg.

By Troyanov [37, §5], each conformal class of M carries a piecewise flat
conformal metric with at most N prescribed conical singularities pi of given
total angles θi, provided that the Gauss–Bonnet relation

N
∑

i=1

(θi − 2π) = 4π(g − 1). (3.3)

(see [37, §3]) is satisfied. This metric is unique upon normalization to unit
systole. Furthermore, the dependence on parameters is continuous (see
also [39]).

As the metric is nonpositively curved, the angles θi are at least 2π and
so lie in the interval [2π, (4g − 2)π]. Since the Gauss–Bonnet relation (3.3)
is closed, the N -tuple (θ1, · · · , θN ) ranges through a compact set L ⊆ R

N .
Thus, the space of piecewise flat nonpositively curved metrics with at mostN
conical singularities on a closed genus g surface of systole normalized to 1 and
area bounded above is homeomorphic to a compact subset ofK×MN×L. �

4. Systolic bands

The goal of this section is to present some geometric properties related
to the notion of systolic bands, based of the flat strip theorem and Greene’s
results [13].

The following result is immediate from the flat strip theorem; see Bridson–
Haefliger [7, §II.2.13].

Lemma 4.1. Let M be a closed nonpositively curved surface with finitely
many conical singularities. Then every pair of homotopic simple closed
geodesics bounds a flat annulus in M .

Definition 4.2. A curve passing through a singular p ∈ M splits the total
angle θp > 2π into two rotation angles Rp and Lp with Rp + Lp = θp.

The local condition defining a geodesic encountering a singular point re-
quires that the rotation angles satisfy Rp ≥ π and Lp ≥ π.
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Definition 4.3. LetM be a closed nonpositively curved surface with finitely
many conical singularities. A systolic homotopy class of M is a free homo-
topy class of loops containing a systolic loop. Every systolic homotopy
class C of M gives rise to a closed systolic band in M defined as the union
of the systolic loops in C.

By Lemma 4.1, there are two possibilities for a systolic band.

Definition 4.4. A systolic band is formed of

(1) either an isolated systolic loop when there is only one systolic loop
in the corresponding systolic homotopy class; or

(2) a flat open annulus bounded by two limit systolic loops (which are
not necessarily disjoint) and foliated by systolic loops.2

In case (2), we refer to the systolic band as a fat systolic band.

Observe that a closed fat systolic band is not always homeomorphic to a
closed annulus as its two limit systolic loops are not necessarily disjoint.

We will need the following result of Greene [13].

Theorem 4.5 (Greene). Let M be a closed surface of genus g ≥ 2. Then
the number of pairwise nonhomotopic simple closed curves on M meeting
each other at most once is bounded by

Q(g) ≤ 29 g2 log g. (4.1)

The multiplicative constant 29 does not appear in [13]. However, go-
ing through the argument of [13], we obtain the bound 8x log2 x for Q(g),
where x = 8(g − 1)(2g − 1), which leads to the multiplicative constant 29

in (4.1).

Now, we are ready to prove the following proposition.

Proposition 4.6. Let M be a closed nonpositively curved surface of genus g ≥ 2
with finitely many conical singularities. Then

(1) Each pair of intersecting systolic loops of M meet exactly at one or
two points, or along an arc;

(2) When two systolic loops meet at two points exactly, this pair of points
decomposes each of the two systolic loops into geodesic arcs of the
same length.

Proof. To show (1) and (2), let α and β be two systolic loops that meet in
a single connected component, then they meet either in one point or along
an arc.

Suppose now that their intersection α ∩ β has at least two connected
components. Then there exist two subarcs β1 ⊆ β and β2 ⊆ β (in the
complement of α∩β) with disjoint interior meeting α only at their endpoints.

2The case of the torus is exceptional and was already excluded from the outset.
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The endpoints of the arc βi decompose α into two arcs denoted α′
i and α′′

i .
Observe that none of the four loops α′

1 ∪ β1, α
′′
1 ∪ β1, α

′
2 ∪ β2 and α′′

2 ∪ β2 is
contractible, otherwise two distinct geodesic arcs with the same endpoints
would be homotopic, which is impossible on a nonpositively curved surface.
Thus, each of these four loops is of length at least sys(M). The sum of their
lengths is at least 4 sys(M) and at most twice the total length of α and β:

4 sys(M) ≤ |α′
1|+ |α′′

1 |+ |α′
2|+ |α′′

2 |+ 2|β1|+ 2|β2| ≤ 2|α| + 2|β|. (4.2)

Hence both inequalities in (4.2) are equalities and the same holds for the four
inequalities involved in the sum. It follows that each of the arcs α′

i, α
′′
i and βi

is of length 1
2sys(M). Therefore, the only intersection points between α

and β are the two endpoints p and q which are necessarily antipodal points
of both of these loops. �

Proposition 4.7. Let M be a closed nonpositively curved surface of genus g ≥ 2
with finitely many conical singularities. Then the number Q̄(g) of systolic
homotopy classes is at most

Q̄(g) ≤ 32(g − 1)2 +Q(g) ≤ 210 g2 log g.

