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Anomaly Detection in a Production Line: an Online/Offline Statistical Learning Approach

In the realm of modern manufacturing, the pursuit of operational efficiency is paramount, with continuous flow production lines standing as a testament to streamlined processes. This article delves into the dynamic world of production line management, focusing on a method known as ConWIP (Constant Work in Process) and its pivotal role in maintaining a consistent flow of Production Orders (POs). At the heart of this methodology lies SmartWip (Smart Work in Process), a real-time simulation software developed by a company named WipSim (Work In Process Simulation). While this software offers a promising avenue for managing production lines efficiently, a critical challenge emerges -disparities between actual waiting times of the POs and their estimated waiting time calculated by SmartWip. These discrepancies, or time divergences, have led to the definition of anomalies. To address this, we have developed two approaches for anomaly detection: The offline approach, a descriptive/explanatory approach, and the online approach, a predictive approach. Both approaches were successfully applied to a real Database provided by WipSim, demonstrating their effectiveness in identifying and managing anomalies throughout the production line.

Introduction

In the landscape of manufacturing, the ConWIP method [START_REF] Framinan | The CONWIP Production Control System: Review and Research Issues[END_REF] [2] has emerged as a beacon of efficiency, orchestrating the continuous dance of POs through a meticulously designed production line. This method relies on the circulation of ConWIP tickets, authorizations that accompany each PO as it embarks on its journey from the beginning to the end of the production line, marking the completion of manufacturing. The orchestration of this intricate ballet is entrusted to SmartWip, a real-time simulation software [START_REF] Lugaresi | Real-Time Simulation in Manufacturing Systems: Challenges and Research Directions[END_REF] developed by WipSim, providing a digital vantage point for monitoring and managing the ebb and flow of POs.

However, beneath the surface of this seemingly seamless process lies a challenge that poses a significant threat to the efficiency of production lines: discrepancies between estimated and actual waiting times. Despite the advanced capabilities of SmartWip in conducting real-time simulations with discrete events, the estimations often deviate from the ground reality, creating a rift between the anticipated progress of POs and their actual journey through the production line. Such discrepancies, hereafter referred to as anomalies, introduce a layer of uncertainty that extends beyond the confines of the production floor. From the perspective of operational effectiveness, the impact is far-reaching, encompassing customer satisfaction [START_REF] Ellinger | Customer satisfaction and loyalty in supply chain: the role of communication[END_REF] and the overall efficiency of the production process.

Thus, our research aims to untangle the complexities surrounding the misalignment of estimated and actual waiting times of POs in continuous flow production lines. We introduce an innovative approach to anomaly detection in industrial production by leveraging real-time data from the SmartWip software. Unlike conventional methods that rely on manual inspection or historical datasets, our approach harnesses real-time estimations in a dynamic production environment. SmartWip continuously records these estimations, thereby facilitating the prompt identification of anomalies. This real-time strategy effectively addresses the limitations of static datasets, improving accuracy and adaptability in anomaly detection within the production line. Moreover, by integrating SmartWip's capabilities, our work strives to enhance the efficiency and precision of anomaly detection in industrial settings, making a valuable contribution to the field.

In tandem with this, our research introduces an innovative anomaly detection model that capitalizes on the synergistic power of three distinct anomaly detection classification models: Isolation Forest (IF), AutoEncoder (AE), and Support Vector Machine (SVM). The essence of our methodology revolves around aggregating scores generated by each classification model for individual observations in the training and testing datasets. This process of aggregation results in a comprehensive representation of anomaly likelihood, offering a thorough comprehension of intricate data patterns. Additionally, we introduce the Entropy of Shannon, a metric calculated from the combined scores of the three classification models, augmenting our model's discriminative capabilities. By emphasizing both the collaborative strength of diverse anomaly detection models and the nuanced insights provided by Entropy, our work significantly advances anomaly detection techniques in real-world applications.

In the following Sections, our paper delves into a comprehensive exploration of anomaly detection within industrial contexts, particularly emphasizing its applications in supply chain and production line domains. In Section 2, our paper offers a comprehensive overview of current research and methodologies in anomaly detection, underscoring their applications within industrial settings, particularly within the supply chain and production line domains. This introductory Section establishes the groundwork for the paper, shedding light on the latest advancements and challenges in the field. Section 3 details the manufacturing context using a ConWIP approach, outlining the continuous flow of POs from the waiting room to the cadence room. The misalignment between estimated and real waiting times becomes a focal point, affecting customer satisfaction and overall operational efficiency.

Section 4 establishes a mathematical definition of anomaly within the specific context of a production line. The focus is on formalizing what constitutes an anomaly in the flow of POs, providing a basis for subsequent anomaly detection techniques.

Section 5 introduces the aggregated anomaly detection model combining IF, AE and SVM for anomaly detection. The mathematical formalization serves as a crucial tool for both offline and online anomaly detection approaches.

In Section 6, we demonstrate our offline approach, specifically, a descriptive/explanatory methodology. This approach provides in-depth insights into PO behavior from the waiting room to the cadence room, forming a foundational understanding of anomalies in the entire production process.

In Section 7, we present our online approach, a dynamic/predictive technique that focuses on real-time anomaly detection by analyzing the most recent activities of workstations. This approach adds dynamism to the process and incrementally detects anomalies over time.

Section 8 outlines the validation process, intending to subject the models to expert assessment and evaluation. Four crucial categories are defined, and the evaluation involves distinguishing true and false anomalies, laying the groundwork for model optimization.

Section 9 explores the sensitivity of anomaly detection based on pre-defined thresholds of quantile percentages. By deliberately selecting diverse threshold combinations, the paper aims to comprehensively assess how these thresholds influence the accuracy of anomaly detection in the proposed scientific inquiry.

In the concluding Section 10, we provide a concise summary of the key findings and contributions of our paper. By synthesizing insights from the state of the art, the manufacturing context and issue, the mathematical definition of anomaly, and the innovative aggregated model, we offer a comprehensive understanding of anomaly detection within industrial supply chain and production line contexts. Furthermore, we illustrate the perspectives that arise from our research, highlighting potential avenues for future exploration and refinement in the field of anomaly detection. This reflective perspective contributes to the ongoing discourse on enhancing operational efficiency and anomaly mitigation in complex industrial environments.

The success of businesses in the global economy hinges on effective decision-making, especially in areas such as Supply Chain Management (SCM) and Production Lines (PL), where decision-making support is crucial. With the advent of industry 4.0, there is a growing emphasis on automated data analysis in industrial production lines. Employing intelligent methods to predict and prevent equipment failures, as well as optimizing maintenance operations, not only enhances operational efficiency but also contributes significantly to informed and strategic decision-making in these critical domains [START_REF] Achraya | Big Data, Knowledge co-creation and decision marking in fashion industry[END_REF] [6] [START_REF] Dolgui | Reconfigurable supply chain: the X-network[END_REF].

Anomaly detection and root cause analysis play crucial roles in facilitating decision-making in SCM and PL. Effective forecasting methods aid in balancing supply and demand for retail inventory planning, preventing understocking, and improving various aspects of the supply chain. Despite data overload challenges, these techniques help identify unexpected patterns, enhancing decision-making. Numerous studies leverage technologies such as Radio Frequency Identification (RFID) for abnormal event detection [8] [9]. Online learnability in Statistical Relational Learning (SRL) and improved outlier detection algorithms through clustering have also been explored [START_REF] Jandel | Online learnability of Statistical Relational Learning in anomaly detection[END_REF], while [START_REF] Zhao | Outlier Detection in Cold-chain Logistics Temperature Monitoring[END_REF] improved the Quick Outlier Detection (QOD) algorithm through clustering based on data streams and in application to the cold chain logistics. [START_REF] Kraus | A Data Warehouse Design for the Detection of Fraud in the Supply Chain by Using the BENFORD'S Law[END_REF] developed a data warehouse to identify fraudulent activities in the supply chain by utilizing Benford's law. To address anomalies, we can find a lot of proposal that suggests to use Long Short Term Memory (LSTM) networks to tackle the difficulties related to detecting anomalies that are dependent on time, because these networks have the capability to retain memories over long periods. This technique is widely recognized for its effectiveness in understanding the connections between present and past events, particularly in cases involving long-term dependencies. Although LSTM networks are mainly applied in predictive analytics, they have been explored in various domains. [START_REF] Malhota | Long Short Term Memory Networks for Anomaly Detection in Time Series[END_REF] proposed using stacked LSTM networks for anomaly detection in time series, which was then extended to a multi-sensor anomaly detection method based on a LSTM encoder-decoder scheme. However, challenges arise, including the assumption of a multivariate Gaussian distribution.

