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KPP TRAVELING WAVES IN THE HALF-SPACE

JULIEN BERESTYCKI, COLE GRAHAM, YUJIN H. KIM, AND BASTIEN MALLEIN

ABSTRACT. We study traveling waves of the KPP equation in the half-space
with Dirichlet boundary conditions. We show that minimal-speed waves are
unique up to translation and rotation but faster waves are not.

We represent our waves as Laplace transforms of martingales associated to
branching Brownian motion in the half-plane with killing on the boundary. We
thereby identify the waves’ asymptotic behavior and uncover a novel feature of
the minimal-speed wave ®. Far from the boundary, ® converges to a logarithmic
shift of the 1D wave w of the same speed: lim ®(x + % log y,y) = w(x).

y—00 2

1. INTRODUCTION

We study the KPP equation in the Dirichlet half-space:

o = %Au+u —u? inHY

1.1
u=20 on oHY. 1

Here H? := R x R, and d > 2. This reaction—diffusion equation exhibits a
wealth of propagation phenomena including traveling waves—solutions that move
at constant speed parallel to the boundary. In this paper, we exploit the close
relationship between (1.1) and branching Brownian motion to construct a host of
traveling waves and characterize those of minimal speed. [inline]Add sentence
highlighting other nonlinearities; direct reader to remark belwo where we provide
formulee.

Motivation. Reaction-diffusion equations model phenomena in fields ranging
from chemistry to sociology. They can describe the progression of a chemical
reaction through a medium or a species invading new territory. Fundamentally,
reaction—diffusion equations combine growth and dispersal; together, these fea-
tures generate spatial propagation. At long times, such propagation commonly
settles into a constant-speed pattern known as a traveling wave. Rigorously, on
the line, solutions of reaction—diffusion equations with localized initial data of-
ten converge to traveling waves in suitable moving frames [2, 16]. In multiple
dimensions, the same holds in the whole space [8] and in cylinders with compact
cross-section [4, 21].

The half-space is a complex intermediate—both anisotropic and transversally
noncompact. In [3], H. Berestycki and the second author construct traveling
waves of any speed ¢ > V2 in the half-space and show that localized disturbances
roughly propagate at speed V2. Two major questions remain: are the traveling
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waves unique up to translation, and do parabolic solutions converge to such waves
in a suitable frame? Here, we address the first question; we consider the second in
a forthcoming work.

In one dimension, traveling waves of a given speed are unique up to translation.
In multiple dimensions, however, traveling waves in the whole space with super-
critical speeds ¢ > V2 are not unique. This multiplicity is due to waves with level
sets oblique to the direction of propagation [9]. In contrast, the minimal speed V2
does not support oblique level sets. Minimal-speed waves are planar and unique
up to translation and rotation [10]. We show that the half-space exhibits similar
behavior. Up to isometry, the half-space supports a single minimal-speed wave but
many supercritical waves. To our knowledge, this is the first proof of uniqueness
for traveling waves with nontrivial and noncompact transverse structure.

We are further motivated by the remarkable relationship between the PDE
(1.1) and the stochastic branching particle system known as branching Brownian
motion (BBM). Precisely, solutions of (1.1) constitute the Laplace transform of BBM.
First observed by McKean [22], this relationship has long been used to study both
(1.1) and BBM. For example, one-dimensional traveling waves can be expressed as
Laplace transforms of martingales associated to BBM [12, 13, 17, 18].

Here, we develop this theory in the half-space. We express our traveling waves
on HY as Laplace transforms of certain martingales associated to BBM in H¢,
Using this representation, we determine the large-scale structure of said waves
and uncover unexpected asymptotic phenomena in the minimal-speed setting. Our
approach interweaves analytic and probabilistic arguments in novel fashion. This
is not a mere convenience—we are presently unable to prove the full complement
of our results using either discipline alone. Our reasoning and results thus shed
light on the deep relationship between (1.1) and BBM in the half-space.

Results. We denote coordinates on H? by x = (x,x’,y) € Rx R*? x R,. We
study traveling-wave solutions of (1.1) that move parallel to the boundary. Due to
the rotational symmetry of H? orthogonal to 9H?, we are free to assume that our
waves move in the +x direction. Then a traveling wave solution of (1.1) of speed
¢ > 0 takes the form ¥ (x — ct, x’, y) for some ¥ € C?>(H%) N C(HY). 1t follows that
¥ satisfies the elliptic reaction-diffusion equation

1.2
¥ =0 on oHY. (12)

{%A‘If +e P +Y-¥2 =0 inHY,
We restrict our attention to bounded solutions of (1.2). By the maximum principle,
all such solutions lie between 0 and 1.

Some solutions of (1.2) depend solely on the distance y to the boundary 9H?.
In this case the drift term cd, ¥ vanishes, so such solutions are steady states of
the parabolic problem (1.1). H. Berestycki and the second author have shown
that the half-space supports precisely two nonnegative bounded steady states
[3, Theorem 1.1(A)]. These are 0 and ¢( y), the unique positive bounded solution
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of the following ODE on R;:

1 124
S0 o= 0> =0, ¢(0)=0. (1.3)

To ensure our traveling waves vary in x, we forbid these two “trivial” solutions.

Definition 1.1. A traveling wave of speed ¢ > 0 is a nonnegative bounded solution
of (1.2) that is neither 0 nor ¢.

In Theorem 1.4(A) of [3], H. Berestycki and the second author also considered
the existence of traveling waves: H? supports a traveling wave of speed c if and
only if ¢ > ¢, := V2. In this paper, we consider the uniqueness and structure of
such waves. We first discuss uniqueness.

Theorem 1.1. For each d > 2, there is exactly one traveling wave on H? of speed
¢. = V2, up to translation. In contrast, for every ¢ > c., there exist infinitely many
traveling waves of speed c that are distinct modulo translation.

We note that a traveling wave on H? extends to a wave on H?. Hence the
unique minimal-speed wave on H? depends on x and y alone. In fact, the reduction
to two dimensions (Proposition 4.3 below) is an important step in the proof of
Theorem 1.1. Thanks to this reduction, most of our analysis takes place in the
half-plane H := H?> = R x R,.

To prove Theorem 1.1, we exploit the connection between the KPP equation (1.2)
and branching Brownian motion. In our probabilistic analysis, we fix d = 2 and
thus work on H = RXxR,. Let (X; (u), Y;(u) ; u € \;) denote a BBM in R* without
killing; \; is the set of particles alive at time ¢ and (X;(u), Y;(u)) is the position
of particle u at time ¢. Each particle moves in R? according to an independent
two-dimensional Brownian motion and splits at unit rate into two child particles.
Givenu € NV; and s < ¢, we write (X;(u), Ys(u)) for the position at time s of the
unique ancestor of u alive at time s. Let P, denote the law of the BBM started
from a single particle at position (0, y).

Our half-plane BBM is the process (X;(u), Y;(u) ; u € N}"), where

N = {u e N« inf Y,(u) > 0}.

In words, it is a branching Brownian motion whose particles are killed when they
hit the boundary dH. We define an associated derivative martingale

Zei= Y [Vot = X (u)] Yy (u)e VX2 (1.4)
ueN}

by analogy with BBM in R. We also define a two-parameter family of additive
martingales

Wt/l’“ = Z eMXe () sinh[th(u)]e_uz/zwz/zmt for A, u > 0. (1.5)
ueNy

The long-time limits of these martingales play a central role in our analysis.

Proposition 1.2. The following hold for any y > 0:
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(i) Z is aPy-martingale with a.s. limit Ze, Z 0.

(i) WA is a nonnegative P, -martingale with a.s. limit Wo/};“. IfA% + 12 < 2,
then Wo/};“ = 0. Otherwise, WO/},’” =0Py-as.

The notation M = 0 indicates a nonnegative random variable M that is not almost

surely zero. For analogous results in one dimension, see, for example, [17, 18].
We now construct KPP traveling waves from the Laplace transforms of these

martingale limits. In the following, E,, denotes expectation with respect to IP,,.

Theorem 1.3. The function
®(x,y) =1-E exp (—e_‘/éxZoo) (1.6)

is a shift of the unique minimal-speed traveling wave on H. Moreover, for all A, i > 0
such that A2 + p? < 2,

Q) u(x,y) =1-E,exp (—e_MWO/},’”) (1.7)

is a traveling wave of speed (A* + % +2)/(21) > V2.

Theorems 1.1 and 1.3 are closely related. To prove minimal-speed uniqueness in
Theorem 1.1, we relate an arbitrary minimal-speed wave to the particular wave
® defined in (1.6). Drawing on the comparison principle and potential theory,
we show that all minimal-speed traveling waves satisfy a certain tail bound. In
probability, this is known as tameness— traveling waves cannot be too exotic.
Following [1], we then use a probabilistic “disintegration” argument to show that
every tame wave is necessarily a shift of ®.

This strategy differs from purely analytic approaches to traveling-wave unique-
ness. It has been standard practice in the analytic literature to prove sharp asymp-
totic behavior as a precursor to uniqueness; see, e.g., [4]. Here, we only need an
upper bound in the form of tameness; the probabilistic disintegration handles the
rest. It seems likely that this hybrid approach could bear fruit in other problems.