Proof. Let us estimate first the number of homotopy classes of systolic loops
meeting at exactly two points. Let α, β be two such loops. The case of
equality in inequality (4.2) implies that the systolic loops α and β meeting
at points p and q decompose into four distinct length-minimizing arcs of
length 1

2sys(M) joining p and q.

Let a and b be two length-minimizing arcs of length 1
2sys(M) joining p

and q. As M is nonpositively curved, the two geodesic arcs a and b are
nonhomotopic and form a systolic loop. By first variation, the angle at p
between the arcs a and b is at least π. It follows that p is a conical singularity
of total angle θp ≥ 4π and similarly for q.

The lower bound on the angles between the length-minimizing arcs join-
ing p to q imply that there exist at most ⌊θp/π⌋ such length-minimizing arcs.
This shows that there are at most

∑

θp≥4π

Ç
⌊θp/π⌋

2

å
≤

1

2π2

∑

θ≥4π

θ2p ≤
1

2π2

Ñ
∑

θ≥4π

θp

é2

(4.3)

systolic loops α ⊆ M meeting another systolic loop β at exactly two points.
the Gauss–Bonnet formula (3.3) implies that whenever θp ≥ 4π, we have θp ≤
2(θp − 2π). Since θi > 2π, it follows that

∑

θp≥4π

θp ≤ 2
∑

θp≥4π

(θp − 2π) ≤ 2
k
∑

i=1

(θi − 2π) = 8π(g − 1).

We derive from (4.3) that the number of systolic loops intersecting another
systolic loop at exactly two points is bounded by

1

2π2
[8π(g − 1)]2 = 32(g − 1)2
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and so is at most quadratic.
It remains to estimate the number of homotopy classes of systolic loops

that do not meet any other loop in more than one point. We choose repre-
sentative loops from these remaining classes, and deform them so that each
pair of loops meet at most at a single point. By Theorem 4.5, the num-
ber of pairwise nonhomotopic loops intersecting each other at most once is
bounded by Q(g) ≤ 29 g2 log g. �

Remark 4.8. Theorem 4 in [13] also provides an upper bound on the num-
ber of pairwise nonhomotopic loops intersecting at most twice. Directly
applying this result would yield an O

(

g5 log g
)

upper bound on the number
of systolic homotopy classes in M . We obtained a better almost quadratic
bound by analyzing the special structure of systolic loops intersecting twice,
combined with the almost quadratic bound of Theorem 4.5 on the number
of pairwise nonhomotopic loops meeting at most once. See Przytycki [30]
and Aougab-Biringer-Gaster [2] for earlier polynomial bounds, and Juvan-
Malnič-Mohar [20] or Malestein-Rivin-Theran [25] for even earlier exponen-
tial ones. Greene’s almost quadratic upper bound O

(

g2 log g
)

for pairwise
nonhomotopic loops intersecting at most once can be improved in the hy-

perbolic case to a subquadratic one O
(

g2

log g

)

due to Parlier [29]. A lower

bound of type O
(

g
4

3
−ǫ
)

is due to Schmutz-Schaller [36].

Example 4.9. On smooth surfaces curves can be shortened by smoothing
them out by first variation, implying that systolic loops meet each other
at most once. However, on a singular surface they may intersect twice,
even in nonpositive curvature. For example, consider the standard sphere
along with four meridians joining the two poles. Replace each of the four
lune-shaped spherical regions bounded by the meridians by a flat cylinder of
circumference π and altitude at least π

4 , where the bottom of each cylinder is
glued in isometrically along the boundary of each of the lunes. The resulting
surface X is a flat four-holed sphere with two conical singularities (at former
poles) of total angle 4π, which can be turned into a nonpositively curved
piecewise flat genus 3 surface M = X ∪∂X X by gluing another copy to
it. The surface M obtained in this way has pairs of systolic loops meeting
transversely twice.

5. Systolic decomposition

In this section, we describe the systolic decomposition of a closed non-
positively curved piecewise flat surface M of genus g. By the curvature
condition, each total angle θi at a conical singularity is greater than 2π.

Definition 5.1. A conical singularity p ∈ M is said to be large if the angle
at p is at least 3π, and small otherwise.
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Lemma 5.2. Let M be a closed nonpositively curved piecewise flat surface.
There are at most 4(g − 1) large conical singularities on M , each of total
angle at most 2π(2g − 1).

Proof. This is immediate from the Gauss–Bonnet formula (3.3) since large
conical singularities satisfy θi−2π ≥ π and small conical singularities satisfy
θi − 2π > 0 as M is nonpositively curved. �

We will need a few more definitions.

Definition 5.3. A conical singularity p ∈ M is special if every point in a
neighborhood of p lies in a (fat) systolic band. In more detail, a special
singularity lies on the boundary of several closed fat systolic bands in such
a way that the union of these bands contains an open neighborhood of the
singularity.

Definition 5.4. The systolic decomposition of M is a partition

M = (⊔iSi) ⊔ (⊔jDj)

of M into systolic domains Si and nonsystolic domains Dj where

(1) each systolic domain Si is a connected component of the union of
the systolic bands of M (see Definition 4.3);

(2) each nonsystolic domain Dj is a connected component of the com-
plementary set in M of the systolic bands of M .