Beyond supply chains, anomaly detection and root cause analysis are vital in diverse fields such as intrusion and fraud detection [START_REF] Zhao | Anomaly detection using Long Short-Term Memory Networks and its applications in Supply Chain Management[END_REF] [15] [START_REF] Pourhabibi | Fraud detection: A systematic literature review of graph-based anomaly detection approaches[END_REF]. The literature is rich with methodologies utilizing neural networks, machine learning, and statistical approaches for novelty detection [START_REF] Markou | Novelty detection: A review-part 1: Statistical approaches[END_REF]. Detailed studies on techniques and applications in anomaly detection can be found in [18] [19]. Control charts in Statistical Process Control (SPC) are considered as anomaly detection techniques, akin to one-class classification methods [START_REF] Tran | The Efficiency of the 4-Out-of-5 Runs Rules Scheme for Monitoring the Ratio of Population Means of a Bivariate Normal Distribution[END_REF].

In broader scientific disciplines, anomaly detection garners attention for its role in data processing. Techniques operating on the premise that unusual behavior often occurs in lowerdimensional subspaces, such as lattice-based methods, show better performance [START_REF] Zhang | A Concept Lattice based Outlier Mining Method in Lowdimensional Subspaces[END_REF]. Ensembles are explored to address challenges, despite their training inefficiencies [START_REF] Wang | Research on An Ensemble Anomaly Detection Algorithm[END_REF]. Recent trends in anomaly detection lean towards leveraging machine learning and artificial intelligence techniques for enhanced performance. Unsupervised learning techniques like clustering and deep learning methods, including GAN (Generative Adversarial Networks) architectures, have shown promise [START_REF] Di Mattia | A Survey on GANs for Anomaly Detection[END_REF]. Despite the requirement for labeled data, these methods are extensively researched for ongoing performance enhancement.

In summary, the dynamic landscape of anomaly detection and root cause analysis encompasses diverse industries, with ongoing research and advancements reinforcing their sustained significance. Anomaly detection is becoming increasingly crucial in the industrial domain, particularly in the realms of supply chain and production lines.

Context And Issue

We are in a context of a production line in a manufacturing workshop. This production line represents a continuous flow of POs. The starting point for these POs is the waiting room of the line, and the endpoint (once the manufacturing is complete) is the cadence room (to indicate the cadence of the process). The manufacturing method or technique employed in the workshop is called ConWIP: Constant Work in Process. This method involves maintaining a constant quantity of work in progress continuously engaged in a production line. To achieve this, a constant number of production authorizations, also known as 'ConWIP tickets', is put into circulation. The control directive is straightforward: every PO must be accompanied by a ConWIP ticket to enter the production line. When all available authorizations have been engaged in the line, new POs must wait at the beginning of the line (in the waiting room). At the other end, when a PO exits the line (passes through the cadence room), the accompanying ConWIP ticket becomes available again. This then allows the entry of a new order into the production line. This movement of tickets is tracked by SmartWip, a software solution developed by WipSim for managing continuous flow production lines.

The production line is a continuous flow, and SmartWip is a real-time simulation software. Given the characteristics and capacity of a production line (the number of available production stations in the line, the number of operators, operator skills: versatile or specialized, station opening hours, etc.), SmartWip uses this information as input data to conduct real-time simulations with discrete events. These simulations help trace manufacturing orders. Thus, at a given time "t", thanks to these simulations, we know the current station of the PO (where the PO is located at time "t"). At this moment, we also know the previous manufacturing stations the PO has passed through (prior stations) and the REAL waiting time the PO spent at those stations. The mentioned real waiting time includes the actual waiting time of the PO in the workstation queue and the actual manufacturing time. We also know thanks to these simulations, at time "t", the manufacturing stations that the PO has not yet crossed but is supposed to pass through (subsequent stations) and the ESTIMATED waiting time (estimated waiting time of the PO in the workstation queue plus the estimated manufacturing time) corresponding to these stations. Therefore, SmartWip enables the management of a continuous flow production line by studying the progress of POs over time. This allows the operators to visualize and monitor, from their screen, the production process of POs: Are the POs running behind schedule? Is there an issue hindering their progress? Will the delivery deadline for the POs be met? So the use of software such as WipSim is pivotal for operational efficiency. However, a critical challenge arises as these estimations often deviate from the ground reality, resulting in disparities between the estimated and actual waiting times. Such discrepancies have farreaching consequences, extending from missed customer delivery deadlines to disruptions throughout the production chain. This misalignment between estimated and real waiting times presents a significant dilemma, impacting not only customer satisfaction but also the overall operational effectiveness of the production process. This issue sets the context to define an anomaly in our study.

Anomaly Definition in context of a Production Line

Following a software evolution carried out by WipSim, the data derived from simulations in the SmartWip software is archived or recorded. For a specific PO and a specific workstation 𝑊𝑆 𝑖 (where 1 < ⋯ < 𝑖 < ⋯ < 𝑙 and 𝑙 is the total number of workstations), this archiving allows for recording estimations, made at a previous time noted (𝑡 𝑝 ) (𝑃𝑂,𝑊𝑆 𝑖 ) , for the waiting time of the PO at 𝑊𝑆 𝑖 that it is expected to pass through. After the PO has traversed the workstation, the actual time that the PO spent on 𝑊𝑆 𝑖 is known, enabling the calculation of the error in the estimation made at time (𝑡 𝑝 ) (𝑃𝑂,𝑊𝑆 𝑖 ) .

In Figure 1 below, we illustrate, as an example, the time records of these archives for a PO with ID =257318 on the workstation named Conwip2_3_2. The X-axis of this Figure represents all archives by their respective numbers, while the Y-axis represents the waiting time of the PO on the workstation Conwip2_3_2. Thus, Figure 1 depicts the estimated waiting times of the PO on the workstation, associated with each archive from the first to the last archive (70 archives in total). As previously mentioned, these archives are captured before the PO traverses the workstation, at the moment of the first archive, the estimated waiting time for the PO to traverse the workstation is 454.2 hours, while it is 1006.6 hours at the time of the 70th archive (last archive). Figure 1 also illustrates the convergence of estimated times toward the actual waiting time observed by the PO after passing through the workstation Conwip2_3_2, which amounts to 1006.9 hours. ),

where:
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The three errors that we have just defined ( 𝐸 (1) (𝑃𝑂,𝑊𝑆 𝑖 ) , 𝑀𝑒𝑑𝑖𝑎𝑛 (𝐸 (𝑃𝑂,𝑊𝑆 𝑖 ) ), 𝐸 (𝑘) (𝑃𝑂,𝑊𝑆 𝑖 ) ), will allow us to define the Input Error Vector for a PO at 𝑊𝑆 𝑖 used by the Anomaly Detection Model and denoted as: 𝑰𝑬𝑽 (𝑷𝑶,𝑾𝑺 𝒊 ) ∈ ℝ 3 , such that,

𝐼𝐸𝑉 (𝑃𝑂,𝑊𝑆 𝑖 ) = ( 𝐸 (1) (𝑃𝑂,𝑊𝑆 𝑖 ) , 𝑀𝑒𝑑𝑖𝑎𝑛 (𝐸 (𝑃𝑂,𝑊𝑆 𝑖 ) ), 𝐸 (𝑘) (𝑃𝑂,𝑊𝑆 𝑖 ) ). (5) 
The concept of anomlay of a PO at a 𝑊𝑆 𝑖 is based on the statistical analysis of the 𝐼𝐸𝑉 (𝑃𝑂,𝑊𝑆 𝑖 ) .

Then, we say that a PO has an abnormal behavior at 𝑊𝑆 𝑖 if 𝑓(𝑰𝑬𝑽 (𝑷𝑶,𝑾𝑺 𝒊 ) ) = 1, where,

𝑓 : ℝ 3 → { 0, 1 }, 𝐼𝐸𝑉→ 𝑓( 𝑰𝑬𝑽 (𝑷𝑶,𝑾𝑺 𝒊 ) ) = { 0 ⇒𝑃𝑂 is normal at 𝑊𝑆 𝑖 1⇒ 𝑃𝑂 is anormal at 𝑊𝑆 𝑖 . (6) 
The function 𝑓 defined by the Equation 6is the heart of our work, it represents the model that we constructed through the aggregation of multiple anomaly detection classification models, coupled with the theory of information through the Entropy of Shannon. In the upcoming Section 5, we will explore the intricacies of our aggregated anomaly detection model.

The construction of the 𝐼𝐸𝑉 (𝑃𝑂,𝑊𝑆 𝑖 ) for our anomaly detection model is grounded in a thoughtful consideration of the diverse characteristics inherent in error data derived from different archives.

𝐸 (1) (𝑃𝑂,𝑊𝑆 𝑖 ) provides valuable insights into the initial state of SmartWip, the software behind waiting time estimations. This inclusion is vital as anomalies in the early stages of data collection may signify underlying issues that could propagate over time.

