
HAL Id: hal-04328331
https://hal.science/hal-04328331

Preprint submitted on 7 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

KPP traveling waves in the half-space
Julien Berestycki, Cole Graham, Yujin H. Kim, Bastien Mallein

To cite this version:
Julien Berestycki, Cole Graham, Yujin H. Kim, Bastien Mallein. KPP traveling waves in the half-
space. 2023. �hal-04328331�

https://hal.science/hal-04328331
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr


KPP TRAVELING WAVES IN THE HALF-SPACE

JULIEN BERESTYCKI, COLE GRAHAM, YUJIN H. KIM, AND BASTIEN MALLEIN

Abstract. We study traveling waves of the KPP equation in the half-space
with Dirichlet boundary conditions. We show that minimal-speed waves are
unique up to translation and rotation but faster waves are not.

We represent our waves as Laplace transforms of martingales associated to
branching Brownian motion in the half-plane with killing on the boundary. We
thereby identify the waves’ asymptotic behavior and uncover a novel feature of
the minimal-speed wave Φ. Far from the boundary, Φ converges to a logarithmic
shift of the 1D wave 𝑤 of the same speed: lim

𝑦→∞
Φ
(
𝑥 + 1√

2
log 𝑦, 𝑦

)
= 𝑤 (𝑥).

1. Introduction

We study the KPP equation in the Dirichlet half-space:{
𝜕𝑡𝑢 = 1

2Δ𝑢 + 𝑢 − 𝑢2 in ℍ𝑑 ,

𝑢 = 0 on 𝜕ℍ𝑑 .
(1.1)

Here ℍ𝑑 B ℝ𝑑−1 × ℝ+ and 𝑑 ≥ 2. This reaction–di�usion equation exhibits a
wealth of propagation phenomena including traveling waves—solutions that move
at constant speed parallel to the boundary. In this paper, we exploit the close
relationship between (1.1) and branching Brownian motion to construct a host of
traveling waves and characterize those of minimal speed. [inline]Add sentence
highlighting other nonlinearities; direct reader to remark belwo where we provide
formulæ.

Motivation. Reaction–di�usion equations model phenomena in �elds ranging
from chemistry to sociology. They can describe the progression of a chemical
reaction through a medium or a species invading new territory. Fundamentally,
reaction–di�usion equations combine growth and dispersal; together, these fea-
tures generate spatial propagation. At long times, such propagation commonly
settles into a constant-speed pattern known as a traveling wave. Rigorously, on
the line, solutions of reaction–di�usion equations with localized initial data of-
ten converge to traveling waves in suitable moving frames [2, 16]. In multiple
dimensions, the same holds in the whole space [8] and in cylinders with compact
cross-section [4, 21].

The half-space is a complex intermediate—both anisotropic and transversally
noncompact. In [3], H. Berestycki and the second author construct traveling
waves of any speed 𝑐 ≥

√
2 in the half-space and show that localized disturbances

roughly propagate at speed
√
2. Two major questions remain: are the traveling
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waves unique up to translation, and do parabolic solutions converge to such waves
in a suitable frame? Here, we address the �rst question; we consider the second in
a forthcoming work.

In one dimension, traveling waves of a given speed are unique up to translation.
In multiple dimensions, however, traveling waves in the whole space with super-
critical speeds 𝑐 >

√
2 are not unique. This multiplicity is due to waves with level

sets oblique to the direction of propagation [9]. In contrast, the minimal speed
√
2

does not support oblique level sets. Minimal-speed waves are planar and unique
up to translation and rotation [10]. We show that the half-space exhibits similar
behavior. Up to isometry, the half-space supports a single minimal-speed wave but
many supercritical waves. To our knowledge, this is the �rst proof of uniqueness
for traveling waves with nontrivial and noncompact transverse structure.

We are further motivated by the remarkable relationship between the PDE
(1.1) and the stochastic branching particle system known as branching Brownian
motion (BBM). Precisely, solutions of (1.1) constitute the Laplace transform of BBM.
First observed by McKean [22], this relationship has long been used to study both
(1.1) and BBM. For example, one-dimensional traveling waves can be expressed as
Laplace transforms of martingales associated to BBM [12, 13, 17, 18].

Here, we develop this theory in the half-space. We express our traveling waves
on ℍ𝑑 as Laplace transforms of certain martingales associated to BBM in ℍ𝑑 .
Using this representation, we determine the large-scale structure of said waves
and uncover unexpected asymptotic phenomena in the minimal-speed setting. Our
approach interweaves analytic and probabilistic arguments in novel fashion. This
is not a mere convenience—we are presently unable to prove the full complement
of our results using either discipline alone. Our reasoning and results thus shed
light on the deep relationship between (1.1) and BBM in the half-space.

Results. We denote coordinates on ℍ𝑑 by x = (𝑥, x′, 𝑦) ∈ ℝ × ℝ𝑑−2 × ℝ+. We
study traveling-wave solutions of (1.1) that move parallel to the boundary. Due to
the rotational symmetry of ℍ𝑑 orthogonal to 𝜕ℍ𝑑 , we are free to assume that our
waves move in the +𝑥 direction. Then a traveling wave solution of (1.1) of speed
𝑐 ≥ 0 takes the form Ψ(𝑥 − 𝑐𝑡, x′, 𝑦) for some Ψ ∈ C2(ℍ𝑑 ) ∩ C (ℍ𝑑 ). It follows that
Ψ satis�es the elliptic reaction–di�usion equation{

1
2ΔΨ + 𝑐𝜕𝑥Ψ + Ψ − Ψ2 = 0 in ℍ𝑑 ,

Ψ = 0 on 𝜕ℍ𝑑 .
(1.2)

We restrict our attention to bounded solutions of (1.2). By the maximum principle,
all such solutions lie between 0 and 1.

Some solutions of (1.2) depend solely on the distance 𝑦 to the boundary 𝜕ℍ𝑑 .
In this case the drift term 𝑐𝜕𝑥Ψ vanishes, so such solutions are steady states of
the parabolic problem (1.1). H. Berestycki and the second author have shown
that the half-space supports precisely two nonnegative bounded steady states
[3, Theorem 1.1(A)]. These are 0 and 𝜑 (𝑦), the unique positive bounded solution
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of the following ODE on ℝ+:
1
2
𝜑 ′′ + 𝜑 − 𝜑2 = 0, 𝜑 (0) = 0. (1.3)

To ensure our traveling waves vary in 𝑥 , we forbid these two “trivial” solutions.

De�nition 1.1. A traveling wave of speed 𝑐 ≥ 0 is a nonnegative bounded solution
of (1.2) that is neither 0 nor 𝜑 .

In Theorem 1.4(A) of [3], H. Berestycki and the second author also considered
the existence of traveling waves: ℍ𝑑 supports a traveling wave of speed 𝑐 if and
only if 𝑐 ≥ 𝑐∗ B

√
2. In this paper, we consider the uniqueness and structure of

such waves. We �rst discuss uniqueness.

Theorem 1.1. For each 𝑑 ≥ 2, there is exactly one traveling wave on ℍ𝑑 of speed
𝑐∗ =

√
2, up to translation. In contrast, for every 𝑐 > 𝑐∗, there exist in�nitely many

traveling waves of speed 𝑐 that are distinct modulo translation.

We note that a traveling wave on ℍ2 extends to a wave on ℍ𝑑 . Hence the
unique minimal-speed wave onℍ𝑑 depends on 𝑥 and 𝑦 alone. In fact, the reduction
to two dimensions (Proposition 4.3 below) is an important step in the proof of
Theorem 1.1. Thanks to this reduction, most of our analysis takes place in the
half-plane ℍ B ℍ2 = ℝ×ℝ+.

To prove Theorem 1.1, we exploit the connection between the KPP equation (1.2)
and branching Brownian motion. In our probabilistic analysis, we �x 𝑑 = 2 and
thus work onℍ = ℝ×ℝ+. Let

(
𝑋𝑡 (𝑢), 𝑌𝑡 (𝑢) ; 𝑢 ∈ N𝑡

)
denote a BBM inℝ2 without

killing; N𝑡 is the set of particles alive at time 𝑡 and
(
𝑋𝑡 (𝑢), 𝑌𝑡 (𝑢)

)
is the position

of particle 𝑢 at time 𝑡 . Each particle moves in ℝ2 according to an independent
two-dimensional Brownian motion and splits at unit rate into two child particles.
Given 𝑢 ∈ N𝑡 and 𝑠 ≤ 𝑡 , we write

(
𝑋𝑠 (𝑢), 𝑌𝑠 (𝑢)

)
for the position at time 𝑠 of the

unique ancestor of 𝑢 alive at time 𝑠 . Let ℙ𝑦 denote the law of the BBM started
from a single particle at position (0, 𝑦).

Our half-plane BBM is the process
(
𝑋𝑡 (𝑢), 𝑌𝑡 (𝑢) ; 𝑢 ∈ N +

𝑡

)
, where

N +
𝑡 B

{
𝑢 ∈ N𝑡 : inf

𝑠≤𝑡
𝑌𝑠 (𝑢) > 0

}
.

In words, it is a branching Brownian motion whose particles are killed when they
hit the boundary 𝜕ℍ. We de�ne an associated derivative martingale

𝑍𝑡 B
∑︁

𝑢∈N +
𝑡

[√
2𝑡 − 𝑋𝑡 (𝑢)

]
𝑌𝑡 (𝑢)e

√
2𝑋𝑡 (𝑢)−2𝑡 (1.4)

by analogy with BBM in ℝ. We also de�ne a two-parameter family of additive
martingales

𝑊
𝜆,𝜇

𝑡 B
∑︁

𝑢∈N +
𝑡

e𝜆𝑋𝑡 (𝑢) sinh[𝜇𝑌𝑡 (𝑢)]e−(𝜆
2/2+𝜇2/2+1)𝑡 for 𝜆, 𝜇 > 0. (1.5)

The long-time limits of these martingales play a central role in our analysis.

Proposition 1.2. The following hold for any 𝑦 > 0:
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(i) 𝑍 is a ℙ𝑦 -martingale with a.s. limit 𝑍∞ 	 0.

(ii) 𝑊 𝜆,𝜇 is a nonnegative ℙ𝑦 -martingale with a.s. limit𝑊 𝜆,𝜇
∞ . If 𝜆2 + 𝜇2 < 2,

then𝑊 𝜆,𝜇
∞ 	 0. Otherwise,𝑊 𝜆,𝜇

∞ = 0 ℙ𝑦 -a.s.

The notation𝑀 	 0 indicates a nonnegative random variable𝑀 that is not almost
surely zero. For analogous results in one dimension, see, for example, [17, 18].

We now construct KPP traveling waves from the Laplace transforms of these
martingale limits. In the following, 𝔼𝑦 denotes expectation with respect to ℙ𝑦 .

Theorem 1.3. The function

Φ(𝑥, 𝑦) B 1 − 𝔼𝑦 exp
(
−e−

√
2𝑥𝑍∞

)
(1.6)

is a shift of the unique minimal-speed traveling wave onℍ. Moreover, for all 𝜆, 𝜇 > 0
such that 𝜆2 + 𝜇2 < 2,

Φ𝜆,𝜇 (𝑥, 𝑦) B 1 − 𝔼𝑦 exp
(
−e−𝜆𝑥𝑊 𝜆,𝜇

∞

)
(1.7)

is a traveling wave of speed (𝜆2 + 𝜇2 + 2)/(2𝜆) >
√
2.

Theorems 1.1 and 1.3 are closely related. To prove minimal-speed uniqueness in
Theorem 1.1, we relate an arbitrary minimal-speed wave to the particular wave
Φ de�ned in (1.6). Drawing on the comparison principle and potential theory,
we show that all minimal-speed traveling waves satisfy a certain tail bound. In
probability, this is known as tameness— traveling waves cannot be too exotic.
Following [1], we then use a probabilistic “disintegration” argument to show that
every tame wave is necessarily a shift of Φ.

This strategy di�ers from purely analytic approaches to traveling-wave unique-
ness. It has been standard practice in the analytic literature to prove sharp asymp-
totic behavior as a precursor to uniqueness; see, e.g., [4]. Here, we only need an
upper bound in the form of tameness; the probabilistic disintegration handles the
rest. It seems likely that this hybrid approach could bear fruit in other problems.

The multiplicity of supercritical traveling waves in Theorem 1.1 follows from
the fact that we construct a two-parameter family of waves in Theorem 1.3. As a
result, there are generally many waves with the same speed. Let Q ⊂ ℝ2

+ denote
the open quarter-disk of radius

√
2 centered at the origin. Given 𝑐 > 𝑐∗, we de�ne

P𝑐 B
{
(𝜆, 𝜇) ∈ Q : (𝜆 − 𝑐)2 + 𝜇2 = 𝑐2 − 2

}
. (1.8)

Then P𝑐 is the set of parameters (𝜆, 𝜇) such that Φ𝜆,𝜇 is a traveling wave with
speed 𝑐 . The arcs P𝑐 foliate the quarter-disk Q by speed:
As 𝑐 → 𝑐∗, the set P𝑐 converges to the single point (

√
2, 0), which is formally

associated with the derivative martingale 𝑍 . This collapse hints at the uniqueness
of the minimal-speed wave. For a more complete discussion of the phenomenology
along the boundary of Q, see Section 3.2.

We now turn to the asymptotic behavior of our traveling waves. The limits as
𝑥 → ±∞ are fairly simple: our waves are heteroclinic orbits connecting the steady
state 𝜑 on the left with 0 on the right. The waves exhibit more subtle behavior



KPP TRAVELING WAVES IN THE HALF-SPACE 5
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P3/2

P6

Q

𝜇

𝜆

Figure 1. Parameter space for the supercritical waves Φ𝜆,𝜇 . Waves
corresponding to (𝜆, 𝜇) ∈ P𝑐 move with speed 𝑐 > 𝑐∗.

when we take 𝑦 → ∞. In this regime, the boundary recedes and our waves become
asymptotically one-dimensional. Given 𝑐 ≥ 𝑐∗, let 𝑤𝑐 denote the unique (up to
translation) one-dimensional traveling wave of speed 𝑐 , which satis�es the ODE

1
2
𝑤 ′′
𝑐 + 𝑐𝑤 ′

𝑐 +𝑤𝑐 −𝑤2
𝑐 = 0, 𝑤𝑐 (−∞) = 1, 𝑤𝑐 (+∞) = 0.

To fully determine 𝑤𝑐 , we work with the translate given by the Laplace transform
of a 𝑐-dependent martingale related to one-dimensional BBM; see (1.11) and (6.3)
for details.

At the minimal speed, we show that Φ converges to 𝑤𝑐∗ as 𝑦 → ∞ after a
horizontal shift that is logarithmic in 𝑦 . This novel phenomenon re�ects the
delicate structure of the derivative martingale 𝑍 , as we discuss below. Supercritical
waves exhibit a di�erent complication: they are asymptotically one-dimensional
but tilted with respect to the coordinate axes. Given (𝜆, 𝜇) ∈ Q, let 𝑅𝜆,𝜇 denote
clockwise rotation by the angle arctan(𝜇/𝜆). We show that the rotated wave
Φ𝜆,𝜇 ◦ 𝑅𝜆,𝜇 converges to a one-dimensional wave of speed

𝑐 (𝜆, 𝜇) B 𝜆2 + 𝜇2 + 2
2
√︁
𝜆2 + 𝜇2

. (1.9)

To simplify the resulting statement, we extend Φ𝜆,𝜇 by 0 to the entire plane ℝ2.

Theorem 1.4. Every wave Φ∗ in the collection {Φ,Φ𝜆,𝜇} (𝜆,𝜇) ∈Q satis�es 0 < Φ∗ < 1,
𝜕𝑥Φ

∗ < 0, and 𝜕𝑦Φ∗ > 0. The limits

Φ∗(−∞, · ) = 𝜑 and Φ∗(+∞, · ) = 0

hold uniformly and locally uniformly, respectively. Moreover, as 𝑦 → ∞,

Φ
(
𝑥 + 1√

2
log 𝑦, 𝑦

)
→ 𝑤𝑐∗ (𝑥) and Φ𝜆,𝜇 ◦ 𝑅𝜆,𝜇 (𝑥, 𝑦) → 𝑤𝑐 (𝜆,𝜇) (𝑥) (1.10)

uniformly in 𝑥 for all (𝜆, 𝜇) ∈ Q, with 𝑐 (𝜆, 𝜇) given in (1.9).

The speed of Φ𝜆,𝜇 in Theorem 1.3 is (𝜆2 + 𝜇2 +2)/(2𝜆), which di�ers from 𝑐 (𝜆, 𝜇)
in (1.9) and Theorem 1.4. The former is the speed of Φ𝜆,𝜇 in the 𝑥-direction. The
latter is the apparent motion of Φ𝜆,𝜇 perpendicular to its level sets in the 𝑦 → ∞
limit. The discrepancy re�ects the fact that the asymptotic level sets of Φ𝜆,𝜇 are
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tilted at angle 𝜃 (𝜆, 𝜇) B arctan(𝜇/𝜆) relative to vertical. Thus the speeds di�er by
the geometric factor cos𝜃 (𝜆, 𝜇).

Traveling waves with asymptotically oblique level sets have been previously
studied in the whole space for a variety of reactions [6, 9]. In the KPP setting,
Hamel and Nadirashvili [10] have constructed an in�nite-dimensional manifold of
multidimensional traveling waves. We believe that their construction is closely
related to the parameter space Q depicted in Figure 1. In the half-space, one can
construct an analogous manifold of waves of a given speed 𝑐 > 𝑐∗ by taking
arbitrary convex combinations of the additive martingales {𝑊 𝜆,𝜇} (𝜆,𝜇) ∈P𝑐

. We
speculate that the link between traveling waves and martingales can be used to
rigorously classify all traveling waves on ℍ𝑑 , and indeed on ℝ𝑑 .

As alluded to above, the most surprising feature of Theorem 1.4 is the loga-
rithmic shift 1√

2
log 𝑦 in Φ as 𝑦 → ∞. From a probabilistic standpoint, this novel

phenomenon can be explained as follows. Recall that (1.6) expresses Φ in terms of
the derivative martingale 𝑍 de�ned in (1.4). As we move away from the boundary,
the role of killing lessens, and we might expect 𝑍 to resemble a one-dimensional
derivative martingale. In this spirit, de�ne

𝐷𝑡 B
∑︁
𝑢∈N𝑡

[√
2𝑡 − 𝑋𝑡 (𝑢)

]
e
√
2𝑋𝑡 (𝑢)−2𝑡 .

Note that this sum ranges over the entire populationN𝑡 of the BBM inℝ2. Thus 𝐷
neglects killing, and is in fact the classical one-dimensional derivative martingale.
It has an a.s. positive limit 𝐷∞ whose Laplace transform is the minimal-speed
one-dimensional traveling wave:

𝑤𝑐∗ (𝑥) B 1 − 𝔼 exp
(
−e−

√
2𝑥𝐷∞

)
. (1.11)

In Proposition 6.2, we use a �rst and second moment method conditioned on
horizontal motion to show that

𝑍∞(𝑦)/𝑦 → 𝐷∞ in probability as 𝑦 → ∞ (1.12)

for a family of random variables 𝑍∞(𝑦) with the law of 𝑍∞ under ℙ𝑦 . Interpreting
(1.12) through the de�nitions (1.6) and (1.11), we �nd

Φ
(
𝑥 + 1√

2
log 𝑦, 𝑦

)
= 1 − 𝔼 exp

(
−e−

√
2𝑥𝑍∞(𝑦)/𝑦

)
→ 𝑤𝑐∗ (𝑥) as 𝑦 → ∞.

Thus, the limiting relation (1.12) between the martingales 𝑍 and 𝐷 implies the
asymptotic behavior of Φ in Theorem 1.4. We take a similar (simpler) approach to
the asymptotics of the supercritical waves Φ𝜆,𝜇 ; see Proposition 6.5 for details.

The asymptotic tail behavior of the minimal-speed wave has historically played
an important role in the study of KPP propagation [11, 18]. We expect the same will
be true on the half-space. We therefore develop a more precise understanding of
the asymptotics of Φ as 𝑥 → ∞. These are related to the well-known tail behavior
of the one-dimensional wave: there exist 𝐾∗ > 0, 𝑎 ∈ ℝ, and 𝛿 > 0 such that

𝑤𝑐∗ (𝑥) = 𝐾∗
[
𝑥 + 𝑎 +O

(
e−𝛿𝑥

) ]
e−

√
2𝑥 as 𝑥 → ∞. (1.13)

In the following, we let log+ 𝑠 B max{log 𝑠, 0} and recall that x B (𝑥, 𝑦) on ℍ.
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Theorem 1.5. There exists 𝐸 ∈ 𝐿∞(ℍ) such that if 𝑥 > 1√
2
log+ 𝑦 ,

Φ(𝑥, 𝑦) = 𝐾∗
[
𝑥 − 1√

2
log+ ‖x‖ + 𝐸 (𝑥, 𝑦)

]
𝑦e−

√
2𝑥 . (1.14)

Our proof is rooted in potential theory and uses Theorem 1.4 as input.
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Note that if we evaluate Φ at
(
𝑥 + 1√

2
log 𝑦, 𝑦

)
and take 𝑦 → ∞, the asymptotic

behavior in (1.14) comports with (1.10) and (1.13). We highlight one �nal curiosity:
if we instead hold 𝑦 �xed and take 𝑥 → ∞, we �nd

Φ(𝑥, 𝑦) = 𝐾∗
[
𝑥 − 1√

2
log𝑥 +O𝑦 (1)

]
𝑦e−

√
2𝑥 ,

where the implied constant in O𝑦 (1) depends on 𝑦 . This hearkens to (1.13) but
includes a log𝑥 correction in the algebraic prefactor. We are unaware of an
analogue of this behavior in any other context.

Organization. The remainder of the paper is organized as follows. In Section 2,
we develop the theory of BBM in the half-plane and prove Proposition 1.2. We
construct our traveling waves in Section 3 and thus prove Theorem 1.3. In Section 4,
we use purely analytic methods to prove a sharp upper bound—tameness—for
all minimal-speed traveling waves. We employ this tameness in a disintegration
argument to prove the uniqueness of the minimal-speed wave in Section 5. Finally,
Section 6 concerns the asymptotic behavior of our traveling waves and concludes
the proofs of Theorems 1.1, 1.4, and 1.5.
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2. Branching Brownian motion in the half-plane

In this section, we develop the theory of branching Brownian motion in the
half-plane. Motivated by the traveling wave construction in Theorem 1.3, we
investigate the convergence of various martingales associated to the BBM. In
particular, in this section we prove Proposition 1.2. Throughout, we take 𝑑 = 2 and
thus work on the half-plane ℍ B ℝ×ℝ+.

Recall that we are interested in the derivative martingale 𝑍 and the additive
martingales𝑊 𝜆,𝜇 de�ned in (1.4) and (1.5), respectively. The convergence of the
latter is relatively straightforward, as𝑊 𝜆,𝜇 is uniformly integrable if and only if
𝜆2 + 𝜇2 < 2; see Section 2.4 below. The derivative martingale 𝑍 poses more of
a challenge—it has inde�nite sign and is not uniformly integrable. We therefore



KPP TRAVELING WAVES IN THE HALF-SPACE 9

treat its convergence in several steps. We begin in Section 2.2 by showing that the
so-called critical additive martingale

𝑊𝑡 B
∑︁

𝑢∈N +
𝑡

𝑌𝑡 (𝑢)e
√
2𝑋𝑡 (𝑢)−2𝑡

converges to 0 almost surely as 𝑡 → ∞. Next, we de�ne “shaved” approximations
of the derivative martingale 𝑍 and prove their uniform integrability in Section 2.3.
In combination, these results su�ce to show that the convergence of the derivative
martingale 𝑍 .

2.1. Branching Brownian motion in one dimension. Our analysis relies on the
standard theory of BBM in one dimension. Here we recall various elements of this
theory, including the so-called spine decomposition. We will subsequently adapt
these ideas to the half-plane setting.

Recall that (𝑋𝑡 (𝑢), 𝑌𝑡 (𝑢) ; 𝑢 ∈ N𝑡 ) is a branching Brownian motion in the plane
ℝ2 without killing. It follows that (𝑋𝑡 (𝑢) ; 𝑢 ∈ N𝑡 ) is a BBM on the line ℝ started
from 0. Given 𝑡 ≥ 0, we let

H𝑡 B 𝜎
(
𝑋𝑠 (𝑢) ; 𝑢 ∈ N𝑠 , 𝑠 ≤ 𝑡

)
denote the �ltration associated to this horizontal part of the BBM. Note that the
genealogical tree T is measurable with respect to H. Moreover, conditionally on
H, the process (𝑌𝑡 (𝑢) ; 𝑢 ∈ N𝑡 ) can be seen as an independent Brownian motion
indexed by T .

The critical additive and derivative martingales of the BBM (𝑋𝑡 (𝑢) ; 𝑢 ∈ N𝑡 )
are the processes

𝐴𝑡 B
∑︁
𝑢∈N𝑡

e
√
2𝑋𝑡 (𝑢)−2𝑡 , (2.1)

𝐷𝑡 B
∑︁
𝑢∈N𝑡

[√
2𝑡 − 𝑋𝑡 (𝑢)

]
e
√
2𝑋𝑡 (𝑢)−2𝑡 .

The asymptotic behavior of these martingales is closely related to the asymptotic
behavior of extremal particles in BBM. In [18], Lalley and Sellke proved that

lim
𝑡→∞

𝐴𝑡 = 0 and lim
𝑡→∞

𝐷𝑡 = 𝐷∞ > 0 a.s. (2.2)

In turn, the Laplace transform of 𝐷∞ yields a minimal-speed traveling wave of the
KPP equation in one dimension; see (1.11).

We now describe the main steps in the proof of (2.2) and thereby introduce
several important tools that we subsequently deploy in the half-plane. Following
[7, 19, 20], we study the law of BBM biased by an associated nonnegative martin-
gale. This allows us to make use of the following characterization of absolutely
continuous random measures.

Proposition 2.1. Let (𝑀𝑡 )𝑡 ≥0 be a mean one nonnegative (F𝑡 )𝑡 ≥0-martingale under
law ℙ. De�ne a new probability measure ℚ on F∞ via ℚ(𝐸) B 𝔼ℙ (𝑀𝑡 1𝐸) for all
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𝑡 ≥ 0 and 𝐸 ∈ F𝑡 , written ℚ = 𝑀ℙ for short. The martingale 𝑀𝑡 converges almost
surely under both ℙ and ℚ; we write𝑀∞ for the a.s. limit. Then

ℚ(𝐸) = 𝔼ℙ (𝑀∞1𝐸) + ℚ(𝐸 ∩ {𝑀∞ = ∞}) for all 𝐸 ∈ F∞.