The intersection pattern of the systolic bands of M described in Propo-
sition 4.6.(1) shows that every systolic and nonsystolic domain has a finite
geodesic polygonal structure described as follows.

Definition 5.5. The vertices of the polygonal structure are of two types:

(1) the intersection points between pairs of either isolated or limit sys-
tolic loops when they meet at one or two points (see Definition 4.4);

(2) if systolic loops meet along a segment I ⊆ M (see Proposition 4.6.(1))
then the endpoints of I (which are also conical singularities) are also
taken to be vertices.

The edges of a systolic or nonsystolic domain D are the connected compo-
nents of ∂D minus the vertices of ∂D.

Remark 5.6. The vertices of a systolic or nonsystolic domain D are not
necessarily located at conical singularities and conical singularities may lie
in the interior of the edges of D.

We now describe the structure of the systolic decomposition of M . Recall
that Q̄ is the maximal number of systolic homotopy classes; see Proposition
4.7.

Proposition 5.7. Let M be a piecewise flat nonpositively curved surface of
genus g ≥ 2. Let N = 4 Q̄(g)2 ≤ 222 g4 log2(g). Then

(1) the corners of every nonsystolic domain at nonsingular points are
convex, i.e., their angles are at most π.
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(2) the surface has at most N special conical singularities;
(3) the surface decomposes into at most N nonsystolic domains;
(4) the surface has a total of at most N edges.

Proof. Let D be a nonsystolic domain of M . By definition (see Defini-
tion 5.5), the corners of D and the special conical singularities3 of M corre-
spond to intersections either

(1) between two systolic bands, giving rise to at most eight corners; or
(2) between two homotopic limit systolic loops meeting at one or two

points or along an arc, giving rise to at most four corners.

Since there are at most Q̄(g) ≤ 210 g2 log g systolic bands by Proposition 4.7,
this yields at most

N = 8

Ç
Q̄(g)

2

å
+ 4 Q̄(g) = 4 Q̄(g)2 ≤ 222 g4 log2(g)

corners and special conical singularities. In particular, the surface M de-
composes into at most N nonsystolic domains with a total number of at
most N edges. �

6. The kite excision trick

In this section, we describe the kite excision trick, a key tool in the proof
of Theorem 1.6. Consider a nonpositively curved piecewise flat surface M .
Let p, q ∈ M be two conical singularities connected by a geodesic arc [p, q]
with no conical singularity lying in the interior (p, q). Denote by θp and θq
the total angles at p and q.

Definition 6.1 (Kite). Let r ∈ M (not on [p, q]) be a point such that the
triangle pqr is flat. Conside the reflection pqr′ of triangle pqr with respect
to [p, q]. Define the kite K = prqr′ as the union of the two symmetric
triangles; see Figure 1. The two opposite vertices p and q of K are referred
to as the main vertices of the kite. The width w of K is the length of the
diagonal [r, r′] ⊆ K.

Definition 6.2 (Admissible kite). The kite K is admissible if all its angles
are less than π and its angles at the main vertices p and q are related to the
angle excesses of the conical singularities p and q as follows:

∡rpr′ ≤ min{θp − 2π, π}

∡rqr′ ≤ min{θq − 2π, π}.

Definition 6.3 (Exact and diamond kites). When p is a small conical singu-
larity, an admissible kite K is exact at p if the following equality is satisfied:

∡rpr′ = θp − 2π < π.

K is called a diamond kite if |pr| = |qr|.

3Though not required for our argument, note that the special conical singularities of M
can be thought of as degenerate nonsystolic domains.
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p q

K

w

r

r′

Figure 1. The flat kite K of width w

Remark 6.4. By construction, every admissible kite K is convex.

Definition 6.5 (Excised surface Mw). Let Kw ⊆ M be an admissible kite
of width w = |rr′|. We perform a cut-and-paste procedure on M as follows.
We excise the kite Kw ⊆ M and introduce identifications on the boundary
of M \ K by setting [p, r] ∼ [p, r′] and [q, r] ∼ [q, r′]. The result of the
surgery is a piecewise flat surface

Mw = (M \Kw)/∼ (6.1)

of genus g with conical singularities.

Note that area(Mw) < area(M).

Definition 6.6. The quotient map

πw : M → Mw (6.2)

is obtained by collapsing each segment of Kw parallel to the diagonal [r, r′]
to a point.

The map πw is a homotopy equivalence.

Proposition 6.7. If Kw is an admissible kite then the excised surface Mw

is nonpositively curved with at most one more conical singularity than M .
Furthermore, if Kw is exact at one of its main vertices, then the surface Mw

has at most as many conical singularities as M .