𝑀𝑒𝑑𝑖𝑎𝑛 (𝐸 (𝑃𝑂,𝑊𝑆 𝑖 )

) is incorporated to enhance the robustness of our model. The median serves as a robust measure of central tendency, offering resistance to the influence of outliers that may be present in the error data. Anomalies resulting from sporadic, extreme errors can distort the overall analysis, and by including the median, we achieve a more stable representation of the typical error magnitude. This, in turn, contributes to the model's ability to discern genuine anomalies from fluctuations.

As for 𝐸 (𝑘) (𝑃𝑂,𝑊𝑆 𝑖 ) , it represents the error corresponding to the last archive. This strategic choice is guided by the understanding that the last archive often captures a system or process where updates have been implemented to SmartWip, and these updates are permanent. By including 𝐸 (𝑘) (𝑃𝑂,𝑊𝑆 𝑖 ) , our model accounts for potential shifts or improvements in the error patterns, ensuring a comprehensive analysis of the data's temporal evolution. This consideration becomes especially relevant when dealing with dynamic systems where the accuracy of error measurements may undergo significant changes over time. In summary, the integration of 𝐸 (1) (𝑃𝑂,𝑊𝑆 𝑖 ) , 𝑀𝑒𝑑𝑖𝑎𝑛 (𝐸 (𝑃𝑂,𝑊𝑆 𝑖 ) ) and 𝐸 (𝑘) (𝑃𝑂,𝑊𝑆 𝑖 ) in 𝑰𝑬𝑽 (𝑷𝑶,𝑾𝑺 𝒊 ) provides our anomaly detection model with a nuanced and holistic perspective on the temporal and dynamic aspects of error data, contributing to the model's effectiveness in identifying anomalies across the entire dataset.

Before presenting and detailing our model in Section 

𝑣 = 𝑈( 0 , 0.1 ) 𝟙 { 𝑧 ≤ 0 } + 𝑧 𝟙 { 𝑧 > 0 } , ( 7 
)
where 𝑧 = ( 𝑇 (𝑃𝑂,𝑊𝑆 𝑖 ) 𝑅 -𝑇 ( 1)

𝐸 (𝑃𝑂,𝑊𝑆 𝑖 )
) and 𝑈( 0 , 0.1 ) represents a pseudo-random number drawn from a uniform distribution ranging between 0 and 0. ).

The concept behind computing the values of 𝑰𝑬𝑽 (𝑷𝑶,𝑾𝑺 𝒊 ) ( 𝐸 (1) (𝑃𝑂,𝑊𝑆 𝑖 ) , 𝑀𝑒𝑑𝑖𝑎𝑛 (𝐸 (𝑃𝑂,𝑊𝑆 𝑖 ) )

and 𝐸 (𝑘) (𝑃𝑂,𝑊𝑆 𝑖 ) ) from Equation 7is to address situations where an error is negative. In such cases (errors of POs corresponding to IDs 153 and 258 in Table 1), it is systematically substituted with a random variable from uniform distribution between 0 and 0.1 (Equation 7). This substitution serves a dual purpose: firstly, it aligns with the fact that a negative error signifies that the actual time is less than the estimated time. In the context of delivery-related processes, a negative error implies that the delivery is ahead of schedule, meeting or even exceeding client expectations. Secondly, by introducing this replacement mechanism, we strategically filter out positive errors, focusing the model's attention on potential anomalies associated with delayed deliveries. This nuanced approach enhances the sensitivity of our model to deviations from expected delivery timelines, contributing to a more refined anomaly detection capability.

The anomaly detection by the model singling out the PO with ID = 143 in Table 1, is substantiated by a meticulous analysis of the individual error components of 𝑰𝑬𝑽 (𝑷𝑶,𝑾𝑺 𝒊 ) : 𝐸 (1) (𝑃𝑂,𝑊𝑆 𝑖 ) , 𝑀𝑒𝑑𝑖𝑎𝑛 (𝐸 (𝑃𝑂,𝑊𝑆 𝑖 ) ) and 𝐸 (𝑘) (𝑃𝑂,𝑊𝑆 𝑖 ) . Noteworthy is the substantial negative deviation of 𝐸 (1) (𝑃𝑂,𝑊𝑆 𝑖 ) and 𝑀𝑒𝑑𝑖𝑎𝑛 (𝐸 (𝑃𝑂,𝑊𝑆 𝑖 ) ) from their respective means, indicating an unexpected decrease in observed values. Nevertheless, it is the exceptional elevation of 𝐸 (𝑘) (𝑃𝑂,𝑊𝑆 𝑖 ) that underscores its distinctive contribution to anomaly detection. This feature holds added importance because this error is computed from the most recent archive, where the estimation parameters of SmartWip are more up-to-date compared to other archives. As a result, it reflects the most realistic error in terms of time.

As shown in Table 1, 𝐸 (𝑘) (𝑃𝑂,𝑊𝑆 𝑖 ) holds the position of the maximum within its feature set, contributing to the distinctiveness of the identified anomaly. This anomaly detection is particularly meaningful when viewed in the context of rare and multifaceted scenario represented by the PO with ID = 143 in Table 1. This nuanced approach provides a credible foundation for the model's anomaly detection capabilities, aligning detected anomalies with meaningful deviations and unexpected conditions in the dataset.

Aggregated Model for Anomaly Detection

In this Section, we present the mathematical formalization of the aggregated model that will be used as a tool for anomaly detection in both Offline and Online approaches in Sections 6 and 7. This model is built on an innovative approach that combines three distinct classification models of anomaly detection: IF [START_REF] Liu | Isolation Forest[END_REF] [25], SVM [START_REF] Cortes | Support-vector networks[END_REF] [27] and AE [START_REF] Hinton | Reducing the dimensionality of data with neural networks[END_REF] [START_REF] Vincent | Extracting and composing robust features with denoising autoencoders[END_REF]. To construct this model, first, we train the models of each of these three models (or techniques) on a dataset Train_Data, and then for each observation in Train_Data, we calculate scores using each of the techniques, these scores are then standardized for fair comparison. Subsequently, we use Entropy calculated from the scores to assess the level of inherent uncertainty in the data, also standardizing it. A key feature of our method is the determination of predefined anomaly detection thresholds based on quantiles of the standardized scores and standardized Entropy. When applying our model to Test_Data, observations with scores and Entropy exceeding these detection thresholds are considered as anomalies.

The major advantages of this approach lie in its ability to aggregate multiple classification models for more robust detection, coupled with Entropy to quantify data uncertainty, allowing for adaptable anomaly detection. All this with adjustable hyperparameters and thresholds to optimize performance on various types of data. The reason for calculating Entropy is its use as a measure of diversity and uncertainty. When discriminating between abnormal and outlier observations, Entropy can be considered as an additional reason to make decisions.

In the following Subsections, we first provide a brief mathematical formulation of each of the anomaly detection classification models (IF, SVM and AE). Next in the Subsection 5.2, we outline the steps involved in constructing our aggregated model and demonstrate how the model detects anomalies. Then, in the Subsection 5.3, we use a real database obtained from a workstation in an actual production line to exemplify the processes outlined in the Subsection 5.2 through the presentation of Tables. Finally, in the section 5.4, we explore the strategic selection of anomaly detection models integrated into our aggregated anomaly detection model.

Mathematical Formulation of Anomaly Detection Models

IF

IF algorithm is a tree-based anomaly detection method that works by isolating instances in a dataset. Each instance is isolated through a random partitioning process in a binary tree. The algorithm exploits the fact that anomalies are often isolated instances and can be identified by shorter average path lengths in the trees. Mathematically, the isolation score 𝑠(𝑥, 𝑛) for an instance 𝑥 in a tree of height 𝑛 can be defined as the average path length in the tree, standardized by the expected average path length for random instances. The anomaly score is inversely proportional to 𝑠(𝑥, 𝑛), making instances with lower scores more likely to be anomalies. By applying the IF algorithm, these anomaly scores can be calculated, providing a quantitative measure of the anomaly likelihood for each instance.

SVM

SVMs are a class of supervised learning algorithms used for classification and regression tasks. In the context of anomaly detection, SVMs can be applied as one-class classifiers. The mathematical formulation involves finding a hyperplane in a high-dimensional space that best separates the data points of one class from the rest. The hyperplane is chosen to maximize the margin, which is the distance between the hyperplane and the nearest data points (support vectors). For anomaly detection, instances lying on the side of the hyperplane with the majority of data are considered normal, while those on the other side are potential anomalies. The formulation includes optimizing a cost function that penalizes misclassifications. Furthermore, it is essential to note that anomaly scores can be effectively calculated using the SVM algorithm, offering an additional avenue for identifying anomalies.