In particular, the following are equivalent:
(i) 𝑀 is uniformly integrable with respect to ℙ;

(ii) 𝔼ℙ𝑀∞ = 1;
(iii) ℚ(𝑀∞ = ∞) = 0.

Suppose we wish to show that𝑀 converges ℙ-almost surely to a nondegenerate
limit. By Proposition 2.1, it su�ces to show that lim inf𝑡→∞𝑀𝑡 < ∞ ℚ-a.s. Like-
wise, the inverse result follows if lim sup𝑡→∞𝑀𝑡 = ∞ ℚ-a.s. Thus to prove that
𝑀𝑡 → 0 under ℙ, one need only show that𝑀 diverges under ℚ; this is typically
much easier (see the proof of Proposition 2.3).

In the remainder of the subsection, let ℙ denote the law of the one-dimensional
BBM (𝑋𝑡 (𝑢) ; 𝑢 ∈ N𝑡 ). Recalling the critical additive martingale 𝐴 from (2.1), we
de�ne the tilted probability measure ℙ̃ B 𝐴ℙ. The seminal spine decomposition of
[7, 19] states that under ℙ̃, the process (𝑋𝑡 (𝑢) ; 𝑢 ∈ N𝑡 ) is a branching Brownian
motion with a spine: a distinguished particle that moves and reproduce di�erently.

More precisely, let ℙ̌ denote the law of the following process (𝑋𝑡 (𝑢) ; 𝑢 ∈ N𝑡 )
augmented with a distinguished spine particle 𝜉𝑡 ∈ N𝑡 . The process begins with a
single spine particle at the origin, which performs a Brownian motion with drift√
2. After an independent exponential time 𝑡 of parameter 2, this particle splits into

two children, one of which is designated the new spine particle 𝜉𝑡 . The new spine
performs a copy of the above process from its birth location, while the non-spine
child starts an independent BBM (without spine). Spine decomposition theorems
for branching Brownian motion are originally due to Chauvin and Rouault [7]. A
trajectorial construction was �rst developed by Lyons, Pemantle, and Peres for
the Galton–Watson process [20]; Lyons later generalized this to spatial branching
processes [19].

Proposition 2.2. For all 𝑡 ≥ 0 and 𝐸 ∈ H𝑡 , we have ℙ̌(𝐸) = ℙ̃(𝐸). Moreover,

ℙ̌
(
𝜉𝑡 = 𝑢 | H𝑡

)
= 𝐴−1

𝑡 e
√
2𝑋𝑡 (𝑢)−2𝑡 for all 𝑢 ∈ N𝑡 .

In other words, the law of (𝑋𝑡 (𝑢) ; 𝑢 ∈ N𝑡 ) is identical under ℙ̌ and ℙ̃. Moreover,
conditionally on the position of the particles, the spine particle is 𝑢 ∈ N𝑡 with
probability proportional to e

√
2𝑋𝑡 (𝑢) .

This proposition can be combined with Proposition 2.1 to show that 𝐴𝑡 → 0
almost surely. Indeed, note that

𝐴𝑡 =
∑︁
𝑢∈N𝑡

e
√
2𝑋𝑡 (𝑢)−2𝑡 ≥ e

√
2𝑋𝑡 (𝜉𝑡 )−2𝑡 .

Under ℙ̌, the process 𝑡 ↦→
√
2𝑋𝑡 (𝜉𝑡 ) − 2𝑡 is a driftless Brownian motion, so

lim sup𝑡→∞𝐴𝑡 = ∞ ℙ̌-a.s. Applying Proposition 2.1 to the event 𝐸 = {𝐴∞ < ∞},
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we obtain
𝔼ℙ𝐴∞ = ℙ̌(𝐴∞ < ∞) = 0.

Since 𝐴∞ is nonnegative, 𝐴∞ = 0 ℙ-a.s.
To treat the derivative martingale 𝐷𝑡 , we “shave” it, using the same technique

as in [5]. Given 𝛼 > 0 and 𝑡 ≥ 0, let

N 𝛼
𝑡 B

{
𝑢 ∈ N𝑡 : 𝑋𝑠 (𝑢) ≤

√
2𝑠 + 𝛼 for all 𝑠 ≤ 𝑡

}
denote the population of particles that remain below the curve

√
2𝑡 + 𝛼 . Then we

de�ne the shaved derivative martingale

𝐷𝛼
𝑡 B

∑︁
𝑢∈N𝛼

𝑡

[√
2𝑡 + 𝛼 − 𝑋𝑡 (𝑢)

]
e
√
2𝑋𝑡 (𝑢)−2𝑡 . (2.3)

For all 𝛼 > 0, 𝐷𝛼 is a nonnegative martingale converging almost surely to some
𝐷𝛼
∞ as 𝑡 → ∞. Using Proposition 2.2, one can associate a spine decomposition to

the lawℚ𝛼 = 𝐷𝛼ℙ under which
√
2𝑡 +𝛼 −𝑋𝑡 (𝜉𝑡 ) is a Bessel process of dimension 3.

Applying Proposition 2.1, one can then show that 𝐷𝛼 is uniformly integrable, and
therefore 𝐷𝛼

∞ is nondegenerate.
To relate 𝐷𝛼 to 𝐷 , we use the following fact. With probability 1, there exists

(random) 𝛼0 > 0 such that N 𝛼
𝑡 = N𝑡 for all 𝑡 ≥ 0 and 𝛼 > 𝛼0. More precisely,

if 𝑀𝑡 = maxN𝑡
𝑋𝑡 (𝑢) denotes the maximal displacement at time 𝑡 , then it is well

known (see, e.g., [18]) that

lim inf
𝑡→∞

√
2𝑡 −𝑀𝑡 = +∞ a.s. (2.4)

In particular, it follows that𝑀 B sup𝑡 ≥0(𝑀𝑡 −
√
2𝑡) < ∞ a.s. Hence for all 𝛼 > 𝑀

and 𝑡 ≥ 0, we have

𝐷𝛼
𝑡 =

∑︁
𝑢∈N𝑡

[√
2𝑡 + 𝛼 − 𝑋𝑡 (𝑢)

]
e
√
2𝑋𝑡 (𝑢)−2𝑡 = 𝐷𝑡 + 𝛼𝐴𝑡 .

We showed above that 𝐴𝑡 → 0 as 𝑡 → ∞. It follows that 𝐷𝑡 has limit 𝐷∞ = 𝐷𝛼
∞

a.s. when 𝛼 > 𝑀 . This also shows that the map 𝛼 ↦→ 𝐷𝛼
∞ is constant above the

random threshold𝑀 . Hence 𝐷𝑡 converges almost surely as 𝑡 → ∞ to the limit

𝐷∞ = lim
𝛼→∞

𝐷𝛼
∞.

In the remainder of the section, we adapt this approach to show that the deriva-
tive martingale 𝑍 in the half-plane has a nondegenerate long-time limit.

2.2. The critical additive martingale in the half-plane. We now consider our
BBM in the half-plane ℍ. Given 𝑡 ≥ 0, let

F𝑡 B 𝜎
(
𝑋𝑠 (𝑢), 𝑌𝑠 (𝑢) ; 𝑢 ∈ N𝑠 , 𝑠 ≤ 𝑡

)
and F∞ = 𝜎 (∪𝑡 ≥0F𝑡 )

denote the �ltration associated with the BBM in the entire plane ℝ2. We implicitly
use the term martingale with respect to this �ltration. Recall the critical additive
martingale de�ned by

𝑊𝑡 =
∑︁

𝑢∈N +
𝑡

𝑌𝑡 (𝑢)e
√
2𝑋𝑡 (𝑢)−2𝑡 .
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In this subsection, we show that𝑊 vanishes in the long-time limit.

Proposition 2.3. The process𝑊 is a ℙ𝑦 -martingale and𝑊𝑡 → 0 ℙ𝑦 -a.s. as 𝑡 → ∞.

It is easy to check that𝑊 is a nonnegative ℙ𝑦 -martingale.

Proof that𝑊 is a martingale. We employ the so-called many-to-one lemma: by
linearity of expectation,

𝔼𝑦𝑊𝑡 = 𝔼𝑦

( ∑︁
𝑢∈N𝑡

𝑌𝑡 (𝑢)e
√
2𝑋𝑡 (𝑢)−2𝑡 1{𝑌𝑠 (𝑢) ≥0 ; 𝑠≤𝑡 }

)
= e𝑡𝔼𝑦

(
𝑌𝑡e

√
2𝑋𝑡−2𝑡 1{𝑌𝑠 ≥0 ; 𝑠≤𝑡 }

)
,

where (𝑋,𝑌 ) is a 2-dimensional standard Brownian motion started from (0, 𝑦).
We have used the fact that the expected population size at time 𝑡 ≥ 0 is e𝑡 , due to
the rate-1 branching. As a result, by independence and the martingale properties
of e

√
2𝑋𝑡−𝑡 and 𝑌𝑡 , we have

𝔼𝑦𝑊𝑡 = 𝔼

(
e
√
2𝑋𝑡−𝑡

)
𝔼𝑦

(
𝑌𝑡 1{𝑌𝑠 ≥0 ; 𝑠≤𝑡 }

)
= 𝑦.

Then the branching property of the BBM yields

𝔼𝑦 (𝑊𝑡+𝑠 | F𝑡 ) =
∑︁

𝑢∈N +
𝑡

e
√
2𝑋𝑡 (𝑢)−2𝑡𝔼𝑌𝑡 (𝑢)𝑊𝑠 =𝑊𝑡

for all 𝑡, 𝑠 ≥ 0. That is,𝑊 is a ℙ𝑦 martingale. �

It follows that 𝑦−1𝑊 is a mean-1 martingale, so we can de�ne a tilted probability
measure ℙ𝑦 B 𝑦−1𝑊ℙ𝑦 . We relate this to an associated spine decomposition.

Let ℙ̂𝑦 denote the law of the branching Brownian motion with spine constructed
as follows. Let 𝐵 be a Brownian motion started from 0 and 𝑆 be an independent
Bessel process of dimension 3 started from 𝑦 . Our BBM with spine starts with
a single spine particle that moves according to the process 𝑡 ↦→ (𝐵𝑡 +

√
2𝑡, 𝑆𝑡 ).

After an independent exponential time of parameter 2, this particle splits into
two children, one of which is designated the new spine particle. The new spine
performs a copy of the above process from its birth location, while the non-spine
child starts an independent BBM (without spine) in ℍ with killing on 𝜕ℍ. We
let

(
𝑋𝑡 (𝑢), 𝑌𝑡 (𝑢) ; 𝑢 ∈ N +

𝑡

)
denote the positions of the particles at time 𝑡 and let

𝜉𝑡 ∈ N +
𝑡 denote the label of the spine. Note that the identity 𝜉 of the spine is not

measurable with respect to F .
The spine decomposition theorem states that ℙ𝑦 = ℙ̂𝑦 on F∞.

Proposition 2.4. For all 𝑡 ≥ 0 and 𝐸 ∈ F𝑡 , we have ℙ̂𝑦 (𝐸) = ℙ𝑦 (𝐸). Moreover,

ℙ̂𝑦 (𝜉𝑡 = 𝑢 | F𝑡 ) =𝑊 −1
𝑡 𝑌𝑡 (𝑢)e

√
2𝑋𝑡 (𝑢)−2𝑡 for all 𝑢 ∈ N +

𝑡 . (2.5)

Proof. To begin, we augment the one-dimensional spine decomposition introduced
in the previous subsection with vertical motion. We let the spine particle move as
an independent standard Brownian motion in the 𝑦-direction while performing its
previously-described horizontal motion. Likewise, we let the non-spine children
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perform standard BBMs in ℝ2. Let ℙ̌𝑦 denote the law of this spine process in ℝ2,
which of course di�ers from the law ℙ̂ introduced above. Let ℙ̃𝑦 B 𝐴ℙ𝑦 denote
the tilt of ℙ𝑦 with respect to the horizontal additive martingale 𝐴𝑡 de�ned in (2.1).
Then Proposition 2.2 can be easily extended to show that ℙ̌𝑦 = ℙ̃𝑦 on F∞ and

ℙ̌𝑦 (𝜉𝑡 = 𝑢 | F𝑡 ) = 𝐴−1
𝑡 e

√
2𝑋𝑡 (𝑢)−2𝑡 for all 𝑢 ∈ N𝑡 . (2.6)

Now �x 𝑡 ≥ 0 and 𝐸 ∈ F𝑡 . By de�nition,

ℙ𝑦 (𝐸) = 𝑦−1𝔼𝑦
©­«1𝐸

∑︁
𝑢∈N +

𝑡

𝑌𝑡 (𝑢)e
√
2𝑋𝑡 (𝑢)−2𝑡ª®¬ .

Using (2.6) and the de�nition of the tilted measure ℙ̃𝑦 , this becomes

ℙ𝑦 (𝐸) = 𝑦−1𝔼̃𝑦
©­«1𝐸

∑︁
𝑢∈N +

𝑡

𝑌𝑡 (𝑢)ℙ̌𝑦 (𝜉𝑡 = 𝑢 | F𝑡 )
ª®¬ .

The integrand is measurable with respect to F𝑡 , on which ℙ̌𝑦 = ℙ̃𝑦 , so

ℙ𝑦 (𝐸) = 𝑦−1𝔼̌𝑦
©­«1𝐸

∑︁
𝑢∈N +

𝑡

𝑌𝑡 (𝑢)ℙ̌𝑦 (𝜉𝑡 = 𝑢 | F𝑡 )
ª®¬ .

Now linearity of expectation and the tower property yield

ℙ𝑦 (𝐸) = 𝑦−1𝔼̌𝑦
©­«1𝐸

∑︁
𝑢∈N +

𝑡

𝑌𝑡 (𝑢)𝔼̌𝑦 (1{𝜉𝑡=𝑢 } | F𝑡 )
ª®¬

= 𝑦−1𝔼̌𝑦
©­«1𝐸 𝔼̌𝑦


∑︁

𝑢∈N +
𝑡

𝑌𝑡 (𝑢)1{𝜉𝑡=𝑢 }
��� F𝑡

ª®¬
= 𝑦−1𝔼̌𝑦

(
1𝐸 𝔼̌𝑦

[
𝑌𝑡 (𝜉𝑡 )1{𝜉𝑡 ∈N +

𝑡 } | F𝑡

] )
= 𝑦−1𝔼̌𝑦

(
1𝐸𝑌𝑡 (𝜉𝑡 )1{𝑌𝑠 (𝜉𝑠 ) ≥0 ; 𝑠≤𝑡 }

)
. (2.7)

Under the law ℙ̌𝑦 , the process 𝑡 ↦→ 𝑌𝑡 (𝜉𝑡 ) is a standard Brownianmotion on the real
line independent of the relative displacement of all non-spine particles. In contrast,
under ℙ̂𝑦 , 𝑌𝑡 (𝜉𝑡 ) is a Bessel process of dimension 3. Now 𝑦−1𝑌𝑡 (𝜉𝑡 )1{𝑌𝑠 (𝜉𝑠 ) ≥0 ; 𝑠≤𝑡 }
is the Radon–Nikodym derivative of the law of the Bessel process with respect to
the Wiener measure, so (2.7) yields ℙ𝑦 (𝐸) = ℙ̂𝑦 (𝐸).

We now use the connection between the laws ℙ̂𝑦 and ℙ̌𝑦 to study the distribution
of 𝜉𝑡 conditioned on F𝑡 . Fix 𝑡 ≥ 0, 𝐸 ∈ F𝑡 and 𝑢 ∈ N +

𝑡 . Then

ℙ̂𝑦 (𝜉𝑡 = 𝑢, 𝐸) = 𝑦−1𝔼̌𝑦

(
1𝐸1{𝜉𝑡=𝑢 }𝑌𝑡 (𝜉𝑡 )1{𝑌𝑠 (𝜉𝑠 ) ≥0 ; 𝑠≤𝑡 }

)
= 𝑦−1𝔼̌𝑦

(
1𝐸𝑌𝑡 (𝑢)1{𝜉𝑡=𝑢 }

)
.
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By the tower property and (2.6),

ℙ̂𝑦 (𝜉𝑡 = 𝑢, 𝐸) = 𝑦−1𝔼̌𝑦

(
1𝐸𝑌𝑡 (𝑢)𝔼̌𝑦

[
1{𝜉𝑡=𝑢 } | F𝑡

] )
= 𝑦−1𝔼̌𝑦

(
1𝐸𝑌𝑡 (𝑢)𝐴−1

𝑡 e
√
2𝑋𝑡 (𝑢)−2𝑡

)
.

Again, the integrand is measurable with respect to F𝑡 , on which ℙ̌𝑦 = ℙ̃𝑦 , so by
the de�nition of ℙ̃𝑦 ,

ℙ̂𝑦 (𝜉𝑡 = 𝑢, 𝐸) = 𝑦−1𝔼̃𝑦

(
1𝐸𝑌𝑡 (𝑢)𝐴−1

𝑡 e
√
2𝑋𝑡 (𝑢)−2𝑡

)
= 𝑦−1𝔼𝑦

(
1𝐸𝑌𝑡 (𝑢)e

√
2𝑋𝑡 (𝑢)−2𝑡

)
.

Finally, we use the de�nition of ℙ𝑦 and the equality between ℙ𝑦 and ℙ̂𝑦 shown
above to conclude that

ℙ̂𝑦 (𝜉𝑡 = 𝑢, 𝐸) = 𝔼̂𝑦

(
1𝐸𝑊 −1

𝑡 𝑌𝑡 (𝑢)e
√
2𝑋𝑡 (𝑢)−2𝑡

)
.

This completes the proof of (2.5). �

Using the spine decomposition and Proposition 2.1, we show that the additive
martingale vanishes in the long-time limit.

Proof of Proposition 2.3. We have already shown that𝑊 is a nonnegative martin-
gale. Hence by Doob’s theorem,𝑊 converges almost surely. Combining Proposi-
tions 2.1 and 2.4, we have

𝑦−1𝔼𝑦 (𝑊∞1{𝑊∞<∞}) = ℙ𝑦

(
lim sup
𝑡→∞

𝑊𝑡 < ∞
)
= ℙ̂𝑦

(
lim sup
𝑡→∞

𝑊𝑡 < ∞
)
. (2.8)

Note that under the law ℙ̂𝑦 , 𝑊𝑡 ≥ 𝑌𝑡 (𝜉𝑡 )e
√
2𝑋𝑡 (𝜉𝑡 )−2𝑡 . Now 𝑋𝑡 (𝜉𝑡 ) −

√
2𝑡 is a

standard Brownian motion, which makes arbitrarily large excursions almost surely.
Moreover, almost surely, the Bessel process 𝑌𝑡 (𝜉𝑡 ) does not vanish in the limit. It
follows that lim sup𝑡→∞𝑊𝑡 = ∞ ℙ̂𝑦 -a.s. In light of (2.8), we conclude that

𝔼𝑦 (𝑊∞1{𝑊∞<∞}) = 𝑦ℙ̂𝑦 (𝑊∞ < ∞) = 0.

Since𝑊𝑡 is a martingale,𝑊∞ = 0 ℙ𝑦 -a.s. �

2.3. Convergence of the derivative martingale and shaving. We now turn to the
derivative martingale in the half-space. The main result of this subsection is the
following.

Proposition 2.5. The process 𝑍 is a ℙ𝑦 -martingale and

𝑍∞ B lim
𝑡→∞

𝑍𝑡 	 0 ℙ𝑦 -a.s.

Again, it is easy to check the martingale property.

Proof that 𝑍 is a martingale. By (2.5) Proposition 2.4,

𝔼𝑦𝑍𝑡 = 𝔼𝑦
©­«

∑︁
𝑢∈N +

𝑡

[√
2𝑡 − 𝑋𝑡 (𝑢)

]
𝑌𝑡 (𝑢)e

√
2𝑋𝑡 (𝑢)−2𝑡ª®¬

= 𝑦𝔼̂𝑦

[√
2𝑡 − 𝑋𝑡 (𝜉𝑡 )

]
= 0.
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Here we have have used the fact that
√
2𝑡 − 𝑋𝑡 (𝜉𝑡 ) is a standard Brownian motion

under ℙ̂𝑦 . Then the branching property and the martingale property of𝑊 yield

𝔼(𝑍𝑡+𝑠 | F𝑡 ) =
∑︁

𝑢∈N +
𝑡

[√
2𝑡 − 𝑋𝑡 (𝑢)

]
e
√
2𝑋𝑡 (𝑢)−2𝑡𝔼𝑌𝑡 (𝑢)𝑊𝑠

+
√
2𝑠

∑︁
𝑢∈N +

𝑡

e
√
2𝑋𝑡 (𝑢)−2𝑡𝔼𝑌𝑡 (𝑢)𝑍𝑠 = 𝑍𝑡

for all 𝑡, 𝑠 ≥ 0. �

Because 𝑍 has inde�nite sign, we cannot immediately deploy the methods of
the previous via a probability measure biased by 𝑍 . As with 𝐷𝑡 , we circumvent
this issue through a family of shaved derivative martingales whose asymptotic
behavior resembles that of 𝑍𝑡 .

Given 𝛼 > 0, we de�ne

𝑍𝛼
𝑡 B

∑︁
𝑢∈N +,𝛼

𝑡

[√
2𝑡 + 𝛼 − 𝑋𝑡 (𝑢)

]
𝑌𝑡 (𝑢)e

√
2𝑋𝑡 (𝑢)−2𝑡 ,

where N +,𝛼
𝑡 B {𝑢 ∈ N +

𝑡 : 𝑋𝑠 (𝑢) ≤
√
2𝑠 + 𝛼, 𝑠 ≤ 𝑡} denotes the collection of

particles in N +
𝑡 whose trajectories remain below the line

√
2𝑠 + 𝛼 . Adapting the

calculation above, one can easily check that 𝑍𝛼 is a martingale. Moreover, the
de�nition of N +,𝛼 implies that 𝑍𝛼 is a nonnegative martingale and thus converges
almost surely to a limit 𝑍𝛼

∞.
We now use familiar tools to show that 𝑍𝛼 is uniformly integrable and thus has

a nondegenerate limit. De�ne the tilted measure

ℚ𝛼
𝑦 =

𝑍𝛼

𝛼𝑦
ℙ𝑦 .

Let ℚ̂𝛼
𝑦 denote the law of a BBM in ℍ with spine 𝜉 such that the spine particle

branches at accelerated rate 2 and moves according to the process (
√
2𝑡 +𝛼 −𝑆𝑡 , 𝑆 ′𝑡 ),

where 𝑆 and 𝑆 ′ are two independent Bessel processes of dimension 3 started from
𝛼 and 𝑦 , respectively.

Proposition 2.6. For all 𝑡 ≥ 0 and 𝐸 ∈ F𝑡 , we have ℚ̂𝛼
𝑦 (𝐸) = ℚ𝛼

𝑦 (𝐸). Moreover,

ℚ̂𝛼
𝑦 (𝜉𝑡 = 𝑢 | F𝑡 ) = (𝑍𝛼

𝑡 )−1
[√

2𝑡 + 𝛼 − 𝑋𝑡 (𝑢)
]
𝑌𝑡 (𝑢)e

√
2𝑋𝑡 (𝑢)−2𝑡 for all 𝑢 ∈ N +,𝛼

𝑡 .

Proof. We mimic the proof of Proposition 2.4, using the proposition itself as input.
Fix 𝑡 ≥ 0 and 𝐸 ∈ F𝑡 . Using the de�nition of ℙ𝑦 , (2.5), and ℙ𝑦 = ℙ̂𝑦 on F∞, we
have

ℚ𝛼
𝑦 (𝐸) = 𝛼−1𝔼̂𝑦

©­«1𝐸
∑︁

𝑢∈N +,𝛼
𝑡

[√
2𝑡 + 𝛼 − 𝑋𝑡 (𝑢)

]
ℙ̂𝑦 (𝜉𝑡 = 𝑢 | F𝑡 )

ª®¬ .
Writing ℙ̂𝑦 (𝜉𝑡 = 𝑢 | F𝑡 ) as an expectation and manipulating the tower property,
we arrive at

ℚ𝛼
𝑦 (𝐸) = 𝛼−1𝔼̂𝑦

(
1𝐸

[√
2𝑡 + 𝛼 − 𝑋𝑡 (𝜉𝑡 )

]
1{𝜉𝑡 ∈N +,𝛼

𝑡 }
)
.
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Finally, we recognize the Radon–Nikodym derivative of a Bessel-3 process with
respect to the Wiener measure and obtain ℚ𝛼

𝑦 (𝐸) = ℚ̂𝛼
𝑦 (𝐸).

Similarly, given 𝑢 ∈ N +,𝛼
𝑡 , we �nd

ℚ̂𝛼
𝑦 (𝜉𝑡 = 𝑢, 𝐸) = 𝛼−1𝔼̂𝑦

(
1𝐸1{𝜉𝑡=𝑢 }

[√
2𝑡 + 𝛼 − 𝑋𝑡 (𝑢)

] )
.

Using the tower property, (2.5), and ℙ𝑦 = ℙ̂𝑦 on F∞, we have

ℚ̂𝛼
𝑦 (𝜉𝑡 = 𝑢, 𝐸) = (𝛼𝑦)−1𝔼𝑦

(
1𝐸𝑌𝑡 (𝑢)

[√
2𝑡 + 𝛼 − 𝑋𝑡 (𝑢)

]
e
√
2𝑋𝑡 (𝑢)−2𝑡

)
.

Recalling the de�nition of ℚ𝛼
𝑦 and the equality between ℚ𝛼

𝑦 and ℚ̂𝛼
𝑦 shown above,

we conclude that

ℚ̂𝛼
𝑦 (𝜉𝑡 = 𝑢, 𝐸) = 𝔼

ℚ̂𝛼
𝑦

(
1𝐸 (𝑍𝛼

𝑡 )−1𝑌𝑡 (𝑢)
[√

2𝑡 + 𝛼 − 𝑋𝑡 (𝑢)
]
e
√
2𝑋𝑡 (𝑢)−2𝑡

)
.

Allowing 𝐸 to vary over F𝑡 , we obtain the desired result. �

We now use the spine decomposition to prove uniform integrability.

Lemma 2.7. For all 𝛼 > 0, 𝑍𝛼 is a uniformly integrable martingale that converges
ℙ𝑦 -almost surely as 𝑡 → ∞ to a nonnegative, nondegenerate random variable 𝑍𝛼

∞.