The multiplicity of supercritical traveling waves in Theorem 1.1 follows from
the fact that we construct a two-parameter family of waves in Theorem 1.3. As a
result, there are generally many waves with the same speed. Let Q C R% denote
the open quarter-disk of radius V2 centered at the origin. Given ¢ > c., we define

P = {(/1,/1) €Q:(A-c)i+pt=c*- 2}. (1.8)

Then P, is the set of parameters (4, ) such that ®, , is a traveling wave with
speed c. The arcs P, foliate the quarter-disk Q by speed:
As ¢ — c,, the set P, converges to the single point (V2, 0), which is formally
associated with the derivative martingale Z. This collapse hints at the uniqueness
of the minimal-speed wave. For a more complete discussion of the phenomenology
along the boundary of Q, see Section 3.2.

We now turn to the asymptotic behavior of our traveling waves. The limits as
x — oo are fairly simple: our waves are heteroclinic orbits connecting the steady
state ¢ on the left with 0 on the right. The waves exhibit more subtle behavior
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FIGURE 1. Parameter space for the supercritical waves @, ,. Waves
corresponding to (4, i) € P, move with speed ¢ > c..

when we take y — co. In this regime, the boundary recedes and our waves become
asymptotically one-dimensional. Given ¢ > c., let w. denote the unique (up to

translation) one-dimensional traveling wave of speed ¢, which satisfies the ODE
1
Ewé’ + cw; +w. — wg =0, wc(—oo) =1, wc(+00) =0.

To fully determine w., we work with the translate given by the Laplace transform
of a c-dependent martingale related to one-dimensional BBM; see (1.11) and (6.3)
for details.

At the minimal speed, we show that ® converges to w., as y — oo after a
horizontal shift that is logarithmic in y. This novel phenomenon reflects the
delicate structure of the derivative martingale Z, as we discuss below. Supercritical
waves exhibit a different complication: they are asymptotically one-dimensional
but tilted with respect to the coordinate axes. Given (4, u) € Q, let R; , denote
clockwise rotation by the angle arctan(u/A). We show that the rotated wave
®, . © R, converges to a one-dimensional wave of speed

A2+ +2
24/A% + 12 .

To simplify the resulting statement, we extend @, , by 0 to the entire plane R?.

c(Ap) = (1.9)

Theorem 1.4. Every wave ®" in the collection {®,®; ,} 3, c0o satisfies0 < &* <1,
x®* < 0, and 9,9* > 0. The limits

®*(—o0,-)=¢ and ®*(+o00,-)=0
hold uniformly and locally uniformly, respectively. Moreover, as y — oo,
CD(X + \/Lg log y, y) — we,(x) and CDA,;: ° R/l,y(x: )/) — WeAp) (x) (1.10)
uniformly in x for all (A, p) € Q, with c(A, ) given in (1.9).

The speed of @, , in Theorem 1.3 is (A2 +p%2+2)/(22), which differs from c(A, y)
in (1.9) and Theorem 1.4. The former is the speed of ®, , in the x-direction. The
latter is the apparent motion of @ , perpendicular to its level sets in the y — oo
limit. The discrepancy reflects the fact that the asymptotic level sets of ®; , are
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tilted at angle 6(A, ) = arctan(u/A) relative to vertical. Thus the speeds differ by
the geometric factor cos 8(4, p1).

Traveling waves with asymptotically oblique level sets have been previously
studied in the whole space for a variety of reactions [6, 9]. In the KPP setting,
Hamel and Nadirashvili [10] have constructed an infinite-dimensional manifold of
multidimensional traveling waves. We believe that their construction is closely
related to the parameter space Q depicted in Figure 1. In the half-space, one can
construct an analogous manifold of waves of a given speed ¢ > c. by taking
arbitrary convex combinations of the additive martingales {W’L”}( Ap)ePe. We
speculate that the link between traveling waves and martingales can be used to
rigorously classify all traveling waves on H?, and indeed on R?.

As alluded to above, the most surprising feature of Theorem 1.4 is the loga-
rithmic shift \/% log y in ® as y — oo. From a probabilistic standpoint, this novel
phenomenon can be explained as follows. Recall that (1.6) expresses ® in terms of
the derivative martingale Z defined in (1.4). As we move away from the boundary,
the role of killing lessens, and we might expect Z to resemble a one-dimensional
derivative martingale. In this spirit, define

D; = Z [\/Et—Xt(u)]e‘/éX‘(”)_Zt.

ue/\/}

Note that this sum ranges over the entire population N; of the BBM in R?. Thus D
neglects killing, and is in fact the classical one-dimensional derivative martingale.
It has an a.s. positive limit D, whose Laplace transform is the minimal-speed
one-dimensional traveling wave:

we, (x) =1-Eexp (—e_\/EXDOO) . (1.11)

In Proposition 6.2, we use a first and second moment method conditioned on
horizontal motion to show that

Zs(y)/y = Do in probability as y — oo (1.12)

for a family of random variables Z., () with the law of Z., under P,,. Interpreting
(1.12) through the definitions (1.6) and (1.11), we find

0] (x+ \/%logy, y) =1-—FEexp (—e_‘/ng‘X,(y)/y) — w,(x) asy — oo.

Thus, the limiting relation (1.12) between the martingales Z and D implies the
asymptotic behavior of ® in Theorem 1.4. We take a similar (simpler) approach to
the asymptotics of the supercritical waves @, ,; see Proposition 6.5 for details.

The asymptotic tail behavior of the minimal-speed wave has historically played
an important role in the study of KPP propagation [11, 18]. We expect the same will
be true on the half-space. We therefore develop a more precise understanding of
the asymptotics of ® as x — oo. These are related to the well-known tail behavior
of the one-dimensional wave: there exist K, > 0,a € R, and § > 0 such that

we, (x) =K [x+a+ (’)(e_‘sx)]e_ﬁx as x — oo. (1.13)
In the following, we let log, s := max{logs, 0} and recall that x := (x, y) on H.
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Theorem 1.5. There exists E € L*(H) such that if x > % log, v,

d(x,y) = K [x - \/% log, |Ix|| + E(x, y)]ye_\/éx. (1.14)

Our proof is rooted in potential theory and uses Theorem 1.4 as input.
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Note that if we evaluate ® at (x + % log y, y) and take y — co, the asymptotic
behavior in (1.14) comports with (1.10) and (1.13). We highlight one final curiosity:

if we instead hold y fixed and take x — oo, we find

®(x,y) =K. [x - \/% log x + Oy(l)] ye_\/éx,

where the implied constant in O,(1) depends on y. This hearkens to (1.13) but
includes a log x correction in the algebraic prefactor. We are unaware of an
analogue of this behavior in any other context.

Organization. The remainder of the paper is organized as follows. In Section 2,
we develop the theory of BBM in the half-plane and prove Proposition 1.2. We
construct our traveling waves in Section 3 and thus prove Theorem 1.3. In Section 4,
we use purely analytic methods to prove a sharp upper bound—tameness—for
all minimal-speed traveling waves. We employ this tameness in a disintegration
argument to prove the uniqueness of the minimal-speed wave in Section 5. Finally,
Section 6 concerns the asymptotic behavior of our traveling waves and concludes
the proofs of Theorems 1.1, 1.4, and 1.5.
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2. BRANCHING BROWNIAN MOTION IN THE HALF-PLANE

In this section, we develop the theory of branching Brownian motion in the
half-plane. Motivated by the traveling wave construction in Theorem 1.3, we
investigate the convergence of various martingales associated to the BBM. In
particular, in this section we prove Proposition 1.2. Throughout, we take d = 2 and
thus work on the half-plane H := R X R,.

Recall that we are interested in the derivative martingale Z and the additive
martingales W*# defined in (1.4) and (1.5), respectively. The convergence of the
latter is relatively straightforward, as W*# is uniformly integrable if and only if
A% + p? < 2; see Section 2.4 below. The derivative martingale Z poses more of
a challenge—it has indefinite sign and is not uniformly integrable. We therefore
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treat its convergence in several steps. We begin in Section 2.2 by showing that the
so-called critical additive martingale

Wt = Z Yt(u)e\/EX’(u)_Zt
ueN}

converges to 0 almost surely as t — co. Next, we define “shaved” approximations
of the derivative martingale Z and prove their uniform integrability in Section 2.3.
In combination, these results suffice to show that the convergence of the derivative
martingale Z.

2.1. Branching Brownian motion in one dimension. Our analysis relies on the
standard theory of BBM in one dimension. Here we recall various elements of this
theory, including the so-called spine decomposition. We will subsequently adapt
these ideas to the half-plane setting.

Recall that (X;(u), Y;(u) ; u € N;) is a branching Brownian motion in the plane
R? without killing. It follows that (X;(u); u € N;) is a BBM on the line R started
from 0. Given t > 0, we let

He = 0(Xs(u); ueNs,s <t

denote the filtration associated to this horizontal part of the BBM. Note that the
genealogical tree T is measurable with respect to 7. Moreover, conditionally on
H, the process (Y;(u) ; u € N;) can be seen as an independent Brownian motion
indexed by T.

The critical additive and derivative martingales of the BBM (X;(u); u € N;)
are the processes

A= ) eV (2.1)
uENt

D, = Z [\/Et—Xt(u)]e‘/EX‘(”)_Zt.
uGNt

The asymptotic behavior of these martingales is closely related to the asymptotic
behavior of extremal particles in BBM. In [18], Lalley and Sellke proved that

tlLrEOAt =0 and tli_)rg D; =Dy >0 as. (2.2)
In turn, the Laplace transform of D, yields a minimal-speed traveling wave of the
KPP equation in one dimension; see (1.11).