AE

AE is a type of neural network designed to learn efficient representations of input data by encoding it into a lower-dimensional latent space and then reconstructing the input from this representation. Mathematically, an AE consists of an encoder function 𝑓 ∶ 𝑋 → 𝑍 and a decoder function 𝑔 ∶ 𝑍 → 𝑋, where 𝑋 is the input space and 𝑍 is the latent space. The goal is to minimize the reconstruction error, typically measured by a loss function like Mean Squared Error. The encoder and decoder functions are parameterized by neural network weights, and the training process involves adjusting these weights to find a compact representation of the input data. Importantly, it should be noted that anomaly scores derived from the Mean Squared Error can be effectively calculated using the AE algorithm, providing an additional means for discerning anomalies within the dataset.

Model Construction & Anomaly Detection

Our anomaly detection methodology involves training individual models (IF, SVM and AE) on the Train_Data dataset, yielding standardized scores and Entropy calculations for each observation. Finally, anomalies are detected on the dataset Test_Data set. In the next Subsections, we will illustrate the application of this methodology.

Model Training

Each of the models of the adapted techniques (IF, SVM, and AE) is trained with a training dataset: Train_Data. Following this training, an anomaly score from each model is associated to each observation in Train_Data.

Standardization of Scores

The scores calculated in the previous Subsection 5.2.1 from each classification model are then standardized, ensuring that each scores falls within the range of zero to one. When referring to standardized scores, it is important to note that each score corresponds specifically to the classification model employed. Consequently, three standardized scores, falling between zero and one, are associated with each observation in Train_Data. The standardization of the scores serves a crucial purpose in our analysis. By standardizing the scores obtained from the IF, SVM, and AE techniques, we ensure that the scores are on a consistent scale, making them directly comparable. This is essential for fair and meaningful comparisons between the different anomaly detection techniques, as it prevents any one technique from dominating the analysis due to score scale variations. Standardization also aids in the interpretation of the results and facilitates a more effective evaluation of the performance of each classification model, allowing us to draw robust conclusions from the comparisons.

Transformation of Scores into Probability

For each observation in Train_Data, the three standardized scores calculated in the Subsection 5.2.2 are transformed into a probability distribution. Thus, for a given observation of Train_Data, after calculating the following three standardized scores: 𝒔𝒄𝒐𝒓𝒆 𝑺𝑽𝑴 , 𝒔𝒄𝒐𝒓𝒆 𝑨𝑬 and 𝒔𝒄𝒐𝒓𝒆 𝑰𝑭 , the probability corresponding to the SVM model (denoted as 𝑝𝑟𝑏 𝑆𝑉𝑀 ) is calculated using Equation 8:

prb SVM = score SVM score SVM + score AE + score IF . (8)
Analogously, 𝑝𝑟𝑏 𝐴𝐸 and 𝑝𝑟𝑏 𝐼𝐹 are calculated in the same manner.

Entropy Calculation

For each observation in Train_Data, Entropy is calculated based on the three probabilities calculated in the Subsection 5.2.3. In fact, for a given observation, there are three probabilities: 𝑝𝑟𝑏 𝑆𝑉𝑀 , 𝑝𝑟𝑏 𝐴𝐸 , 𝑝𝑟𝑏 𝐼𝐹 . Then, we calculate from these probabilities the Entropy of the observation using the following Equation:

Entropy = -∑ prb j × log 2 (prb j ) j=3 j=1
, [START_REF] Dolgui | Radio Frequency IDentification (RFID) in Supply Chain : Technology and Concerns[END_REF] where prb 1 = prb SVM , prb 2 = prb AE and prb 3 = prb IF .

Once calculated, Entropy is standardized and integrated into our decision criteria, serving as an additional factor when distinguishing abnormal observations. The combination of standardized Entropy with scores from individual anomaly classification models (IF, AE, and SVM) provides a comprehensive view. This nuanced approach enables the identification of anomalies, not solely based on extreme values but also on intricate and unpredictable patterns. The decision criteria, including predefined thresholds for both standardized scores and Entropy ensure accurate anomaly classification, reflecting our commitment to capturing the multifaceted nature of anomalies.

Identification of Quantiles

Following the calculation of standardized scores (corresponding to the three classification models) and the calculation of standardized Entropy, this step involves predefining the threshold percentages from which the quantiles of the standardized scores and standardized Entropy will be determined. Thus, in this step, we predefine the following four threshold percentages: IF Percentage threshold, SVM Percentage threshold, AE Percentage threshold, and Entropy percentage threshold.

Once these percentages are defined, we identify from the standardized scores, for each of the three anomaly detection techniques, the quantile corresponding to the technique's threshold. We also identify the Entropy quantile corresponding to the Entropy percentage threshold from the standardized Entropy.

After the identification of these quantiles, they are recorded. The three trained models are also saved to be later loaded for detecting anomalies in a test database: Test_Data.

In the next Subsections, we outline the steps to set up the model for identifying anomalies from Test_Data.

Scoring Test_Data Observations

For each observation in Test_Data, a score is calculated from each of the three classification models previously trained and saved.

Standardization of Scores and Calculation of Entropy

For each observation in Test_Data, we repeat the Subsections 5.2.2, 5.2.3 and 5.2.4 to calculate three standardized scores corresponding to each of the three classification models and to calculate standardized Entropy.

Anomaly Detection

For each observation in Test_Data, we considered it an anomaly if it satisfied the following two conditions:

1. The standardized scores of the observation calculated in Subsection 5.2.7 are greater than the values of the quantiles calculated during training (in the Subsection 5.2.5).

2. The standardized Entropy calculated in Subsection 5.2.7 is greater than the value of the standardized Entropy quantile calculated during training (in the Subsection 5.2.5).

Model Insight Tables

The Tables presented in Appendix 1 (Appendix 1: Table 1 andAppendix 1: Table 2) enables us to zoom in on the various steps of Subsection 5.2, from the training models step to the Anomaly Detection step.

Using real DB sourced from the Conwip2_6_3 workstation, Appendix 1: Table 1 provides an overview of all observations employed in the training dataset (Train_Data) of the three classification models. Each observation correspond to a specific PO, allowing us to showcase the following for each PO in Train_Data:

-the ID of the PO (first column), -the components of the 𝐼𝐸𝑉 of the PO at Conwip2_6_3 (columns: First Error, Median

Error and Last Error), -the standardized Score of each classification model calculated from the 𝐼𝐸𝑉 of the PO (columns AE Score, SVM Score and IF Score), -the normalized Entropy of the PO calculated from the standardized Scores (column Entropy).

By setting the quantile percentage to 70%, we can determine through a simple calculation performed on the AE Score column in Appendix 1: Table 1, that the value of the quantile for the AE Score is equal to 0.35. Similarly, for SVM Score, IF Score and Entropy, the values of their respective quantiles are 0.98, 0.6, and 0.86.

Appendix 1: Table 2 also derived from real DB originating from the Conwip2_6_3 workstation, displays the standardized Scores and standardized Entropy for each PO in Test_Data. These values are computed using the trained models. Additionally, the table highlights the detected anomalies within Test_Data. These anomalies are none other than the POs that have standardized Scores (columns AE Score, SVM Score and IF Score in Appendix 1: Table 2), and standardized Entropy (column Entropy in Appendix 1: Table 2) exceeding the quantiles we just calculated in the previous paragraph.

It is important to know that Test_Data (Appendix 1: Table 2) is a distinct set of POs and different from Train_Data (Appendix 1: Table 1) which is used to train the models.

Strategic Selection of Anomaly Detection Models

The process of selecting the right anomaly detection models is of paramount significance when endeavoring to pinpoint unusual observations within a dataset. In our research, we embraced a multifaceted approach, where we amalgamated three prominent and distinctive anomaly detection techniques: IF, AE, and SVM. This choice was not arbitrary but based on a meticulous evaluation of each model's unique attributes and their potential synergistic benefits.

Elaboration on IF

IF, was a discerning inclusion in our ensemble of models. Its exceptional methodology revolves around the rapid isolation of anomalies by capitalizing on the underlying tree structure of the data. IF shines when it comes to expediently segregating data into smaller partitions. This is achieved by selecting random features and constructing isolation trees. The noteworthy aspect is that anomalies necessitate fewer tree splits to be isolated, rendering the process highly efficient. This model excels in identifying anomalies that exhibit conspicuous deviations from the norm.

Elaboration on AE

Incorporating AE into our ensemble adds another layer of sophistication to our approach. AE stands out for its proficiency in extracting essential features from input data. It operates by compressing the input data into a lower-dimensional representation and subsequently reconstructing it. During this transformation, the model endeavors to minimize reconstruction error. When anomalies are present, this error tends to rise, thereby endowing AE with sensitivity to subtle patterns that might elude conventional methods. This model's strength lies in its ability to unveil latent structures within the data, making it highly effective when anomaly characteristics are not well understood.