Proof. The first statement follows by analyzing the total angles of the points
corresponding to the vertices of Kw and showing that they are at least 2π.
More precisely, the total angles at the points p and q in the excised sur-
face Mw are θp − ∡rpr′ and θq − ∡rqr′, both of which are at least 2π since
the kite is admissible. Similarly, the total angle at the point r = r′ ∈ Mw

is 2π + ∡rpr′ + ∡rqr′.
For the second statement, even if the point r (identified with r′) creates a

new conical singularity, the point p of total angle 2π is no longer a singularity
in the new surface Mw. �
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Proposition 6.8. Let p, q ∈ M . Consider an admissible kite Kw with main
diagonal [p, q] which is either a diamond or an exact kite at p. Then the
excised surface Mw converges to M , both for the Gromov–Hausdorff distance
and the Lipschitz distance, as the width w of Kw tends to zero.

Proof. Fix an admissible diamond KD = pr0qr
′
0 with main diagonal [p, q].

Consider a smaller admissible diamond Kw = prqr′ of width w, and build
the excised surface Mw = (M \Kw)/∼ as in (6.1). Let s be the midpoint
of [p, q], so that r ∈ (r0, s). The diamond is the union of two triangles, pr0r
and qr0r. We will need a map φw defined as follows.

Definition 6.9. Consider the linear map φw : pr0r → pr0s (respectively,
φw : qr0r → qr0s) fixing [p, r0] and mapping the triangle pr0r (respec-
tively, qr0r) to the right-angle triangle pr0s (respectively, qr0s). We extend
the linear map to a continuous map

φw : Mw → M (6.3)

by the identity map on the complement in Mw of KD \Kw.

The map φw is clearly (1+ǫ)-bilipschitz (i.e., the bilipschitz constant tends
to 1 as w tends to zero). It follows that the quadrilateral pr0qr is (1 + ǫ)-
bilipschitz with the triangle pr0q. By symmetry, the same holds with the
quadrilateral pr′0qr

′ and the triangle pr′0q. Thus the map φw is (1 + ǫ)-
bilipschitz. The surfaces are therefore also Gromov–Hausdorff close.

Now consider the case of a kite KE = pr0qr
′
0 exact at p. Consider a

point p∗ close to p such that p∗ is on a geodesic extension p∗q of [p, q] so

that the rotation angle of p∗q at p is equal to
θp
2 ≥ π on either side of the

segment p∗q. Since the kite KE is exact at p, we have p ∈ [p∗, r0]. Consider
the segment [p∗, r0] containing p. Fix a circular arc p̄∗r0 ⊆ M \KE bounding
a flat region R together with the segment [p∗, r0] containing p. Take a
smaller kite Kw = prqr′ ⊆ KE of width w and exact at p, where r ∈ (p, r0).
Let pr ∈ [p∗, p] with |ppr| = |pr|. Note that the rotation angle of R at p is
precisely π by the exactness hypothesis. The rotation angle is also π at r
and pr by construction. There exists a (1 + ǫ)-bilipschitz homeomorphism

hr : R → R (6.4)

which fixes the circular arc p̄∗r0 pointwise and linearly maps [r0, r], [r, p],
and [p, p∗] to [r0, p], [p, pr], and [pr, p∗], respectively, where ǫ tends to 0 as r
approaches p.

Definition 6.10. We combine the map hr of (6.4) with the (1 + ǫ)-bilipschitz
linear map from rr0q to pr0q fixing [r0, q], and perform a symmetric con-
struction on the other half of the kite, to produce a map

φw : Mw → M where Mw = (M \KE)/∼ . (6.5)

The resulting map φw : Mw → M is (1+ ε)-bilipschitz, as in the diamond
case. �
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7. Systole comparison

Let M be a nonpositively curved piecewise flat surface of genus g. Con-
sider a nonsystolic domain D ⊆ M . Let p and q be conical singularities
in the closure D of D, joined by a geodesic arc [p, q] ⊆ D. Note that the
arc may start and end at the same point p = q in the cases (D1) and (D′′

1 )
below. We can assume that no conical singularity lies in the interior (p, q),
by picking a different pair of conical singularities along the arc, if necessary.
Recall that the set D ⊆ M is open.

We will now choose an admissible kite Kw ⊆ M of width w constructed
by symmetry with respect to [p, q] (see Definition 6.1) in one of the following
ways; see Figures 2 through 5.

(D1) if [p, q] ⊆ D, take a diamond Kw of sufficiently small width so that
it lies in D;

(D′
1) if [p, q) ⊆ D where q ∈ ∂D and the angle of D at the point q is

greater than π, take a diamond Kw of sufficiently small width so
that Kw \ {q} lies in D;

(D′′
1) if (p, q) ⊆ D with p, q ∈ ∂D and the angles of D at p and q are

greater than π, take a diamond Kw of sufficiently small width so
that Kw \ {p, q} lies in D;

(E1) if [p, q] ⊆ D and p is a small conical singularity, take Kw exact at p
of sufficiently small width so that it lies in D;

(E′
1) if [p, q) ⊆ D with p a small conical singularity and q ∈ ∂D, and the

angle of D at q is greater than π, take Kw exact at p of sufficiently
small width so that Kw \ {q} lies in D;

(E2) if [p, q] is contained in the interior of an edge of ∂D and p is a small
conical singularity, take Kw exact at p of sufficiently small width so
that the part of every systolic loop passing through Kw is parallel
to [p, q].4

Consider the surface Mw = (M \Kw)/∼ where the kite Kw is admissible
and satisfies one of the previous hypotheses. Only the properties for kites
satisfying (E1), (E

′
1), and (E2) are required for the proof of our main result,

Theorem 8.1. In the proofs of Proposition 7.1 and Proposition 7.3, the
width w of Kw will need to be be chosen even smaller to satisfy further
restrictions.