We now describe the main steps in the proof of (2.2) and thereby introduce
several important tools that we subsequently deploy in the half-plane. Following
[7,19, 20], we study the law of BBM biased by an associated nonnegative martin-
gale. This allows us to make use of the following characterization of absolutely
continuous random measures.

Proposition 2.1. Let (M;);>o be a mean one nonnegative (F;);>o-martingale under
law P. Define a new probability measure Q on Fo, via Q(E) := Ep (M;1g) for all



10 JULIEN BERESTYCKI, COLE GRAHAM, YU]JIN H. KIM, AND BASTIEN MALLEIN

t > 0 and E € F;, written Q = MIP for short. The martingale M, converges almost
surely under both P and Q; we write M, for the a.s. limit. Then

Q(E) = Ep (Mw1g) + Q(EN {My = 00}) forallE € F.
In particular, the following are equivalent:
(i) M is uniformly integrable with respect to IP;
(ii) Ep Mw = 1;
(iii) Q(Meo = o0) = 0.

Suppose we wish to show that M converges P-almost surely to a nondegenerate
limit. By Proposition 2.1, it suffices to show that lim inf; ,., M; < oo Q-a.s. Like-
wise, the inverse result follows if lim sup,_, , M; = oo Q-a.s. Thus to prove that
M; — 0 under P, one need only show that M diverges under Q; this is typically
much easier (see the proof of Proposition 2.3).

In the remainder of the subsection, let IP denote the law of the one-dimensional
BBM (X;(u); u € N;). Recalling the critical additive martingale A from (2.1), we
define the tilted probability measure IP := AP. The seminal spine decomposition of
[7, 19] states that under PP, the process (X;(u) ; u € N;) is a branching Brownian
motion with a spine: a distinguished particle that moves and reproduce differently.

More precisely, let P denote the law of the following process (X, (u) ; u € N;)
augmented with a distinguished spine particle ¢; € N;. The process begins with a
single spine particle at the origin, which performs a Brownian motion with drift
V2. After an independent exponential time ¢ of parameter 2, this particle splits into
two children, one of which is designated the new spine particle &. The new spine
performs a copy of the above process from its birth location, while the non-spine
child starts an independent BBM (without spine). Spine decomposition theorems
for branching Brownian motion are originally due to Chauvin and Rouault [7]. A
trajectorial construction was first developed by Lyons, Pemantle, and Peres for
the Galton-Watson process [20]; Lyons later generalized this to spatial branching
processes [19].

Proposition 2.2. Forallt > 0 and E € H,, we have P(E) = IP(E). Moreover,
]lv)(gt =u|H,) = At_le\/ixt(“)_% forallu € N;.

In other words, the law of (X;(u) ; u € N;) is identical under P and IP. Moreover,
conditionally on the position of the particles, the spine particle is u € N; with

probability proportional to eV2Xe(u),
This proposition can be combined with Proposition 2.1 to show that A; — 0
almost surely. Indeed, note that

A, = Z e\/EXt(u)—Zt > e‘/EXt(ft)—Zf'
uE./\/}

Under P, the process t +— V2X;(&) — 2t is a driftless Brownian motion, so
limsup,_, ., A; = oo P-a.s. Applying Proposition 2.1 to the event E = {A, < oo},
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we obtain
EpAs = ]P(Aoo < OO) =0.
Since A is nonnegative, A, = 0 [P-a.s.
To treat the derivative martingale D;, we “shave” it, using the same technique
asin [5]. Given @ > 0 and t > 0, let

NF = {uENt:Xs(u) S\/§s+0{forallsSt}

denote the population of particles that remain below the curve V2t + . Then we
define the shaved derivative martingale

Df = > [Vaet+a- X, (u)]eV2Xr (=2, (2.3)
ueNy
For all « > 0, D* is a nonnegative martingale converging almost surely to some
D% ast — oo. Using Proposition 2.2, one can associate a spine decomposition to
the law Q% = D*P under which V2t +a — X;(&;) is a Bessel process of dimension 3.
Applying Proposition 2.1, one can then show that D¢ is uniformly integrable, and
therefore D is nondegenerate.

To relate D* to D, we use the following fact. With probability 1, there exists
(random) oy > 0 such that N* = N, forall t > 0 and & > . More precisely,
if M; = maxy;, X;(u) denotes the maximal displacement at time ¢, then it is well
known (see, e.g., [18]) that

liminf V2t — M, = +00  as. (2.4)

t—o0

In particular, it follows that M := sup,so(M; — V2t) < oo a.s. Hence for all a > M
and t > 0, we have

D} = Z [\/Et +a- Xt(u)]eﬁxf(“)_% =D, + aA;.
MENt
We showed above that A; — 0 as t — oo. It follows that D, has limit D, = DZ

a.s. when a > M. This also shows that the map & +— D is constant above the
random threshold M. Hence D; converges almost surely as ¢t — oo to the limit

D = lim D%,

a—00

In the remainder of the section, we adapt this approach to show that the deriva-
tive martingale Z in the half-plane has a nondegenerate long-time limit.

2.2. The critical additive martingale in the half-plane. We now consider our
BBM in the half-plane H. Given t > 0, let

Fr=0(Xs(u),Ys(w);ue Ny, s<t) and Foo = 0(UpnoFr)

denote the filtration associated with the BBM in the entire plane IR?. We implicitly
use the term martingale with respect to this filtration. Recall the critical additive
martingale defined by

Vvt= Z Yt(u)e\/EXt(u)—Zt.
ueN}
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In this subsection, we show that W vanishes in the long-time limit.
Proposition 2.3. The process W is a P,,-martingale and W; — 0 P,-a.s. ast — oo.
It is easy to check that W is a nonnegative IP,-martingale.

Proof that W is a martingale. We employ the so-called many-to-one lemma: by
linearity of expectation,

]Eth = ]Ey

Z Yt(u)eﬁXt(u)_Ztl{Ys(u)ZO;SSt})
uGNt

= et]Ey (Yte‘/EXt_Ztl{YSZO;SSt}) s

where (X,Y) is a 2-dimensional standard Brownian motion started from (0, y).
We have used the fact that the expected population size at time t > 0 is e/, due to
the rate-1 branching. As a result, by independence and the martingale properties

of eV2Xe~t and Y;, we have
]Eth =E (eﬁXt_t) ]Ey(Ytl{YSZO;sét}) =Y.
Then the branching property of the BBM yields

]Ey(m+s | Fi) = Z e‘/Ext(u)_Zt]l:'J‘Yt(u)W's =W
ueNy

for all ¢,s > 0. That is, W is a IP,, martingale. m]

It follows that y~'W is a mean-1 martingale, so we can define a tilted probability
measure ﬁy = y"'WIP,. We relate this to an associated spine decomposition.

Let ]f)y denote the law of the branching Brownian motion with spine constructed
as follows. Let B be a Brownian motion started from 0 and S be an independent
Bessel process of dimension 3 started from y. Our BBM with spine starts with
a single spine particle that moves according to the process t > (B; + V2t,S;).
After an independent exponential time of parameter 2, this particle splits into
two children, one of which is designated the new spine particle. The new spine
performs a copy of the above process from its birth location, while the non-spine
child starts an independent BBM (without spine) in H with killing on dH. We
let (X;(u), Y;(u) ; u € N}) denote the positions of the particles at time ¢ and let
& € N denote the label of the spine. Note that the identity £ of the spine is not
measurable with respect to F.

The spine decomposition theorem states that @y = ]f’y on Fe.

Proposition 2.4. Forallt > 0 and E € F;, we have Py(E) = ﬁy(E). Moreover,
Py(&=ul|Fy) = Wt_IYt(U)e\EX’(u)_Zt forallu e N} . (2.5)

Proof. To begin, we augment the one-dimensional spine decomposition introduced
in the previous subsection with vertical motion. We let the spine particle move as
an independent standard Brownian motion in the y-direction while performing its
previously-described horizontal motion. Likewise, we let the non-spine children



KPP TRAVELING WAVES IN THE HALF-SPACE 13

perform standard BBMs in R?. Let ]f’y denote the law of this spine process in R?,

which of course differs from the law P introduced above. Let 113y = AP,, denote
the tilt of IP,, with respect to the horizontal additive martingale A; defined in (2.1).

Then Proposition 2.2 can be easily extended to show that ]f’y = ]f’y on F and
]py(gt =u|F) = At_le‘/ixf(”)_zt for all u € \V;. (2.6)
Now fix t > 0 and E € F;. By definition,
Py(E) = y'Ey |1z ) Ye(w)eV?Xr=2].
ueN}
Using (2.6) and the definition of the tilted measure ]f)y, this becomes
Py(E) =y By |1z Y Vi(wPy(& =ul F)|.
ue./\/';r
The integrand is measurable with respect to F;, on which ]l3y = ]Py, )

Py(B) =y By |1z Y V@Py(& =u| F)|.
ueNy

Now linearity of expectation and the tower property yield

Py(B) =y By |1e ) VeWE,(1gmu) | F)
ueN}

Fi

=y 'E, Yt(u)l{gt:u}
u€N+

i, (1EJE |V ensy | 7
“E y(1EYt(§t)1{Y (&)20; s<t}) - (2.7)

Under the law ]f’y, the process t +— Y;(&,;) is a standard Brownian motion on the real
line independent of the relative displacement of all non-spine particles. In contrast,
under ]f’y, Y; (&) is a Bessel process of dimension 3. Now y 'Y, (&) 1y, (&) >0;s<¢}
is the Radon-Nikodym derivative of the law of the Bessel process with respect to
the Wiener measure, so (2.7) yields Py (E) = ]f’y (E).