Elaboration on SVM

The third pillar of our ensemble, SVM, is a classic but invaluable choice. SVM's notoriety stems from its aptitude to demarcate class boundaries within the feature space, whether in a linear or nonlinear fashion. This proficiency in class separation is leveraged for the task of anomaly detection. When data exhibits conspicuous separability between normal and abnormal instances, SVM's discriminative power becomes evident. It is a versatile and robust addition that further diversifies our ensemble.

Synergistic Integration

By integrating these three distinct models, we harness their individual strengths to gain a more comprehensive understanding of anomalies within the data. Each model excels under specific conditions and can unveil different categories of anomalies. The ensemble approach enhances overall robustness, as it is less dependent on the idiosyncrasies of any single model. The use of standardized Entropy to merge their outputs ensures adaptability and fine-tuning of detection, effectively addressing the complexities and variations typically encountered with real-world data. This multi-model strategy significantly augments anomaly detection performance by balancing sensitivity and specificity for a wide spectrum of real-world scenarios. Now that we have illustrated our aggregated anomaly detection model, in the following Sections, we will present the Offline and Online approaches that rely on this model to detect abnormal POs and workstations in our production chain context.

In this Section, we present the Offline approach adapted for anomaly detection in the production line. This approach builds upon the aggregated anomaly detection model introduced in the previous Section. Before delving further into this approach, we will first introduce the Database (DB) on which both Offline and Online approaches have been applied. Thus, we will provide a comprehensive illustration of the database structure, highlighting its key attributes and characteristics.

About DB

In the beginning of Section 4, it was mentioned that an update was carried out on the SmartWip solution to enable archiving. These archives constitute our DB, from which Train_Data and Test_Data were derived. The DB, provided by WipSim in .csv format, boasts a size of approximately 1.11 GB. It encompasses 262 archives spanning from June 25, 2023, at 9:30 AM, to September 18, 2023, at 23:30 PM, averaging about three archives per day or one archive every eight hours. These archives contain data on both real and estimated times for 21 workstations, detailing the progression of 697 PO through these workstations over time and reflecting variability across multiple dimensions. To ensure homogeneity in our training database, we categorized POs based on the following key criteria:

-Size: Offering a spectrum of 40 possibilities (1 to 40) denoting the quantity of products within a PO.

-Priority: Categorized into two possibilities, 1 or 2, reflecting the PO's significance in the production sequence, with Priority 1 taking precedence.

-Family: Defined by four distinct families, each specifying the type of products to be produced.

A foundational statistical analysis was conducted to characterize and contextualize the database within the industrial landscape. This comprehensive examination played a crucial role in helping us understand the broader context of our production line. These analyses provide insights into specific PO categories, such as those with Priority 2, Size 1, and belonging to Family 2. For instance, within this category, 179 POs were tracked from the initial archiving on June 25, 2023, at 9:30 AM, until the final archiving on September 18, 2023, at 23:30 PM. Focusing on the same category, the analysis revealed that 77 POs underwent processing in the cadence room between these two archiving dates. As of the last archiving, 97 POs are actively in production within the workshop, while 5 POs have exited the production line for various reasons.

In the following Sections of this paper, anomaly detection studies and the presented results are conducted on POs belonging consistently to the same category: Priority 2, Size 1, and Family 2. This category is chosen due to its containing the highest number of POs.

Offline Approach

The Offline approach serves as a Descriptive/Explanatory method, enabling a more indepth comprehension and analysis of the POs' behavior from their entry into the workshop's waiting room to the cadence room. Consequently, this approach facilitates the identification of the workstations and the PO's exhibiting a higher anomaly rate in comparison to others.

Diagram 1 below illustrates the flow of this approach. To identify abnormal workstations and abnormal POs in the production line, we first pinpoint, for each workstation 𝑊𝑆 𝑖 (where 1 < ⋯ < 𝑖 < ⋯ < 𝑙 and 𝑙 is the total number of workstations), its training dataset (Train_Data): the set of Input Error Vectors for all PO's that have passed through 𝑊𝑆 𝑖 (𝑰𝑬𝑽 (𝑷𝑶,𝑾𝑺 𝒊 ) 's as defined in Equation 5) during a specific period between the date of the first archive and the date of the last archive. After identifying, for each 𝑊𝑆 𝑖 , its training dataset: Train_Data, each of the three techniques (IF, AE, and SVM) is trained using Train_Data. The trained models are then aggregated. The resulting aggregated model is saved to be loaded later for detecting abnormal POs on the same training dataset (Train_Data) used during the training phase.

Diagram 1 : Flow of Offline Approach

This technique of detecting anomalies workstation by workstation, allows for the calculation of an anomaly rate associated with each workstation using the following Equation:

Anomaly Rate of WS i = Nbr of Abnormal PO that have passed through WS i Total nbr of PO that have passed through WS i . [START_REF] Jandel | Online learnability of Statistical Relational Learning in anomaly detection[END_REF] Similarly, it is also possible to associate an anomaly rate for each PO that has passed through the production chain using the following Equation:

Anomaly Rate of PO j = Nbr of WSs where PO j is an anomaly Total nbr of WSs crossed by PO j . [START_REF] Zhao | Outlier Detection in Cold-chain Logistics Temperature Monitoring[END_REF] After associating an anomaly rate per workstation and per PO, workstations and POs with anomaly rates higher than predefined threshold rates are identified and considered as abnormal workstations and abnormal POs.

Despite the presence of overfitting in our aggregated model (since the model is trained on the training dataset and anomalies are detected using the same dataset), it exhibits undeniable qualities, particularly the ability to quickly and accurately identify anomalies. This feature, although balanced by the risk of excessive adaptation to the training data, proves to be an essential asset for the Offline approach. It allows for the identification of workstations and POs with high anomaly rates, enabling chain managers to make informed decisions, allocate additional resources to critical workstations, and implement immediate corrections.

In Figure 2 below, using a real DB, we illustrate a three-dimensional representation of the components 𝐸 (1) (𝑃𝑂,𝑊𝑆 𝑖 ) (First Error), 𝑀𝑒𝑑𝑖𝑎𝑛 (𝐸 (𝑃𝑂,𝑊𝑆 𝑖 ) ) (Median Error) and 𝐸 (𝑘) (𝑃𝑂,𝑊𝑆 𝑖 ) (Last Error) of the 𝑰𝑬𝑽 (𝑷𝑶,𝑾𝑺 𝒊 ) for each of the 43 PO (each point in the Figure is a PO) that have traversed workstation Conwip2_1 (𝑊𝑆 𝑖 = Conwip2_1) from the initial recording date to the final recording date. We also represent the abnormal PO's (depicted in red) detected by our model. As already mentioned, a PO is considered abnormal at Conwip2_1 if its 𝑰𝑬𝑽 (𝑷𝑶,𝑾𝑺 𝒊 ) has been detected as an abnormal error by the model. In other words, the PO is considered abnormal if 𝑓 (𝑰𝑬𝑽 (𝑷𝑶,𝑾𝑺 𝒊 ) ) = 1 (Equation 6).

The isolated position of the red points in Figure 2, noticeably distant from the blue points (normal PO's) reinforce the visual intuition that they are anomalies. Specifically, the first plot will showcase the First Error and the Median Error, the second plot will focus on the First Error and the Last Error, and the third plot will depict the Last Error against Median Error.

Figure 3 : 2D Representation of normal and abnormal PO's at workstation Conwip2_1: Real DB

In the analysis of the anomalies illustrated in Figure 2 and Figure 3 for the workstation Conwip2_1, out of the 43 𝑰𝑬𝑽 (𝑷𝑶,𝑾𝑺 𝒊 ) 's, our model identified four anomalies with the following values:

𝑰𝑬𝑽 PO 1 ([ 0.005, 0.01, 0.39 ]), 𝑰𝑬𝑽 PO 2 ([293, 0.08, 0.08 ]), 𝑰𝑬𝑽 PO 3 ([ 307.7, 0.05, 0 ]), 𝑰𝑬𝑽 4 ([0.3, 0.3, 0.3]), where the general form of 𝑰𝑬𝑽 for a PO is (First Error, Median Error, Last Error).

The choice of these anomalies is strategic. Anomalies 𝑰𝑬𝑽 PO 2 and 𝑰𝑬𝑽 PO 3 were selected because they exhibit the highest values of the First Error component. As for, Anomaly 𝑰𝑬𝑽 PO 1 (respectively 𝑰𝑬𝑽 PO 4 ) was chosen due to its maximum value in the Last Error (respectively Median Error) component. As mentioned, anomaly rates per workstation and per PO are calculated. For the workstation Conwip2_1 represented in Figure 2, its anomaly rate is equal to 9.3% (4 anomalies identified out of 43 total observations). This percentage is calculated using Equation 10.