Proof. By Proposition 2.1, 𝑍𝛼 is uniformly integrable if and only if

ℚ𝛼
𝑦 (𝑍𝛼

∞ < ∞) = 1. (2.9)

Let (𝜏𝑛)𝑛∈ℕ denote the increasing sequence of times at which the spine gives birth.
Under ℚ̂𝛼

𝑦 , the (𝜏𝑛)𝑛∈ℕ are the atoms of a Poisson process with intensity 2. Let

Y B 𝜎
( (
𝑋𝑠 (𝜉𝑠), 𝑌𝑠 (𝜉𝑠), 𝜏𝑛

)
; 𝑠 ≥ 0, 𝑛 ∈ ℕ

)
denote the �ltration associated to the trajectory of the spine and the birth times.
The spine has position (

√
2𝑡 + 𝛼 − 𝑆𝑡 , 𝑆 ′𝑡 ), where 𝑆 and 𝑆 ′ are two independent

Bessel processes of dimension 3. Hence the martingale property of 𝑍 for standard
BBM yields

𝔼
ℚ̂𝛼
𝑦
(𝑍𝛼

𝑡 | Y) = 𝑆𝑡𝑆 ′𝑡e−
√
2(𝑆𝑡−𝛼) +

∞∑︁
𝑛=1

𝑆𝜏𝑛𝑆
′
𝜏𝑛
e−

√
2(𝑆𝜏𝑛−𝛼)1{𝜏𝑛<𝑡 } ℚ̂𝛼

𝑦 -a.s.

Using Fatou’s lemma and the transience of Bessel-3 processes, we �nd

𝔼
ℚ̂𝛼
𝑦
(𝑍𝛼

∞ | Y) ≤
∞∑︁
𝑛=1

𝑆𝜏𝑛𝑆
′
𝜏𝑛
e−

√
2(𝑆𝜏𝑛−𝛼) ℚ̂𝛼

𝑦 -a.s.

Now, the law of the iterated logarithm for Bessel processes implies that for any
𝜀 > 0, almost surely 𝑡 1/2−𝜀 ≤ 𝑆𝑡 ≤ 𝑡 1/2+𝜀 for su�ciently large 𝑡 . It follows that

∞∑︁
𝑛=1

𝑆𝜏𝑛𝑆
′
𝜏𝑛
e−

√
2(𝑆𝜏𝑛−𝛼) < ∞ ℚ̂𝛼

𝑦 -a.s.

This proves (2.9). As a result, 𝑍𝛼 is a closed martingale that converges ℙ𝑦 -almost
surely and in 𝐿1 to 𝑍𝛼

∞. In particular, we have
𝔼𝑦𝑍

𝛼
∞ = 𝔼𝑦𝑍

𝛼
0 = 𝛼𝑦 > 0,
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which shows that 𝑍𝛼
∞ is positive with positive probability. �

We now complete the proof of Proposition 2.5 by showing the convergence of
the derivative martingale 𝑍 to the nonnegative limit lim𝛼→∞ 𝑍𝛼

∞.

Proof of Proposition 2.5. We �rst note that 𝛼 ↦→ 𝑍𝛼
𝑡 is increasing for all 𝑡 > 0, so

𝛼 ↦→ 𝑍𝛼
∞ is also ℙ𝑦 -a.s. increasing. Hence lim𝛼→∞ 𝑍𝛼

∞ is well-de�ned ℙ𝑦 -a.s..
Next, using (2.4), we observe that

𝑀
+
B sup

𝑡 ≥0
sup
𝑢∈N +

𝑡

𝑋𝑡 (𝑢) −
√
2𝑡 < ∞ ℙ𝑦 -a.s. (2.10)

For all 𝛼 > 𝑀
+
and 𝑡 ≥ 0, we have

𝑍𝛼
𝑡 =

∑︁
𝑢∈N +

𝑡

[√
2𝑡 + 𝛼 − 𝑋𝑡 (𝑢)

]
𝑌𝑡 (𝑢)e

√
2𝑋𝑡 (𝑢)−2𝑡

=
∑︁

𝑢∈N +
𝑡

[√
2𝑡 − 𝑋𝑡 (𝑢)

]
𝑌𝑡 (𝑢)e

√
2𝑋𝑡 (𝑢)−2𝑡 + 𝛼

∑︁
𝑢∈N +

𝑡

𝑌𝑡 (𝑢)e
√
2𝑋𝑡 (𝑢)−2𝑡 = 𝑍𝑡 + 𝛼𝑊𝑡 .

Taking 𝑡 → ∞ and using Proposition 2.3, we conclude that ℙ𝑦 -a.s., we have

lim
𝑡→∞

𝑍𝑡 = 𝑍
𝛼
∞ for all 𝛼 > 𝑀

+
.

In particular, the family (𝑍𝛼
∞)𝛼>0 stabilizes once 𝛼 exceeds the (random) threshold

𝑀
+
. Since𝑀

+
is almost surely �nite,

𝑍∞ B lim
𝑡→∞

𝑍𝑡 = lim
𝛼→∞

𝑍𝛼
∞. �

2.4. Supercritical additive martingales. We now turn to the supercritical additive
martingales

𝑊
𝜆,𝜇

𝑡 =
∑︁

𝑢∈N +
𝑡

e𝜆𝑋𝑡 (𝑢) sinh[𝜇𝑌𝑡 (𝑢)]e−(𝜆
2/2+𝜇2/2+1)𝑡

parameterized by 𝜆, 𝜇 > 0. Using the many-to-one lemma and the branching
property, one can readily check that𝑊 𝜆,𝜇 is a martingale; this is su�ciently similar
to our previous arguments that we omit the proof. Because𝑊 𝜆,𝜇 is nonnegative,
it has an almost sure limit𝑊 𝜆,𝜇

∞ ≥ 0. In this subsection we prove the following
dichotomy for𝑊 𝜆,𝜇

∞ .

Lemma 2.8. If 𝜆2 + 𝜇2 < 2, then the martingale𝑊 𝜆,𝜇 is uniformly integrable and
𝑊

𝜆,𝜇
∞ 	 0. Otherwise,𝑊 𝜆,𝜇

∞ = 0 ℙ𝑦 -a.s.

Proof. We again employ a spine decomposition. Given 𝜆, 𝜇, 𝑦 > 0, let ℙ̂𝜆,𝜇
𝑦 denote

the law of the following BBM with spine 𝜉 . The spine particle moves according to
a process (𝑋𝑡 , 𝑌𝑡 ), where 𝑋 is a Brownian motion with drift 𝜆 started from 0 and 𝑌
is an independent Brownian motion with drift 𝜇 started from 𝑦 and conditioned to
stay positive. The spine particle branches at the accelerated rate 2 and non-spine
particles behave as independent BBMs in ℍ.

Adapting the proof of Proposition 2.4, one can show that ℙ̂𝜆,𝜇
𝑦 coincides with

the tilted measure ℙ𝜆,𝜇
𝑦 = 𝑊 𝜆,𝜇

sinh(𝜇𝑦)ℙ𝑦 on F∞. We omit most of the repetitive details,
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but highlight one new feature. In analogy with the reasoning following (2.7), we
must show that

sinh[𝜇𝑌𝑡 (𝜉𝑡 )]
sinh(𝜇𝑦) e−

𝜇2𝑡
2 1{𝑌𝑠 (𝜉𝑠 ) ≥0 ; 𝑠≤𝑡 } (2.11)

is the Radon–Nikodym derivative of a Brownian motion with drift 𝜇 conditioned
to stay positive relative to the Wiener measure. To see this, let 𝐵 be a standard
Brownian motion and 𝑉 be a Brownian motion with drift 𝜇, both started from 𝑦 .
Given 𝑡 ≥ 0, let 𝐵 [0,𝑡 ] denote the process 𝐵 on the time interval [0, 𝑡]. For any
𝑓 ∈ C𝑐

(
C ( [0, 𝑡])

)
, we use the Girsanov transformation to write

𝔼

[
sinh(𝜇𝐵𝑡 )
sinh(𝜇𝑦) e

− 𝜇2𝑡
2 1{𝐵 [0,𝑡 ] ≥0} 𝑓 (𝐵 [0,𝑡 ])

]
= 𝔼

[
1 − e−2𝜇𝑉𝑡
1 − e−2𝜇𝑦

1{𝑉[0,𝑡 ] ≥0} 𝑓 (𝑉[0,𝑡 ])
]
. (2.12)

Recall that under ℙ̂𝜆,𝜇
𝑦 , 𝑌 (𝜉) is a Brownian motion with drift 𝜇 conditioned to stay

positive. Since
ℙ(𝑉𝑡 ≥ 0 for all 𝑡 ≥ 0) = 1 − e−2𝜇𝑦 ,

Doob’s ℎ-transform theory implies that the right side of (2.12) is 𝔼̂𝜆,𝜇
𝑦 𝑓

(
𝑌[0,𝑡 ] (𝜉𝑡 )

)
.

This con�rms that the expression in (2.11) is the claimed Radon–Nikodymderivative
and justi�es this form of the spine decomposition theorem.

Observe that ℙ̂𝜆,𝜇
𝑦 -a.s., we have

𝑊
𝜆,𝜇

𝑡 ≥ e𝜆𝑋𝑡 (𝜉𝑡 )−𝜆2𝑡/2 sinh[𝜇𝑌𝑡 (𝜉𝑡 )]e−𝜇
2𝑡/2e−𝑡 .

Recalling that 𝑋 (𝜉) and 𝑌 (𝜉) have drift 𝜆 and 𝜇, respectively, we have

lim inf
𝑡→∞

1
𝑡
log𝑊 𝜆,𝜇

𝑡 ≥ 𝜆2 + 𝜇2
2

− 1 ℙ̂
𝜆,𝜇
𝑦 -a.s.

Hence, if 𝜆2 + 𝜇2 > 2 (or if 𝜆2 + 𝜇2 = 2 by the law of iterated logarithm), we have
ℙ
𝜆,𝜇
𝑦 (𝑊 𝜆,𝜇

∞ < ∞) = 0. Then Proposition 2.1 implies that𝑊 𝜆,𝜇
∞ = 0 ℙ𝑦 -a.s.

If 𝜆2 + 𝜇2 < 2, we condition with respect to the spine’s position and branching
times (𝜏𝑛)𝑛∈ℕ. The martingale property for𝑊 𝜆,𝜇 yields the ℙ̂𝜆,𝜇

𝑦 -a.s. bound

𝔼̂
𝜆,𝜇
𝑦 (𝑊 𝜆,𝜇

∞ | Y) ≤ 1
2

∞∑︁
𝑛=1

e𝜆𝑋𝜏𝑛+𝜇𝑌𝜏𝑛−(𝜆2/2+𝜇2/2+1)𝜏𝑛 .

This is ℙ̂𝜆,𝜇-almost surely �nite, so Proposition 2.1 implies that𝑊 𝜆,𝜇 is uniformly
integrable under ℙ𝑦 . It follows that 𝔼𝑦𝑊

𝜆,𝜇
∞ = sinh(𝜇𝑦) > 0, so𝑊 𝜆,𝜇

∞ 	 0. �

Proof of Proposition 1.2. The proposition unites Proposition 2.5 and Lemma 2.8. �

3. Constructions of KPP traveling waves

We now use the nondegenerate martingale limits 𝑍∞ and𝑊 𝜆,𝜇
∞ from Propo-

sition 1.2 to construct traveling waves for the KPP equation in ℍ. We rely on
McKean’s link between BBM and the KPP equation, as well as “smoothing equa-
tions” satis�ed in law by the martingale limits.
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3.1. A minimal-speed wave. Recall from Theorem 1.3 the de�nition (1.6) of Φ:

Φ(𝑥, 𝑦) = 1 − 𝔼𝑦 exp
(
−e−

√
2𝑥𝑍∞

)
.

We show that Φ is a traveling wave on ℍ of speed 𝑐∗ =
√
2 in the sense of

De�nition 1.1. Our main tool is the McKean representation of solutions of (1.1).
This connection between BBM and the KPP equation was �rst observed by McKean
[22] in one dimension. Here, we state a straightforward analogue valid in ℍ.

Proposition 3.1 (McKean representation). If 𝜙 ∈ 𝐿∞(ℍ) satis�es 0 ≤ 𝜙 ≤ 1, then

𝑢 (𝑡, 𝑥, 𝑦) B 𝔼𝑦
©­«1 −

∏
𝑣∈N +

𝑡

[
1 − 𝜙

(
𝑥 − 𝑋𝑡 (𝑣), 𝑌𝑡 (𝑣)

) ]ª®¬
is the unique solution of (1.1) with initial condition 𝑢 (0, · ) = 𝜙 .

Proof. First suppose that 𝜙 : ℝ→ [0, 1] is additionally C2. We de�ne

𝑞𝜙 (𝑡, 𝑥, 𝑦) = 𝔼𝑦

( ∏
𝑢∈N𝑡

[
1 − 𝜙

(
𝑥 − 𝑋𝑡 (𝑢), 𝑌𝑡 (𝑢)

) ] )
.

By dominated convergence,

lim
𝑡→0

𝑞𝜙 (𝑡, 𝑥, 𝑦) = 1 − 𝜙 (𝑥, 𝑦) and lim
𝑦→0

𝑞𝜙 (𝑡, 𝑥, 𝑦) = 1. (3.1)

To begin, we compute 𝜕𝑡𝑞𝜙 |𝑡=0. Applying the branching property at the �rst
branching time of the BBM, we have

𝑞𝜙 (𝑡, 𝑥, 𝑦) =e−𝑡𝔼𝑦 [1 − 𝜙 (𝑥 − 𝑋𝑡 , 𝑌𝑡 )]

+
∫ 𝑡

0
e−𝑠𝔼𝑦

(
𝔼𝑌𝑠

[
𝑞𝜙 (𝑡 − 𝑠, 𝑥 − 𝑋𝑠 , 𝑌𝑠) | 𝑋𝑠 , 𝑌𝑠

]21{inf [0,𝑠 ] 𝑌>0}
)
d𝑠 .

Thus Itô’s formula, dominated convergence, and (3.1) yield

𝜕𝑡𝑞𝜙 (0, 𝑥, 𝑦) = −𝑞𝜙 (0, 𝑥, 𝑦) +
1
2
Δ𝑞𝜙 (0, 𝑥, 𝑦) + 𝑞𝜙 (0, 𝑥, 𝑦)2.

Now �x 𝑡, ℎ > 0. Given 𝑢 ∈ N +
ℎ
, let N +

𝑡+ℎ (𝑢) denote the set of descendants of 𝑢
alive at time 𝑡 + ℎ. Applying the branching property at time ℎ, we have

𝑞𝜙 (𝑡 + ℎ, 𝑥, 𝑦) = 𝔼𝑦

[
𝔼𝑦

( ∏
𝑢∈N +

ℎ

∏
𝑣∈N +

𝑡+ℎ (𝑢)

[
1 − 𝜙

(
𝑥 − 𝑋𝑡+ℎ (𝑣), 𝑌𝑡+ℎ (𝑣)

) ] ��� Fℎ

)]
= 𝔼𝑦

[ ∏
𝑢∈N +

ℎ

𝑞𝜙
(
𝑡, 𝑥 − 𝑋ℎ (𝑢), 𝑌ℎ (𝑢)

) ]
.

Our earlier computation allows us to di�erentiate this expression at ℎ = 0 to �nd

𝜕𝑡𝑞𝜙 =
1
2
Δ𝑞𝜙 + 𝑞2

𝜙
− 𝑞𝜙 .

So 1 − 𝑞𝜙 solves (1.1).
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To extend this result to 𝜙 ∈ 𝐿∞(ℍ), let 𝑢 denote the unique solution of (1.1)
with initial data 𝜙 . For all 𝜀 > 0, 𝑢 (𝜀, · ) ∈ C2. Hence we have just shown that

𝑢𝜀 (𝑡, 𝑥, 𝑦) B 1 − 𝔼𝑦

( ∏
𝑢∈N𝑡

[
1 − 𝑢

(
𝜀, 𝑥 − 𝑋𝑡 (𝑢), 𝑌𝑡 (𝑢)

) ] )
solves (1.1) with initial data𝑢 (𝜀, · ). By the semigroup property,𝑢𝜀 (𝑡, · ) = 𝑢 (𝑡+𝜀, · )
for all 𝑡 ≥ 0. We conclude by taking 𝜀 → 0 and using the fact that 𝑢 (𝜀, · ) → 𝜙

weakly in 𝐿∞. �

We now prove that the limit of the derivative martingale satis�es a recursive
equation in distribution. More precisely, using the branching property of the BBM,
we show that the law of 𝑍∞ is a �xed point of a multitype version of the so-called
smoothing transform. In the following, for �xed 𝑡, 𝑠 ≥ 0, we write 𝑢 � 𝑣 when a
particle 𝑣 ∈ N +

𝑡+𝑠 is a descendant of 𝑢 ∈ N +
𝑡 .

Lemma 3.2. For all 𝑦 > 0 and 𝑡 > 0, we have

𝑍∞ =
∑︁

𝑢∈N +
𝑡

e
√
2𝑋𝑡 (𝑢)−2𝑡𝑍∞(𝑢), (3.2)

where

𝑍∞(𝑢) B lim
𝑠→∞

∑︁
𝑢�𝑣∈N +

𝑡+𝑠

[√
2𝑠 − 𝑋𝑡+𝑠 (𝑣)

]
e
√
2𝑋𝑡+𝑠 (𝑣)−2𝑠 for 𝑢 ∈ N𝑡 .

Moreover, conditionally on F𝑡 , the random variables
(
𝑍∞(𝑢) ; 𝑢 ∈ N +

𝑡

)
are indepen-

dent and 𝑍∞(𝑢) has the distribution of 𝑍∞ under law ℙ𝑌𝑡 (𝑢) .

Proof. Given 𝑠, 𝑡 ≥ 0 and 𝑢 ∈ N +
𝑡 , we de�ne N +

𝑡+𝑠 (𝑢) = {𝑣 ∈ N +
𝑡+𝑠 : 𝑢 � 𝑣} and

𝑊𝑠 (𝑢) B
∑︁

𝑣∈N +
𝑡,𝑠 (𝑢)

𝑌𝑡+𝑠 (𝑣)e
√
2[𝑋𝑡+𝑠 (𝑣)−𝑋𝑡 (𝑢) ]−2𝑠 ,

𝑍𝑠 (𝑢) B
∑︁

𝑣∈N +
𝑡,𝑠 (𝑢)

(√
2𝑠 − [𝑋𝑡+𝑠 (𝑣) − 𝑋𝑡 (𝑢)]

)
𝑌𝑡+𝑠 (𝑣)e

√
2[𝑋𝑡+𝑠 (𝑣)−𝑋𝑡 (𝑢) ]−2𝑠 .

With this notation, we can write

𝑍𝑡+𝑠 =
∑︁

𝑢∈N +
𝑡

∑︁
𝑣∈N +

𝑡+𝑠 (𝑢)

[√
2(𝑡 + 𝑠) − 𝑋𝑡+𝑠 (𝑣)

]
𝑌𝑡+𝑠 (𝑣)e

√
2𝑋𝑡+𝑠 (𝑣)−2(𝑡+𝑠)

=
∑︁

𝑢∈N +
𝑡

[√
2𝑡 − 𝑋𝑡 (𝑢)

]
e
√
2𝑋𝑡 (𝑢)−2𝑡𝑊𝑠 (𝑢) +

∑︁
𝑢∈N +

𝑡

e
√
2𝑋𝑡 (𝑢)−2𝑡𝑍𝑠 (𝑢) . (3.3)

The branching property implies that conditionally on F𝑡 ,
(
𝑊𝑠 (𝑢), 𝑍𝑠 (𝑢)

)
𝑢∈N +

𝑡
are

independent random pairs and
(
𝑊𝑠 (𝑢), 𝑍𝑠 (𝑢)

)
has the law of (𝑊𝑠 , 𝑍𝑠) under ℙ𝑌𝑡 (𝑢) .

In particular, taking 𝑠 → ∞ and using Proposition 1.2, we have

lim
𝑠→∞

(
𝑊𝑠 (𝑢), 𝑍𝑠 (𝑢)

)
=

(
0, 𝑍∞(𝑢)

)
ℙ𝑦 -a.s.

The limits
(
𝑍∞(𝑢) ; 𝑢 ∈ N +

𝑡

)
are independent conditionally on F𝑡 and share the

law of 𝑍∞ under ℙ𝑌𝑡 (𝑢) . Moreover, (3.2) follows from (3.3). �
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Using the branching property, we can check that 𝑍∞ is positive precisely on the
survival set of the BBM.

Corollary 3.3. For all 𝑦 > 0, we have

{𝑍∞ > 0} = {N +
𝑡 ≠ ∅ for all 𝑡 ≥ 0} ℙ𝑦 -a.s.

Proof. Let 𝑆 B {N +
𝑡 ≠ ∅ for all 𝑡 ≥ 0} denote the survival event of the BBM onℍ.

The de�nition of 𝑍𝑡 immediately implies that

{𝑍∞ > 0} ⊂ 𝑆. (3.4)

Hence it su�ces to show that ℙ𝑦 (𝑆) = ℙ𝑦 (𝑍∞ > 0) for all 𝑦 > 0. We note that
Proposition 2.5 implies that 𝑞 is positive on ℝ+, so (3.4) yields 𝑝 ≥ 𝑞 > 0.

Given 𝑦 > 0, we de�ne the functions 𝑝 and 𝑞 by

𝑝 (𝑦) B ℙ𝑦 (𝑆𝑐) and 𝑞(𝑦) B ℙ𝑦 (𝑍∞ = 0) .

Using the branching property at time 𝑡 , we see that

ℙ𝑦 (𝑆𝑐 | F𝑡 ) =
∏
𝑢∈N +

𝑡

ℙ𝑌𝑡 (𝑢) (𝑆𝑐) .

It follows that 𝑝 satis�es the recursive identity

𝑝 (𝑦) = 𝔼𝑦

∏
𝑢∈N +

𝑡

𝑝
(
𝑌𝑡 (𝑢)

)
(3.5)

for all 𝑡 ≥ 0. Similarly, using Lemma 3.2, we have

𝑞(𝑦) = 𝔼𝑦

[
ℙ𝑦 (𝑍∞(𝑢) = 0 for all 𝑢 ∈ N +

𝑡 | F𝑡 )
]
= 𝔼𝑦

∏
𝑢∈N +

𝑡

𝑞
(
𝑌𝑡 (𝑢)

)
(3.6)

for all 𝑡 ≥ 0. Combining (3.5), (3.6), and Proposition 3.1, we see that 1 − 𝑝 and 1 − 𝑞
are both stationary solutions of (1.1) on the Dirichlet half-line. That is, both are
positive bounded solutions of (1.3). Lemma 6.1 of [3] states that there is only one
such solution; we have previously denoted it by 𝜑 . It follows that 𝑝 = 1 − 𝜑 = 𝑞,
which completes the proof. �

Armed with Lemma 3.2 and Proposition 3.1 we are now able to show that Φ is a
minimal-speed traveling wave.

Lemma 3.4. The function Φ de�ned in (1.6) is a traveling wave of speed
√
2.

Proof. Fix (𝑥, 𝑦) ∈ ℍ and 𝑡 > 0. Using every part of Lemma 3.2, the tower property
for F𝑡 yields

Φ(𝑥, 𝑦) = 1 − 𝔼𝑦 exp
©­«−

∑︁
𝑢∈N +

𝑡

e
√
2(𝑋𝑡 (𝑢)−

√
2𝑡−𝑥)𝑍∞(𝑢)ª®¬

= 1 − 𝔼𝑦

∏
𝑢∈N +

𝑡

[
1 − Φ

(√
2𝑡 + 𝑥 − 𝑋𝑡 (𝑢), 𝑌𝑡 (𝑢)

) ]
.
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Now Proposition 3.1 implies that the function

Φ(𝑥 −
√
2𝑡, 𝑦) = 1 − 𝔼𝑦

∏
𝑢∈N +

𝑡

[
1 − Φ

(
𝑥 − 𝑋𝑡 (𝑢), 𝑌𝑡 (𝑢)

) ]
solves the KPP equation (1.1) with initial data Φ(𝑥, 𝑦). It follows that Φ solves
(1.2). Clearly, Φ is bounded. Moreover, because 𝑍∞ is not identically zero, Φ is
nonconstant in 𝑥 , and thus neither 0 nor 𝜑 . By De�nition 1.1, Φ is a traveling wave
of speed

√
2. �

3.2. Higher-speed waves. We now construct traveling waves with speeds 𝑐 > 𝑐∗.
As for Φ, we use the Laplace transform of the martingale limits𝑊 𝜆,𝜇

∞ . The proof is
very similar to that presented above, so we omit some repeated details.

Fix 𝑡 > 0. As with 𝑍∞, the branching property of the BBM implies that the
random variable𝑊 𝜆,𝜇

∞ satis�es the smoothing transform

𝑊
𝜆,𝜇
∞ =

∑︁
𝑢∈N +

𝑡

e𝜆𝑋𝑡 (𝑢)−(𝜆2+𝜇2+2)𝑡/2𝑊
𝜆,𝜇
∞ (𝑢), (3.7)

where, conditionally on F𝑡 , the random variables
(
𝑊

𝜆,𝜇
∞ (𝑢) ; 𝑢 ∈ N +

𝑡

)
are indepen-

dent and share the distribution of𝑊 𝜆,𝜇
∞ under ℙ𝑌𝑡 (𝑢) . The proof is analogous to

that of (3.2). In fact, when 𝜆2 + 𝜇2 < 2, (3.7) and Proposition 1.2 imply that

{𝑊 𝜆,𝜇
∞ > 0} = {N +

𝑡 ≠ ∅ for all 𝑡 ≥ 0} ℙ𝑦 -a.s. (3.8)

Using the �xed point equation (3.7), we show that the Laplace transform of𝑊 𝜆,𝜇
∞

corresponds to a traveling wave of (1.1).

Proposition 3.5. For all 𝜆, 𝜇 > 0 such that 𝜆2 + 𝜇2 < 2, the function

Φ𝜆,𝜇 (𝑥, 𝑦) B 1 − 𝔼𝑦 exp
(
−e−𝜆𝑥𝑊 𝜆,𝜇

∞

)
is a traveling wave of (1.1) with speed 𝜆2+𝜇2+2

2𝜆 >
√
2.

Proof. For all (𝑥, 𝑦) ∈ ℍ and 𝑡 > 0, (3.7) and the tower property for F𝑡 yield

Φ𝜆,𝜇 (𝑥, 𝑦) = 1 − 𝔼𝑦
©­«

∏
𝑢∈N +

𝑡

[
1 − Φ𝜆,𝜇

(
𝑐𝑡 + 𝑥 − 𝑋𝑡 (𝑢), 𝑌𝑡 (𝑢)

) ]ª®¬ ,
where 𝑐 = 𝜆2+𝜇2+2

2𝜆 . Note that this speed is supercritical:

𝑐 > inf
ℝ+

𝜆2 + 2
2𝜆

=
√
2.