We now use the connection between the laws Ilsy and ]lv)y to study the distribution
of & conditioned on F;. Fixt > 0, E € F; and u € N}}. Then

Py(& = u,E) = y'By (151 (5=u) Vi (€)1 v, 20:5<0)) = VT By (1Y (W) 1 (g2 -
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By the tower property and (2.6),
Py (& =wE) =y 'E, (1EYf(”)]Ey (1160 | ]:t])
= y_lléy (lEYt(u)A;le\ﬁXt(u)_Zt) .

Again, the integrand is measurable with respect to F;, on which ]l3y = ]f)y, so by
the definition of ]f’y,

]f’y(§t =u,E) = y_1]]~5y (lEYt(u)Azle‘/éX’(”)_Zt) = y_I]Ey (lEYt(u)e\/EXf(”)_Zt) .
Finally, we use the definition of ﬁy and the equality between Py and Ii’y shown
above to conclude that

Py(& =uFE)=E, (1Em-lyt(u)eﬁxr<u>-2f) .
This completes the proof of (2.5). O

Using the spine decomposition and Proposition 2.1, we show that the additive
martingale vanishes in the long-time limit.

Proof of Proposition 2.3. We have already shown that W is a nonnegative martin-
gale. Hence by Doob’s theorem, W converges almost surely. Combining Proposi-
tions 2.1 and 2.4, we have

Y By (Wl i <co}) = Fy(lim supW, < o) = Py(lim supW, < o).  (2.8)

t—00 t—o00

Note that under the law ]f)y, W, > Yt(ft)e‘/ixf(gt)_”. Now X, (&) — V2t is a
standard Brownian motion, which makes arbitrarily large excursions almost surely.
Moreover, almost surely, the Bessel process Y;(&;) does not vanish in the limit. It
follows that lim sup,_,,, W; = o0 Ilsy—a.s. In light of (2.8), we conclude that

Ey(Weolw, <co}) = Y (Weo < 00) = 0.
Since W; is a martingale, W, = 0 P-a.s. O

2.3. Convergence of the derivative martingale and shaving. We now turn to the
derivative martingale in the half-space. The main result of this subsection is the
following.

Proposition 2.5. The process Z is a IP,,-martingale and
Zoo = tlim Z 20 Py-as
Again, it is easy to check the martingale property.

Proof that Z is a martingale. By (2.5) Proposition 2.4,

EyZe =By | > [V2r - X (u)] ¥y (u)eVPXe (-2
ueN}

= Y, [V2r - X:(&)] = 0.



KPP TRAVELING WAVES IN THE HALF-SPACE 15

Here we have have used the fact that V2t — X;(&,) is a standard Brownian motion
under IP,,. Then the branching property and the martingale property of W yield

E(Zs | F) = ) [Vat - Xe(w)] 2 2By, ) W,
ueN}

+V2s Z eﬁx’(u)_Zt]EYt(u)Zs =2
ueNy

forallt,s > 0. m|

Because Z has indefinite sign, we cannot immediately deploy the methods of
the previous via a probability measure biased by Z. As with D;, we circumvent
this issue through a family of shaved derivative martingales whose asymptotic
behavior resembles that of Z;.

Given « > 0, we define

Zr = Z [\/Et +a _Xt(u)]yt(u)ex/ix,(u)—zt’

uEN;’a

where NP = {u € N} : X;(u) < V2s+a,s < t} denotes the collection of
particles in \V;” whose trajectories remain below the line V2s + . Adapting the
calculation above, one can easily check that Z* is a martingale. Moreover, the
definition of A'*¢ implies that Z% is a nonnegative martingale and thus converges
almost surely to a limit ZZ.

We now use familiar tools to show that Z* is uniformly integrable and thus has
a nondegenerate limit. Define the tilted measure

— YA
¢ =—P,.

Let QS)‘/ denote the law of a BBM in H with spine & such that the spine particle
branches at accelerated rate 2 and moves according to the process (\/§t+a -54S)),
where S and S’ are two independent Bessel processes of dimension 3 started from
a and y, respectively.

Proposition 2.6. Forallt > 0 and E € F;, we have Q’J",(E) = ﬁg‘,(E) Moreover,

QU& =u | F) = (ZO) [ V2t + o = X, (w) | Yo (w)e X 072 forallu e N,

Proof. We mimic the proof of Proposition 2.4, using the proposition itself as input.
Fix t > 0 and E € F;. Using the definition of Py, (2.5), and P, =P, on Fo, we
have

ﬁg(E) = a_l]ﬁy 1p Z [\/Et +a —Xt(u)]]lsy(ft =ul|F)|.
uEN;’a

Writing Py(gt = u | F;) as an expectation and manipulating the tower property,
we arrive at

Qu(E) = a—l]ﬁy(1E[«/5t ta- xt(gt)]l{éw:,a}).
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Finally, we recognize the Radon-Nikodym derivative of a Bessel-3 process with
respect to the Wiener measure and obtain Qf(E) = QJ(E).
Similarly, given u € N,*%, we find

Q;(ft =u,E) = a_llﬁy (1E1{§t:u} [\/Et +a—X(u)] )
Using the tower property, (2.5), and Py = ]Py on F,, we have
Q(;/('ft =u,E) = (ay)"'E, (lEYt(u) [\/Et +a- Xt(u)]e‘ﬁX’(”)_Zt) .

Recalling the definition of @g and the equality between 6’; and Q’; shown above,
we conclude that

QU&= u.E) = Egg (16(Z0)7 Y, (w)[ V2t + o = X, () [ X972 )
y
Allowing E to vary over J;, we obtain the desired result. O
We now use the spine decomposition to prove uniform integrability.

Lemma 2.7. Foralla > 0, Z% is a uniformly integrable martingale that converges
P, -almost surely ast — oo to a nonnegative, nondegenerate random variable Z¢,.

Proof. By Proposition 2.1, Z* is uniformly integrable if and only if
Q4(z& <) =1. (2.9)

Let (7,)nen denote the increasing sequence of times at which the spine gives birth.
Under Qg, the (7,,)neN are the atoms of a Poisson process with intensity 2. Let

Y =0 ((X:(&), Y5(£),7a) 5 s 2 0, n € N)

denote the filtration associated to the trajectory of the spine and the birth times.
The spine has position (\/Et +a—S5;S;), where S and S’ are two independent
Bessel processes of dimension 3. Hence the martingale property of Z for standard
BBM yields

Egq(Z1 | V) = SiSie™ VP + 35, 80,2001,y Qs
n=1

Using Fatou’s lemma and the transience of Bessel-3 processes, we find

A

Eg (2 1Y) < ) Sy, Sp,e7 V0™ Qf-as.
n=1

Now, the law of the iterated logarithm for Bessel processes implies that for any
e > 0, almost surely t'/27¢ < S, < t'/%*¢ for sufficiently large t. It follows that

Z STnS;ne_ﬁ(an_“) < o0 Qg—a.s.

n=1
This proves (2.9). As a result, Z¢ is a closed martingale that converges P, -almost
surely and in L! to Z%. In particular, we have

E,Z$ =E,Zf =ay > 0,
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which shows that ZZ is positive with positive probability. o

We now complete the proof of Proposition 2.5 by showing the convergence of
the derivative martingale Z to the nonnegative limit lim,_,o, ZZ.

Proof of Proposition 2.5. We first note that o — Z7 is increasing for all t > 0, so
a — Z& is also PY-a.s. increasing. Hence lim, o ZZ is well-defined IP-a.s..
Next, using (2.4), we observe that

M = sup sup X;(u) — V2t < co PY-as. (2.10)
120 yeN}

Foralla > M and t > 0, we have

Zi' = Z WEHOC—Xt(u)]yt(u)eﬁxzw)—zt

u€/\ft+
= Z [\/Et - Xt(u)] Yt(u)eﬁxt(u)_m +a Z Yt(u)e‘/ixf(“)_:” =Z; + aW;.
ueN} ueN}

Taking ¢t — oo and using Proposition 2.3, we conclude that PY-a.s., we have
lim Z, =ZZ% forall a > M.
t—o0
In particular, the family (Z%)4>¢ stabilizes once a exceeds the (random) threshold
M. Since M is almost surely finite,
Zo = lim Z; = lim Z%. O
t—o00 aA—>00
2.4. Supercritical additive martingales. We now turn to the supercritical additive
martingales
VV;LIJ — Z e),Xt(u) sinh['uYt(u)]e—(ﬂz/2+y2/2+l)t
ueN}
parameterized by A, u > 0. Using the many-to-one lemma and the branching
property, one can readily check that W*# is a martingale; this is sufficiently similar
to our previous arguments that we omit the proof. Because W** is nonnegative,
it has an almost sure limit WO/},’” > 0. In this subsection we prove the following
dichotomy for Wi,’“ .