Since the quotient map πw : M → Mw of (6.2) is a nonexpanding homo-
topy equivalence, we have sys(Mw) ≤ sys(M). In the following, we will show
that the reverse inequality holds in the cases (D1), (E1), (D

′
1), (E

′
1), (D

′′
1 )

and (E2) as well.

7.1. Analysis of cases (D1) and (E1).

Proposition 7.1. Consider an admissible kite Kw ⊆ D satisfying (D1)
or (E1), so that Kw is either an admissible diamond or an exact kite at p.

4Recall that, by definition of a nonsystolic domain D, no systolic loop meets the interior
of an edge of ∂D unless it contains this edge, which ensures the existence of such kites.
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p

q

D

Figure 2. (D1), (E1)

p

q

D

Figure 3. (D′
1), (E

′
1)

Dp

q

Figure 4. (D′′
1 )

p q

D

Figure 5. (E2)

If the width w of Kw is sufficiently small, then

sys(Mw) = sys(M).

Proof. We first consider a diamond kite KD lying in a nonsystolic do-
main D ⊆ M as in the proposition. Consider the function x 7→ sys(M,x)
on M , where sys(M,x) represents the least length of a shortest noncon-
tractible loop based at the point x ∈ M . Since KD is a compact subset of a
nonsystolic domain, there exists an ε > 0 such that

∀x ∈ KD, sys(M,x) > sys(M) + ε. (7.1)

Consider a subkite Kw ⊆ KD. We construct the map φw : Mw → M using
the pair Kw ⊆ KD as in Definition 6.9. As w tends to 0, the bilipschitz
constant of φw tends to 1. Since the deformation Mw of M = M0 is contin-
uous with respect to the bilipschitz distance, inequality (7.1) implies that
for w0 sufficiently small, each noncontractible loop γ ⊆ Mw0

based at a point
of φ−1

w0
(KD) satisfies

|γ| ≥ sys(M). (7.2)

Meanwhile if a loop γ ⊆ Mw0
is disjoint from φ−1

w0
(KD) then

|γ| = |φ−1
w (γ)| ≥ sys(M) (7.3)

since φw0
is an isometry outside of KD. The bounds (7.2) and(7.3) prove

the proposition in the case of a diamond kite.
For an exact kite KE , we follow a similar procedure with φw of Defini-

tion 6.10. �

7.2. Analysis of cases (D′
1), (D

′′
1), and (E′

1).

Proposition 7.2. Consider an admissible kite Kw with main diagonal [p, q]
with Kw \ {p, q} ⊆ D in one of the following three cases:
(D′

1) Kw is an admissible diamond with p ∈ D such that the internal
angle of D at q ∈ ∂D is greater than π;
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(D′′
1) Kw is an admissible diamond, p, q ∈ ∂D, and the internal angles

of D at p, q ∈ ∂D are greater than π;
(E′

1) Kw is an exact kite at p ∈ D such that the internal angle of D
at q ∈ ∂D is greater than π.

If the width w of Kw is sufficiently small, then

sys(Mw) = sys(M).

Proof. We will focus on the case (E′
1) required for the proof of our main

theorem. The proof in the other cases is similar.
The set C of conjugacy classes in π1(M) of systolic loops of M = M0 is

finite. Denote by λ(Mw, C) the least length of a loop of Mw from a nontrivial
conjugacy class not in C. Clearly, λ(M, C) > sys(M). By continuity, we still
have λ(Mw, C) > sys(M) ≥ sys(Mw) for sufficiently small w. Therefore, a
systolic loop γw ⊆ Mw necessarily represents a class C ∈ C.

Consider a systolic loop γ ⊆ M representing the class C. Recall that γ
does not meet D and observe that |πw(γ)| = |γ| where πw is the homotopy
equivalence (6.2).

Suppose γ does not pass through the singularity q ∈ ∂D. Then the loop γ
is disjoint from Kw. Then the projection πw(γ) remains a closed geodesic
in Mw, and |πw(γ)| = |γ|. Thus the systolic loop γw and the loop πw(γ)
are freely homotopic closed geodesics in Mw. By the flat strip theorem, we
obtain |γw| = |γ| and therefore sys(Mw) = sys(M).