Using Proposition 3.1, we deduce that Φ𝜆,𝜇 (𝑥 − 𝑐𝑡, 𝑦) solves (1.1), so Φ itself solves
(1.2). Moreover,𝑊 𝜆,𝜇

∞ is not identically zero, so Φ𝜆,𝜇 is neither 0 nor 𝜑 . Therefore
Φ𝜆,𝜇 is a traveling wave of speed 𝑐 . �

Provided Theorem 1.1 holds, the proof of Theorem 1.3 is now complete.



KPP TRAVELING WAVES IN THE HALF-SPACE 23

Proof of Theorem 1.3. Using Lemma 3.4, we observe that Φ is a traveling wave on
ℍ with speed 𝑐∗. Using Theorem 1.1, we deduce that it is the unique minimal-
speed traveling wave, up to translation in 𝑥 . The second part of Theorem 1.3 is
Proposition 3.5. �

Recall the quarter-disk

Q B {(𝜆, 𝜇) ∈ ℝ2
+ : 𝜆2 + 𝜇2 < 2}.

We have now associated a traveling wave Φ𝜆,𝜇 with every point (𝜆, 𝜇) ∈ Q. This
correspondence extends in some manner to the boundary 𝜕Q. This is not the main
aim of the paper, so we describe the extension informally.

For every (𝜆, 𝜇) ∈ Q, one can associate a random variable 𝐻𝜆,𝜇 such that

𝑣𝜆,𝜇 : (𝑡, 𝑥, 𝑦) ↦→ 1 − 𝔼𝑦 exp
(
−e−𝜆𝑥+

𝜆2+𝜇2+2
2 𝑡𝐻𝜆,𝜇

)
solves the KPP equation (1.1). When (𝜆, 𝜇) ∈ Q, Proposition 3.5 allows us to take
𝐻𝜆,𝜇 =𝑊

𝜆,𝜇
∞ .

If 𝜇 ∈ (0,
√
2) and 𝜆 = 0, we can extend the de�nition of𝑊 𝜆,𝜇 to 𝜆 = 0 and set

𝐻 0,𝜇 =𝑊
0,𝜇
∞ . Then 𝑣0,𝜇 is an entire solution of (1.1) depending on 𝑡 and 𝑦 alone. At

large negative times, this solution resembles a one-dimensional traveling wave in
𝑦 of speed 𝜇2+2

2𝜇 moving down from a large height toward the 𝑥-axis. The wave
“reaches” the 𝑥-axis at unit time and converges to the steady state 𝜑 uniformly in
𝑦 as 𝑡 → ∞.

If 𝜆 ∈ [0,
√
2) and 𝜇 = 0, we can construct

𝐻𝜆,𝜇 B lim
𝑡→∞

∑︁
𝑢∈N +

𝑡

𝑌𝑡 (𝑢)e𝜆𝑋𝑡 (𝑢)−(𝜆2+2)𝑡/2 a.s. and in 𝐿1.

Then if 𝜆 ∈ (0,
√
2), 𝑣𝜆,0(0, 𝑥, 𝑦) is a traveling wave in ℍ. One can can show that

its level sets behave similarly to those of Φ described in Theorem 1.4. That is, as
𝑦 → ∞, the level sets become asymptotically vertical with a logarithmic o�set.

In the degenerate case 𝜆 = 0, 𝑣0,0 shares some qualitative properties with the
solutions 𝑣0,𝜇 described above. It is an entire solution of (1.1) depending on 𝑡 and 𝑦
alone. At large negative times, 𝑣0,0 resembles an exponentially-stretched pro�le
moving down from a great height at an exponential rate. The pro�le reaches the
𝑥-axis at unit time and converges uniformly to 𝜑 as 𝑡 → ∞. We can thus view 𝑣0,0
as an “in�nite-speed” limit of 𝑣0,𝜇 as 𝜇 ↘ 0.

Finally, for (𝜆, 𝜇) on the circle 𝜆2 + 𝜇2 = 2, the additive martingale𝑊 𝜆,𝜇 must
be replaced by a derivative-type martingale. This corresponds to a traveling wave
whose levels sets are inclined at angle arctan(𝜇/𝜆) far from the boundary. In this
regime, the wave resembles a rotation of the minimal-speed one-dimensional wave
𝑤𝑐∗ . The minimal-speed wave Φ constructed above corresponds to the special case
𝜆 =

√
2 and 𝜇 = 0.
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4. Structure and tameness for minimal-speed waves

In this section, we use analytic methods to constrain an arbitrary minimal-speed
traveling wave Ψ on ℍ𝑑 . We �rst show that Ψ is decreasing in 𝑥 , increasing in 𝑦 ,
and constant in x′. It follows that Ψ is essentially two-dimensional and we can
restrict our attention to the half-plane ℍ2. We then prove a sharp upper bound on
the tail of Ψ where 𝑥 � 1. This bound is termed “tameness” in the probabilistic
literature; it plays a crucial role in our subsequent probabilistic arguments.

We collect the main results of this section in the following proposition. Recall
that we denote coordinates on ℍ𝑑 = ℝ×ℝ𝑑−2 ×ℝ+ by (𝑥, x′, 𝑦).
Proposition 4.1. Let Ψ be a traveling wave onℍ𝑑 of speed 𝑐∗. Then Ψ is independent
of x′ and satis�es 0 < Ψ < 𝜑 , 𝜕𝑥Ψ < 0, and 𝜕𝑦Ψ > 0. The limits Ψ(−∞, · ) = 𝜑 and
Ψ(+∞, · ) = 0 hold locally uniformly in 𝑦 . Moreover, there exists 𝐶 > 0 such that

Ψ(𝑥, x′, 𝑦) ≤ 𝐶 (1 + 𝑥+)𝑦e−
√
2𝑥 for all (𝑥, x′, 𝑦) ∈ ℍ𝑑 . (4.1)

In light of Theorem 1.5, the tail bound (4.1) is sharp up to the constant factor
wherever 𝑥 > 1√

2
log+ 𝑦 .

In the following, we use the notation 𝑓 . 𝑔 when 𝑓 ≤ 𝐶𝑔 for some universal
constant 𝐶 ∈ ℝ+. Likewise, 𝑓 .𝛼 𝑔 indicates that the constant 𝐶 can depend on
the parameter 𝛼 .

4.1. Strategy. We begin by adapting maximum-principle arguments of Hamel and
Nadirashvili [10] to show that Ψ has the expected monotonicity: 𝜕𝑥Ψ < 0, 𝜕𝑦Ψ > 0,
and ∇x′Ψ = 0. As a result, Ψ does not depend on x′ and the problem reduces to
two dimensions. It also follows that Ψ approaches 𝜑 on the left and 0 on the right.
These regimes are separated by a smooth level set {Ψ = 1/2} that coincides with
the graph of a uniformly smooth function 𝑥 = 𝜎 (𝑦), at least away from 𝜕ℍ. Using
a uniqueness result on the whole plane ℝ2, we can show that 𝜎 ′ → 0 as 𝑦 → ∞.
That is, the level set {Ψ = 1/2} is asymptotically vertical far from 𝜕ℍ.

The remainder of the argument combines comparison methods with poten-
tial theory. Counterintuitively, the comparison portion is based on a family of
compactly supported subsolutions that ensure that Ψ roughly decays like e−

√
2𝑥

where 𝑥 > 𝜎 (𝑦). We exploit this loose form of regularity in our potential theoretic
arguments. In the following discussion, we focus on 𝑥, 𝑦 > 1; the rest of the
half-plane can be handled easily.

Using the aforementioned exponential decay, we show that Θ B e
√
2𝑥Ψ is

nearly harmonic on the domain {𝑥 > 6𝜎 (𝑦)}. Because 𝜎 is sublinear, this domain
is similar to a quarter-plane and can be conformally mapped there with 𝑟O (1) dis-
tortion, where 𝑟 B

√︁
𝑥2 + 𝑦2 denotes the radial coordinate. On the quarter-plane,

explicit analysis based on the Herglotz representation theorem shows that positive
harmonic functions with suitable boundary data grow at most quadratically in
𝑟 . Composing with our conformal map, we see that Θ grows at most like 𝑟 2+O (1) .
This polynomial bound implies that 𝜎 grows no faster than logarithmically in 𝑦 .

This additional quantitative information implies that {𝑥 > 6𝜎 (𝑦)} can be
conformally mapped to the quarter-plane with bounded distortion. Using our
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quadratic bound on the quarter-plane, we �nd Θ . 𝑟 2. To conclude, we observe
thatΘ . (𝑥+1)𝑦 on the rays {𝑥 = 0}, {𝑥 = 𝑦}, and {𝑦 = 0}whileΘ grows nomore
than quadratically in the interior of the acute sectors {𝑥 > 𝑦} and {𝑥 < 𝑦}. The
Phragmén–Lindelöf principle thus allows us to extend the estimate Θ . (𝑥 + 1)𝑦
from the boundaries of the sectors to the sectors themselves, and hence to the
entire quarter-plane.

4.2. Monotonicity and structure. We begin with a general traveling wave Ψ on
ℍ𝑑 . We show that Ψ lies between the two one-dimensional steady states.

Lemma 4.2. If Ψ is a traveling wave on ℍ𝑑 , then 0 < Ψ < 𝜑 .

Proof. Let (P𝑡 )𝑡 ≥0 denote the semigroup corresponding to the parabolic evolution

𝜕𝑡𝑊 =
1
2
Δ𝑊 +𝑊 −𝑊 2 (4.2)

on ℝ+ with Dirichlet boundary data. That is, if𝑊 (𝑡, 𝑦) solves (4.2) on ℝ+ with
𝑊 |𝜕ℝ+ = 0 and𝑊 (0, · ) =𝑊0, then (P𝑡𝑊0) (𝑦) B𝑊 (𝑡, 𝑦).

By De�nition 1.1, there exists𝑀 ∈ ℝ+ such that

0 ≤ Ψ ≤ 𝑀 (4.3)

Recall that 𝜑 from (1.3) is the unique bounded positive Dirichlet steady state onℝ+.
Because 𝑀 is a supersolution of (4.2), its evolution P𝑡𝑀 is decreasing in 𝑡 and
thus has a nonnegative bounded limit P∞𝑀 solving (1.3). Comparison and the
hair trigger e�ect from [3, Theorem 1.3(A)] imply that P∞𝑀 ≥ P∞1 = 𝜑. Since 𝜑
is the unique positive bounded solution of (1.3), we in fact have P∞𝑀 = 𝜑 . (We do
not apply Theorem 1.3(A) of [3] directly to𝑀 because the theorem assumes 𝑢0 ≤ 1.
As the above argument shows, this hypothesis can be relaxed to boundedness.)
Using (4.3), the comparison principle thus implies that

0 ≤ Ψ ≤ P∞𝑀 = 𝜑.

Since Ψ is neither 0 nor 𝜑 , the lemma follows from the strong maximum principle.
�

We now show that minimal-speed waves have the expected monotonicity. Our
argument follows the proof of Lemma 5.1 in [10], which establishes the analogous
result in the whole space.

Proposition 4.3. Let Ψ be a traveling wave on ℍ𝑑 of speed 𝑐∗ =
√
2. Then 𝜕𝑥Ψ < 0,

𝜕𝑦Ψ > 0, and ∇x′Ψ = 0. Moreover, 𝜕𝑥 logΨ ≥ −
√
2.

Proof. Take 𝜃 = (𝜃𝑥 , 𝜃x′, 𝜃𝑦 ) ∈ 𝑆𝑑 such that 𝜃𝑦 ≥ 0. We write 𝜕𝜃 B 𝜃 · ∇ for the
derivative in direction 𝜃 . We suppose that inf 𝜕𝜃Ψ < 0. We show that this implies
that 𝜃𝑥 > 0; the desired bounds follow.

De�ne
𝑣 B

𝜕𝜃Ψ

Ψ
= 𝜕𝜃 logΨ.

When 𝑦 ≥ 1, Schauder estimates imply that 𝑣 is uniformly bounded. On 𝜕ℍ𝑑 , we
have Ψ = 0 and hence 𝜕𝑥Ψ = ∇x′Ψ = 0 while the Hopf lemma yields 𝜕𝑦Ψ > 0.
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Because 𝜃𝑦 ≥ 0, it follows from elliptic estimates up to the boundary that 𝑣− is
uniformly bounded where 0 < 𝑦 < 1. Thus 𝑣− is uniformly bounded. Because
𝜕𝜃Ψ < 0 somewhere, we have

inf 𝑣 = −𝑚
for some 𝑚 ∈ ℝ+. Thus there exists (x𝑛)𝑛∈ℕ ⊂ ℍ𝑑 such that 𝑣 (x𝑛) → −𝑚 as
𝑛 → ∞. De�ne Ψ𝑛 B Ψ( · + x𝑛) and 𝑣𝑛 B 𝑣 ( · + x𝑛) for 𝑛 ∈ ℕ.

We consider several cases. First suppose Ψ𝑛 does not vanish locally uniformly
as 𝑛 → ∞ and lim sup𝑛→∞ 𝑦𝑛 > 0. We restrict to a subsequence with inf𝑛 𝑦𝑛 > 0.
Schauder estimates allow us to extract subsequential limits 𝑦∞ ∈ (0,∞], Ψ∞ . 0,
and 𝑣∞ of (𝑦𝑛,Ψ𝑛, 𝑣𝑛)𝑛∈ℕ such that 𝑣∞(0) = −𝑚 = min 𝑣∞. One can easily check
that these satisfy

1
2
Δ𝑣∞ + ∇Ψ∞

Ψ∞
· ∇𝑣∞ + 𝑐∗𝜕𝑥𝑣∞ − Ψ∞𝑣∞ = 0 (4.4)

in the domain ℍ𝑑 − 𝑦∞e𝑦 under the convention that ℍ𝑑 − ∞e𝑦 = ℝ𝑑 . Since 𝑣∞
achieves its minimum at the origin, ∇𝑣∞(0) = 0 and Δ𝑣∞(0) ≥ 0. Then 𝑣∞(0) < 0
and (4.4) imply that Ψ∞(0) = 0, contradicting the strong maximum principle.

Still assuming Ψ𝑛 does not vanish locally uniformly in the limit, suppose 𝑦𝑛 → 0.
Boundary elliptic estimates imply that 𝑣 → ∞ locally uniformly as 𝑦 → 0 if 𝜃𝑦 > 0.
From the de�nition of x𝑛 , we must have 𝜃𝑦 = 0 in this case.

Now 𝑣∞ satis�es (4.4) on ℍ𝑑 . This case is more delicate because Ψ∞ |𝜕ℍ𝑑 = 0,
so (4.4) seems singular at the boundary. To resolve this, let Λ B 𝜕𝑦Ψ∞ |𝑦=0 > 0,
which is a function of (𝑥, x′). Evaluating (1.2) at 𝑦 = 0 and taking a limit, we
see that 𝜕2𝑦Ψ∞ |𝑦=0 = 0. By Taylor’s theorem, there exist a nonempty connected
neighborhood𝑈 of 0 in ℍ𝑑 and Γ ∈ C∞(𝑈 ) such that

Ψ∞ = Λ𝑦 + Γ𝑦3 in𝑈 . (4.5)

We now consider the advection term in (4.4). The ratio (∇𝑥,x′Ψ∞)/Ψ∞ is bounded
on 𝑈 , so the only component of concern is 𝜕𝑦Ψ∞/Ψ∞. Indeed, 𝜕𝑦Ψ∞ > 0 while
Ψ∞ = 0 on 𝜕ℍ𝑑 . However, we can use (4.5) to compute

𝜕𝑦𝑣∞ = 𝜕𝑦

(
𝜕𝜃Ψ∞
Ψ∞

)
= 2Λ−2(Λ𝜕𝜃Γ − Γ𝜕𝜃Λ)𝑦 +O(𝑦2) in𝑈 . (4.6)

We then �nd
𝜕𝑦Ψ∞

Ψ∞
𝜕𝑦𝑣∞ = 2Λ−2(Λ𝜕𝜃Γ − Γ𝜕𝜃Λ) +O(𝑦) in𝑈 .

Likewise,
𝜕2𝑦𝑣∞ = 2Λ−2(Λ𝜕𝜃Γ − Γ𝜕𝜃Λ) +O(𝑦) in𝑈 .

We thus conclude that
𝜕𝑦Ψ∞

Ψ∞
𝜕𝑦𝑣∞ = 𝜕2𝑦𝑣∞ +O(𝑦) in𝑈

Thus this singular �rst-order term acts like a regular second-order term. Perhaps
after shrinking𝑈 , we are free to assume that |𝑣∞ | ≥ 𝑚/2 on𝑈 . Then we can write
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(4.4) as(
1
2
Δ + 𝜕2𝑦

)
𝑣∞ +

(
𝜕𝑥Ψ∞
Ψ∞

+ 𝑐∗
)
𝜕𝑥𝑣∞ + ∇x′Ψ∞

Ψ∞
· ∇x′𝑣∞ −

[
Ψ∞ +O(𝑦)

]
𝑣∞ = 0. (4.7)

The coe�cients in this operator are bounded and 1
2Δ + 𝜕2𝑦 is (uniformly) elliptic.

Consider (4.7) at the origin. There 𝑣∞ achieves its negative minimum and (4.6)
implies that 𝜕𝑦𝑣∞(0) = 0. By the Hopf lemma, 𝑣 ≡ −𝑚 in𝑈 . Using this in (4.4), we
obtain Ψ∞ = 0 in 𝑈 , which contradicts the strong maximum principle, as Ψ∞ . 0
by hypothesis.

The above contradictions imply thatΨ vanishes locally uniformly along (x𝑛)𝑛∈ℕ.
Again suppose lim sup𝑛→∞ 𝑦𝑛 > 0. We de�ne

𝑤𝑛 B
Ψ( · + x𝑛)
Ψ(x𝑛)

e
√
2𝑥

and extract subsequential limits 𝑦∞ ∈ (0,∞] and𝑤∞. The latter satis�es𝑤∞(0) = 1
by construction. BecauseΨ(x𝑛) → 0, we are in a linear regime and𝑤∞ is harmonic:

Δ𝑤∞ = 0 in ℍ𝑑 − 𝑦∞e𝑦 .
Moreover, when 𝑦∞ < ∞, 𝑤∞ = 0 on the boundary 𝑦 = −𝑦∞. Positive harmonic
functions satisfying the Dirichlet condition are unique up to scaling (this follows
from the representation formula (13) in [26], for example). Since𝑤∞(0) = 1, we can
identify 𝑤∞ =

𝑦+𝑦∞
𝑦∞

if 𝑦∞ < ∞ and 𝑤∞ = 1 if 𝑦∞ = ∞. In each case, 𝜕𝜃𝑤∞(0) ≥ 0
because 𝜃𝑦 ≥ 0. On the other hand, 𝑣 (x𝑛) → −𝑚 implies that

0 ≤ 𝜕𝜃𝑤∞(0) = −𝑚 +
√
2𝜃𝑥 .

We conclude that 𝜃𝑥 > 0 and𝑚 ≤
√
2𝜃𝑥 .

Finally, suppose 𝑦𝑛 → 0. Then we de�ne

𝑤̃𝑛 B
Ψ( · + x𝑛)
Ψ(x𝑛 + e𝑦 )

e
√
2𝑥

and extract a subsequential limit as above. We have 𝑤̃∞(e𝑦 ) = 1, Δ𝑤̃∞ = 0, and
𝑤̃∞ |𝜕ℍ𝑑 = 0. It follows that 𝑤̃∞ = 𝑦 and 𝜕𝜃𝑤̃∞(0) ≥ 0. Reasoning as above, we
again obtain 𝜃𝑥 > 0 and𝑚 ≤

√
2𝜃𝑥 .

We have now shown that 𝜕𝜃Ψ ≥ 0 whenever 𝜃𝑦 ≥ 0 and 𝜃𝑥 ≤ 0. It follows that
𝜕𝑥Ψ ≤ 0 and 𝜕𝑦Ψ ≥ 0. If we take 𝜃𝑥 = 𝜃𝑦 = 0,

0 ≤ 𝜕−𝜃Ψ = −𝜕𝜃Ψ ≤ 0.

That is, 𝜕𝜃Ψ = 0, meaning ∇x′Ψ = 0. Finally, Ψ cannot be constant in 𝑦 , so the
strong maximum principle implies that 𝜕𝑦Ψ > 0. Similarly, if 𝜕𝑥Ψ = 0, then
it is a bounded positive steady state of the KPP equation on the half-line. The
unique such solution is 𝜑 , and we have assumed that Ψ . 𝜑 . It follows that Ψ is
nonconstant in 𝑥 as well, so 𝜕𝑥Ψ < 0.

Finally, we showed above that𝑚 =𝑚(𝜃 ) ≤ (
√
2𝜃𝑥 )+. Taking 𝜃 = e𝑥 so 𝜃𝑥 = 1,

we see that𝑚 ≤
√
2. Recalling the de�nition of𝑚, we have

inf 𝜕𝑥 logΨ ≥ −
√
2



28 JULIEN BERESTYCKI, COLE GRAHAM, YUJIN H. KIM, AND BASTIEN MALLEIN

as claimed. �

Since Ψ is constant in x′, we can drop those variables. In the remainder of the
paper, we assume 𝑑 = 2, so Ψ is a traveling wave on ℍ B ℝ × ℝ+ and thus a
function of (𝑥, 𝑦).

Corollary 4.4. The following limits hold locally uniformly in C1 in 𝑦 ∈ [0,∞):
lim

𝑥→−∞
Ψ(𝑥, 𝑦) = 𝜑 (𝑦) and lim

𝑥→+∞
Ψ(𝑥, 𝑦) = 0.

Proof. Because Ψ is bounded and monotone in 𝑥 , the limits lim𝑥→±∞ Ψ exist and
are bounded steady states of the KPP equation onℝ+. Moreover, Ψ|𝑥=−∞ > Ψ|𝑥=+∞.
The only two bounded steady states onℝ+ are 𝜑 and 0. The corollary follows from
the uniform continuity of Ψ. �

We next consider the behavior far from the boundary. In the following, we
use the notation O𝑠 (𝑦) to indicate a function 𝑓 (𝑠, 𝑦) such that 𝑓 (𝑠, 𝑦)/𝑦 → 0 as
𝑦 → ∞ pointwise (but not necessarily uniformly) in 𝑠 . Recall that𝑤𝑐∗ is the unique
minimal-speed one-dimensional traveling wave satisfying (1.13).

Lemma 4.5. For all 𝑠 ∈ (0, 1), the level set Ψ−1(𝑠) can be expressed as the (rotated)
graph {𝑥 = 𝜎𝑠 (𝑦)} of a locally smooth and increasing function 𝜎𝑠 : (𝜑−1(𝑠),∞) → ℝ.
This function satis�es 𝜕𝑘𝑦𝜎𝑠 → 0 as 𝑦 → ∞ for all 𝑘 ≥ 1; in particular, 𝜎𝑠 (𝑦) = O𝑠 (𝑦)
as 𝑦 → ∞. Moreover, for all 𝑘 ≥ 0,

lim
ℓ→∞



Ψ(𝑥, 𝑦) −𝑤𝑐∗

(
𝑥 − 𝜎𝑠 (𝑦) +𝑤−1

𝑐∗ (𝑠)
)



C𝑘 (ℝ×[ℓ,∞)) = 0.

Proof. Fix 𝑠 ∈ (0, 1). Due to 𝜕𝑥Ψ < 0 (from Proposition 4.3) and Corollary 4.4,
Ψ−1(𝑠) ⊂ {𝑦 > 𝜑−1(𝑠)} and for each 𝑦 ∈ (𝜑−1(𝑠),∞), there is a unique 𝑥 ∈ ℝ

such that Ψ(𝑥, 𝑦) = 𝑠 . Let 𝜎𝑠 (𝑦) denote this value of 𝑥 . Because 𝜕𝑥Ψ < 0, the
implicit function theorem ensures that 𝜎𝑠 is locally smooth. We note that the “local”
quali�er is necessary because 𝜎𝑠 → −∞ as 𝑦 ↘ 𝜑−1(𝑠). In any case, 𝜕𝑦Ψ > 0
implies that 𝜎 ′

𝑠 > 0.
We now consider the limiting behavior of 𝜎𝑠 at in�nity. Given a sequence

(𝑦𝑛)𝑛∈ℕ tending to in�nity, de�ne Ψ𝑛 B Ψ
(
· +(𝜎𝑠 (𝑦𝑛), 𝑦𝑛)

)
. Then Ψ𝑛 (0) = 𝑠 for

all 𝑛 ∈ ℕ. Taking 𝑛 → ∞, we can extract a locally uniform subsequential limit Ψ∞
that solves the traveling wave PDE (1.2) on the whole space ℝ2. The limit satis�es
Ψ∞(0) = 𝑠 , so Ψ∞ is neither identically 0 nor 1. By Theorem 1.7(i-c) in [10], Ψ∞ is a
function of 𝑥 alone. It follows that

Ψ∞(𝑥, 𝑦) = 𝑤𝑐∗

(
𝑥 +𝑤−1

𝑐∗ (𝑠)
)
.

Because the limit is unique, we have Ψ
(
𝑥 + 𝜎𝑠 (𝑦 ′), 𝑦 + 𝑦 ′

)
→ 𝑤𝑐∗

(
𝑥 + 𝑤−1

𝑐∗ (𝑠)
)

locally uniformly in (𝑥, 𝑦) as 𝑦 ′ → ∞. In fact, Schauder estimates imply that this
convergence holds locally uniformly in C𝑘 for every 𝑘 ≥ 1. Hence

∇Ψ
(
𝜎𝑠 (𝑦), 𝑦

)
→ 𝑤 ′

𝑐∗

(
𝑤−1
𝑐∗ (𝑠)

)
e𝑥 as 𝑦 → ∞.

Since {𝑥 = 𝜎𝑠 (𝑦)} is a level set of Ψ, the above gradient is orthogonal to the
tangent vector

(
𝜎 ′
𝑠 (𝑦), 1

)
. Because 𝑤 ′

𝑐∗

(
𝑤−1
𝑐∗ (𝑠)

)
≠ 0, it follows that 𝜎 ′

𝑠 → 0 as
𝑦 → ∞. Uniform smoothness then implies that 𝜕𝑘𝑦𝜎𝑠 → 0 for every 𝑘 ≥ 1.
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We have now shown that

lim
𝑦→∞



Ψ(𝑥, 𝑦) −𝑤𝑐∗

(
𝑥 − 𝜎𝑠 (𝑦) +𝑤−1

𝑐∗ (𝑠)
)



C𝑥 ( [−𝐿,𝐿]) = 0

for all 𝐿 > 0. Dini’s second theorem allows us to upgrade the uniformity in 𝑥 from
local to global [24, pp. 81, 270]. We apply it on the compacti�cation [−∞,∞], and
must thus verify that

Ψ(±∞, 𝑦) → 𝑤𝑐∗ (±∞) as 𝑦 → ∞. (4.8)

Corollary 4.4 states that Ψ(−∞, 𝑦) = 𝜑 (𝑦) and Ψ(+∞, 𝑦) = 0. Moreover, 𝜑 (𝑦) → 1
as 𝑦 → ∞, while 𝑤𝑐∗ (−∞) = 1 and 𝑤𝑐∗ (+∞) = 0. This con�rms the endpoint
convergence (4.8), so Dini yields

lim
𝑦→∞



Ψ(𝑥, 𝑦) −𝑤𝑐∗

(
𝑥 − 𝜎𝑠 (𝑦) +𝑤−1

𝑐∗ (𝑠)
)



C𝑥 (ℝ) = 0.