Lemma 2.8. IfA% + ;% < 2, then the martingale W™* is uniformly integrable and
Wo/},’” = 0. Otherwise, Wi’” =0Py-as.

Proof. We again employ a spine decomposition. Given A, j1, y > 0, let IIS;L’” denote
the law of the following BBM with spine &. The spine particle moves according to
a process (X;, Y;), where X is a Brownian motion with drift A started from 0 and Y
is an independent Brownian motion with drift y started from y and conditioned to
stay positive. The spine particle branches at the accelerated rate 2 and non-spine
particles behave as independent BBMs in H.

Adapting the proof of Proposition 2.4, one can show that ]1%’” coincides with

— 2, . " .
the tilted measure lP;l,’” = Six(:y) Py, on . We omit most of the repetitive details,
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but highlight one new feature. In analogy with the reasoning following (2.7), we
must show that

sinh[pY; (&)] _u
“sinh(gy) ¢ L ; 2.11
sinh(uy) e 2 Ly (&)=05s<t) (2.11)

is the Radon-Nikodym derivative of a Brownian motion with drift p conditioned
to stay positive relative to the Wiener measure. To see this, let B be a standard
Brownian motion and V be a Brownian motion with drift y, both started from y.
Given t > 0, let B[o;] denote the process B on the time interval [0, t]. For any
f € Cc(C([0,1])), we use the Girsanov transformation to write

sinh(uB;) _#2t 3 1—e 2
Sinh(ay) & Mool (B[O,ﬂ)}—]E[H—-zpyl{v[o.po}f Vo)) |- (212)

Recall that under ]l%,” , Y(&) is a Brownian motion with drift ;4 conditioned to stay
positive. Since

P(V; > 0forallt > 0) =1—e 2,

Doob’s h-transform theory implies that the right side of (2.12) is IE?,’” F(Yjor1(&))-
This confirms that the expression in (2.11) is the claimed Radon-Nikodym derivative
and justifies this form of the spine decomposition theorem.

Observe that 113;1,’” -a.s., we have
VV;W > eﬂX,(f,)—Azt/Z Sll’lh['UYt(g[)] e_HZt/Ze_t.
Recalling that X (£) and Y (¢) have drift A and p, respectively, we have

A%+t R
£ IP?,’” -a.
2
Hence, if A2 + p? > 2 (or if A% + i = 2 by the law of iterated logarithm), we have
Fﬁ,’”(Wi’” < 00) = 0. Then Proposition 2.1 implies that Wo/};” =0Py-as.
If A2 + % < 2, we condition with respect to the spine’s position and branching

1
li{n inf P log Wt/l’” > .

times (7,)nen. The martingale property for WhH yields the ]f’i,k’” -a.s. bound

B (WS D) <

N | =

o0
Z e/lXTn +Yr, — (A2 /2412 ) 241) T,
n=1

This is P*#-almost surely finite, so Proposition 2.1 implies that WA# is uniformly
integrable under P,,. It follows that ]EyWO/},’“ = sinh(uy) > 0, so WO/},’” = 0. O

Proof of Proposition 1.2. The proposition unites Proposition 2.5 and Lemma 2.8. O

3. CoNSTRUCTIONS OF KPP TRAVELING WAVES

We now use the nondegenerate martingale limits Z,, and Wci’” from Propo-
sition 1.2 to construct traveling waves for the KPP equation in H. We rely on
McKean’s link between BBM and the KPP equation, as well as “smoothing equa-
tions” satisfied in law by the martingale limits.
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3.1. A minimal-speed wave. Recall from Theorem 1.3 the definition (1.6) of &:
O(x,y) =1-E, exp (—e_‘/ngoo) .

We show that @ is a traveling wave on H of speed ¢, = V2 in the sense of
Definition 1.1. Our main tool is the McKean representation of solutions of (1.1).
This connection between BBM and the KPP equation was first observed by McKean
[22] in one dimension. Here, we state a straightforward analogue valid in H.

Proposition 3.1 (McKean representation). If ¢ € L™ (H) satisfies 0 < ¢ < 1, then

u(t,x,y) =E, |1~ 1_[ [1—¢(x—Xt(v), Yt(v))]
veN}

is the unique solution of (1.1) with initial condition u(0, -) = ¢.
Proof. First suppose that ¢: R — [0,1] is additionally C?. We define

qs(t, %, y) = E, ]—[ [1- ¢ (x - X (w), Y, (w)] |-

uENt

By dominated convergence,
}in& q¢(t,x,y) =1—-¢(x,y) and lin}) qe(t,x,y) = 1. (3.1)
— y—

To begin, we compute 9;qg4l;=o. Applying the branching property at the first
branching time of the BBM, we have

q4(t.x,y) =e"'E,[1-¢(x - X, ;)]
t
+ / e_s]Ey (]EYS [qtﬁ(t -s5x =X, Ys) | X, YS]Zl{inf[OS] Y>0}) ds.
0 ,
Thus Itd’s formula, dominated convergence, and (3.1) yield

1
21q4(0,%, 7) = =45(0,%,y) + ZAqy (0., y) + g4 (0, y)*.

Now fix t,h > 0. Given u € N\, let N\, (1) denote the set of descendants of u
alive at time ¢t + h. Applying the branching property at time h, we have

l_[ n [1- ¢ (x = Xt (0), Yen (0)) | ‘ ]:h)]

ueN; veN;,,, (v

qe(t+h,x,y) =E,|E,

=Ey| || gp(t.x = Xa(w), Ya(w)
_ue./\/;'

Our earlier computation allows us to differentiate this expression at A = 0 to find

1
gy = 504y +4y — s
So 1 - g4 solves (1.1).
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To extend this result to ¢ € L™ (H), let u denote the unique solution of (1.1)
with initial data ¢. For all ¢ > 0, u(¢, -) € C?. Hence we have just shown that

u(t,x,y) =1-E, ]_l [1 —u(e,x — X; (u), Yt(u))]
uGN[
solves (1.1) with initial data u(e, - ). By the semigroup property, u®(¢, - ) = u(t+e, -)
for all t > 0. We conclude by taking ¢ — 0 and using the fact that u(e, -) — ¢
weakly in L*. O

We now prove that the limit of the derivative martingale satisfies a recursive
equation in distribution. More precisely, using the branching property of the BBM,
we show that the law of Z, is a fixed point of a multitype version of the so-called
smoothing transform. In the following, for fixed t,s > 0, we write u < v when a
particle v € N} is a descendant of u € N}'.

Lemma 3.2. Forall y > 0 andt > 0, we have
Zoo = Z eﬁx’(”)_ZtZw(u), (3.2)
ueN}
where

Zoo(u) := lim Z [\/53 —Xt+s(v)]e‘/§X”5(")_zs foru e N.

u<veN}

Moreover, conditionally on F;, the random variables (Zoo(u) iU € N;T) are indepen-
dent and Z,(u) has the distribution of Z, under law Py, ().

Proof. Givens,t > 0 and u € N/, we define N}, (u) = {v € N}, : u <v} and
Wi (u) = Z Yoe (0)e V21 Xtss 0-X: (@)]-25.
veN/ (v

Zs(u) = Z (\/ES - [Xt+s (l)) - Xt(u)])YHs (U)eﬁ[XHS(v)_Xt(u)]_zs'
veN/ (v

With this notation, we can write

Ziys = Z Z [\/E(t +5s) — XHS(U)] YHS(v)e\/EX”S(”)_Z(“'S)

ueN} veN}  (u)
= > [Vt = Xe(w]eV @ 2w ) + Y Wz ). (33)
ueN} ueN}

The branching property implies that conditionally on F;, (Ws(u), Zs (1)), .+ are
independent random pairs and (W;(u), Zs(u)) has the law of (W, Zs) under Py, ;).
In particular, taking s — oo and using Proposition 1.2, we have

sli_)nolo (Ws(u), Zs(u)) = (0, Zoo(u)) Py-as.

The limits (Zw(u) ; u € N}) are independent conditionally on F; and share the
law of Z., under Py, (,,). Moreover, (3.2) follows from (3.3). O
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Using the branching property, we can check that Z is positive precisely on the
survival set of the BBM.

Corollary 3.3. Forall y > 0, we have
{Zo >0} ={N} # 0 forallt > 0} P,-as.

Proof. Let S := {N; # 0 for all t > 0} denote the survival event of the BBM on H.
The definition of Z; immediately implies that

(Ze > 0} C 5. (3.4)

Hence it suffices to show that IP,,(S) = IP,,(Z > 0) for all y > 0. We note that
Proposition 2.5 implies that g is positive on R4, so (3.4) yields p > q > 0.
Given y > 0, we define the functions p and g by

p(y) = ]Py(sc) and C](J/) = ]Py(Zoo =0).
Using the branching property at time ¢, we see that
Py(s°| Fo) = [ | Pra(s).
ueN}
It follows that p satisfies the recursive identity
p(») =E, || p(v:(w) (35)
ueN}
for all t > 0. Similarly, using Lemma 3.2, we have
q(y) =By [Py (Zoo(u) = 0forallu e N} | F)] =, [ | q((w)  (3.6)
ueN}

for all t+ > 0. Combining (3.5), (3.6), and Proposition 3.1, we see that 1 — pand 1 — g
are both stationary solutions of (1.1) on the Dirichlet half-line. That is, both are
positive bounded solutions of (1.3). Lemma 6.1 of [3] states that there is only one
such solution; we have previously denoted it by ¢. It follows that p =1 - ¢ =g,
which completes the proof. O

Armed with Lemma 3.2 and Proposition 3.1 we are now able to show that ® is a
minimal-speed traveling wave.