In order to address the challenges associated with a still relatively small database (limited number of records), we employed Monte Carlo simulations (1000 observations) based on an exponential distribution. This approach was adopted to overcome the constraints imposed by the currently limited size of the database. The parameters of the exponential distribution used for the Monte Carlo simulations were calibrated based on the real database.

Still for the Conwip2_1 workstation, in Appendix 2: Figure 1, we present, a three-dimensional representation of 𝑰𝑬𝑽 (𝑷𝑶,𝑾𝑺 𝒊 ) components generated from the Monte Carlo simulations. Additionally, Appendix 2: Figure 2 delves deeper into the anomalies detected in Appendix 2: Figure 1. In this figure, we specifically focus on abnormal POs, representing them in a twodimensional space.

We determine the anomaly rate depicted in Appendix 2: Figure 1 by applying Equation 10, resulting in a percentage of 5.2% (52 anomalies identified out of 1000 total of observations).

Online Model

As previously indicated, the Offline approach is a Descriptive/Explanatory approach that allows for a better understanding of the behavior of POs and workstations in the workshop. The analyses and the anomaly detection are realized by this approach from the date of the first archive to the date of the last archive. However, the production chain is a continuous and dynamic flow. This dynamism is not taken into account by the offline approach, as anomaly detection is carried out over a constant and well-defined time period without considering the most recent activities of the workstations.

In this Section, we present the Online approach: a dynamic/predictive approach that focuses on determining workstations representing anomalies by concentrating on a time period reflecting the most recent activities of the workstations. Hence the term Online in this approach. This approach is also based on the idea that anomalies are detected incrementally with each new simulation archive, adding dynamism to the process.

The key concept of the Online approach is to first train the model using Train_Data, and then, in contrast to the Offline approach, anomalies are detected using an Online dataset called Test_Data. Thus, there is one unique difference between the Offline and Online approaches: the determination of Train_Data and Test_Data. However, this difference has significant implications.

In the following Subsections, we will explain in detail the technique adapted to identify Train Data and Test Data in the Online approach.

Identification of Train_Data and Test_Data

The identification of Train_Data and Test_Data is a critical step in the Online approach. Once Train_Data and Test_Data are identified, the aggregated model is trained using Train_Data, then saved for later use in detecting anomalies from Test_Data. The following Subsections illustrate the process followed to identify Train_Data and Test_Data for each 𝑊𝑆 𝑖 (where 1 < ⋯ < 𝑖 < ⋯ < 𝑙 and 𝑙 is the total number of workstations).

Identification of All_Data

This step involves identifying the dataset All_Data for 𝑊𝑆 𝑖 , which consists of errors from all POs that passed 𝑊𝑆 𝑖 during a time period between the date of the first archive and the date of the last archive.

Identification of Test_Data

This critical step focuses on determining the dataset Test_Data for 𝑊𝑆 𝑖 . To do this, we first calculate 𝑀𝑒𝑎𝑛 𝑅𝑒𝑎𝑙 𝑇𝑖𝑚𝑒 (𝑊𝑆 𝑖 ) : Average Real Time needed by a PO to pass through 𝑊𝑆 𝑖 .

After calculating 𝑀𝑒𝑎𝑛 𝑅𝑒𝑎𝑙 𝑇𝑖𝑚𝑒 (𝑊𝑆 𝑖 ) , we calculate 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝐷𝑎𝑡𝑒 (𝑊𝑆 𝑖 ) using the following Equation:

Critical Date (WS i ) = Date of the last archiving -(µ Real Time (WS i ) + 3 × σ Real Time (WS i ) ). [START_REF] Kraus | A Data Warehouse Design for the Detection of Fraud in the Supply Chain by Using the BENFORD'S Law[END_REF] µ 𝑅𝑒𝑎𝑙 𝑇𝑖𝑚𝑒 (𝑊𝑆 𝑖 ) and σ 𝑅𝑒𝑎𝑙 𝑇𝑖𝑚𝑒 (𝑊𝑆 𝑖 ) mentioned in Equation 12, represent, respectively, the mean and the standard deviation of the real waiting time of all POs (of a certain category) on 𝑊𝑆 𝑖 . The addition of the 3-sigma technique [START_REF] Wheeler | Understanding Statistical Process Control[END_REF] is employed to include a sufficient range to cover approximately 99.7% of the possibilities in a normal distribution. It allows for a more comprehensive and exhaustive sampling technique in assessing the critical date.

Test_Data is in fact, the collection of 𝐼𝐸𝑉 (𝑃𝑂,𝑊𝑆 𝑖 ) from all the POs that passed through 𝑊𝑆 𝑖 at a date later than 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝐷𝑎𝑡𝑒 (𝑊𝑆 𝑖 ) . In other words, Test_Data encompasses the 𝐼𝐸𝑉's of PO's that had not yet passed through 𝑊𝑆 𝑖 before 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝐷𝑎𝑡𝑒 (𝑊𝑆 𝑖 ) . These PO's had estimated waiting times for this workstation before 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝐷𝑎𝑡𝑒 (𝑊𝑆 𝑖 ) and they crossed 𝑊𝑆 𝑖 after this date, hence they have actual waiting times for this station after 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝐷𝑎𝑡𝑒 (𝑊𝑆 𝑖 ) . This technique for identifying Test_Data illustrated in Diagram 2 enables the retrieval of errors and timing inaccuracies in synchronization with the chronology of the most recent workstation activities. This methodology is characterized by its ability to capture dynamic data over time, offering an ever-evolving representation rather than a static one. With this approach, we can obtain a more precise and real-time perspective on the performance and potential issues within the workflow. 

Anomaly Detection

After identifying Train_Data and Test_Data for 𝑊𝑆 𝑖 , each of the three techniques (IF, AE, and SVM) is trained using Train_Data. The trained models are subsequently aggregated. The resulting aggregated model is saved for later use (load Model) to detect abnormal errors (and thus abnormal POs) from Test_Data. Similar to the Offline approach, a PO is considered abnormal at workstation 𝑊𝑆 𝑖 if the estimation error corresponding to the PO has been detected as a significant error by the anomaly detection model. This allows us to calculate, workstation by workstation, an anomaly rate associated with each workstation using the Equation 10.

After associating an anomaly rate per workstation, workstations with anomaly rates exceeding predefined threshold are identified and considered as abnormal.

In Appendix 2: Figure 3, we show a three-dimensional representation for the Conwip2_1 workstation, utilizing a real database. This representation includes the components of the Input Error Vector (IEV): 𝐸 (𝑡 1 ) 𝑤𝑠 𝑖 (First Error), 𝑀𝑒𝑑𝑖𝑎𝑛(𝐸 (𝑃𝑂,𝑊𝑆 𝑖 ) ) (Median Error) and 𝐸 (𝑡 𝑘 ) 𝑤𝑠 𝑖 (Last Error). Each point in the Figure corresponds to an observation in the Test_Data, comprising 7 POs, which have traversed workstation Conwip2_1 after 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝐷𝑎𝑡𝑒 (𝐶𝑜𝑛𝑤𝑖𝑝2_1) . Notably, in this figure, no anomalies were detected using this online approach. This lack of anomalies can be attributed to the relatively low number of POs [START_REF] Dolgui | Reconfigurable supply chain: the X-network[END_REF] present in the Test_Data. In Appendix 2: We determine the anomaly rate depicted in Appendix 2: Figure 5 by applying Equation 10, resulting in a percentage of 3.57% (30 anomalies identified of 840 total observations).

Validation of Anomaly Detection Model Performance

To validate the performance of this models (Offline and Online), we intend in the future, to subject the anomaly detection techniques to expert assessment and evaluation. This approach will allow us to distinguish the four following crucial categories:

1. True Positive Anomalies (TPA): Referring to number of observations identified as anomalies by the model and confirmed as anomalies by the expert. 

The significant optimization of the model mentioned above (maximizing 𝑡𝑟𝑢𝑒 𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠 𝑟𝑎𝑡𝑖𝑜 or minimizing 𝑓𝑎𝑙𝑠𝑒 𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠 𝑟𝑎𝑡𝑖𝑜), will guide the automated adjustment of the anomaly detection techniques hyperparameters on one side and the sensitivity to the choice of threshold percentages for quantiles on the other. In the following Section, we will present the sensitivity of anomaly detection regarding the choice of threshold percentages for quantiles.

The pre-defined thresholds of quantile percentages play a vital role in classifying observations as normal or abnormal. These thresholds are established based on the characteristics of the training data, and their sensitivity lies in the fact that they directly influence the accuracy of anomaly detection.

In our scientific inquiry, we purposefully selected a diverse set of threshold combinations to comprehensively assess the sensitivity of our anomaly detection model. These combinations include variations in individual threshold values, such as setting the quantile percentage threshold of IF Score, SVM Score and AE Score at 70%, and exploring different quantile percentages for Entropy. This approach enables us to investigate the model's performance across a spectrum of parameter settings, ranging from conservative to more lenient thresholds.