Now assume q ∈ γ. Since the angle of D at q is greater than π, the
rotation angle Lq (see Definition 4.2) of γ ⊆ M at q from the side of D is
also greater than π. Note that the angle ∡rqr′ at q of the excised exact
kite Kw tends to zero. Choosing

∡rqr′ < Lq − π,

we ensure that the rotation angle at q is still greater than π for the projected
loop πw(γ) ⊆ Mw. By the local characterisation of geodesics, the projected
loop πw(γ) ⊆ Mw is still a closed geodesic. Since |πw(γ)| = |γ|, the loops γw
and πw(γ) are freely homotopic closed geodesics in Mw. By the flat strip
theorem, we conclude that |γw| = |γ| and hence sys(Mw) = sys(M), as re-
quired. �

7.3. Analysis of case (E2).

Proposition 7.3. Consider an admissible kite Kw with main diagonal [p, q]
satisfying (E2). Namely, [p, q] is contained in the interior of an edge of ∂D
and Kw is an exact kite at p so that the part of every systolic loop passing
through Kw is parallel to [p, q]. If the width w of Kw is sufficiently small,
then

sys(Mw) = sys(M).

Proof. As in the proof of Proposition 7.2, a systolic loop γw ⊆ Mw neces-
sarily represents a class C in the set C of conjugacy classes of systolic loops
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of M . Consider the segment Iw ⊆ Mw defined by

Iw = πw(Kw) = πw([p, q]),

where πw : M → Mw is the projection (6.2). Let cw = γw \ Iw in Mw.
Consider a systolic loop γ ⊆ M representing the class C.

If γ is disjoint from the segment [p, q] (and hence from Kw if w is suffi-
ciently small) then its projection πw(γ) remains a closed geodesic in Mw of
the same length as γ. By the flat strip theorem, we conclude that |γw| = |γ|
and sys(Mw) = sys(M).

Thus, we can assume that the class C contains a single (isolated) systolic
loop γ ⊆ M , which meets the segment [p, q] and therefore must contain [p, q]
by condition (E2). Now Proposition 7.3 will result from the following lemma.

Lemma 7.4. Let γw ⊆ Mw be a systolic loop. Let Iw = πw(Kw) ⊆ Mw be
the segment given by the image of the kite Kw. Let cw = γw \ Iw. Then
cw ⊆ Mw is a connected open segment.

Proof. Recall that the map φw : Mw → M of (6.5) is (1 + ǫ)-bilipschitz.
Since sys(Mw) ≤ sys(M), the loop φw(γw) ⊆ M homotopic to γ is of length
at most (1+ǫ)|γ|. Since the systolic loop γ ⊆ M is isolated, the loop φw(γw)
necessarily converges to γ.

Since γ is a simple loop containing the main diagonal of Kw, the part
of γ lying outside Kw ⊆ M necessarily consists of a single arc for w small
enough. It follows that there is a single subarc of φw(γw) lying outside some
small open neighborhood U of Kw such that Kw is a deformation retract
of U . The image of this subarc by φ−1

w lies in an open subarc αw of γw lying
in Mw \ Iw with endpoints in Iw. Since M is nonpositively curved and Iw is
convex, all the other geodesic subarcs of γw with endpoints in Iw, which lie
in a small neighborhood of Iw, in fact lie in Iw. Thus, αw is the only subarc
of γw lying outside Iw, that is, cw = αw. �

We continue with the proof of Proposition 7.3. Let σw ⊆ M be the closure
of π−1

w (cw) in M .
Suppose one of the endpoints of σw is one of the main vertices of the kite,

say p. Let y be the other endpoint. The segment [p, y] ⊆ Kw projects to the
path of Iw ⊆ Mw connecting πw(p) and πw(y). Then the loop γ̄w = σw ∪
[p, y] ⊆ M in the homotopy class C satisfies |γ̄w| ≤ |γw|. Thus, sys(M) ≤
sys(Mw), providing the required bound. Therefore, we can assume that the
endpoints of σw are disjoint from {p, q} ⊆ M .

Suppose one of the endpoints of the path σw in ∂Kw ⊆ M is a point
other than r and r′. In such case, the minimizing loop γw ⊆ Mw meets
the interval Iw transversely at a regular (i.e., non-singular) point of Mw. It
follows that the endpoints of σw project to the same point on the closed
geodesic γ ⊆ M . Hence the nearest-point projection of σw to γ closes up.
By the assumption of nonpositive curvature, the projection map is distance-
decreasing. Therefore |γw| ≥ |σw| ≥ |γ| = sys(M) in this case, as well.
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Thus we can assume that the endpoints of σw are the points r, r′ ∈ M .
In this case also the nearest-point projection of σw to the loop γ ⊆ M closes
up. Hence |γw| ≥ |σw| ≥ |γ| = sys(M), proving the proposition. �

8. Exploiting the kite excision trick

We proceed to the proof of the existence of nonpositively curved piecewise
flat locally extremal metrics on every genus g surface.

Recall that a local infimum of the systolic area on the space Hg of non-
positively curved Riemannian metrics (possibly with conical singularities)
on a genus g surface is a real number µ > 0 such that there exists an open
set U ⊆ Hg satisfying a strict inequality

µ = inf
M∈U

σ(M) < inf
M∈∂U

σ(M), (8.1)

as in Definition 1.4. Recall that Q̄(g) is the maximal number of systolic
homotopy classes; see Proposition 4.7.