Lemma 3.4. The function ® defined in (1.6) is a traveling wave of speed V2.

Proof. Fix (x,y) € Hand t > 0. Using every part of Lemma 3.2, the tower property
for F; yields

O(x,y)=1- E,exp| - Z e\rz(xt(u)—‘/it—x)zoo (u)
ueN;

=1-E, ]_[ [1-®(V2t +x - X, (w), Y (w)].
u€/\/';r
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Now Proposition 3.1 implies that the function
O(x - V2t,y) =1-By [ | [1-@(x - X, (u), Y,(w))]
ueN}

solves the KPP equation (1.1) with initial data ®(x, y). It follows that ® solves
(1.2). Clearly, @ is bounded. Moreover, because Z, is not identically zero, ® is
nonconstant in x, and thus neither 0 nor ¢. By Definition 1.1, ® is a traveling wave
of speed V2. m|

3.2. Higher-speed waves. We now construct traveling waves with speeds ¢ > c,.

As for @, we use the Laplace transform of the martingale limits Wci’” . The proof is
very similar to that presented above, so we omit some repeated details.
Fix t > 0. As with Z, the branching property of the BBM implies that the

random variable WO/},’” satisfies the smoothing transform

Wlt= Y T ) (37)
ueN}

where, conditionally on F;, the random variables (Wo/};” (w);ue M+) are indepen-

dent and share the distribution of Wo/},’” under Py, (,). The proof is analogous to
that of (3.2). In fact, when A% + p/? < 2, (3.7) and Proposition 1.2 imply that

{Wo/})’” >0} ={N/ #0forallt >0} P,-as. (3.8)

Using the fixed point equation (3.7), we show that the Laplace transform of Wi
corresponds to a traveling wave of (1.1).

Proposition 3.5. For all A, i > 0 such that A* + i < 2, the function
Dy u(x,y) =1-Eyexp (—e_’leo/},’p)

is a traveling wave of (1.1) with speed —+— 2 +” 2 V2.

Proof. For all (x,y) € Hand t > 0, (3.7) and the tower property for F; yield

®;,(x,y) =1-E, ]_[ [1— @, (ct +x - X (w), Yi(w)] |,
ueNy

/1+y +2

where ¢ = . Note that this speed is supercritical:

2
c>ian +2:\/§.
R, 24

Using Proposition 3.1, we deduce that @, ,(x — ct, y) solves (1.1), so @ itself solves

(1.2). Moreover, WO/},’” is not identically zero, so D), is neither 0 nor ¢. Therefore
®, . is a traveling wave of speed c. O

Provided Theorem 1.1 holds, the proof of Theorem 1.3 is now complete.
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Proof of Theorem 1.3. Using Lemma 3.4, we observe that ® is a traveling wave on
H with speed c.. Using Theorem 1.1, we deduce that it is the unique minimal-
speed traveling wave, up to translation in x. The second part of Theorem 1.3 is
Proposition 3.5. O

Recall the quarter-disk
Q= {(Lp) e RE: 2%+ 1% < 2}.

We have now associated a traveling wave @, , with every point (4, u) € Q. This
correspondence extends in some manner to the boundary 9Q. This is not the main
aim of the paper, so we describe the extension informally.

For every (A, p) € @ one can associate a random variable H** such that

/12+,uz+2

vt (Lx,y) = 1-E; exp (—e_/chr 2

tH/L,u

solves the KPP equation (1.1). When (A, i) € Q, Proposition 3.5 allows us to take
H = Wi

If y € (0,V2) and A = 0, we can extend the definition of W*# to A = 0 and set
HO = Wo*. Then Vo, is an entire solution of (1.1) depending on t and y alone. At
large negative times, this solution resembles a one-dimensional traveling wave in

y of speed % moving down from a large height toward the x-axis. The wave
“reaches” the x-axis at unit time and converges to the steady state ¢ uniformly in
yast — oo.

If A € [0,V2) and y = 0, we can construct

HM = tlim Z Y, (w)eXe-(242)t/2 5 o and in L1,
ueN}

Then if A € (0, \/5), v2.0(0,x, y) is a traveling wave in H. One can can show that
its level sets behave similarly to those of ® described in Theorem 1.4. That is, as
y — oo, the level sets become asymptotically vertical with a logarithmic offset.

In the degenerate case A = 0, vg shares some qualitative properties with the
solutions v, described above. It is an entire solution of (1.1) depending on ¢ and y
alone. At large negative times, vy resembles an exponentially-stretched profile
moving down from a great height at an exponential rate. The profile reaches the
x-axis at unit time and converges uniformly to ¢ as t — co. We can thus view vg
as an “infinite-speed” limit of v, as p | 0.

Finally, for (A, i) on the circle A% + y? = 2, the additive martingale WAH must
be replaced by a derivative-type martingale. This corresponds to a traveling wave
whose levels sets are inclined at angle arctan(y/A) far from the boundary. In this
regime, the wave resembles a rotation of the minimal-speed one-dimensional wave
w¢,. The minimal-speed wave ® constructed above corresponds to the special case

/1=\/§and;1=0.
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4. STRUCTURE AND TAMENESS FOR MINIMAL-SPEED WAVES

In this section, we use analytic methods to constrain an arbitrary minimal-speed
traveling wave ¥ on H?. We first show that ¥ is decreasing in x, increasing in y,
and constant in x’. It follows that ¥ is essentially two-dimensional and we can
restrict our attention to the half-plane H2. We then prove a sharp upper bound on
the tail of ¥ where x > 1. This bound is termed “tameness” in the probabilistic
literature; it plays a crucial role in our subsequent probabilistic arguments.

We collect the main results of this section in the following proposition. Recall
that we denote coordinates on H? = R x R % x R, by (x,x’, y).

Proposition 4.1. Let ¥ be a traveling wave on H? of speed c... Then ¥ is independent
of x" and satisfies0 < ¥ < ¢, ox¥ < 0, and 9,'¥ > 0. The limits ¥(~oco, -) = ¢ and
¥ (400, -) = 0 hold locally uniformly in y. Moreover, there exists C > 0 such that

P(x,x',y) < C(1+ x+)ye_‘ﬁx for all (x,x’, y) € H%. (4.1)

In light of Theorem 1.5, the tail bound (4.1) is sharp up to the constant factor
wherever x > % log, y.

In the following, we use the notation f < g when f < Cg for some universal
constant C € R,. Likewise, f <, g indicates that the constant C can depend on
the parameter a.

4.1. Strategy. We begin by adapting maximum-principle arguments of Hamel and
Nadirashvili [10] to show that ¥ has the expected monotonicity: 0,¥ < 0, 9,'¥ > 0,
and Vy¥ = 0. As a result, ¥ does not depend on x” and the problem reduces to
two dimensions. It also follows that ¥ approaches ¢ on the left and 0 on the right.
These regimes are separated by a smooth level set {¥ = 1/2} that coincides with
the graph of a uniformly smooth function x = o(y), at least away from dH. Using
a uniqueness result on the whole plane R?, we can show that ¢’ — 0 as y — oo.
That is, the level set {¥ = 1/2} is asymptotically vertical far from oH.

The remainder of the argument combines comparison methods with poten-
tial theory. Counterintuitively, the comparison portion is based on a family of
compactly supported subsolutions that ensure that ¥ roughly decays like e Vox
where x > o(y). We exploit this loose form of regularity in our potential theoretic
arguments. In the following discussion, we focus on x, y > 1; the rest of the
half-plane can be handled easily.

Using the aforementioned exponential decay, we show that © = eV2x g s
nearly harmonic on the domain {x > 6c(y)}. Because ¢ is sublinear, this domain
is similar to a quarter-plane and can be conformally mapped there with r°® dis-
tortion, where r := 1/x% + y? denotes the radial coordinate. On the quarter-plane,
explicit analysis based on the Herglotz representation theorem shows that positive
harmonic functions with suitable boundary data grow at most quadratically in
r. Composing with our conformal map, we see that © grows at most like r2+°(1),
This polynomial bound implies that o grows no faster than logarithmically in y.

This additional quantitative information implies that {x > 6c(y)} can be
conformally mapped to the quarter-plane with bounded distortion. Using our
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quadratic bound on the quarter-plane, we find ® < r2. To conclude, we observe
that ® < (x+1)y ontherays {x = 0}, {x = y}, and {y = 0} while ® grows no more
than quadratically in the interior of the acute sectors {x > y} and {x < y}. The
Phragmén-Lindelof principle thus allows us to extend the estimate © < (x + 1)y
from the boundaries of the sectors to the sectors themselves, and hence to the
entire quarter-plane.

4.2. Monotonicity and structure. We begin with a general traveling wave ¥ on
H¢. We show that ¥ lies between the two one-dimensional steady states.

Lemma 4.2. If V¥ is a traveling wave on H?, then 0 < ¥ < ¢.