Taking the limit superior in 𝑦 , we are free to write this as

lim
ℓ→∞



Ψ(𝑥, 𝑦) −𝑤𝑐∗

(
𝑥 − 𝜎𝑠 (𝑦) +𝑤−1

𝑐∗ (𝑠)
)



C (ℝ×[ℓ,∞)) = 0.

The higher-regularity statements then follow from Schauder estimates. �

In the remainder of the section, we take 𝑠 = 1/2 and let 𝜎 B 𝜎1/2. We let 𝜎+
denote the positive part of 𝜎 .

4.3. A subsolution. Our analysis of Ψ hinges on the heuristic that Ψ roughly
decays like e−

√
2𝑥 to the right of its 1/2-level set {𝑥 = 𝜎 (𝑦)}. This decay was

foreshadowed in Proposition 4.3, which states that 𝜕𝑥 logΨ ≥ −
√
2.We would like

to prove an almost-matching upper bound, which would state that Ψ cannot decay
at a rate much slower than

√
2. This is impossible globally, as Ψ is nearly constant

in 𝑥 far on the left. Thus our bounds will only hold where Ψ is somewhat small.
Our key tool is a compactly-supported subsolution that varies in time. It will

move to the left while growing exponentially. By deploying this subsolution
beneath Ψ, we will �nd that Ψ cannot decay too slowly, for otherwise its level set
will be far to the right of the true location 𝜎 . Thus, somewhat counterintuitively,
we use a subsolution to prove an upper bound.

Our traveling wave Ψ can be viewed as a solution of the KPP equation (1.1)
moving with velocity 𝑐∗e𝑥 . That is, Ψ(x − 𝑐∗𝑡e𝑥 ) solves (1.1). Our left-moving
subsolution is based on a compactly-supported subsolution of (1.1) that moves at a
slower speed but grows exponentially in time.

Let
A B 𝜕𝑡 −

1
2
Δ − 1

denote the parabolic operator corresponding to the linearization of (1.1) about 0.
Given 𝑐 > 0, let (S𝑐𝑧) (𝑡, x) B e−𝑐 (𝑥−𝑐𝑡 )𝑧 (𝑡, x − 𝑐𝑡e𝑥 ) denote an exponential tilt
followed by a shift into the frame moving at velocity 𝑐e𝑥 . Then one can check that

S−1
𝑐 AS𝑐 = 𝜕𝑡 −

1
2
Δ + 𝑐

2 − 𝑐2∗
2

. (4.9)

Thus this tilt and shift merely change A by a multiple of the identity.
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Let𝜓 > 0 denote the principal Dirichlet eigenfunction of − 1
2Δ on the unit ball

𝐵1 ⊂ ℝ2 normalized by𝜓 (0) = ‖𝜓 ‖∞ = 1. We extend𝜓 by 0 to the entire plane ℝ2.
Let 𝜇 denote the corresponding principal eigenvalue. Given 𝑅 > 0, the dilation
𝜓 ( · /𝑅) is the principal eigenfunction on the 𝑅-ball 𝐵𝑅 with principal eigenvalue
𝜇/𝑅2.

Recall that we are looking for a compactly-supported subsolution that moves at
a speed 𝑐 < 𝑐∗ and grows in time. In this spirit, we will choose 𝑐 < 𝑐∗, 𝜆 > 0, and
𝑅 > 0 such that

e𝜆𝑡𝜙
( x
𝑅

)
lies in the nullspace of S−1

𝑐 AS𝑐 . In light of (4.9), this is equivalent to

𝜆 + 𝜇

𝑅2
− 𝑐2∗ − 𝑐2

2
= 0. (4.10)

Ultimately, we wish to show that solutions Ψ of (1.2) decay like e−
√
2𝑥 . When

we deploy our subsolution in (1.2), it will move to the left at the relative speed
𝜀 B 𝑐∗ − 𝑐 > 0. In time 1, it will move distance 𝜀 to the left and grow by a factor
of e𝜆 . We can interpret this as spatial decay at rate 𝜆/𝜀. If we want to prove
exponential decay of rate

√
2, we want 𝜆/𝜀 to be close to

√
2. Rearranging the

dispersion relation (4.10), we want

1 �
√
2 − 𝜆

𝜀
=

𝜇

𝜀𝑅2
+ 𝜀
2
. (4.11)

Thus to obtain the bounds we desire, we must use a large radius (and a very �at
eigenfunction), weak exponential growth, and a speed slightly slower than 𝑐∗. We
choose 𝑅 and 𝜆 so that the two terms on the right of (4.11) are equal. Expressing
our parameters in terms of 𝜀, we choose

𝑐𝜀 B 𝑐∗ − 𝜀, 𝜆𝜀 B 𝜀 (𝑐∗ − 𝜀) = 𝜀𝑐𝜀, and 𝑅𝜀 B

√
2𝜇
𝜀
. (4.12)

Applying S𝑐 , we see that

𝑣𝜀 (𝑡, x) B exp [𝜆𝜀𝑡 − 𝑐𝜀 (𝑥 − 𝑐𝜀𝑡 + 𝑅𝜀)] 𝜙
(
x − 𝑐𝜀𝑡e𝑥

𝑅𝜀

)
satis�es A𝑣𝜀 = 0. That is, 𝑣𝜀 solves the linearization of (1.1) about 0. We must now
account for the nonlinear absorption in the full equation. Since our solutions of
(1.1) lie between 0 and 1, 𝑣𝜀 is certainly a poor approximate solution when it exceeds
1. Thus in practice, we use a small multiple 𝛼𝑣𝜀 on a time interval that ensures
that 𝛼𝑣𝜀 ≤ 1, namely 0 ≤ 𝑡 ≤ 𝜆−1𝜀 log𝛼−1. To handle the nonlinear absorption
on this interval, we multiply 𝛼𝑣𝜀 by a time-dependent factor 𝑏 (𝑡) ≤ 1. A simple
computation shows that 𝛼𝑏𝑣𝜀 is a subsolution of the full equation (1.1) provided

¤𝑏 ≤ −𝛼𝑏2e𝜆𝜀𝑡 .

Taking 𝑏 (0) = 1 and solving the corresponding ODE, we choose

𝑏𝛼𝜀 (𝑡) B
[
1 + 𝛼𝜆−1𝜀

(
e𝜆𝜀𝑡 − 1

) ]−1
.
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We observe that
𝑏𝛼𝜀 (𝑡) >

1
1 + 𝜆−1𝜀

when 𝛼e𝜆𝜀𝑡 = 1.

It only remains to shift into the 𝑐∗e𝑥 -moving frame. We de�ne

𝑤𝛼
𝜀 (𝑡, x) B 𝛼𝑏𝛼𝜀 (𝑡) exp [𝜆𝜀𝑡 − 𝑐𝜀 (𝑥 + 𝜀𝑡 + 𝑅𝜀)] 𝜙

(
x + 𝜀𝑡e𝑥
𝑅𝜀

)
.

Then for all 𝛼 ∈ [0, 1] and 𝑡 ∈ [0, 𝜆−1𝜀 log𝛼−1], 𝑤𝛼
𝜀 is a subsolution of the parabolic

traveling wave equation

𝜕𝑡𝑊 =
1
2
Δ𝑊 + 𝑐∗𝜕𝑥𝑊 +𝑊 −𝑊 2.

Assuming 𝜀 ≤ 2−1/2 and 𝑡 ≤ 𝜆−1𝜀 log𝛼−1, we have
𝜀𝛼

3
e−2𝑐𝜀𝑅𝜀e𝜆𝜀𝑡𝜙

(
x + 𝜀𝑡e𝑥
𝑅𝜀

)
≤ 𝑤𝛼

𝜀 (𝑡, x) ≤ 𝛼e𝜆𝜀𝑡 1𝐵𝑅𝜀 (−𝜀𝑡,0) . (4.13)

We use this subsolution to prove that Ψ has an exponential character.

Lemma 4.6. For all 𝜀 ∈ (0, 2−1/2], 𝑥 ∈ ℝ, 𝑦 ≥ 1, and ℓ ≥ 0,

min
{
e(

√
2−𝜀)ℓΨ(𝑥 + ℓ, 𝑦), 1

}
.𝜀 Ψ(𝑥, 𝑦) ≤ e

√
2ℓΨ(𝑥 + ℓ, 𝑦) . (4.14)

Proof. Using Proposition 4.3, we have

log
Ψ(𝑥 + ℓ, 𝑦)
Ψ(𝑥, 𝑦) =

∫ ℓ

0
𝜕𝑥 logΨ(𝑥 + ℓ ′, 𝑦) dℓ ′ ≥ −

√
2ℓ .

This establishes the right bound in (4.14). For the left bound, we take 𝑐𝜀, 𝜆𝜀, 𝑅𝜀 as
in (4.12). By Harnack (using 𝑦 ≥ 1), there exists 𝑘𝜀 independent of (𝑥, 𝑦) such that

Ψ ≥ 𝑘𝜀Ψ(𝑥 + ℓ, 𝑦)1𝐵𝑅𝜀 (𝑥+ℓ,𝑦+𝑅𝜀 ) and Ψ(𝑥, 𝑦) ≥ 𝑘𝜀Ψ(𝑥, 𝑦 + 𝑅𝜀). (4.15)
It follows from (4.13) that

Ψ ≥ 𝑤𝛼
𝜀 (0, · − (𝑥 + ℓ, 𝑦 + 𝑅𝜀))

for
𝛼 = 𝑘𝜀Ψ(𝑥 + ℓ, 𝑦) .

We allow time to evolve until

𝑡∗ B min
{
ℓ

𝜀
, 𝜆−1𝜀 log𝛼−1

}
.

First suppose 𝑡∗ = ℓ/𝜀. Rearranging the de�nitions of 𝛼 and 𝑡∗, we note that in this
case

Ψ(𝑥 + ℓ, 𝑦)e(
√
2−𝜀)ℓ ≤ 𝑘−1𝜀 . (4.16)

Now, the comparison principle and (4.13) yield

Ψ ≥ 𝑤𝛼
𝜀

(
ℓ/𝜀, · − (𝑥 + ℓ, 𝑦 + 𝑅𝜀)

)
≥ 𝜀𝛼

3
e−2𝑐𝜀𝑅𝜀e(

√
2−𝜀)ℓ𝜙

(
· − (𝑥, 𝑦 + 𝑅𝜀)

𝑅𝜀

)
.

In particular,
Ψ(𝑥, 𝑦 + 𝑅𝜀) ≥

𝜀𝛼

3
e−2𝑐𝜀𝑅𝜀e(

√
2−𝜀)ℓ
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Thus by (4.15), we have

Ψ(𝑥, 𝑦) ≥ 𝜀𝑘𝜀𝛼

3
e−2𝑐𝜀𝑅𝜀e(

√
2−𝜀)ℓ

=
𝜀𝑘2𝜀
3

e−2𝑐𝜀𝑅𝜀e(
√
2−𝜀)ℓΨ(𝑥 + ℓ, 𝑦) &𝜀 e(

√
2−𝜀)ℓΨ(𝑥 + ℓ, 𝑦) .

On the other hand, if 𝑡∗ = 𝜆−1𝜀 log𝛼−1 < ℓ/𝜀, let 𝑥∗ B 𝑥 + ℓ − 𝜀𝑡∗ > 𝑥 . Then the
comparison principle and (4.13) imply that

Ψ(𝑥∗, 𝑦 + 𝑅𝜀) ≥ 𝑤𝛼
𝜀

(
𝑡∗, 𝑥∗ − (𝑥 + ℓ), 0

)
≥ 𝜀

3
e−2𝑐𝜀𝑅𝜀 .

Since Ψ is decreasing in 𝑥 , we have

Ψ(𝑥, 𝑦 + 𝑅𝜀) ≥ Ψ(𝑥∗, 𝑦 + 𝑅𝜀) ≥
𝜀

3
e−2𝑐𝜀𝑅𝜀 .

Finally, (4.15) yields

Ψ(𝑥, 𝑦) ≥ 𝑘𝜀Ψ(𝑥, 𝑦 + 𝑅𝜀) ≥
𝜀𝑘𝜀

3
e−2𝑐𝜀𝑅𝜀 &𝜀 1.

Together with (4.16), these two alternatives imply the left bound in (4.14). �

4.4. Potential theory. We now examine the behavior of Ψ to the right of 𝜎 in
detail. By Lemma 4.6, Ψ roughly decays like e−

√
2𝑥 there. It is helpful to remove

this decay from our analysis, so we de�ne

Θ(𝑥, 𝑦) B e
√
2𝑥Ψ(𝑥, 𝑦).

Then Lemma 4.6 has a particularly simple form in this context.

Lemma 4.7. Fix 𝜀 ∈ (0, 2−1/2] and ℓ ≥ 0. Then if 𝑥 ≥ 𝜎+(𝑦),
Θ(𝑥, 𝑦) ≤ Θ(𝑥 + ℓ, 𝑦) .𝜀 e𝜀ℓΘ(𝑥, 𝑦). (4.17)

In particular, Θ grows subexponentially in 𝑥 where 𝑥 ≥ 𝜎+(𝑦).

Proof. We �rst observe that Proposition 4.3 implies that 𝜕𝑥Θ ≥ 0. Thus we need
only show the right inequality.

We claim that Ψ(𝑧 + 𝜎+(𝑦), 𝑦) → 0 as 𝑧 → ∞ uniformly in 𝑦 . To see this, �x
𝛿 > 0. By Lemma 4.5, there exists 𝑦 ′ > 0 such that

sup
ℝ×[𝑦′,∞)

��Ψ (
𝑧 + 𝜎 (𝑦), 𝑦

)
−𝑤𝑐∗

(
𝑧 +𝑤−1

𝑐∗ (1/2)
) �� ≤ 𝛿

2
.

Since 𝑤𝑐∗ (+∞) = 0, there exists 𝐿 > 0 such that

Ψ(𝑧 + 𝜎 (𝑦), 𝑦) ≤ 𝛿
for all 𝑧 ≥ 𝐿 and 𝑦 ≥ 𝑦 ′. On the other hand, Corollary 4.4 states that Ψ → 0 as
𝑥 → ∞ uniformly in 𝑦 ∈ [0, 𝑦 ′], which proves the claim.

Now �x 𝜀 ∈ (0, 2−1/2] and ℓ ≥ 0. Let 𝑘𝜀 denote the implicit constant in (4.14), so
that

Ψ(𝑥, 𝑦) ≥ 𝑘𝜀 min
{
e(

√
2−𝜀)ℓΨ(𝑥 + ℓ, 𝑦), 1

}
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for 𝑦 ≥ 1. By the uniform decay shown above, there exists 𝐿𝜀 > 0 such that
Ψ(𝑥, 𝑦) < 𝑘𝜀 when 𝑥 ≥ 𝐿𝜀 + 𝜎+(𝑦). In this case we must have

Ψ(𝑥, 𝑦) ≥ 𝑘𝜀e(
√
2−𝜀)ℓΨ(𝑥 + ℓ, 𝑦).

Multiplying by e
√
2𝑥 and rearranging, we obtain (4.17) for all 𝑥 ≥ 𝐿𝜀 + 𝜎+(𝑦) and

𝑦 ≥ 1. Using interior Harnack, we can extend the bound to all 𝑥 ≥ 𝜎+(𝑦).
It remains to treat 𝑦 ∈ (0, 1]. Here, boundary Harnack estimates imply that

Ψ(𝑥, 𝑦) � Ψ(𝑥, 1)𝑦 , where 𝑓 � 𝑔 indicates that𝐶−1 𝑓 ≤ 𝑔 ≤ 𝐶𝑓 for some𝐶 ∈ [1,∞).
Using our result at 𝑦 = 1 and multiplying by 𝑦 , we obtain (4.17) for 𝑦 ∈ (0, 1) as
well. �

Now, the tilted wave Θ solves

− 1
2
ΔΘ = −𝐹 B −e−

√
2𝑥Θ2. (4.18)

The essential point is that 𝐹 decays exponentially in 𝑥 , so Θ is “almost harmonic.”
We use this property repeatedly to constrain Θ in the quarter-plane ℚ B ℝ2

+.
De�ne the region Σ B {𝑥 ≥ 6𝜎+(𝑦)}. This is somewhat larger than {𝑥 > 𝜎+(𝑦)}

for the following reason. When 𝑥 > 𝜎+, Lemma 4.7 implies that

Θ(𝑥, 𝑦) .𝜀 e𝜀 (𝑥−𝜎+)Θ(𝜎+, 𝑦) .𝜀 exp
[
𝜀 (𝑥 − 𝜎+) +

√
2𝜎+

]
.

Hence

e−
√
2𝑥Θ2 .𝜀 exp

[
2𝜀 (𝑥 − 𝜎+)+2

√
2𝜎+ −

√
2𝑥

]
= exp

[
−(

√
2 − 2𝜀)𝑥 + 2(

√
2 − 𝜀)𝜎+

]
.

On Σ, we have 𝑥 ≥ 𝑥/2 + 3𝜎+, so for 𝜀 � 1, we have

𝐹 = e−
√
2𝑥Θ2 . e−𝑥/2. (4.19)

In the following, let𝐺Ω
z (x) denote the Dirichlet Green function of− 1

2Δ on a domain
Ω, so that − 1

2Δ𝐺
Ω
z = 𝛿z and 𝐺Ω

z |𝜕Ω∪{∞} = 0 for all z = (𝑢, 𝑣) ∈ Ω. We claim that

Θ𝐹 (x) B
∫
Σ
𝐹 (z)𝐺Σ

z (x) dz < ∞.

To see this, note that Σ ⊂ ℝ+ ×ℝ, so by comparison 𝐺Σ
z ≤ 𝐺ℝ+×ℝ

z . Moreover, we
can check that

∫
ℝ
𝐺

ℝ+×ℝ
(𝑢,𝑣) (𝑥, 𝑦) d𝑣 = 𝐺ℝ+

𝑢 (𝑥). Hence (4.19) yields

Θ𝐹 (x) =
∫
Σ
𝐹 (z)𝐺Σ

z (x) dz .
∫
ℝ+×ℝ

e−𝑢/2𝐺ℝ+×ℝ
z (x) dz =

∫
ℝ+

e−𝑢/2𝐺ℝ+
𝑢 (𝑥) d𝑢.

We can explicitly compute 𝐺ℝ+
𝑢 (𝑥) = 2(𝑥 ∧ 𝑢) ≤ 2𝑢, which is clearly integrable

against a decaying exponential. Thus Θ𝐹 is �nite and, in fact, uniformly bounded.
Now − 1

2ΔΘ𝐹 = 𝐹 , so by (4.18), Θ B Θ + Θ𝐹 satis�es{
ΔΘ = 0 in Σ,

Θ = Θ on 𝜕Σ.
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Note that Θ,Θ𝐹 > 0 in Σ, so Θ > 0 is a positive harmonic function in Σ. We now
recall that Σ = {𝑥 > 6𝜎+(𝑦), 𝑦 > 0} and 𝜎 ′(∞) = 0. Hence at a large scale, Σ
resembles the quarter-plane ℚ B ℝ2

+. We thus expect Θ to share its large-scale
behavior with positive harmonic functions on the quarter-space.

Lemma 4.8. There exists a conformal bijection 𝑓 : ℚ → Σ such that for all 𝜀 > 0,

‖x‖−𝜀 .𝜀

‖ 𝑓 (x)‖
‖x‖ .𝜀 ‖x‖𝜀 .

Proof. We view Σ and ℚ as subsets of the complex plane ℂ, on which we use
coordinates 𝑧 = 𝑢 + i𝑣. Then log is a conformal bijection from ℚ to the straight
strip {0 < 𝑣 < 𝜋/2}. We likewise apply log to Σ. Given 𝑢 > 0, de�ne

𝜍 (𝑢) B arccot
(
6𝜎+(𝑦𝑢)
𝑦𝑢

)
,

where 𝑦𝑢 > 0 satis�es
[6𝜎+(𝑦𝑢)]2 + 𝑦2𝑢 = e2𝑢 .

The height 𝑦𝑢 exists uniquely for each 𝑢 ∈ ℝ because 𝜎 ′ > 0. Thus 𝜍 (𝑢) ≤ 𝜋/2 is
the argument of the unique point on the curve {𝑥 = 6𝜎+} whose radial coordinate
is e𝑢 . It follows that log is a conformal bijection from Σ to the curvilinear strip
𝑆 B {0 < 𝑣 < 𝜍 (𝑢)}. Because 𝜎+ ≡ 0 for 𝑦 ≤ 𝜑−1(1/2), we have 𝜍 ≡ 𝜋/2 when
𝑢 ≤ log𝜑−1(1/2). In the other direction, 𝜎 = O(𝑦) as 𝑦 → ∞, so 𝑦𝑢 ∼ e𝑢 and

𝜋

2
− 𝜍 (𝑢) ∼ 6e−𝑢𝜎 (e𝑢) → 0 as 𝑢 → +∞.

Thus 𝑆 resembles the straight strip {0 < 𝑣 < 𝜋/2} when |𝑢 | � 1. It is therefore
reasonable to expect that there is a conformal bijection 𝑔 : {0 < 𝑣 < 𝜋/2} → 𝑆

with low distortion at in�nity. This is a well-studied problem in potential the-
ory. Warschawski, for instance, constructs 𝑔 such that 𝑔(𝑧) ∼ 𝑢 at in�nity; see
Theorem X in [27]. In particular,

|Re𝑔(𝑧) − 𝑢 | = O(𝑢). (4.20)

We now de�ne the conformal bijection 𝑓 B exp ◦𝑔 ◦ log : ℚ → Σ. Then (4.20)
becomes (4.8). �

Employing this conformal map, Θ ◦ 𝑓 becomes a positive harmonic function on
the quarter-plane. This allows us to constrain the growth of Θ. In the following,
let 〈x〉 B (‖x‖2 + 1)1/2.

Lemma 4.9. Letℎ ∈ C (ℍ) be a positive harmonic function onℍ that is nondecreasing
in |𝑥 | on 𝜕ℍ. Then ℎ(x) . 〈x〉 on ℍ.

Proof. We rely on a representation theorem of Herglotz (due independently to
Herglotz [14] and F. Riesz [25]): there exists a constant 𝐴 ≥ 0 such that

ℎ(𝑥, 𝑦) = 𝐴𝑦 + 𝑦
𝜋

∫
ℝ

ℎ(𝑡, 0) d𝑡
(𝑥 − 𝑡)2 + 𝑦2 . (4.21)
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As a consequence, ∫
ℝ

ℎ(𝑡, 0)
𝑡2 + 1

d𝑡 < ∞. (4.22)

Since ℎ( · , 0) is nondecreasing on ℝ+, we have∫ 2𝑥

𝑥

ℎ(𝑡, 0)
𝑡2 + 1

d𝑡 ≥ ℎ(𝑥, 0)
∫ 2𝑥

𝑥

d𝑡
𝑡2 + 1

&
ℎ(𝑥, 0)
𝑥

for all 𝑥 ≥ 1.

By (4.22), the left side tends to 0 as 𝑥 → ∞. It follows that ℎ(𝑥, 0) � 𝑥 as 𝑥 → ∞,
though we will only use the weaker bound ℎ(𝑥, 0) . 𝑥 . By symmetry,

ℎ(x) . 〈x〉 on 𝜕ℍ. (4.23)

Now suppose |𝑥 | ≤ 𝑚𝑦 for �xed𝑚 > 0. Then

𝑡2 + 𝑦2
(𝑥 − 𝑡)2 + 𝑦2 =

(𝑡/𝑦)2 + 1
(𝑥/𝑦 − 𝑡/𝑦)2 + 1

.𝑚 1.

It follows that
1
𝜋

∫
ℝ

ℎ(𝑡, 0) d𝑡
(𝑥 − 𝑡)2 + 𝑦2 .𝑚

∫
ℝ

ℎ(𝑡, 0)
𝑡2 + 𝑦2 d𝑡 .

By (4.22) and dominated convergence, the integral on the right tends to 0 as 𝑦 → ∞.
Thus the integral term in (4.21) is negligible as we approach in�nity in ℍ from a
direction that is not tangent to 𝜕ℍ. That is:

ℎ(𝑥, 𝑦) ∼𝑚 𝐴𝑦 as 𝑦 → ∞ if |𝑥 | ≤ 𝑚𝑦. (4.24)

In particular,
ℎ(x) .𝑚 〈x〉 in {|𝑥 | ≤ 𝑚𝑦}. (4.25)

We now consider ℎ on ℚ. Let 𝜁 : ℚ → ℍ denote the square map 𝜁 (𝑧) B 𝑧2. We
de�ne 𝑔 B ℎ ◦ 𝜁 −1, which is a positive harmonic function on ℍ. By (4.23) and
(4.25), ℎ(x) . 〈x〉 on 𝜕ℚ and on the ray {𝑥 = 𝑦}. It follows that

𝑔(x) . 〈x〉1/2 on 𝜕ℍ (4.26)

and on the ray {𝑥 = 0}, which is the image of {𝑥 = 𝑦} under 𝜁 . Now 𝑔 must also
admit a Herglotz representation, but we know that 𝑔 � 𝑦 on the 𝑦-axis. By (4.24),
we see that

𝑔(𝑥, 𝑦) = 𝑦

𝜋

∫
ℝ

𝑔(𝑡, 0) d𝑡
(𝑥 − 𝑡)2 + 𝑦2 .

Using (4.26), we �nd

𝑔(𝑥, 𝑦) . 𝑦

∫
ℝ

1 +
√︁
|𝑡 | d𝑡

(𝑥 − 𝑡)2 + 𝑦2

. 1 + √
𝑦

∫
ℝ

√︁
|𝑠 + 𝑥/𝑦 | d𝑠
𝑠2 + 1

. 1 +
√︁
|𝑥 | + √

𝑦 . 〈x〉1/2 . (4.27)

Transferring this bound to ℎ = 𝑔 ◦ 𝜁 , we �nd ℎ(x) . 〈x〉 on ℚ. A symmetric
argument on the left quadrant ℝ− ×ℝ+ shows that this holds on the entire half-
plane ℍ. �
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Corollary 4.10. For all 𝜀 > 0,

Θ(x) .𝜀 〈x〉2+𝜀 in Σ. (4.28)

Moreover, as 𝑦 → ∞, 𝜎 (𝑦) ≤
[√

2 + O(1)
]
log 𝑦.