Theorem 8.1. Let U be an open set in the space Hg of nonpositively curved
genus g surfaces (possibly with conical singularities) defining a local infimum.
Then there exists a nonpositively curved piecewise flat metric G0 in U with
at most

N0 = 20 Q̄(g)2 ≤ 225g4 log2(g)

conical singularities whose systolic area is the infimum of the systolic area
of any nonpositively curved Riemannian metric G ∈ U with conical singu-
larities, i.e., σ(G0) ≤ σ(G).

Proof. Let G ∈ U be a nonpositively curved Riemannian metric with conical
singularities such that

σ(G) < inf
∂U

σ. (8.2)

By metric approximation (see Proposition 3.2) we can assume that G is a
nonpositively curved piecewise flat metric with conical singularities. Denote
by N the number of conical singularities of G. By compactness (see Propo-
sition 3.7) and the strict inequality (8.2), there exists a metric G1 in U
with minimal systolic area among all nonpositively curved piecewise flat
metrics in U with at most N conical singularities. By Proposition 5.7 and
Lemma 5.2, the metric G1 (as any nonpositively curved piecewise flat metric
on M) has at most

N = 4 Q̄(g)2 ≤ 222g4 log2(g) (8.3)

special conical singularities and large conical singularities.

It remains to find a similar upper bound on the number of small non-
special conical singularities for G1 by relying on its local extremality among
all nonpositively curved piecewise flat surfaces of U with at most N singu-
larities. From now on, the surface M will be endowed with the metric G1.
Recall that the (small) nonspecial conical singularities lie in (the closure of)
the nonsystolic domains of M .
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The next pair of lemmas exploiting the kite excision trick provide such
an upper bound.

Lemma 8.2. Let M be a local extremum of the systolic area relative to
an open set U ⊆ Hg among all nonpositively curved piecewise flat genus g
surfaces in U with at most N conical singularities as in (8.3). Then every
nonsystolic domain D ⊆ M contains at most one small conical singularity.

Proof. We argue by contradiction. Suppose p and q′ are two conical sin-
gularities in D with p small. Let [p, q′] be a length-minimizing arc in the
closure of D joining the two points. We consider the following two cases.

(1) If [p, q′] lies in the open domain D, we denote by q the first conical
singularity along (p, q′] from p.

(2) Otherwise, the arc [p, q′] meets ∂D, and the first point of intersection
of [p, q′] with ∂D from p is a point, denoted q, at which D is strictly
concave.

In the second case, the angle of D at q is greater than π, which shows that q
is a conical singularity.

In either case, we apply the kite excision trick to [p, q] with an exact
kiteKw at p, see Definition 6.1, of width w small enough to satisfy (E1) in the
first case (when q lies in D) and (E′

1) in the second case (when q lies in ∂D);
see Section 7. We also choose w small enough to ensure that the resulting
piecewise flat surface Mw lies in U ; see Proposition 6.8. By Proposition 6.7,
the surface Mw is nonpositively curved and has no more conical singularities
than M . By Proposition 7.1, the systole of Mw is equal to the systole
of M . As the area of Mw is less than the area of M , this contradicts the
local extremality of M among all nonpositively curved piecewise flat genus g
surfaces in U with at most N conical singularities. �

Lemma 8.3. Let M be a local extremum of the systolic area relative to
an open set U ⊆ Hg among all nonpositively curved piecewise flat genus g
surfaces in U with at most N conical singularities as in (8.3). Then the
interior of every edge E of a nonsystolic domain D of M contains at most
one small conical singularity.

Proof. We argue by contradiction. Let p be a small conical singularity in
the interior of the edge E . Let q be a conical singularity in the interior of E
adjacent to p. Note that the conical singularity q may be large. Apply the
kite excision trick to [p, q] with an exact kite Kw at p (see Definition 6.1)
of width w small enough to satisfy (E2) (see Section 7) and to ensure that
the resulting piecewise flat surface Mw lies in U ; see Proposition 6.8. We
obtain a contradiction by arguing as in the proof of Lemma 8.2 by applying
Proposition 7.3. �

Remark 8.4. Technically speaking, we show stronger results in the proofs
of the two previous lemmas. Namely, if a small conical singularity lies in
a nonsystolic domain of M then this domain contains no other conical sin-
gularity (small or large). Similarly, if a small conical singularity lies in the
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interior of an edge of M then the interior of this edge contains no other
conical singularity (small or large).

We conclude the proof of Theorem 8.1 as follows. Proposition 5.7 pro-
vides an upper bound on the total number of nonsystolic domains and edges
(and so vertices). Combined with Lemma 8.2 and Lemma 8.3, this shows
that the surface M has at most 3N small nonspecial conical singularities.
Along with our previous estimates on the number of special and large conical
singularities, this shows that the metric G1 has at most

N0 = 5N = 20 Q̄(g)2 ≤ 225g4 log2(g)

conical singularities. In particular, the open set U contains nonpositively
curved piecewise flat metrics on M with at most N0 conical singularities.