If the thresholds are set too high, it can reduce the sensitivity of detection, meaning that only the most blatant anomalies will be identified, and they are more likely to be true anomalies. However, this can risk missing more subtle anomalies. Conversely, if the thresholds are set too low, it increases the sensitivity of detection but could also lead to a higher number of false alarms, where normal observations are incorrectly classified as anomalies. Therefore, careful tuning of these thresholds is essential to balance the sensitivity and specificity of our anomaly detection model, depending on the needs and constraints of each use case. This comprehensive exploration enhances the robustness and practical applicability of our research findings.

To demonstrate the impact of adjusting thresholds on the anomaly rate, we initially analyzed the anomaly rates using a real DB from the workstations Conwip2_6_2 and Conwip2_11_6 (Table 2). When we adjusted the quantile thresholds to 70% for Entropy, IF, AE, and SVM, the anomaly rates (obtained by applying the Offline approach) were 21.05% for workstation Conwip2_6_2 and 13.33% for workstation Conwip2_11_6. However, when the Entropy quantile threshold was increased to 80%, the anomaly rates decreased significantly to 18.42% for Conwip2_6_2 and 6.66% for Conwip2_11_6. This trend also holds with a 90% threshold, where the rates drop to 7.9% for Conwip2_6_2 (Table 2 As observed in Table 3 and Table 5, the highest percentage reduction in the anomaly rate corresponds to the variation in the Entropy threshold. In other words, the variation in the Entropy threshold has a greater influence on the change in the anomaly rate than the variation in the thresholds of IF, SVM, and AE.

Sensitivity & Entropy

These results presented in the Table 3 and Table 5 demonstrate the sensitivity of our anomaly detection model to variations in quantile thresholds, particularly in relation to Entropy. This highlights the crucial role of Entropy as a sensitive metric capable of capturing significant variations in the production data of the production chain. This sensitivity can be attributed to the fact that Entropy encompasses the three classification models, acting as a layer of information theory. It is essential to acknowledge that this sensitivity offers significant advantages, including the ability to detect subtle anomalies. However, it also emphasizes the need for careful threshold adjustments to optimize the performance of our model, given the intricate interplay of information theory within the context of our anomaly detection framework.

Conclusion & Perspectives

In the dynamic landscape of continuous production lines, where precision and efficiency are paramount, our exploration has centered around the identification and mitigation of anomalies that disrupt the harmonious flow and the advancement in time of POs. Defined through the lens of our developed aggregated model, an anomaly occurs when the output of the model is equal to one. This model, crafted by integrating various anomaly detection techniques such as IF, AE, and SVM, coupled with Entropy of Shannon, forms the backbone of our anomaly detection system.

The aggregated model for anomaly detection harnesses the power of multiple classification models, standardizing scores from individual methods and employing Entropy to discern patterns that might elude a singular approach. By setting predefined thresholds, we classify observations as anomalies when both the scores and Entropy surpass these predetermined limits.

We elucidate two distinct and valuable approaches for anomaly detection based on the aggregated model for anomaly detection: the Offline approach, which statically identifies anomalies, providing insights into the overall state of our production line, including the identification of abnormal workstations, thereby enriching managerial decision-making; and the Online approach, dynamically detecting disruptions in real-time. The Offline approach offers the advantage of a comprehensive understanding of the production line's general situation, while the Online approach excels in promptly identifying anomalies during live operations, fostering positive outcomes for production efficiency and overall manufacturing processes, ultimately contributing to enhanced client satisfaction.

The analysis of sensitivity to thresholds provides insights into the robustness of our anomaly detection system, shedding light on how varying threshold values affects the system's performance.

In justifying our choices of anomaly detection models, we emphasize the versatility and comprehensiveness of our approach. By integrating multiple techniques, we aim to create a resilient system capable of adapting to the intricacies of diverse production environments.

To validate the efficacy of our anomaly detection model, we propose a future trajectory involving expert assessment and evaluation. This process aims to categorize observations into four crucial groups: True Positive Anomalies, True Negative Anomalies, False Negative Anomalies, and False Positive Anomalies. Through rigorous analysis and optimization of the false anomalies ratio, we aspire to fine-tune our models to minimize discrepancies between automated detection and expert judgment.

We also envision consolidating and refining our model with additional databases provided by WipSim, fostering ongoing advancements and ensuring the continued relevance and applicability of our anomaly detection framework.

As we move forward, we aspire to augment our dataset by integrating information from a Manufacturing Execution System. This expansion aims to facilitate a comprehensive root cause analysis for the detected anomalies, allowing us to delve deeper into the underlying factors contributing to deviations from the expected norms. Through this collaborative approach with MES data, we anticipate gaining valuable insights that will further refine our anomaly detection model and contribute to a more holistic understanding of production line dynamics.

In essence, our research endeavors to bridge the gap between estimated and actual waiting times by fortifying production lines against anomalies. Through the culmination of innovative models, validation strategies, and sensitivity analyses, we chart a course toward enhanced operational efficiency, laying the foundation for a more resilient and adaptive future in continuous flow manufacturing. 
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 1 Figure 1 : Real Waiting Time VS Estimated Waiting Time of a PO on a WS

Figure 2 :

 2 Figure 2 : 3D Representation of normal and abnormal PO's at workstation Conwip2_1: Real DB

Appendix 1 :

 1 Table 3 provides a comprehensive list of 𝑰𝑬𝑽 (𝑷𝑶,𝑾𝑺 𝒊 ) 's for all POs represented in Figures 3 for detailed reference. Normal and abnormal POs are clearly indicated in this table.

7. 1 . 3

 13 Identification of Train_Data After determining All_Data (Subsection 7.1.1) and Test_Data (Subsection 7.1.2), Train_Data has been derived from the complete dataset All_Data by deliberately excluding the data present in the Test_Data set. In other words, Train_Data is obtained by subtracting Test_Data from the All_Data set. This segmentation approach (Diagram 2), allows us to create a specific training dataset for our experiments while keeping the test data separated and isolated, thereby ensuring the integrity of our evaluation methodology. Diagram 2 : Determination of Test_Data and Train_Data

Figure 4 ,Figure 5 .

 45 Figure 4, we further analyze each 𝑰𝑬𝑽 (𝑷𝑶,𝑾𝑺 𝒊 ) represented in Appendix 2: Figure 3 by representing each pair of their components in a two-dimensional space. Still for the Conwip2_1 workstation, in Appendix 2: Figure 5, we present a three-dimensional representation of each 𝑰𝑬𝑽 (𝑷𝑶,𝑾𝑺 𝒊 ) components generated from the Monte Carlo simulations. Additionally, Appendix 2: Figure 6 delves deeper into the anomalies detected in Appendix 2: Figure 5. In this figure, we specifically focus on abnormal POs, representing them in a twodimensional space.

2 .

 2 True Negative Anomalies (TNA): Referring to number of observations not identified as anomalies by either the model or the expert. 3. False Negative Anomalies (FNA): Referring to number of observations identified as anomalies by the expert but not by the model. 4. False Positive Anomalies (FPA): Referring to number of observations identified as anomalies by the model but not by the expert.From these evaluations, model optimization involves maximizing 𝑡𝑟𝑢𝑒 𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠 𝑟𝑎𝑡𝑖𝑜 or minimizing 𝑓𝑎𝑙𝑠𝑒 𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠 𝑟𝑎𝑡𝑖𝑜. These ratios are calculated based on Equation 13 and Equation 14 defined below: also allow us to study and analyze the sensitivity and specificity of our model using Equation15and Equation 16 defined below:

  

  

  

  

  

  

  

  waiting time of the PO on 𝑊𝑆 𝑖 , we then define the error vector 𝐸 (𝑃𝑂,𝑊𝑆 𝑖 ) ∈ ℝ 𝐾 , such that, 𝐸 (𝑃𝑂,𝑊𝑆 𝑖 ) = ( 𝐸 (1) (𝑃𝑂,𝑊𝑆 𝑖 ) , …, 𝐸 (𝑗) (𝑃𝑂,𝑊𝑆 𝑖 ) , … , 𝐸 (𝑘) (𝑃𝑂,𝑊𝑆 𝑖 ) ), (2) 𝑡 𝑗 ) (𝑃𝑂,𝑊𝑆 𝑖 ) 𝑖 and 𝐸 (𝑃𝑂,𝑊𝑆 𝑖 ) represents the set of all waiting time errors corresponding to each archive of the PO on 𝑊𝑆 𝑖 . After defining 𝐸 (𝑃𝑂,𝑊𝑆 𝑖 ) , we consequently calculate from this vector its mathematical median denoted as 𝑀𝑒𝑑𝑖𝑎𝑛 (𝐸 (𝑃𝑂,𝑊𝑆 𝑖 )