Proof. Using the square map 𝜁 (𝑧) B 𝑧2 from above, ℎ B Θ ◦ 𝑓 ◦ 𝜁 −1 is a positive
harmonic function on ℍ that is continuous on ℍ. Recall that Θ is increasing in 𝑥
and 𝑦 . Since 𝜎 ′ > 0, it follows that 𝑦 ↦→ Θ

(
6𝜎+(𝑦), 𝑦

)
is increasing. Now Θ = Θ

where 𝑥 = 6𝜎+(𝑦), so Θ is decreasing on 𝜕Σ when its boundary is traversed in the
counterclockwise direction. The conformal maps 𝑓 and 𝜁 preserve the orientation
of the boundary, so ℎ(𝑥, 0) is decreasing in 𝑥 . Also, ℎ(𝑥, 0) = 0 for 𝑥 ≥ 0, as
this portion of the boundary corresponds to {𝑦 = 0} ⊂ 𝜕Σ, where Θ = Θ = 0.
Together, these facts imply that ℎ(𝑥, 0) is nondecreasing in |𝑥 |. Thus by Lemma 4.9,
ℎ(x) . 〈x〉 in ℍ. It follows that Θ ◦ 𝑓 = ℎ ◦ 𝜁 . 〈x〉2. Finally, Lemma 4.8 yields
(4.28).

We now turn to 𝜎 . By the de�nition of 𝜎 , Lemma 4.7, and (4.28), we have
1
2
e
√
2𝜎 (𝑦) = Θ

(
𝜎 (𝑦), 𝑦

)
≤ Θ

(
6𝜎 (𝑦), 𝑦

)
≤ Θ

(
6𝜎+(𝑦), 𝑦

)
.𝜀 𝑦

2+𝜀

for 𝑦 su�ciently large. It follows that 𝜎 (𝑦) ≤
(√

2 + 𝜀
)
log 𝑦 + O𝜀 (1) as 𝑦 → ∞

for all 𝜀 > 0. �

Soft arguments implied that 𝜎 is sublinear. Using potential theory, we have now
improved this to a logarithmic upper bound. In turn, this quantitative sublinearity
allows us to re�ne Corollary 4.10.

Lemma 4.11. We have Θ(x) . 〈x〉2 on ℚ.

Proof. Let Ω B {𝑥 > 10 log+ 𝑦}. By Corollary 4.10, Σ \ Ω is a bounded, and thus
compact, region. Thus (4.19) yields 𝐹 . e−𝑥/2 on Ω. We de�ne ΩΩ

𝐹
B

∫
Ω
𝐹 (z)𝐺Ω

z ,
which is positive and uniformly bounded on Ω by the reasoning following (4.19).
Let ΘΩ B Θ + ΘΩ

𝐹
, which is a positive harmonic function on Ω.

Following the proof of Lemma 4.8, the logarithm maps Ω to a curvilinear strip
𝑆 = {0 < 𝑣 < 𝜃 (𝑢)}, where 𝜃 (𝑢) is the argument of the unique point on the curve
{𝑥 = 10 log+ 𝑦} of radius e𝑢 . Now, the logarithmic boundary of Ω allows us to
conclude that

𝜋

2
− 𝜃 (𝑢) ∼ 10𝑢e−𝑢 and 𝜃 ′(𝑢) ∼ 10𝑢e−𝑢 as 𝑢 → ∞

while 𝜃 (𝑢) ≡ 𝜋/2 and 𝜃 ′(𝑢) ≡ 0 for su�ciently negative 𝑢. Then Theorem IX
of [27] provides a conformal bijection 𝑔 : {0 < 𝑣 < 𝜋/2} → 𝑆 such that

𝑔(𝑧) = 𝑧 + log 𝜆 + O(1) as 𝑢 → ∞
for some 𝜆 ∈ ℝ+. It follows that 𝑓 Ω : ℚ → Ω given by 𝑓 Ω B exp ◦𝑔 ◦ log satis�es

‖ 𝑓 (x)‖ ∼ 𝜆 ‖x‖ as ‖x‖ → ∞. (4.29)

Now let ℎ B ΘΩ ◦ 𝑓 Ω ◦ 𝜁 −1. Following the proof of Corollary 4.10, we see that
ℎ satis�es the hypotheses of Lemma 4.9. Hence ℎ(x) . 〈x〉. It again follows that
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ΘΩ ◦ 𝑓 Ω = ℎ ◦ 𝜁 . 〈x〉2. Then (4.29) implies that Θ ≤ ΘΩ . 〈x〉2 on Ω. Using
Lemma 4.7, we further have

Θ(𝑥, 𝑦) ≤ Θ(10 log+ 𝑦, 𝑦) . 〈𝑦〉2

on ℚ \ Ω = {0 < 𝑥 < 10 log+ 𝑦}. The lemma follows. �

We can �nally establish the main result of the section.

Proof of Proposition 4.1. The �rst parts of the proposition follow from Lemma 4.2,
Proposition 4.3, and Corollary 4.4. Thus it remains only to verify (4.1).

Lemma 4.11 and the C1 regularity of Ψ near 𝜕ℍ imply that for all 𝑥, 𝑦 > 0,

Θ(𝑥, 𝑥) . (𝑥 + 1)𝑥, (4.30)
Θ(0, 𝑦) . 𝑦 ∧ 1, (4.31)
Θ(𝑥, 0) = 0. (4.32)

We divide ℚ into two sectors Γ1 B {𝑥 > 𝑦 > 0} and Γ2 B {0 < 𝑥 < 𝑦} each of
opening angle 𝜋

4 . Using (4.30)–(4.32), there exists 𝐶 > 0 such that

Θ(𝑥, 𝑦) ≤ 𝐶 (𝑥 + 1)𝑦 on 𝜕Γ1 ∪ 𝜕Γ2.

Let Θ̃(𝑥, 𝑦) B Θ(𝑥, 𝑦)−𝐶 (𝑥+1)𝑦 , so Θ̃ ≤ 0 on 𝜕Γ1∪𝜕Γ2. By (4.18), Θ̃ is subharmonic
on ℚ. Moreover, Lemma 4.11 implies that Θ̃ . 〈𝑥〉2. Now, there exist positive
harmonic functions ℎ𝑖 on Γ𝑖 such that ℎ𝑖 (x) � 〈x〉2 on Γ𝑖 . For instance, we can
use a suitable rotation of Re 𝑧𝛼 for any 𝛼 ∈ (2, 4). Thus by the Phragmén–Lindelöf
principle [23] for subharmonic functions, Θ̃ ≤ 0 on Γ𝑖 for each 𝑖 ∈ {1, 2}. That is,

Θ(𝑥, 𝑦) ≤ 𝐶 (𝑥 + 1)𝑦 on ℚ.

Recalling that Ψ = e−
√
2𝑥Θ, we obtain (4.1) on ℚ. On the other hand, boundary

Schauder estimates imply that Ψ . 𝑦 ∧ 1 on ℝ− ×ℝ+ Hence Ψ(𝑥, 𝑦) . 𝑦e−
√
2𝑥 on

ℝ− ×ℝ+. This completes the proof of the proposition. �

5. Uniqeness of minimal-speed traveling-waves

We can now establish the uniqueness portion of Theorem 1.1.

Proposition 5.1. If Ψ is a traveling wave in ℍ of speed 𝑐∗ =
√
2, then there exists

𝜅 > 0 such that Ψ(𝑥, 𝑦) = 1 − 𝔼𝑦 exp
(
−𝜅e−

√
2𝑥𝑍∞

)
. In particular,

Ψ(𝑥, 𝑦) = Φ
(
𝑥 − 1√

2
log𝜅, 𝑦

)
on ℍ.

That is, up to 𝑥-translation, Φ is the unique traveling wave of speed 𝑐∗.
The proof of Proposition 5.1 follows the method described in [1] to identify the

�xed points of the smoothing transform. We use the arbitrary traveling wave Ψ
to construct a product martingale, sometimes called the disintegration martingale.
The tameness bound (4.1) allows us to associate this multiplicative martingale with
a harmonic function in the quadrant with Dirichlet conditions. Such functions are
unique up to a multiplicative constant; this allows us to identify Ψ as a shift of Φ.
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Proof. Let Ψ be a traveling wave in ℍ of speed
√
2. Using the McKean representa-

tion (Proposition 3.1), we observe that for all (𝑥, 𝑦) ∈ ℍ and 𝑡 ≥ 0,

1 − Ψ(𝑥, 𝑦) = 𝔼𝑦
©­«

∏
𝑢∈N +

𝑡

[
1 − Ψ

(√
2𝑡 + 𝑥 − 𝑋𝑡 (𝑢), 𝑌𝑡 (𝑢)

) ]ª®¬ . (5.1)

Hence the branching property of the BBM implies that

𝑇𝑡 (𝑥, 𝑦) B
∏
𝑢∈N +

𝑡

[
1 − Ψ

(√
2𝑡 + 𝑥 − 𝑋𝑡 (𝑢), 𝑌𝑡 (𝑢)

) ]
is a bounded martingale under law ℙ𝑦 . We denote by 𝑇 (𝑥, 𝑦) its almost sure limit.
This is sometimes called the disintegration of the function Ψ.

We now introduce a shaved version of this martingale. Given 𝛼 > 0 and 𝑥 ∈ ℝ,
let

N +,𝛼
𝑡 (𝑥) B

{
𝑢 ∈ N +

𝑡 : 𝑋𝑠 (𝑢) ≤
√
2𝑠 + 𝑥 + 𝛼 for all 𝑠 ≤ 𝑡

}
.

It is a straightforward consequence of (5.1) that

𝑇𝛼
𝑡 (𝑥) B

∏
𝑢∈N +,𝛼

𝑡 (𝑥)

[
1 − Ψ

(√
2𝑡 + 𝑥 − 𝑋𝑡 (𝑢), 𝑌𝑡 (𝑢)

) ]
is a bounded submartingale. Indeed, we take the multiplicative martingale 𝑇 and
delete terms when the corresponding particle reaches the line

√
2𝑠 + 𝑥 +𝛼 . At such

times𝑇𝛼 jumps up, and is thus a submartingale. As a result, this process converges
ℙ𝑦 -a.s. and in 𝐿1 to a nondegenerate limit that we denote by 𝑇𝛼 (𝑥).

Using the branching property, one can check that 𝑇𝛼 satis�es the following
almost sure recursion:

𝑇𝛼 (𝑥) =
∏

𝑢∈N +,𝛼
𝑡 (𝑥)

𝑇𝛼 [𝑢]
(√

2𝑡 + 𝑥 − 𝑋𝑡 (𝑢), 𝑌𝑡 (𝑢)
)
. (5.2)

The random variables
(
𝑇𝛼 [𝑢] ; 𝑢 ∈ N +,𝛼

𝑡 (𝑥)
)
are conditionally independent given

F𝑡 and 𝑇𝛼 [𝑢] shares the law of 𝑇𝛼 under ℙ𝑌𝑡 (𝑢) .
Now, Proposition 4.1 states that Ψ . (𝑥+ + 1)𝑦e−

√
2𝑥 . We use this to argue that

for all 𝑥 ≥ −𝛼 and 𝑦 ≥ 0,

− log𝑇𝛼 (𝑥) ≤ 2𝐶e−
√
2𝑥𝑍𝛼

∞ a.s. (5.3)

In the following, let

B𝑡 B
{
𝑢 ∈ N +,𝛼

𝑡 (𝑥) : Ψ
(√

2𝑡 + 𝑥 − 𝑋𝑡 (𝑢), 𝑌𝑡 (𝑢)
)
≥ 1

2
}
.

Noting that − log(1 − 𝑎) ≤ 2𝑎 for all 𝑎 ≤ 1/2, (4.1) yields

− log𝑇𝛼
𝑡 (𝑥) = −

∑︁
𝑢∈N +,𝛼

𝑡 (𝑥)
log

[
1 − Ψ

(√
2𝑡 + 𝑥 − 𝑋𝑡 (𝑢), 𝑌𝑡 (𝑢)

) ]
≤ 2𝐶e−

√
2𝑥 [𝑍𝛼

𝑡 + (1 + 𝑥+)𝑊𝑡 ]

−
∑︁
𝑢∈B𝑡

log
[
1 − Ψ

(√
2𝑡 + 𝑥 − 𝑋𝑡 (𝑢), 𝑌𝑡 (𝑢)

) ]
.
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Then (5.3) follows from Propositions 2.3 and 2.5, provided B𝑡 = ∅ for su�ciently
large 𝑡 .

To show that B𝑡 is eventually empty, we observe that 𝑍 is Cauchy in time
because it converges (almost surely). It follows that the contribution of every
individual particle becomes negligible as 𝑡 → ∞. Otherwise, branching events
would cause 𝑍 to jump non-negligibly at arbitrarily large times. Therefore

sup
𝑢∈N +

𝑡

[√
2𝑡 − 𝑋𝑡 (𝑢)

]
+𝑌𝑡 (𝑢)e

√
2𝑋𝑡 (𝑢)−2𝑡 → 0 a.s. on survival. (5.4)

In more detail, if (5.4) did not hold, then there would exist 𝜀 > 0 such that with
positive probability, the stopping times de�ned by 𝜏0 = 0 and

𝜏𝑛+1 B inf
{
𝑡 > 𝜏𝑛 + 1 :

[√
2 𝑡 − 𝑋𝑡 (𝑢)

]
+𝑌𝑡 (𝑢)e

√
2𝑋𝑡 (𝑢)−2𝑡 > 2𝜀 for some 𝑢 ∈ N +

𝑡

}
are all �nite. By Borel–Cantelli, with positive probability there exists a (random)
subsequence (𝑛𝑘 )𝑘∈ℕ such that a particle alive at some time 𝑡 ∈ [𝜏𝑛𝑘 , 𝜏𝑛𝑘+1] and
located at some position (𝑥, 𝑦) satisfying

(
√
2 𝑡 − 𝑥)+𝑦e

√
2𝑥−2𝑡 > 𝜀

splits into two children. In particular, at all such branching times, 𝑍𝑡 > 𝑍𝑡− + 𝜀.
This contradicts the Cauchy property of 𝑍 .

Now recall that𝑊𝑡 → 0 by Proposition 2.3, so sup𝑢 𝑌𝑡 (𝑢)e
√
2𝑋𝑡 (𝑢)−2𝑡 → 0 a.s. as

𝑡 → ∞. Thus (4.1) and (5.4) yield

sup
𝑢∈N +

𝑡

Ψ
(√

2𝑡 + 𝑥 − 𝑋𝑡 (𝑢),𝑌𝑡 (𝑢)
)

. sup
𝑢∈N +

𝑡

[
1 + 𝑥 +

[√
2𝑡 − 𝑋𝑡 (𝑢)

]
+

]
𝑌𝑡 (𝑢)e

√
2𝑋𝑡 (𝑢)−2𝑡 → 0

almost surely on survival. It follows that B𝑡 is empty a.s. for su�ciently large 𝑡 .
Now, (5.3) implies that − log𝑇𝛼 has a �rst moment. We let 𝐹𝛼 : ℍ → ℝ+ denote

its expectation:
𝐹𝛼 (𝑥, 𝑦) B 𝔼𝑦

[
− log𝑇𝛼 (𝑥)

]
.

Fix 𝑡 > 0. Using the almost sure recursion (5.2) and the many-to-one lemma, we
observe that 𝐹𝛼 satis�es

𝐹𝛼 (𝑥, 𝑦) = 𝔼𝑦


∑︁

𝑢∈N +,𝛼
𝑡 (𝑥)

𝐹𝛼
(√

2𝑡 + 𝑥 − 𝑋𝑡 (𝑢), 𝑌𝑡 (𝑢)
)

= e𝑡𝔼𝑦

[
𝐹𝛼 (

√
2𝑡 + 𝑥 + 𝑋𝑡 , 𝑌𝑡 )1{−𝑋𝑠 ≤

√
2𝑠+𝑥+𝛼,𝑌𝑠 ≥0 ; 𝑠≤𝑡}

]
,

where (𝑋,𝑌 ) is a Brownian motion in ℝ2 started from (0, 𝑦) under ℙ𝑦 . Applying
the Girsanov transform for the Brownian motion, we obtain

e
√
2𝑥𝐹𝛼 (𝑥, 𝑦) = 𝔼𝑦

[
e
√
2(𝑋𝑡+𝑥)𝐹𝛼 (𝑥 + 𝑋𝑡 , 𝑌𝑡 )1{𝑥+𝑋𝑠 ≥−𝛼,𝑌𝑠 ≥0 ; 𝑠≤𝑡 }

]
.

Writing 𝐺𝛼 (𝑥, 𝑦) B e
√
2𝑥𝐹𝛼 (𝑥, 𝑦), we see that for all 𝑡 > 0 and (𝑥, 𝑦) ∈ ℍ,

𝐺𝛼 (𝑥, 𝑦) = 𝔼𝑦

[
𝐺𝛼 (𝑥 + 𝑋𝑡 , 𝑌𝑡 )1{𝑌𝑠 ≥0, 𝑥+𝑋𝑠 ≥−𝛼 ; 𝑠≤𝑡 }

]
.
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Using Itô’s formula, we conclude that 𝐺𝛼 is a nonnegative harmonic function
in the quarter-plane {𝑥 ≥ −𝛼, 𝑦 ≥ 0} with Dirichlet boundary data. De�ne
𝜁𝛼 (𝑧) B (𝑧 + 𝛼)2, which biholomorphically maps this quarter-plane to the half-
place ℍ. Then 𝐺𝛼 ◦ 𝜁 −1𝛼 is a harmonic function on ℍ that is continuous on ℍ and
vanishes on 𝜕ℍ. By Herglotz’s representation formula (4.21), there exists 𝜅𝛼 ∈ ℝ+
such that 𝐺𝛼 ◦ 𝜁 −1𝛼 = 𝜅𝛼𝑦/2. Composing with 𝜁𝛼 , we �nd 𝐺𝛼 (𝑥, 𝑦) = 𝜅𝛼 (𝑥 + 𝛼)𝑦
and hence

𝐹𝛼 (𝑥, 𝑦) = 𝜅𝛼 (𝑥 + 𝛼)𝑦e−
√
2𝑥 .

To complete the proof, we observe that for all 𝛼 > 0, almost surely

− log𝑇𝛼 (𝑥) = lim
𝑡→∞

𝔼
[
− log𝑇𝛼 (𝑥) | F𝑡

]
= lim

𝑡→∞

∑︁
𝑢∈N +,𝛼

𝑡 (𝑥)
𝐹𝛼

(√
2𝑡 + 𝑥 − 𝑋𝑡 (𝑢), 𝑌𝑡 (𝑢)

)
= 𝜅𝛼e−

√
2𝑥𝑍𝛼

∞.

Using once again (2.10), for all (𝑥, 𝑦) ∈ ℍ there exists a random 𝛼0 ∈ ℝ+ such that
for all 𝛼 > 𝛼0 we have 𝑇 (𝑥) = 𝑇𝛼 (𝑥) and 𝑍∞ = 𝑍𝛼

∞ under ℙ𝑦 . This shows that 𝜅𝛼
(which is deterministic) is constant for su�ciently large𝛼 . Writing𝜅 B lim𝛼→∞ 𝜅𝛼 ,
we obtain

𝑇 (𝑥) = lim
𝛼→∞

𝑇𝛼 (𝑥) = exp
(
−𝜅e−

√
2𝑥𝑍∞

)
ℙ𝑦 -a.s.

Finally, (5.1) yields

Ψ(𝑥, 𝑦) = 1 − 𝔼𝑦𝑇 (𝑥) = 1 − 𝔼𝑦 exp
(
−𝜅e−

√
2𝑥𝑍∞

)
. �

6. Traveling wave asymptotics

In this section, we study the behavior at in�nity of the traveling waves Φ and
Φ𝜆,𝜇 constructed in Section 3. In particular, we prove Theorems 1.4 and 1.5.

In Section 6.1, we consider the asymptotic behavior of the law of 𝑍∞ as the
initial height 𝑦 tends to in�nity. This determines the large-𝑦 asymptotics of Φ. We
take up the same question for Φ𝜆,𝜇 in Section 6.2; this allows us to complete the
proofs of Theorems 1.1 and 1.4. Finally, in Section 6.3 we use potential theory and
Theorem 1.4 to study the behavior of Φ as 𝑥 → ∞ and thereby prove Theorem 1.5.

6.1. The minimal-speed wave far from the horizontal axis. In this subsection, we
relate the minimal-speed half-space wave Φ to the corresponding one-dimensional
wave 𝑤𝑐∗ de�ned (1.11).

Proposition 6.1. We have

lim
𝑦→∞

Φ
(
𝑥 + 1√

2
log 𝑦, 𝑦

)
= 𝑤𝑐∗ (𝑥)

uniformly in 𝑥 ∈ ℝ.

By the de�nition (1.6) of Φ, we can equivalently determine the asymptotic
properties of 𝑍∞ under ℙ𝑦 as 𝑦 → ∞. For this purpose, it is convenient to de�ne
a consistent family (𝑍 (𝑦) ; 𝑦 ≥ 0) of martingales on a single probability space
(Ω,F ,ℙ) such that for all 𝑦 > 0, 𝑍 (𝑦) has the law of 𝑍 under ℙ𝑦 . In the remainder
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of this subsection, let
(
𝑋𝑡 (𝑢), 𝑌𝑡 (𝑢) ; 𝑢 ∈ N𝑡

)
be a branching Brownian motion in

ℝ2 started from (0, 0). Given 𝑡 ≥ 0 and 𝑦 > 0, we set

N 𝑦

𝑡 B
{
𝑢 ∈ N𝑡 : 𝑌𝑠 (𝑢) ≥ −𝑦 for all 𝑠 ≤ 𝑡

}
.

We then de�ne

𝑍𝑡 (𝑦) B
∑︁

𝑢∈N 𝑦

𝑡

[√
2𝑡 − 𝑋𝑡 (𝑢)

] (
𝑌𝑡 (𝑢) + 𝑦

)
e
√
2𝑋𝑡 (𝑢)−2𝑡

and 𝑍∞(𝑦) B lim
𝑡→∞

𝑍𝑡 (𝑦) .

Since
(
(𝑋𝑡 (𝑢), 𝑌𝑡 (𝑢) + 𝑦) ; 𝑢 ∈ N 𝑦

𝑡

)
has the law of a branching Brownian motion

in ℍ starting from (0, 𝑦), we conclude that for all 𝑦 > 0, 𝑍∞(𝑦) has the same law
as 𝑍∞ under ℙ𝑦 .

Recall from Section 2.1 that 𝐷∞ is the a.s. limit as 𝑡 → ∞ of the derivative
martingale of the one-dimensional BBM (𝑋𝑡 (𝑢) ; 𝑢 ∈ N𝑡 ). We prove the following
asymptotic for 𝑍∞(𝑦) as 𝑦 → ∞, which implies Proposition 6.1.

Proposition 6.2. We have lim
𝑦→∞

𝑍∞(𝑦)
𝑦

= 𝐷∞ in probability.

Recall that H = 𝜎
(
𝑋𝑠 (𝑢), 𝑢 ∈ N𝑠 ; 𝑠 ≥ 0

)
is the sigma-�eld associated to the

horizontal movement of the BBM. We prove Proposition 6.2 by controlling the
�rst two moments of 𝑍∞(𝑦) conditionally onH.

Lemma 6.3. For all 𝑦 > 0, we have 𝔼[𝑍∞(𝑦) | H] = 𝑦𝐷∞ a.s.

Proof. For 𝑦 > 0, we compute 𝔼[𝑍∞(𝑦) | H] using the approximation of 𝑍 by
shaved martingales introduced earlier. Given 𝛼 > 0, we de�ne

𝑍𝛼
𝑡 (𝑦) B

∑︁
𝑢∈N 𝑦

𝑡

[√
2𝑡 + 𝛼 − 𝑋𝑡 (𝑢)

] (
𝑌𝑡 (𝑢) + 𝑦

)
e
√
2𝑋𝑡 (𝑢)−2𝑡 1{𝑋𝑠 (𝑢) ≤

√
2𝑠+𝛼 ; 𝑠≤𝑡}

and 𝑍𝛼
∞(𝑦) B lim𝑡→∞ 𝑍𝛼

𝑡 (𝑦). Using the independence of the horizontal and the
vertical displacement in the BBM, we see that for all 𝑡, 𝑦 > 0,

𝔼[𝑍𝛼
𝑡 (𝑦) | H] =

∑︁
𝑢∈N𝑡

[√
2𝑡 + 𝛼 − 𝑋𝑡 (𝑢)

]
e
√
2𝑋𝑡 (𝑢)−2𝑡 1{𝑋𝑠 (𝑢) ≤

√
2𝑠+𝛼 ; 𝑠≤𝑡}𝔼𝑦 (𝐵𝑡∧𝑇0)

almost surely, where 𝐵 is a Brownian motion with 𝐵0 = 𝑦 and𝑇0 is its hitting time
with the origin. As (𝐵𝑡∧𝑇0 ; 𝑡 ≥ 0) is a martingale, we obtain

𝔼[𝑍𝛼
𝑡 (𝑦) | H] = 𝑦

∑︁
𝑢∈N𝑡

[√
2𝑡 + 𝛼 − 𝑋𝑡 (𝑢)

]
e
√
2𝑋𝑡 (𝑢)−2𝑡 1{𝑋𝑠 (𝑢) ≤

√
2𝑠+𝛼 ; 𝑠≤𝑡} a.s.

The sum is simply the one-dimensional shaved derivative martingale 𝐷𝛼
𝑡 de�ned

in (2.3), so
𝔼[𝑍𝛼

𝑡 (𝑦) | H] = 𝑦𝐷𝛼
𝑡 a.s. (6.1)

Now, Lemma 2.7 implies that 𝑍𝛼 (𝑦) is uniformly integrable with an almost sure
𝐿1 limit 𝑍𝛼

∞(𝑦). Since 𝐷𝛼 converges in the same manner, (6.1) yields

𝔼[𝑍𝛼
∞(𝑦) | H] = lim

𝑡→∞
𝔼[𝑍𝛼

𝑡 (𝑦) | H] = lim
𝑡→∞

𝑦𝐷𝛼
𝑡 = 𝑦𝐷𝛼

∞ ℙ𝑦 -a.s.
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Finally, 𝛼 ↦→ 𝑍𝛼
∞(𝑦) is a.s. increasing and converges to𝑍∞(𝑦). Hence by monotone

convergence,
𝔼[𝑍∞(𝑦) | H] = lim

𝛼→∞
𝑦𝐷𝛼

∞ = 𝑦𝐷∞ a.s. �

We now turn to the second moment of 𝑍∞(𝑦) conditioned on the horizontal
motion.