Proof. Let (Z;):»0 denote the semigroup corresponding to the parabolic evolution
1
@W:EAW+W—W2 (4.2)

on R, with Dirichlet boundary data. That is, if W (¢, y) solves (4.2) on R, with
Wlor, = 0 and W(0, -) = Wy, then (2, Wy)(y) = W(t, y).
By Definition 1.1, there exists M € R, such that

0<¥Y<M (4.3)

Recall that ¢ from (1.3) is the unique bounded positive Dirichlet steady state on R.
Because M is a supersolution of (4.2), its evolution ;M is decreasing in t and
thus has a nonnegative bounded limit ..M solving (1.3). Comparison and the
hair trigger effect from [3, Theorem 1.3(A)] imply that M > P1 = ¢. Since ¢
is the unique positive bounded solution of (1.3), we in fact have ZM = ¢. (We do
not apply Theorem 1.3(A) of [3] directly to M because the theorem assumes uy < 1.
As the above argument shows, this hypothesis can be relaxed to boundedness.)
Using (4.3), the comparison principle thus implies that

Since ¥ is neither 0 nor ¢, the lemma follows from the strong maximum principle.
O

We now show that minimal-speed waves have the expected monotonicity. Our
argument follows the proof of Lemma 5.1 in [10], which establishes the analogous
result in the whole space.

Proposition 4.3. Let ¥ be a traveling wave on H? of speed ¢, = V2. Then 9,¥ < 0,
9y¥ > 0, and V¥ = 0. Moreover, dx log ¥ > —2.

Proof. Take 0 = (0, 0x,0,) € 59 such that 0, > 0. We write 9y := 0 - V for the
derivative in direction 6. We suppose that inf dg¥ < 0. We show that this implies
that 0, > 0; the desired bounds follow.
Define
= %Y _
vi= g = dglog¥.
When y > 1, Schauder estimates imply that v is uniformly bounded. On 9H?, we
have ¥ = 0 and hence ;¥ = V¥ = 0 while the Hopf lemma yields 9,,¥ > 0.
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Because 0, > 0, it follows from elliptic estimates up to the boundary thatv_ is
uniformly bounded where 0 < y < 1. Thus v_ is uniformly bounded. Because
dp¥ < 0 somewhere, we have

infv =-m

for some m € R,. Thus there exists (x,)nen € H? such that v(x,) — —m as
n — oo, Define ¥, = ¥(- +x,) andv, =v(- +x,) forn € N.

We consider several cases. First suppose ¥, does not vanish locally uniformly
as n — oo and limsup,_,, y» > 0. We restrict to a subsequence with inf,, y, > 0.
Schauder estimates allow us to extract subsequential limits y., € (0, 0], ¥s % 0,
and ve of (Y, ¥, Un)nen such that v, (0) = —m = minve. One can easily check
that these satisfy

1 V¥,
EAUOQ + T Voo + €000 — Poolloo = 0 (4.4)

in the domain H? — Y€y under the convention that HY - ocoe,, = R?. Since v
achieves its minimum at the origin, Vv (0) = 0 and Ave(0) > 0. Then v, (0) < 0
and (4.4) imply that ¥, (0) = 0, contradicting the strong maximum principle.

Still assuming ¥, does not vanish locally uniformly in the limit, suppose y, — 0.
Boundary elliptic estimates imply thatv — oo locally uniformly as y — 0if 6, > 0.
From the definition of x,,, we must have 0,, = 0 in this case.

Now v, satisfies (4.4) on H?. This case is more delicate because Yoo ypya = 0,
so (4.4) seems singular at the boundary. To resolve this, let A := 9, ¥e|y=o > 0,
which is a function of (x,x’). Evaluating (1.2) at y = 0 and taking a limit, we
see that ai‘lfoolyzg = 0. By Taylor’s theorem, there exist a nonempty connected

neighborhood U of 0 in H? and T € C*(U) such that
¥, =Ay+Ty* inU. (4.5)

We now consider the advection term in (4.4). The ratio (V%) /% is bounded
on U, so the only component of concern is 9, ¥/ ¥w. Indeed, 9, ¥ > 0 while
¥, = 0 on 9H". However, we can use (4.5) to compute

99 ¥eo _ .
Ve = 0y ( ?I’ ) = 2A7%(AdgT —TapA)y + O(y*) inU. (4.6)
We then find
9y oo . .
Voo = 2A7° (A0 = T9pA) + O(y) inU.
Likewise,

Fpe = 273 (AT —TapA) + O(y) inU.
We thus conclude that
dy¥.

Voo = éivm +O0(y) inU

(o)
Thus this singular first-order term acts like a regular second-order term. Perhaps
after shrinking U, we are free to assume that |ve| > m/2 on U. Then we can write
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(4.4) as

1 Ox Voo
A+ |veo + | = +Cy | OxVoo +
2 Y £ 4

[ee)

Vi Voo

[ee)

- Vyleo — [‘I’oo + (’)(y)]voo =0. (4.7)

The coefficients in this operator are bounded and %A + 8?, is (uniformly) elliptic.
Consider (4.7) at the origin. There v, achieves its negative minimum and (4.6)
implies that 0,0 (0) = 0. By the Hopf lemma, v = —m in U. Using this in (4.4), we
obtain ¥, = 0 in U, which contradicts the strong maximum principle, as ¥, # 0
by hypothesis.

The above contradictions imply that ¥ vanishes locally uniformly along (x,),eN-
Again suppose limsup, _, ., ¥, > 0. We define

. \F( -+ X'l) \Ex
ni= ———e
¥ (xn)
and extract subsequential limits yo € (0, 0] and w. The latter satisfiesw o (0) =1
by construction. Because ¥(x,,) — 0, we are in a linear regime and w, is harmonic:

Mw =0 inH? - yee,.

Moreover, when y., < 00, W = 0 on the boundary y = —y.. Positive harmonic
functions satisfying the Dirichlet condition are unique up to scaling (this follows
from the representation formula (13) in [26], for example). Since wo, (0) = 1, we can
identify we = % if Yoo < 00 and wo = 1if yo = 0. In each case, dgw(0) > 0

because ¢, > 0. On the other hand, v(x,) — —m implies that
0 < Jgwe(0) = —m + V26.

We conclude that 6, > 0 and m < V26,.
Finally, suppose y, — 0. Then we define

0, = P A+xn) eV2x
Y(x, +ey)

and extract a subsequential limit as above. We have lZ)oo(ey) =1 AW = 0, and
Weo|gpa = 0. It follows that e = y and dpthe(0) > 0. Reasoning as above, we
again obtain 6, > 0 and m < V26,.

We have now shown that 9p'¥ > 0 whenever ¢, > 0 and 0, < 0. It follows that
¥ < 0and 9,¥ > 0. If we take 0, = 0,, = 0,

0<0_9g¥ =-0p¥ < 0.

That is, dp¥ = 0, meaning V¢¥ = 0. Finally, ¥ cannot be constant in y, so the
strong maximum principle implies that 9, > 0. Similarly, if 9,'¥ = 0, then
it is a bounded positive steady state of the KPP equation on the half-line. The
unique such solution is ¢, and we have assumed that ¥ # ¢. It follows that ¥ is
nonconstant in x as well, so 9, ¥ < 0.

Finally, we showed above that m = m(6) < (V26,),. Taking 0 = e, so 6, =1,
we see that m < V2. Recalling the definition of m, we have

inf 9, log ¥ > —V2
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as claimed. O

Since V¥ is constant in x’, we can drop those variables. In the remainder of the
paper, we assume d = 2, so ¥ is a traveling wave on H := R X R, and thus a
function of (x, y).

Corollary 4.4. The following limits hold locally uniformly in C' in y € [0, ):
hl’{l Y(x,y) =¢(y) and lirF ¥(x,y) =0.

Proof. Because ¥ is bounded and monotone in x, the limits lim,_,.. ¥ exist and
are bounded steady states of the KPP equation on R;. Moreover, ¥ =—c > ¥|x=+co-
The only two bounded steady states on R, are ¢ and 0. The corollary follows from
the uniform continuity of V. O

We next consider the behavior far from the boundary. In the following, we
use the notation o4(y) to indicate a function f(s, y) such that f(s,y)/y — 0 as
y — oo pointwise (but not necessarily uniformly) in s. Recall that w,, is the unique
minimal-speed one-dimensional traveling wave satisfying (1.13).

Lemma 4.5. For alls € (0,1), the level set ¥~!(s) can be expressed as the (rotated)
graph {x = o5(y)} of a locally smooth and increasing function o: (¢p~(s), ) — R.
This function satisfies al;as — 0asy — o forallk > 1; in particular, 05(y) = 05(y)
as y — oo. Moreover, for allk > 0,

[Ii)n;, ”\P(x’ Y) —We, (x - O-S(.V) + w;*l(s))HCk(]Rx[[)oo)) =0.

Proof. Fix s € (0,1). Due to dx¥ < 0 (from Proposition 4.3) and Corollary 4.4,
¥71(s) c {y > ¢7!(s)} and for each y € (¢~!(s), ), there is a unique x € R
such that ¥(x, y) = s. Let o5(y) denote this value of x. Because 9,¥ < 0, the
implicit function theorem ensures that oy is locally smooth. We note that the “local”
qualifier is necessary because o — —co as y \, ¢"'(s). In any case, 9,'¥ > 0
implies that o, > 0.