	Denoting 𝑇 (𝑃𝑂,𝑊𝑆 𝑖 ) 𝑅 as the actual where 𝐸 (𝑗) (𝑃𝑂,𝑊𝑆 𝑖 ) is computed based on Equation 3:	
			𝐸 (𝑗) (𝑃𝑂,𝑊𝑆 𝑖 ) = 𝑇 (𝑃𝑂,𝑊𝑆 𝑖 ) 𝑅	-𝑇 (𝑗) 𝐸	(𝑃𝑂,𝑊𝑆 𝑖 )	. (3)
	Thus, 𝐸 (𝑗) (𝑃𝑂,𝑊𝑆 𝑖 ) represents the error of the estimated waiting time corresponding to the archive
	recorded at time (		
	𝐸	(𝑃𝑂,𝑊𝑆 𝑖 )	is the estimated waiting time of the PO at 𝑊𝑆 𝑖 , recorded from the first
	archive at time (𝑡 1 ) (𝑃𝑂,𝑊𝑆 𝑖 ) , -𝑇 (𝑘) 𝐸 (𝑃𝑂,𝑊𝑆 𝑖 ) is the estimated waiting time of the PO at 𝑊𝑆 𝑖 , recorded from the last
	archive at time (𝑡 𝑘 ) (𝑃𝑂,𝑊𝑆 𝑖 ) , -𝑇 (𝑗) 𝐸 (𝑃𝑂,𝑊𝑆 𝑖 ) is an intermediate estimated waiting time of the PO at 𝑊𝑆 𝑖 , recorded from
	an intermediate archive at time (𝑡 𝑗 ) (𝑃𝑂,𝑊𝑆 𝑖 ) 𝑖 , where (𝑡 1 ) (𝑃𝑂,𝑊𝑆 𝑖 ) < (𝑡 𝑗 ) (𝑃𝑂,𝑊𝑆 𝑖 ) <
	(𝑡 𝑘 ) (𝑃𝑂,𝑊𝑆 𝑖 ) .	

Table 1 :

 1 Abnormal POs on the workstation Conwip2_3_2 detected by the Aggregated Model of Anomaly DetectionIt is worth noting that in the Table1above, each value 𝑣 in the column 𝐸 (1) (𝑃𝑂,𝑊𝑆 𝑖 ) is obtained from the Equation 7 below:

	ID	𝑇 (1) 𝐸	(𝑃𝑂,𝑊𝑆 𝑖 )	𝑀𝑒𝑑𝑖𝑎𝑛 (𝑇 (𝑃𝑂,𝑊𝑆 𝑖 ) 𝐸	)	𝑇 (𝑘) 𝐸	(𝑃𝑂,𝑊𝑆 𝑖 )	𝑇 (𝑃𝑂,𝑊𝑆 𝑖 )	
	PO	(h)	(h)			(h)		
	317	453.0	717.4		1005.3	1006.9	553.9	289.5	1.6	0
	318	454.2	719.0		1006.6	1006.9	552.7	287.9	0.2	0
	319	22.75	266.0		572.2	574.9	552.1	308.9	2.6	0
	320	1.25	331.0		573.5	574.9	573.6	243.8	1.3	0
	147	1.25	14.9		49.3	53.0	51.7	38.0	3.7	0
	149	0.66	92.6		92.6	96.9	96.2	4.3	4.3	0
	139	1.25	36.7		97.3	100.0	98.7	63.2	2.7	0
	141	117.6	131.2		141.6	143.0	25.4	11.7	1.4	0
	143	16.75	71.9		142.3	153.0	136.2	81.1	10.6	1
	145	118.9	132.6		142.9	143.0	24.1	10.4	0.1	0
	151	1.0	73.3		143.6	153.0	152.0	79.7	9.4	0
	153	144.3	144.3		144.3	143.0	0.051	0.084	0.088	0
	258	0.66	24.3		265.6	265.0	264.3	240.6	0.084	0

5, Table 1 below exhibits the anomalies detected by our model for workstation Conwip2_3_2 (𝑊𝑆 𝑖 = Conwip2_3_2). Thus, Table 1 illustrates the real Database (DB) of POs (identified by their IDs) that passed through the workstation Conwip2_3_2 from the first archive to the last. Column 𝑇 (𝑃𝑂,𝑊𝑆 𝑖 ) 𝑅 shows the actual values of the waiting time for the POs on Conwip2_3_2. Columns 𝑇 (1) 𝐸 (𝑃𝑂,𝑊𝑆 𝑖 ) , 𝑀𝑒𝑑𝑖𝑎𝑛 (𝑇 (𝑃𝑂,𝑊𝑆 𝑖 ) 𝐸 ) and 𝑇 (𝑘) 𝐸 (𝑃𝑂,𝑊𝑆 𝑖 ) indicate the estimated values of POs' waiting time. The columns 𝐸 (1) (𝑃𝑂,𝑊𝑆 𝑖 ) 𝑀𝑒𝑑𝑖𝑎𝑛 (𝐸 (𝑃𝑂,𝑊𝑆 𝑖 ) ) and 𝐸 (𝑘) (𝑃𝑂,𝑊𝑆 𝑖 ) represent the components of 𝑰𝑬𝑽 (𝑷𝑶,𝑾𝑺 𝒊 ) corresponding to each PO. The last column 𝑓( 𝑰𝑬𝑽 (𝑷𝑶,𝑾𝑺 𝒊 ) ) represents the output of our model. An output equal to one indicates an abnormal PO on Conwip2_3_2, while an output equal to zero signifies a normal PO on the workstation (Equation 6). 𝑅 (h) 𝐸 (1) (𝑃𝑂,𝑊𝑆 𝑖 ) (h) 𝑀𝑒𝑑𝑖𝑎𝑛 (𝐸 (𝑃𝑂,𝑊𝑆 𝑖 ) ) (h) 𝐸 (𝑘) (𝑃𝑂,𝑊𝑆 𝑖 ) (h) 𝑓( 𝑰𝑬𝑽 (𝑷𝑶,𝑾𝑺 𝒊 ) )

).

  

		70	70	90	3.8	3.4
	% (𝐸𝑛𝑡𝑟𝑜𝑝𝑦)	% (𝐼𝐹)	% (𝑆𝑉𝑀)	% (𝐴𝐸)	Conwip2_6_2	Conwip2_11_6
					Anomaly Rate	Anomaly Rate
					(%)	(%)
	70	70	70	70	21.05	13.33
	80	70	70	70	18.42	6.66
	90	70	70	70	7.90	6.66
	70	80	70	70	18.42	6.66
	70	90	70	70	18.42	6.66
	70	70	80	70	21.05	13.33
	70	70	90	70	18.42	13.33
	70	70	70	80	18.42	6.66

Table 4 :

 4 Variation of anomaly rate for Conwip2_6_2 and Conwip2_11_6 based on thresholds: Monte

	Carlo DB

Table 3 ,

 3 in Table5, derived from Table4, we illustrate the percentage reduction in anomaly rates for Conwip2_6_2 and Conwip2_11_6, based on variations in the thresholds for Entropy percentages and for each of the three anomaly detection techniques: IF, SVM, and AE.

		% of Anomaly Rate Reduction	% of Anomaly Rate Reduction
		Conwip2_6_2	Conwip2_11_6
	Entropy Variation	37.00	26.20
	IF Variation	44.44	19.04
	SVM Variation	20.37	0
	AE Variation	29.60	19.04

Table 5 :

 5 Reduction of Anomaly rate based on threshold: Monte Carlo DB

 2, we illustrate the percentage reduction in anomaly rates for the two workstations Conwip2_6_2 and Conwip2_11_6. This percentage reduction is based on variations in the thresholds of Entropy and the variations in threshold for each of the three classification models: IF, SVM, and AE. For instance, considering workstation Conwip2_6_2, Table 3 illustrates a 62.4% reduction in the anomaly rate, attributed to variations in the Entropy threshold. This means, that by setting the thresholds for the quantile percentages of the IF, SVM, and AE techniques at 70%, and adjusting the percentage threshold for the Entropy from 70% to 90%, there is a 62.4% reduction in the anomalies rate. 

Consistency with Monte Carlo Data

To assess the robustness of the observations obtained for a real DB, we replicated the analysis on a Monte Carlo database (Table 4). The results obtained (applying the Offline approach) are consistent with those from real DB. When the Entropy quantile threshold is reduced to 70%, the anomaly rates are 5.4% for Conwip2_6_2 and 4.2% for Conwip2_11_6. However, when this threshold is increased to 80%, the rates decrease significantly to 4.0% for Conwip2_6_2 and 3.7% for Conwip2_11_6. This finding is also confirmed with a 90% threshold, where the rates decrease to 3.4% for Conwip2_6_2 and 3.1% for Conwip2_11_6.

Anomaly Rate (%)

Conwip2_11_6

Anomaly Rate (%)