Lemma 6.4. There exists an a.s. �nite H-measurable random variable Υ∞ such that
for all 𝑦 > 0,

𝔼
[
𝑍∞(𝑦)2 | H

]
≤ 𝑦2𝐷2

∞ + 𝑦Υ∞ a.s.

Proof. Fix 𝑦 > 0. In contrast to the expectation, the second moment of 𝑍 re�ects
the correlation, and thus shared history, of particles in N𝑡 . Given 𝑡 > 0 and
𝑢, 𝑣 ∈ N𝑡 , let 𝜏𝑡𝑢,𝑣 be the age of the most recent common ancestor of 𝑢 and 𝑣, with
the convention that 𝜏𝑡𝑢,𝑢 = 𝑡 . Also, for 0 ≤ 𝑟 ≤ 𝑡 , let

𝐺𝑦 (𝑟 ) B 𝔼𝑦

(
𝐵2𝑟∧𝑇0

)
,

where 𝐵 is a Brownian motion beginning at 𝑦 and𝑇0 is its hitting time at the origin.
As in the previous proof, the independence between horizontal and vertical motion
in the BBM and the martingale property of 𝐵 yield

𝔼
[
𝑍𝑡 (𝑦)2 | H

]
=

∑︁
𝑢,𝑣∈N𝑡

[√
2𝑡 − 𝑋𝑡 (𝑢)

] [√
2𝑡 − 𝑋𝑡 (𝑣)

]
e
√
2[𝑋𝑡 (𝑢)+𝑋𝑡 (𝑣) ]−4𝑡𝐺𝑦 (𝜏𝑡𝑢,𝑣) a.s.

Using the martingale property of (𝐵2𝑡 − 𝑡, 𝑡 ≥ 0) and the Brownian scaling, we have

𝐺𝑦 (𝑟 ) = 𝑦2 + 𝔼𝑦 (𝑟 ∧𝑇0) = 𝑦2
[
1 + 𝔼1

(
𝑟
𝑦2 ∧𝑇0

)]
.

Using the explicit density for the hitting time 𝑇0, we obtain the following bound:

𝔼1 (𝑠 ∧𝑇0) =
∫ ∞

0

d𝑢
√
2𝜋𝑢3

e−1/2𝑢𝑠 ∧ 𝑢

≤
∫ 𝑠

0

d𝑢
√
2𝜋𝑢

+ 𝑠
∫ ∞

𝑠

d𝑢
√
2𝜋𝑢3

≤ 4
√
2𝜋

√
𝑠 .

For su�ciently large random 𝑡 , (2.4) implies that max𝑢∈N𝑡
𝑋𝑡 (𝑢) ≤

√
2𝑡 . Combin-

ing the previous displays, for all such 𝑡 we have

𝔼
[
𝑍𝑡 (𝑦)2 | H

]
− 𝑦2𝐷2

𝑡

≤ 4𝑦
√
2𝜋

∑︁
𝑢,𝑣∈N𝑡

[√
2𝑡 − 𝑋𝑡 (𝑢)

] [√
2𝑡 − 𝑋𝑡 (𝑣)

]
e
√
2[𝑋𝑡 (𝑢)+𝑋𝑡 (𝑣) ]−4𝑡 .

De�ne theH-measurable random variable

Υ∞ B lim inf
𝑡→∞

4
√
2𝜋

∑︁
𝑢,𝑣∈N𝑡

√
𝜏𝑢,𝑣

[√
2𝑡 − 𝑋𝑡 (𝑢)

] [√
2𝑡 − 𝑋𝑡 (𝑣)

]
e
√
2[𝑋𝑡 (𝑢)+𝑋𝑡 (𝑣) ]−4𝑡 .
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Then Fatou’s lemma yields

𝔼
[
𝑍∞(𝑦)2 | H

]
≤ 𝑦2𝐷2

∞ + 𝑦Υ∞.
To complete the proof, we must show that Υ∞ < ∞ almost surely. Given 𝛼 > 0,

we de�ne the event

𝐺𝛼 B
{
max
𝑢∈N𝑡

𝑋𝑡 (𝑢) ≤
√
2𝑡 − 1

4 log+ 𝑡 + 𝛼 for all 𝑡 ≥ 0
}
.

It follows from the results of [15] that for all 𝜆 < 1
2
√
2
,

lim
𝑡→∞

max
𝑢∈N𝑡

[
𝑋𝑡 (𝑢) −

√
2𝑡 + 𝜆 log 𝑡

]
= −∞ a.s.

Hence ℙ(𝐺𝛼 ) > 0 for all 𝛼 > 0 and lim𝛼→∞ ℙ(𝐺𝛼 ) = 1. It therefore su�ces to
show that Υ∞ < ∞ a.s. on 𝐺𝛼 .

By Fatou, we have
√
2𝜋
4

𝔼(Υ∞1𝐺𝛼
)

≤ lim inf
𝑡→∞

𝔼

( ∑︁
𝑢∈N𝑡

[√
2𝑡 + 𝛼 − 𝑋𝑡 (𝑢)

]
e
√
2𝑋𝑡 (𝑢)−2𝑡 1{

𝑋𝑠 (𝑢) ≤
√
2𝑠− 1

4 log+ 𝑠+𝛼 ; 𝑠≤𝑡
}Γ𝑢

)
,

where Γ𝑢 B
∑

𝑣∈N𝑡

√
𝜏𝑢,𝑣

[√
2𝑡 − 𝑋𝑡 (𝑣) + 𝛼

]
e
√
2𝑋𝑡 (𝑣)−2𝑡 1{𝑋𝑠 (𝑣) ≤

√
2𝑠+𝛼 ; 𝑠≤𝑡} .

We now employ a spine decomposition corresponding to the shaved derivative
martingale 𝐷𝛼 . Let ℚ̂𝛼 denote the law of a one-dimensional BBM with spine in
which 𝑅𝑡 B

√
2𝑡 + 𝛼 − 𝑋𝑡 (𝜉𝑡 ) is a Bessel process of dimension 3 started from 𝛼 ,

the spine branches at rate 2, and non-spine particles perform standard BBMs. For
all 𝑡 ≥ 0, the spine decomposition theorem allows us to write

𝔼

( ∑︁
𝑢∈N𝑡

[√
2𝑡 + 𝛼 − 𝑋𝑡 (𝑢)

]
e
√
2𝑋𝑡 (𝑢)−2𝑡 1{

𝑋𝑠 (𝑢) ≤
√
2𝑠− 1

4 log+ 𝑠+𝛼 ; 𝑠≤𝑡
}Γ𝑢

)
= 𝛼𝔼̂𝛼

(
Γ𝜉𝑡 1{𝑋𝑠 (𝜉𝑠 ) ≤

√
2𝑠− 1

4 log+ 𝑠+𝛼 ; 𝑠≤𝑡
}) .

We decompose Γ𝜉𝑡 as
√
𝑡
[√

2𝑡 − 𝑋𝑡 (𝜉𝑡 ) + 𝛼
]
e
√
2𝑋𝑡 (𝜉𝑡 )−2𝑡 + Γ̃. Let Y denote the

�ltration associated to the spine trajectory and branching times {𝜏𝑘 }𝑘∈ℕ. Using
the branching property and the martingale property of 𝐷𝛼 , we have

𝔼̂𝛼 (Γ̃ | Y) ≤
∑︁
𝑘∈ℕ

√
𝜏𝑘1{𝜏𝑘<𝑡 }

[√
2𝜏𝑘 + 𝛼 − 𝑋𝜏𝑘 (𝜉𝜏𝑘 )

]
e
√
2𝑋𝜏𝑘

(𝜉𝜏𝑘 )−2𝜏𝑘 C Γ̂ a.s.

Combining the above displays, we obtain

𝔼

( ∑︁
𝑢∈N𝑡

[√
2𝑡 + 𝛼 − 𝑋𝑡 (𝑢)

]
e
√
2𝑋𝑡 (𝑢)−2𝑡 1{

𝑋𝑠 (𝑢) ≤
√
2𝑠− 1

4 log+ 𝑠+𝛼 ; 𝑠≤𝑡
}Γ𝑢

)
≤ 𝛼

√
𝑡𝔼̂𝛼

( [√
2𝑡 + 𝛼 − 𝑋𝑡 (𝜉𝑡 )

]
e
√
2𝑋𝑡 (𝜉𝑡 )−2𝑡

)
+ 𝛼𝔼̂𝛼

(
1{
𝑋𝑠 (𝜉𝑠 ) ≤

√
2𝑠− 1

4 log+ 𝑠+𝛼 ; 𝑠≤𝑡
} Γ̂) .
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As (𝜏𝑘 )𝑘∈ℕ are the atoms of a Poisson process of intensity 2 independent of 𝑅, it
follows that

√
2𝜋
4𝛼

𝔼(Υ∞1𝐺𝛼
) ≤ lim inf

𝑡→∞

√
𝑡e

√
2𝛼 𝔼̂𝛼

(
𝑅𝑡e−

√
2𝑅𝑡

)
+ lim inf

𝑡→∞
2
∫ 𝑡

0

√
𝑠e

√
2𝛼 𝔼̂𝛼

(
𝑅𝑠e−

√
2𝑅𝑠 1{𝑅𝑠 ≥ 1

4 log+ 𝑠}
)
d𝑠 .

(6.2)

Using the density of the Bessel process and dominated convergence, we can check
that

lim
𝑡→∞

√
𝑡𝔼̂𝛼

(
𝑅𝑡e−

√
2𝑅𝑡

)
= lim

𝑡→∞
1

2𝛼
√
2𝜋

∫ ∞

0
e−

√
2𝑦

[
e−

(𝑦−𝛼 )2
2𝑡 − e−

(𝑦+𝛼 )2
2𝑡

]
d𝑦 = 0.

For the second term in (6.2), we note that ℚ̂𝛼 (𝑅𝑠 ∈ [𝑛, 𝑛 + 1]) .𝛼 (𝑛 + 1)3𝑠−3/2 for
all 𝑛 ∈ ℕ and 𝑠 ≥ 1. It follows that

𝔼̂𝛼
(
𝑅𝑠e−

√
2𝑅𝑠 1{𝑅𝑠 ≥ 1

4 log+ 𝑠}
)
.𝛼 𝑠

− 3
2

∑︁
𝑛> 1

4 log+ 𝑠

(𝑛 + 1)4e−
√
2𝑛 . 𝑠−

(
3
2+

√
2
4

)
log4+ 𝑠 .

Because this is integrable against the weight
√
𝑠 , the second term in (6.2) is �nite.

Together, these bounds show that 𝔼(Υ∞1𝐺𝛼
) < ∞. Hence Υ∞ < ∞ a.s. on 𝐺𝛼 , as

desired. �

We can now complete the proofs of Propositions 6.2 and 6.1.

Proof of Proposition 6.2. Using Lemma 6.3 and 6.4, we observe that for all 𝑦 > 0,
we have

𝔼

([
𝑍∞(𝑦)
𝑦

− 𝐷∞

]2 ��� H)
≤ Υ∞

𝑦
a.s.

Thus conditioned on H, 𝑍∞(𝑦)/𝑦 converges in 𝐿2 to 𝐷∞ as 𝑦 → ∞. This implies
convergence in probability, completing the proof. �

Proof of Proposition 6.1. By Proposition 6.2, 𝑍∞(𝑦)/𝑦 → 𝐷∞ in probability and
hence in distribution as 𝑦 → ∞. In turn, this implies convergence of the Laplace
transforms. Recalling (1.6), we �nd

1 − Φ
(
𝑥 + 1√

2
log 𝑦, 𝑦

)
= 𝔼 exp

[
−e−

√
2𝑥 𝑍∞(𝑦)

𝑦

]
→ 𝔼 exp

(
−e−

√
2𝑥𝐷∞

)
as 𝑦 → ∞. Given the de�nition of𝑤𝑐∗ in (1.11), we conclude that Φ

(
𝑥 + 1√

2
log 𝑦, 𝑦

)
converges pointwise to 𝑤𝑐∗ (𝑥) as 𝑦 → ∞. Applying Dini’s second theorem on the
compacti�cation [−∞,∞] as in the proof of Lemma 4.5, we see that the convergence
is in fact uniform. �
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6.2. The higher-speed waves far from the boundary. In Section 3.2, we con-
structed supercritical traveling waves via Laplace transforms of limits of the
additive martingales

𝑊
𝜆,𝜇

𝑡 B
∑︁

𝑢∈N +
𝑡

e𝜆𝑋𝑡 (𝑢) sinh[𝜇𝑌𝑡 (𝑢)]e−(𝜆
2/2+𝜇2/2+1)𝑡 .

More precisely, for all 𝜆, 𝜇 > 0 with 𝜆2 + 𝜇2 < 2, this martingale converges almost
surely to a nondegenerate limit𝑊 𝜆,𝜇

∞ , and the function

Φ𝜆,𝜇 (𝑥, 𝑦) B 1 − 𝔼𝑦 exp
(
− e−𝜆𝑥𝑊 𝜆,𝜇

∞
)

is a traveling wave with speed 𝑐 = 𝜆2+𝜇2+2
2𝜆 .

In this subsection, we study the asymptotic behavior of this traveling wave as
𝑦 → ∞. As above, we focus on the martingale𝑊 𝜆,𝜇 . To begin, we construct a
consistent family

(
𝑊

𝜆,𝜇
∞ (𝑦) ; 𝑦 ≥ 0

)
of random variables on a single probability

space. Let

𝑊
𝜆,𝜇

𝑡 (𝑦) B
∑︁

𝑢∈N 𝑦

𝑡

e𝜆𝑋𝑡 (𝑢) sinh
(
𝜇 [𝑌𝑡 (𝑢) + 𝑦]

)
e−(𝜆

2/2+𝜇2/2+1)𝑡

and 𝑊
𝜆,𝜇
∞ (𝑦) B lim

𝑡→∞
𝑊

𝜆,𝜇

𝑡 (𝑦) .

We relate𝑊 𝜆,𝜇
∞ (𝑦) to the following additive martingale associated to the BBM

in ℝ2:

𝐴
𝜆,𝜇

𝑡 B
∑︁
𝑢∈N𝑡

e𝜆𝑋𝑡 (𝑢)+𝜇𝑌 (𝑢)−(𝜆2/2+𝜇2/2+1)𝑡

and 𝐴
𝜆,𝜇
∞ B lim

𝑡→∞
𝐴
𝜆,𝜇

𝑡 .

We intend to show that Φ𝜆,𝜇 asymptotically resembles a one-dimensional wave
rotated by angle 𝜃 (𝜆, 𝜇) B arctan(𝜇/𝜆). As in the introduction, let 𝑅𝜆,𝜇 denote
clockwise rotation by angle 𝜃 (𝜆, 𝜇). In a certain sense, 𝐴𝜆,𝜇

𝑡 is related to a one-
dimensional additive martingale by the rotation 𝑅𝜆,𝜇 . Given 𝜌 ∈ (0,

√
2), let

𝐴
𝜌

𝑡 B
∑︁
𝑢∈N𝑡

e𝜌𝑋𝑡 (𝑢)−(𝜌2/2+1)𝑡

denote said martingale, which has a nondegenerate limit𝐴𝜌
∞. For each 𝑐 > 𝑐∗ =

√
2,

there is a unique 𝜌 ∈ (0,
√
2) such that 𝑐 = 𝜌2+2

2𝜌 . Taking this value of 𝜌 , we de�ne

𝑤𝑐 (𝑥) B 1 − 𝔼 exp
(
−e−𝜌𝑥𝐴𝜌

∞
)
. (6.3)

This is a one-dimensional traveling wave of speed 𝑐 . By the rotational invariance
in law of BBM in ℝ2, 𝐴𝜆,𝜇

∞
(d)
= 𝐴

𝜌 (𝜆,𝜇)
∞ for 𝜌 (𝜆, 𝜇) B

√︁
𝜆2 + 𝜇2. It follows that

𝑤𝑐 (𝜆,𝜇) (𝑥) = 1 − 𝔼 exp
(
−e−𝜌 (𝜆,𝜇)𝑥𝐴𝜆,𝜇

∞

)
(6.4)

for 𝑐 (𝜆, 𝜇) given by (1.9).
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In this subsection, we prove the following analogue of Propositions 6.1 and 6.2.
Recall Q B {(𝜆, 𝜇) ∈ ℝ2

+ : 𝜆2 + 𝜇2 < 2}.

Proposition 6.5. For all 𝜆, 𝜇 ∈ Q, we have e−𝜇𝑦𝑊 𝜆,𝜇
∞ (𝑦) → 𝐴

𝜆,𝜇
∞ in probability as

𝑦 → ∞. Moreover,
Φ𝜆,𝜇 ◦ 𝑅𝜆,𝜇 (𝑥, 𝑦) → 𝑤𝑐 (𝜆,𝜇) (𝑥) (6.5)

uniformly in 𝑥 ∈ ℝ as 𝑦 → ∞.

Proof. For all 𝑡, 𝑦 > 0, we have

e−𝜇𝑦𝑊 𝜆,𝜇

𝑡 (𝑦) =
∑︁

𝑢∈N𝑡 (𝑦)
e𝜆𝑋𝑡 (𝑢)+𝜇𝑌 (𝑢)−(𝜆2/2+𝜇2/2+1)𝑡

(
1 − e−2𝜇 [𝑌𝑡 (𝑢)+𝑦 ]

)
.

Therefore, 𝑦 ↦→ e−𝜇𝑦𝑊 𝜆,𝜇

𝑡 (𝑦) is nondecreasing in 𝑦 and bounded by 𝐴𝜆,𝜇

𝑡 almost
surely. As a consequence, 𝑦 ↦→ e−𝜇𝑦𝑊 𝜆,𝜇

∞ (𝑦) is a.s. nondecreasing in 𝑦 and

lim
𝑦→∞

e−𝜇𝑦𝑊 𝜆,𝜇
∞ (𝑦) ≤ 𝐴𝜆,𝜇

∞ a.s.

By uniform integrability and monotone convergence, we have

𝔼
[
lim
𝑦→∞

e−𝜇𝑦𝑊 𝜆,𝜇
∞ (𝑦)

]
= lim

𝑦→∞
e−𝜇𝑦 sinh(𝜇𝑦) = 1.

Therefore 𝔼
[
𝐴
𝜆,𝜇
∞ − lim𝑦→∞ e−𝜇𝑦𝑊 𝜆,𝜇

∞ (𝑦)
]
≤ 0, and we conclude that

lim
𝑦→∞

e−𝜇𝑦𝑊 𝜆,𝜇
∞ (𝑦) = 𝐴𝜆,𝜇

∞ a.s. (6.6)

Turning to the asymptotic behavior of Φ𝜆,𝜇 , we compute

𝑅𝜆,𝜇 (𝑥, 𝑦) =
(
(𝜆𝑥 + 𝜇𝑦)/𝜌, (−𝜇𝑥 + 𝜆𝑦)/𝜌

)
C (𝑥, 𝑦̃).

Note in particular that 𝜆𝑥 = 𝜇𝑦̃ + 𝜌𝑥 , where 𝜌 = 𝜌 (𝜆, 𝜇) =
√︁
𝜆2 + 𝜇2. Now take

(𝑥, 𝑦) ∈ 𝑅−1
𝜆,𝜇

ℍ. It follows that

Φ𝜆,𝜇 ◦ 𝑅𝜆,𝜇 (𝑥, 𝑦) = 1 − 𝔼𝑦̃ exp
(
−e−𝜆𝑥̃𝑊 𝜆,𝜇

∞

)
= 1 − 𝔼𝑦̃ exp

(
−e−𝜌𝑥e−𝜇𝑦̃𝑊 𝜆,𝜇

∞

)
.

If we �x 𝑥 ∈ ℝ and take 𝑦 → ∞, we also have 𝑦̃ → ∞. Thus (6.6) and (6.4) yield

Φ𝜆,𝜇 ◦ 𝑅𝜆,𝜇 (𝑥, 𝑦) → 1 − 𝔼 exp
(
−e−𝜌𝑥𝐴𝜆,𝜇

∞

)
= 𝑤𝑐 (𝜆,𝜇) (𝑥) as 𝑦 → ∞. (6.7)

We extend Φ𝜆,𝜇 by 0 to the entire plane ℝ2. Because Φ𝜆,𝜇 is decreasing in 𝑥 and
increasing in 𝑦 , one can check that Φ𝜆,𝜇 ◦ 𝑅𝜆,𝜇 ( · , 𝑦) is a nonincreasing function
for each 𝑦 > 0 �xed. Moreover, for all 𝑦 > 0,

Φ𝜆,𝜇◦𝑅𝜆,𝜇 (−∞, 𝑦) = 1 = 𝑤𝑐 (𝜆,𝜇) (−∞) and Φ𝜆,𝜇◦𝑅𝜆,𝜇 (+∞, 𝑦) = 0 = 𝑤𝑐 (𝜆,𝜇) (+∞).

Applying Dini’s second theorem on the compacti�cation [−∞,∞], we see that the
limit (6.7) in fact holds uniformly in 𝑥 . �

We can now describe the limits of our waves in every direction.
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Proof of Theorem 1.4. Take Φ∗ ∈ {Φ,Φ𝜆,𝜇} (𝜆,𝜇) ∈Q. Our traveling-wave construc-
tions automatically imply that 0 < Φ∗ < 1, 𝜕𝑥Φ∗ ≤ 0, and 𝜕𝑦Φ∗ ≥ 0. Combining
the bounded convergence theorem with (the proof of) Corollary 3.3 and (3.8), we
�nd

Φ∗(−∞, 𝑦) = ℙ𝑦 (N +
𝑡 ≠ ∅ for all 𝑡 ≥ 0) = 𝜑 (𝑦) and Φ∗(+∞, 𝑦) = 0 (6.8)

for all 𝑦 > 0. Uniform continuity implies that this convergence is locally uniform
in 𝑦 . Moreover, joint monotonicity implies that Φ∗(𝑥, +∞) → 1 = 𝜑 (+∞) as
𝑥 → −∞. (Alternatively, Propositions 6.1 and 6.5 imply that Φ∗(𝑥, +∞) = 1 for all
𝑥 ∈ ℝ.) Applying Dini’s theorem on the compacti�cation [0,∞], we see that the
�rst limit in (6.8) holds uniformly in 𝑦 . Because the left and right limits are distinct,
the strong maximum principle implies that 𝜕𝑥Φ∗ < 0. Similarly, because Φ∗ > 0 in
ℍ but Φ∗ = 0 on 𝜕ℍ, we have 𝜕𝑦Φ∗ > 0. Finally, (1.10) combines Propositions 6.1
and 6.5. �

According to (6.5), the level sets of Φ𝜆,𝜇 are asymptotically inclined at angle
arctan(𝜇/𝜆) relative to vertical. For a given speed 𝑐 > 𝑐∗, this angle varies strictly
monotonically along P𝑐 . It follows that the waves in P𝑐 are distinct modulo
translation. Using Proposition 5.1 and the above observation, we can now complete
the proof of Theorem 1.1 and thus bridge the gap in the proof of Theorem 1.3.

Proof of Theorem 1.1. By Proposition 4.3, any KPP traveling wave on ℍ𝑑 with
minimal speed is a function of (𝑥, 𝑦) alone. Thus it su�ces to prove uniqueness in
two dimensions, i.e., on ℍ. Given a minimal-speed wave Φ on ℍ, Proposition 5.1
provides a constant 𝜂 ∈ ℝ such that Ψ(𝑥, 𝑦) = Φ(𝑥 − 𝜂, 𝑦), where Φ is the wave
de�ned by (1.6). Hence there is precisely one traveling wave on ℍ𝑑 , modulo
translation.

Now �x 𝑐 > 𝑐∗ and recall the setP𝑐 from (1.8). For all (𝜆, 𝜇) ∈ P𝑐 , Φ𝜆,𝜇 de�ned in
(1.7) is a traveling wave of speed 𝑐 (Proposition 3.5). Moreover, Proposition 6.5 im-
plies that distinct values of (𝜆, 𝜇) produce distinct waves. Thus there are in�nitely
many traveling waves of speed 𝑐 that are distinct modulo translation. �

6.3. Minimal-speed tail asymptotics. We now examine the asymptotic behavior
of Φ as 𝑥 → ∞. Let 𝜔 (𝑦) B 1√

2
log 𝑦 . From Proposition 6.1, we know that the

level sets of Ψ follow the curve 𝑥 = 𝜔 (𝑦) as 𝑦 → ∞. Thus Φ decays to the right of
this curve. The following result controls this decay.

Recall the constant 𝐾∗ > 0 from (1.13), which governs the tail of the one-
dimensional wave. We can state Theorem 1.5 as

Proposition 6.6. There exists 𝐸 ∈ 𝐿∞(ℍ) such that if 𝑥 > 𝜔+(𝑦),

Φ(𝑥, 𝑦) = 𝐾∗
[
𝑥 − 1√

2
log+ ‖x‖ + 𝐸 (𝑥, 𝑦)

]
𝑦e−

√
2𝑥 . (6.9)

To prove this, we return to conformal mappings and potential theory. We focus
on the function Θ B e

√
2𝑥Φ, which is nearly harmonic in {𝑥 > 𝜔+(𝑦)}. We begin

by constructing an explicit holomorphism mapping a domain similar to {𝑥 > 𝜔+}
to the quarter-plane ℚ. This allows us to use various explicit formulæ on the
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quarter-plane. The distortion induces by this holomorphism leads to the log ‖x‖
term in (6.9).

As a �rst application, we use the Phragmén–Lindelöf principle to improve our
tail bound from Θ . (𝑥 + 1)𝑦 to Θ . (𝑥 −𝜔+ + 1)𝑦 on {𝑥 > 𝜔+}. This allows us to
argue that the “anharmonic” part of Θ is negligible—it can be absorbed in the error
𝐸 in (6.9). We are thus left with the analysis of a positive harmonic function on
the quarter-plane. From this point, the Herglotz representation formula is strong
enough to complete the proof of Proposition 6.6.

Conformal map to quarter-plane. To begin, we construct a conformal map 𝜂 from
ℚ to a domain similar to {𝑥 > 𝜔+}. We de�ne 𝜂 through its inverse

𝜂−1(𝑧) B 𝑧 − 1√
2
log(𝑧 + 1).