By compactness (see Proposition 3.7), and since the systolic area of G1 is
less than inf∂U σ, there exists a metric G0 in U with minimal systolic area
among all nonpositively curved piecewise flat metrics in U with at most N0

conical singularities. By definition, the metric G0 does not depend on G (nor
on G1) and satisfies

σ(G0) ≤ σ(G1) ≤ σ(G)

for every nonpositively curved Riemannian metric G with conical singulari-
ties in U . �

We immediately deduce the existence of locally extremal nonpositively
curved piecewise flat metrics on every genus g surface.

Corollary 8.5. Every local infimum of the systolic area on the space Hg of
nonpositively curved genus g surfaces (possibly with conical singularities) is
attained by a nonpositively curved piecewise flat metric.

9. Shape and singularities of nonsystolic domains

In this section, we provide a more precise description of nonsystolic do-
mains of a locally extremal nonpositively curved surfaceM of genus g, whose
existence was established in Corollary 8.5. We also show that the systolic
part of M is connected.

Lemma 9.1. Every nonsystolic domain D of a locally extremal surface M
contains at most one conical singularity.

Proof. We argue as in the proof of Lemma 8.2, relying now on the local
extremality of M . Assume by contradiction that there are two conical sin-
gularities p and q′ in D. If the length-minimizing arc [p, q′] joining p to q′

in the closure of D lies in D, we denote by q the first conical singularity
along (p, q′] from p. Otherwise, the arc [p, q′] meets ∂D and its first point
of intersection (from p) is a conical singularity, denoted q.

In either case, take an admissible diamond Kw with diagonal [p, q] of
width w small enough to satisfy (D1) in the former case and (D′

1) in the
latter case; see Section 7. Apply the kite excision trick to Kw. The resulting
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piecewise flat surfaceMw may have more conical singularities than M , but is
still nonpositively curved; see Proposition 6.7. Taking the width of Kw small
enough as in Proposition 6.8, we can further ensure that the surface Mw lies
in the open set U of Hg involved in the definition of a locally extremal
nonpositively curved metric on M ; see Definition 1.4. By Proposition 7.1,
the systole of Mw is greater or equal to the systole of M . As the area of Mw

is less than the area of M , this contradicts the local extremality of M among
all nonpositively curved piecewise flat genus g surfaces in U , establishing the
lemma. �

Lemma 9.2. A nonsystolic non-simply-connected domain D of a locally
extremal surface M is necessarily convex.

Proof. Assume that D is nonconvex. Then there is a conical singularity x ∈
∂D where the angle of D is greater than π. Consider a length-minimizing
noncontractible loop γ based at x in the closure of D, which contains an
arc [p, q] with p, q ∈ ∂D, whose interior (p, q) lies in D. The angles of D at
the points p and q are greater than π, which implies that these two points
are conical singularities. Note that the points p and q may agree. We apply
the kite excision trick to an admissible diamond with diagonal [p, q] of width
small enough to satisfy (D′

1), or (D′′
1 ) if p = q, and derive a contradiction

as in the proof of Lemma 9.1. This shows that such a domain D must be
convex. �

Proposition 9.3. Every nonsystolic domain D of a locally extremal sur-
face M is homeomorphic to a disk.

Proof. Arguing by contradiction, we suppose that D ⊆ M is nonsimply
connected. By Lemma 9.2, D must be convex. Assume that D contains
a conical singularity p. By Lemma 9.1, this is the only conical singularity
in D. Since D is convex (and nonsimply connected), there is a length-
minimizing noncontractible loop γ based at p lying in D. We apply the kite
excision trick to an admissible diamond with diagonal the geodesic arc γ,
starting and ending at p, of width small enough to satisfy (D1), and derive
a contradiction as in the proof of Lemma 9.1. This shows that D has no
conical singularity.

By the Gauss–Bonnet formula for surfaces with boundary, the Euler char-
acteristic of the (orientable) flat surface D ⊆ M with convex boundary is
nonnegative. This implies that D is a flat cylinder (by assumption, it is
not a disk). In this case, it also follows from the Gauss–Bonnet formula
that the cylinder D = S1 × I has geodesic boundary components. Since
the cylinder is nonsystolic, its boundary loops are systolic geodesics, and
any closed geodesic not parallel to the boundary must have length strictly
greater than sys(M). Therefore we can slightly shrink the height I of the
cylinder without affecting the systole of M , and respecting the condition of
nonpositive curvature on M . This contradicts the local extremality of the
surface. Hence, the domain D is simply connected and so is a disk. �
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As a consequence of Proposition 9.3, the systolic part of M , defined as
the union of its systolic loops, is obtained by removing finitely many open
disks from the surface. In particular, we obtain the following corollary.

Corollary 9.4. The systolic part of a locally extremal nonpositively curved
surface is path-connected.

References

[1] Aleksandrov, A. D.; Zalgaller, V. A. Intrinsic geometry of surfaces. Translations of
Mathematical Monographs, vol. 15, Amer. Math. Soc., 1967

[2] Aougab, T.; Biringer, I.; Gaster, J. Packing curves on surfaces with few intersections.
International Mathematics Research Notices (2017). See https://doi.org/10.1093/
imrn/rnx270
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Soc., Zürich, 2007.
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