Throughout this section, we frequently identify 𝑧 = 𝑥 + i𝑦 ∈ ℂ with (𝑥, 𝑦) ∈ ℝ2.
Solving the equation Re𝜂−1(𝑧) = 0, we can readily check that 𝜂 maps ℚ to the
region

Λ B
{
(𝑥, 𝑦) ∈ ℍ : 0 < 𝑦 <

√︁
e2

√
2𝑥 − 1 − 𝑥2

}
⊂ {𝑥 > 𝜔+(𝑦)}.

Note that
(𝜂−1) ′(𝑧) = 1 − 1

√
2(𝑧 + 1)

satis�es 1 − 1√
2
≤ |(𝜂−1) ′ | ≤ 1 + 1√

2
on ℚ. It follows that 𝜂 : ℚ → Λ is a biholomor-

phism.
Next, we can write {𝑥 > 𝜔+} =

{
𝑥 > 0, 0 < 𝑦 < e

√
2𝑥 }. Because√︁

e2
√
2𝑥 − 1 − 𝑥2 = e

√
2𝑥 +O(1) on ℝ+,

the di�erence {𝑥 > 𝜔+(𝑦)} \ Λ lies a bounded distance from Λ. Thus by the
Harnack inequality, it su�ces to prove (6.9) on Λ.

Although 𝜂 itself has no simple explicit expression, we can easily construct an
approximation

𝜛(𝑧) B 𝑧 + 1√
2
log(𝑧 + 1)

Indeed,

𝜂−1 ◦𝜛(𝑧) = 𝑧 − 1
√
2

[
1 + log(𝑧 + 1)

√
2(𝑧 + 1)

]
= 𝑧 +O(1) .

Since 𝜂 is uniformly Lipschitz, this yields

𝜂 (𝑧) = 𝜛(𝑧) +O(1) .

Using this approximation, we establish two bounds that will be useful in subsequent
calculations.

𝜂 (0, 𝑦) = (𝜔+(𝑦), 𝑦) +O(1) (6.10)
and

e−
√
2 Re𝜂 (𝑧) � |𝑧 + 1|−1 e−

√
2𝑥 . (6.11)
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Now recall Θ(𝑥, 𝑦) B e
√
2𝑥Φ(𝑥, 𝑦), which satis�es

− 1
2
ΔΘ = −Θ2e−

√
2𝑥 C −𝐹 .

We de�ne
Θ𝜂 B Θ ◦ 𝜂 : ℚ → ℝ+.

This function satis�es

− 1
2
ΔΘ𝜂 = − |𝜂 |2 𝐹 ◦ 𝜂 C −𝐹𝜂 .

We have shown that Φ(𝜔 (𝑦), 𝑦) � 1 when 𝑦 ≥ 1. Hence Θ(𝜔 (𝑦), 𝑦) � 𝑦 there.
Using (6.10), Harnack estimates up to the boundary imply that

Θ𝜂 (0, 𝑦) � 𝑦 for all 𝑦 ≥ 0.

Moreover, the tameness bound in Proposition 4.1 and the boundedness of 𝜂 ′ imply
that

Θ𝜂 . 1 + 𝑥2 + 𝑦2 on ℚ

as well as
Θ𝜂 (𝑥, 𝑥) . 1 + 𝑥2 and Θ𝜂 (0, 𝑥) = 0.

Note that Θ𝜂 is subharmonic. We can thus apply the Phragmén–Lindelöf prin-
ciple on the sectors {0 < 𝜃 < 𝜋/4} and {𝜋/4 < 𝜃 < 𝜋/2} as in the proof of
Proposition 4.1 to conclude that

Θ𝜂 . (𝑥 + 1)𝑦 on ℚ. (6.12)

We further use this to bound 𝐹𝜂 . Noting that |𝜂 ′ |2 � 1, (6.11) and (6.12) yield

𝐹𝜂 . (𝑥 + 1)2𝑦2e−
√
2 Re𝜂 .

(𝑥 + 1)2𝑦2
|𝑧 + 1| e−

√
2𝑧 . (𝑥 + 1)2𝑦𝜂−

√
2𝑥 . (6.13)

Anharmonic estimates. We now control the “anharmonic” component of Θ𝜂 gener-
ated by 𝐹𝜂 . Let 𝐺z denote the Dirichlet Green function of − 1

2Δ on ℚ centered at
z ∈ ℚ. We formally de�ne

Θ
𝜂

𝐹
(x) B

∫
ℚ

𝐹𝜂 (z)𝐺z(x) dz, (6.14)

which satis�es − 1
2ΔΘ

𝜂

𝐹
= 𝐹𝜂 . We refer to Θ

𝜂

𝐹
as the “anharmonic component” of

Θ𝜂 because Θ𝜂 + Θ
𝜂

𝐹
is harmonic. To make this decomposition rigorous, we must

show that the integral in (6.14) is �nite.
Let 𝜏𝑥 and 𝜏𝑦 denote re�ection in {𝑥 = 0} and {𝑦 = 0}, respectively, in [0,∞).

Then the method of images yields an explicit formula for 𝐺 :

𝐺z(x) =
1
𝜋
log

( ‖x − 𝜏𝑥z‖ ‖x − 𝜏𝑦z‖
‖x − z‖ ‖x + z‖

)
.

We make use of the following asymptotics:
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Lemma 6.7. Fix z B (𝑢, 𝑣) ∈ ℚ. Then for all x ∈ ℚ,

𝐺z(x) �


log 𝑢∧𝑣

‖x−z‖ in 𝐵 (𝑢∧𝑣)/10(z),
𝑢𝑣

‖z‖2
𝑥𝑦

‖x−z‖2 in 𝐵2‖z‖ \ 𝐵 (𝑢∧𝑣)/10(z),
𝑢𝑣𝑥𝑦

‖x‖4 in 𝐵𝑐2‖z‖ .

Proof. De�ne

𝛼 B
‖x − 𝜏𝑥z‖

2𝑢
, 𝛽 B

‖x − 𝜏𝑦z‖
2𝑣

, 𝛾 B
‖x + z‖
2 ‖z‖ , and 𝛿 B

‖z‖
2(𝑢 ∨ 𝑣) .

Then the identity 𝑢𝑣
𝑢∧𝑣 = 𝑢 ∨ 𝑣 yields

𝐺z(x) =
1
𝜋
log

𝑢 ∧ 𝑣
‖x − z‖ + 1

𝜋
log

𝛼𝛽

𝛾𝛿
. (6.15)

Let 𝐵 B 𝐵 (𝑢∧𝑣)/10(z) and suppose x ∈ 𝐵. Then 𝛼, 𝛽,𝛾 ∈ [19/20, 21/20] and
𝛿 ∈ [1/2,

√
2/2]. Hence

𝑢 ∧ 𝑣
‖x − z‖ ≥ 10 while

𝛼𝛽

𝛾𝛿
∈ [1.2, 2.4],

so the �rst term in (6.15) dominates the second.
Now suppose ‖x − z‖ ≥ (𝑢 ∧ 𝑣)/10. A brief algebraic computation yields

𝐺z(x) =
1
2𝜋

log

(
‖x − 𝜏𝑥z‖2 ‖x − 𝜏𝑦z‖2

‖x − z‖2 ‖x + z‖2

)
=

1
2𝜋

log
𝑞 + 𝑠
𝑞 + 𝑟 (6.16)

for

𝑞 B (𝑥2 − 𝑢2)2 + (𝑦2 − 𝑣2)2,
𝑠 B (𝑥 + 𝑢)2(𝑦 + 𝑣)2 + (𝑥 − 𝑢)2(𝑦 − 𝑣)2,
𝑟 B (𝑥 − 𝑢)2(𝑦 + 𝑣)2 + (𝑥 + 𝑢)2(𝑦 − 𝑣)2.

Note that

𝑠 − 𝑟 =
[
(𝑥 + 𝑢)2 − (𝑥 − 𝑢)2

] [
(𝑦 + 𝑣)2 − (𝑦 − 𝑣)2

]
= 16𝑥𝑦𝑢𝑣 > 0. (6.17)

We claim that the ratio (𝑞 + 𝑠)/(𝑞 + 𝑟 ) is uniformly bounded on 𝐵𝑐 . By (6.17), it
su�ces to show that

𝑥𝑦𝑢𝑣 =
𝑠 − 𝑟
16

. 𝑞 + 𝑟 = ‖x − z‖2 ‖x + z‖2 . (6.18)

This always holds when ‖x‖ ≥ 2 ‖z‖, for then the right side is of order ‖x‖4 while
the left side is at most of order ‖x‖2 ‖z‖2. So we can assume that ‖x‖ ≤ 2 ‖z‖ and
without loss of generality that 𝑢 ≤ 𝑣. Then ‖x + z‖ � 𝑣 and 𝑦 . 𝑣, so it su�ces to
show that

𝑥𝑢 . ‖x − z‖2 on 𝐵𝑐
𝑢/10(z). (6.19)

We break this into two cases. If 𝑥 ≤ 2𝑢, then indeed

𝑥𝑢 ≤ 2𝑢2 ≤ 200(𝑢2/100) ≤ 200 ‖x − z‖2 .
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Otherwise if 𝑥 > 2𝑢, we have (𝑥 − 𝑢)2 ≥ 𝑥2/4, so
𝑥𝑢 ≤ 𝑥2/2 ≤ 2(𝑥2/4) ≤ 2 ‖x − z‖2 .

Having con�rmed (6.19) in each case, we have veri�ed (6.18). Therefore

1 <
𝑞 + 𝑠
𝑞 + 𝑟 . 1 on 𝐵𝑐 .

Then (6.16) and (6.17) yield

𝐺z(x) �
𝑞 + 𝑠
𝑞 + 𝑟 − 1 =

𝑠 − 𝑟
𝑞 + 𝑟 � 𝑥𝑦𝑢𝑣

‖x − z‖2 ‖x + z‖2
.

Now ‖x + z‖ � ‖z‖ on 𝐵2‖z‖ while ‖x − z‖ � ‖x + z‖ � ‖x‖ on 𝐵𝑐2‖z‖ . The lemma
follows. �

We combine this with (6.13) to bound Θ
𝜂

𝐹
.

Lemma 6.8. The integral in (6.14) is well-de�ned and 0 < Θ
𝜂

𝐹
(𝑥, 𝑦) . 𝑦 on ℚ.

Proof. Because 𝐹 > 0 in ℍ, we automatically have Θ𝜂

𝐹
> 0. Recall that the Green

function is symmetric: 𝐺z(x) = 𝐺x(z). Here, it is convenient to use the symmetric
formulation

Θ
𝜂

𝐹
(x) =

∫
ℚ

𝐺x(z)𝐹 (z) dz.

Writing z = (𝑢, 𝑣), (6.13) yields

Θ
𝜂

𝐹
(x) .

∫
ℚ

𝐺x(z) (𝑢 + 1)2𝑣e−
√
2𝑢 dz. (6.20)

In the following, de�ne𝑚 B 𝑥 ∧ 𝑦 , 𝐵 B 𝐵𝑚/10(x), and 𝐷 B 𝐵2‖x‖ . We divide
the right side of (6.20) into three integrals 𝐼1, 𝐼2, 𝐼3 over the regions 𝐵, 𝐷 \ 𝐵, 𝐷𝑐 ,
respectively. We bound these contributions separately.

Using Lemma 6.7 on 𝐵, we have

𝐼1 .
∫
𝐵

log
(

𝑚

‖z − x‖

)
(𝑢 + 1)2𝑣e−

√
2𝑢 dz . 𝑦e−

√
2𝑥/2

∫
𝐵

log
(

𝑚

‖z − x‖

)
dz

.𝑚2𝑦e−
√
2𝑥/2 . 𝑦. (6.21)

Next, on 𝐷 \ 𝐵, we use Lemma 6.7 and 𝑥𝑦

‖x‖2 . 𝑚
𝑦
to write

𝐼2 .
𝑥𝑦

‖x‖2
∫
𝐷\𝐵

𝑢 (𝑢 + 1)2e−
√
2𝑢𝑣2 ‖z − x‖−2 dz

.𝑚𝑦

∫
𝐷

e−
√
2𝑢/2 ( ‖z − x‖ ∨𝑚

)−2 dz. (6.22)

Making a “rectangular” approximation,∫
𝐷

e−
√
2𝑢/2 ( ‖z − x‖ ∨𝑚

)−2 dz . ∫
ℝ+

e−
√
2𝑢/2 d𝑢 ·

∫
ℝ

d𝑣
(𝑣 − 𝑦)2 +𝑚2 .

1
𝑚
.

Thus (6.22) yields
𝐼2 . 𝑦. (6.23)
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Finally, on 𝐷𝑐 , Lemma 6.7 yields

𝐼3 . 𝑥𝑦

∫
𝐷𝑐

𝑣2

(𝑢2 + 𝑣2)2 e
−
√
2𝑢/2 dz.

Integrating �rst in 𝑣, we �nd

𝐼3 . 𝑥𝑦

∫
ℝ+

e−
√
2𝑢/2

𝑢 ∨ ‖x‖ d𝑢 . 𝑦. (6.24)

Using (6.21), (6.23), and (6.24) in (6.20), we obtain

Θ
𝜂

𝐹
(x) .

∫
ℚ

𝐺x(z) (𝑢 + 1)2𝑣e−
√
2𝑢 dz = 𝐼1 + 𝐼2 + 𝐼3 . 𝑦. �

Boundary estimates. We now analyze the “harmonic component” of Θ𝜂 , namely
Θ
𝜂
B Θ𝜂 +Θ𝜂

𝐹
. This is a positive harmonic function on the quarter-plane. Because

Θ
𝜂

𝐹
= 0 on 𝜕ℚ, (6.12) yields the following estimate on the boundary:

Θ
𝜂 (0, 𝑦) . 𝑦 and Θ

𝜂 (𝑥, 0) = 0. (6.25)

Lemma 6.9. There exists 𝐴 ≥ 0 such that

Θ
𝜂 (𝑥, 𝑦) =

[
𝐴𝑥 +O(1)

]
𝑦 on ℚ.

Proof. Recall the square map 𝜁 ≔ ℚ → ℍ and de�ne 𝑔 B Θ
𝜂 ◦ 𝜁 −1, which is

a positive harmonic function on the half-plane. By the Herglotz representation
theorem, there exists 𝐴 ≥ 0 such that

𝑔(𝑥, 𝑦) = 𝐴𝑦 + 𝑔𝜕 (𝑥, 𝑦) for 𝑔𝜕 (𝑥, 𝑦) B
𝑦

𝜋

∫
ℝ

𝑔(𝑡, 0) d𝑡
(𝑥 − 𝑡)2 + 𝑦2 .

Composing (6.25) with the square-root 𝜁 −1, we have

𝑔(𝑥, 0) . √
𝑥−.

In (4.27), we showed that this implies that 𝑔𝜕 . 〈x〉1/2. Hence 𝑔𝜕 ◦ 𝜁 . 〈x〉 while

𝑔𝜕 ◦ 𝜁 = Θ
𝜂
. 𝑦 on 𝜕ℚ.

By the Phragmén–Lindelöf principle, we obtain 𝑔𝜕 ◦ 𝜁 . 𝑦 on ℚ. On the other
hand, 𝑦 ◦ 𝜁 = 𝑥𝑦 , so

Θ
𝜂
= 𝑔 ◦ 𝜁 = 𝐴𝑥𝑦 + 𝑔𝜕 ◦ 𝜁 = 𝐴

[
𝑥 +O(1)

]
𝑦 on ℚ. �

Combining Lemmas 6.8 and 6.9, we have shown that

Θ𝜂 (𝑥, 𝑦) = 𝐴
[
𝑥 +O(1)

]
𝑦 on ℚ (6.26)

for some 𝐴 ≥ 0. We now translate this bound back to the region Λ = 𝜂 (ℚ).

Lemma 6.10. If 𝑥 > 𝜔+(𝑦), we have Θ(𝑥, 𝑦) = 𝐴
[
𝑥 − 1√

2
log+ ‖x‖ +O(1)

]
𝑦 .
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Proof. As noted earlier, {𝑥 > 𝜔+(𝑦)}\Λ lies a bounded distance fromΛ, so Harnack
allows us to reduce the problem to Λ.

Recall that 𝜂−1(𝑧) = 𝑧 − 1√
2
log(𝑧 + 1). Mixing real and complex notation, we

write this as
𝜂−1(𝑥, 𝑦) =

(
𝑥 − 1√

2
log |𝑧 + 1| , 𝑦 − 1√

2
arg(𝑧 + 1)

)
for 𝑧 = 𝑥 + i𝑦 . Thus (6.26) becomes
Θ(𝑥, 𝑦) =

(
Θ𝜂 ◦ 𝜂−1

)
(𝑥, 𝑦) = 𝐴

[
𝑥 − 1√

2
log |𝑧 + 1| +O(1)

] [
𝑦 − 1√

2
arg(𝑧 + 1)

]
.

Now log |𝑧 + 1| = log+ |𝑧 | +O(1) and

𝑥 arg(𝑧 + 1) = 𝑥 arctan 𝑦

𝑥 + 1
< 𝑦.

Therefore
Θ(𝑥, 𝑦) = 𝐴

[
𝑥 − 1√

2
log+ ‖x‖ +O(1)

]
𝑦. �

Matching. It remains only to identify the nonnegative constant 𝐴.

Proof of Proposition 6.6 and Theorem 1.5. By Lemma 6.10, there exist𝐴 ≥ 0, 𝑀 > 0,
and 𝐸 : ℍ → ℝ such that |𝐸 | ≤ 𝑀 and

Φ(𝑥, 𝑦) = 𝐴
[
𝑥 − 1√

2
log ‖x‖ + 𝐸 (𝑥, 𝑦)

]
𝑦e−

√
2𝑥 on

{
𝑥 > 1√

2
log+ 𝑦

}
. (6.27)

On the other hand, we recall from Theorem 1.4 and (1.13) that
Φ
(
𝑥 + 1√

2
log 𝑦, 𝑦

)
→ 𝑤𝑐∗ (𝑥) as 𝑦 → ∞ (6.28)

locally uniformly in 𝑥 and

𝑤𝑐∗ (𝑥) ∼ 𝐾∗𝑥e−
√
2𝑥 as 𝑥 → ∞ (6.29)

for some 𝐾∗ > 0. Fix 𝜀 > 0. Then by (6.29), there exists 𝑥0(𝜀) ≥ 𝑀
𝜀
such that

𝐾∗(1 − 𝜀)𝑥e−
√
2𝑥 ≤ 𝑤𝑐∗ (𝑥) ≤ 𝐾∗(1 + 𝜀)𝑥e−

√
2𝑥 for all 𝑥 ≥ 𝑥0. (6.30)

We evaluate Φ at 𝑥 = 𝑥0 + 1√
2
log 𝑦 and take 𝑦 → ∞. Before doing so, we note

that log ‖x‖ − log 𝑦 → 0 along this sequence. Combining (6.27) and (6.28), we
therefore �nd

𝐴(𝑥0 −𝑀)e−
√
2𝑥0 ≤ 𝑤𝑐∗ (𝑥0) = lim

𝑦→∞
Φ
(
𝑥0 + 1√

2
log 𝑦, 𝑦) ≤ 𝐴(𝑥0 +𝑀)e−

√
2𝑥0 .

Dividing by 𝑥0e−
√
2𝑥0 and using 𝑥0 ≥ 𝑀/𝜀 and (6.30), we obtain

𝐴(1 − 𝜀) ≤ 𝐾∗(1 + 𝜀) and 𝐾∗(1 − 𝜀) ≤ 𝐴(1 + 𝜀) .
That is,

1 − 𝜀
1 + 𝜀 ≤ 𝐴

𝐾∗
≤ 1 + 𝜀

1 − 𝜀 .

Since 𝜀 > 0 is arbitrary, we have 𝐴 = 𝐾∗ as desired. �



54 JULIEN BERESTYCKI, COLE GRAHAM, YUJIN H. KIM, AND BASTIEN MALLEIN

References
[1] G. Alsmeyer, B. Mallein. A simple method to �nd all solutions to the functional equation of

the smoothing transform. J. Theoret. Probab. 35 (2022) 2569–2599.
[2] D. G. Aronson, H. F. Weinberger. Nonlinear di�usion in population genetics, combustion,

and nerve pulse propagation. Partial di�erential equations and related topics (Program, Tulane
Univ., New Orleans, La., 1974). Lecture Notes in Math., Vol. 446. Springer, Berlin (1975) 5–49.

[3] H. Berestycki, C. Graham. Reaction–di�usion equations in the half-space.Ann. Inst. H. Poincaré
C Anal. Non Linéaire 39 (2022) 1053–1095.

[4] H. Berestycki, L. Nirenberg. Travelling fronts in cylinders. Ann. Inst. H. Poincaré C Anal. Non
Linéaire 9 (1992) 497–572.

[5] J. D. Biggins, A. E. Kyprianou. Measure change in multitype branching. Adv. in Appl. Probab.
36 (2004) 544–581.

[6] A. Bonnet, F. Hamel. Existence of nonplanar solutions of a simple model of premixed Bunsen
�ames. SIAM J. Math. Anal. 31 (1999) 80–118.

[7] B. Chauvin, A. Rouault. KPP equation and supercritical branching Brownian motion in the
subcritical speed area. Application to spatial trees. Probab. Theory Related Fields 80 (1988)
299–314.

[8] A. Ducrot. On the large time behaviour of the multi-dimensional Fisher-KPP equation with
compactly supported initial data. Nonlinearity 28 (2015) 1043–1076.

[9] F. Hamel, R. Monneau, J.-M. Roquejo�re. Existence and qualitative properties of multidimen-
sional conical bistable fronts. Discrete Contin. Dyn. Syst. 13 (2005) 1069–1096.

[10] F. Hamel, N. Nadirashvili. Travelling fronts and entire solutions of the Fisher-KPP equation
in ℝ𝑁 . Arch. Ration. Mech. Anal. 157 (2001) 91–163.

[11] F. Hamel, J. Nolen, J.-M. Roquejo�re, L. Ryzhik. A short proof of the logarithmic Bramson
correction in Fisher-KPP equations. Netw. Heterog. Media 8 (2013) 275–289.

[12] J. W. Harris, S. C. Harris, A. E. Kyprianou. Further probabilistic analysis of the Fisher-
Kolmogorov-Petrovskii-Piscounov equation: one sided travelling-waves. Ann. Inst. H. Poincaré
Probab. Statist. 42 (2006) 125–145.

[13] S. C. Harris. Travelling-waves for the FKPP equation via probabilistic arguments. Proc. Roy.
Soc. Edinburgh Sect. A 129 (1999) 503–517.

[14] G. Herglotz. Über Potenzreihen mit positivem, reelen Teil im Einheitskreis. Ber. Verhandl.
Sachs Akad. Wiss. Leipzig, Math.-Phys. Kl. 63 (1911) 501–511.

[15] Y. Hu. How big is the minimum of a branching random walk? Ann. Inst. Henri Poincaré Probab.
Stat. 52 (2016) 233–260.

[16] A. N. Kolmogorov, I. G. Petrovsky, N. S. Piskunov. Étude de l’équation de la di�usion avec
croissance de la quantité de matière et son application à un problème biologique. Bull. Univ.
Moscow, Ser. Internat., Sec. A 1 (1937) 1–25.

[17] A. E. Kyprianou. Travelling wave solutions to the K-P-P equation: alternatives to Simon
Harris’ probabilistic analysis. Ann. Inst. H. Poincaré Probab. Statist. 40 (2004) 53–72.

[18] S. P. Lalley, T. Sellke. A conditional limit theorem for the frontier of a branching Brownian
motion. Ann. Probab. 15 (1987) 1052–1061.

[19] R. Lyons. A simple path to Biggins’ martingale convergence for branching random walk.
Classical and modern branching processes (Minneapolis, MN, 1994). 84. IMA Vol. Math. Appl.
Springer, New York (1997) 217–221.

[20] R. Lyons, R. Pemantle, Y. Peres. Conceptual proofs of 𝐿 log𝐿 criteria for mean behavior of
branching processes. Ann. Probab. 23 (1995) 1125–1138.

[21] J.-F. Mallordy, J.-M. Roquejo�re. A parabolic equation of the KPP type in higher dimensions.
SIAM J. Math. Anal. 26 (1995) 1–20.

[22] H. P. McKean. Application of Brownian motion to the equation of Kolmogorov-Petrovskii-
Piskunov. Comm. Pure Appl. Math. 28 (1975) 323–331.



REFERENCES 55

[23] E. Phragmén, E. Lindelöf. Sur une extension d’un principe classique de l’analyse et sur
quelques propriétés des fonctions monogènes dans le voisinage d’un point singulier. Acta
Math. 31 (1908) 381–406.

[24] G. Pólya, G. Szegő. Problems and theorems in analysis. I. Series, integral calculus, theory of
functions. Translated from the German by Dorothee Aeppli. Reprint of the 1978 English
translation. Springer-Verlag, Berlin (1998) xx+389.

[25] F. Riesz. Sur certains systèmes singuliers d’équations intégrales. Ann. Sci. Éc. Norm. Supér. 28
(1911) 33–62.

[26] W. Rudin. Tauberian theorems for positive harmonic functions. Nederl. Akad. Wetensch. Indag.
Math. 40 (1978) 376–384.

[27] S. E. Warschawski. On conformal mapping of in�nite strips. Trans. Amer. Math. Soc. 51 (1942)
280–335.

JB: Department of Statistics and Magdalen College, University of Oxford, UK
Email address: julien.berestycki@stats.ox.ac.uk

CG: Division of Applied Mathematics, Brown University, 182 George St, Providence, RI
02906, USA

Email address: cole_graham@brown.edu

YK: Courant Institute, New York University, 251 Mercer Street, New York, NY 10012,
USA

Email address: yujin.kim@courant.nyu.edu

BM: LAGA UMR 7539, Université Sorbonne Paris Nord, 99 avenue Jean-Baptiste Clément,
F-93430, Villetaneuse, France

Email address: mallein@math.univ-paris13.fr


	1. Introduction
	Motivation
	Results
	Organization

	Acknowledgements
	2. Branching Brownian motion in the half-plane
	2.1. Branching Brownian motion in one dimension
	2.2. The critical additive martingale in the half-plane
	2.3. Convergence of the derivative martingale and shaving
	2.4. Supercritical additive martingales

	3. Constructions of KPP traveling waves
	3.1. A minimal-speed wave
	3.2. Higher-speed waves

	4. Structure and tameness for minimal-speed waves
	4.1. Strategy
	4.2. Monotonicity and structure
	4.3. A subsolution
	4.4. Potential theory

	5. Uniqueness of minimal-speed traveling-waves
	6. Traveling wave asymptotics
	6.1. The minimal-speed wave far from the horizontal axis
	6.2. The higher-speed waves far from the boundary
	6.3. Minimal-speed tail asymptotics

	References