We now consider the limiting behavior of o at infinity. Given a sequence
(Yn)nen tending to infinity, define ¥, := ¥( - +(05(¥n), yn)). Then ¥, (0) = s for
all n € N. Taking n — oo, we can extract a locally uniform subsequential limit ¥,
that solves the traveling wave PDE (1.2) on the whole space R?. The limit satisfies
¥ (0) =s, so ¥ is neither identically 0 nor 1. By Theorem 1.7(i-c) in [10], ¥ is a
function of x alone. It follows that

Foo (%, y) = we, (x +wg ) (5))-

Because the limit is unique, we have ¥(x + 05(y'), y + y') = we, (x + w;'(s))
locally uniformly in (x, y) as y’ — oo. In fact, Schauder estimates imply that this
convergence holds locally uniformly in C¥ for every k > 1. Hence

V‘Ij(o-s(y): y) - w(/:* (w;*l(s))ex as 'y — oo.

Since {x = o5(y)} is a level set of ¥, the above gradient is orthogonal to the
tangent vector (0{(y),1). Because w}_(w;'(s)) # 0, it follows that o] — 0 as
y — o0. Uniform smoothness then implies that 8’;05 — 0 for every k > 1.
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We have now shown that
J}glgo ||\P(x9 )/) —We, (x - O-S(y) +w;*1(s))||cx([—L,L]) =0

for all L > 0. Dini’s second theorem allows us to upgrade the uniformity in x from
local to global [24, pp. 81, 270]. We apply it on the compactification [—co, oo], and
must thus verify that

(00, y) — e, (+00) asy — oo. (4.8)

Corollary 4.4 states that ¥(—oo, y) = ¢(y) and ¥ (400, y) = 0. Moreover, ¢(y) — 1
as y — oo, while w,, (—c0) = 1 and w,, (+o0) = 0. This confirms the endpoint
convergence (4.8), so Dini yields

Jim [[¥(x, ) = we. (x = 03(3) + 05 (5)l, gy = 0.
Taking the limit superior in y, we are free to write this as
Jim [[¥(x, y) —we. (x = 06(9) + 05 5) [l rugec) = O-
The higher-regularity statements then follow from Schauder estimates. O

In the remainder of the section, we take s = 1/2 and let o := 0y/,. We let o,
denote the positive part of o.

4.3. A subsolution. Our analysis of ¥ hinges on the heuristic that ¥ roughly
decays like e VX {0 the right of its 1/2-level set {x = o(y)}. This decay was
foreshadowed in Proposition 4.3, which states that d, log ¥ > —/2. We would like
to prove an almost-matching upper bound, which would state that ¥ cannot decay
at a rate much slower than V2. This is impossible globally, as ¥ is nearly constant
in x far on the left. Thus our bounds will only hold where ¥ is somewhat small.

Our key tool is a compactly-supported subsolution that varies in time. It will
move to the left while growing exponentially. By deploying this subsolution
beneath ¥, we will find that ¥ cannot decay too slowly, for otherwise its level set
will be far to the right of the true location ¢. Thus, somewhat counterintuitively,
we use a subsolution to prove an upper bound.

Our traveling wave ¥ can be viewed as a solution of the KPP equation (1.1)
moving with velocity c.ey. That is, ¥(x — c.tex) solves (1.1). Our left-moving
subsolution is based on a compactly-supported subsolution of (1.1) that moves at a
slower speed but grows exponentially in time.

Let

1
A:=at_—A_1
2

denote the parabolic operator corresponding to the linearization of (1.1) about 0.
Given ¢ > 0, let (Scz)(t,x) = e X~ z(t,x — cte,) denote an exponential tilt
followed by a shift into the frame moving at velocity ce,. Then one can check that

2 2

c"—¢C
x. 4.9
> (49)

Thus this tilt and shift merely change A by a multiple of the identity.

1
S'AS: = 0, - SA+
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Let ¢ > 0 denote the principal Dirichlet eigenfunction of —%A on the unit ball
B; € R? normalized by 1/(0) = ||/||., = 1. We extend ¢ by 0 to the entire plane R?.
Let u denote the corresponding principal eigenvalue. Given R > 0, the dilation
¥ (- /R) is the principal eigenfunction on the R-ball Bg with principal eigenvalue
p/RE.

Recall that we are looking for a compactly-supported subsolution that moves at
a speed ¢ < ¢, and grows in time. In this spirit, we will choose ¢ < ¢, A > 0, and
R > 0 such that

G/UQS (E)

R
lies in the nullspace of S;'AS,. In light of (4.9), this is equivalent to
2 _ .2
pooci—c
A+ = — =0. 4.10
e 5 (4.10)

Ultimately, we wish to show that solutions ¥ of (1.2) decay like e V2 When
we deploy our subsolution in (1.2), it will move to the left at the relative speed
€ := ¢y —c¢ > 0. In time 1, it will move distance ¢ to the left and grow by a factor
of e*. We can interpret this as spatial decay at rate A/e. If we want to prove
exponential decay of rate V2, we want 1/¢ to be close to V2. Rearranging the
dispersion relation (4.10), we want

A [T
I1>V2—-=-=—"—+-.

e €R? 2

Thus to obtain the bounds we desire, we must use a large radius (and a very flat
eigenfunction), weak exponential growth, and a speed slightly slower than c.. We
choose R and A so that the two terms on the right of (4.11) are equal. Expressing

our parameters in terms of ¢, we choose

(4.10)

VZi

Ce = Cyx — &, /Lg = E(C* - E) = &Cg, and RS = (412)
£
Applying S, we see that
—C.t
Ug(t, X) = exp [Aft - Ce(x —Cet +R£)] ¢ (X lgg ex)
£

satisfies Av, = 0. That is, v, solves the linearization of (1.1) about 0. We must now
account for the nonlinear absorption in the full equation. Since our solutions of
(1.1) lie between 0 and 1, v, is certainly a poor approximate solution when it exceeds
1. Thus in practice, we use a small multiple av, on a time interval that ensures
that av, < 1, namely 0 < ¢t < A.'loga™". To handle the nonlinear absorption

on this interval, we multiply av, by a time-dependent factor b(t) < 1. A simple
computation shows that abv, is a subsolution of the full equation (1.1) provided

b < —ab’e!.
Taking b(0) =1 and solving the corresponding ODE, we choose
be(t) = [1+ad (et - 1)]

-1
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We observe that

when ae’! = 1.

be(t) >

1+ A1
It only remains to shift into the c.e,-moving frame. We define

wg{(t’ X) = abg{(t) exp [Agt — Cg(x + et + Re)] ¢ (X + Etex)

R,

Then for all @ € [0,1] and ¢ € [0,A; log @™!], w? is a subsolution of the parabolic
traveling wave equation

1
W = 5AW F W+ W — W2,

Assuming ¢ < 272 and t < A7'log a”!, we have

?e_m& ey (x + etey

We use this subsolution to prove that ¥ has an exponential character.

) <wi(t,x) < ae’lftlBRE(_gt,o). (4.13)

£

Lemma 4.6. Foralle € (0,27Y/?],x € R, y > 1, and £ > 0,
min {e(\@_gﬂ‘lf(x +¢,y), 1} Se ¥(x,y) < e‘/ﬂ‘l’(x +¢,y). (4.14)

Proof. Using Proposition 4.3, we have

¥Y(x+¢,y) '/[
=22 = | o log¥(x+£,y) df’ > —V2¢.
Yoy o Y

This establishes the right bound in (4.14). For the left bound, we take c,, 4., R, as
in (4.12). By Harnack (using y > 1), there exists k. independent of (x, y) such that
¥ > kY(x+ ¢ Y) 1By (x+t,y+r) and  ¥(x,y) 2 k¥(x, y +Re). (4.15)
It follows from (4.13) that
¥ >wi(0,- —(x+£y+R,))

log

for
a=k¥(x+¢y).

We allow time to evolve until
4
t, '= min {—, A og a‘l} )
€

First suppose t. = £/¢. Rearranging the definitions of a and t., we note that in this
case

W(x+ £, y)e V2O < k1, (4.16)
Now, the comparison principle and (4.13) yield
- —(x,y+R
¥ > w?(f/g’ . - (x +[’ y+RE)) > ?e—ZCgRse(\ﬁ_S)[¢ (%) .
£

In particular,
Y(x,y+Re) > %e_chRse(‘/g—e)[
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Thus by (4.15), we have
eked _pe.r. (va-
Y(x,y) > ——e 2eeReg(V2-e)
(x,y) 3 ¢ e

k2
- %e—zcsRse(‘E—f)f\y(x +0,7) >, e Vg (x 4 g ).

On the other hand, if ¢, = /1;1 log al < t/e let x, = x + £ — et, > x. Then the
comparison principle and (4.13) imply that

€
Y(x, y+Re) > wl (e x0 — (x +),0) > £ o2eRe

w

Since ¥ is decreasing in x, we have
¥Y(x,y+R,) = ¥(xs, y+R,) = ge_chRf.

Finally, (4.15) yields

~E

k
¥(x,y) > k¥(x,y+R,) > %e_ch& > 1.
Together with (4.16), these two alternatives imply the left bound in (4.14). O

4.4. Potential theory. We now examine the behavior of ¥ to the right of ¢ in

detail. By Lemma 4.6, ¥ roughly decays like e Vax

this decay from our analysis, so we define

there. It is helpful to remove

O(x,y) = eﬁx‘I’(x, y).
Then Lemma 4.6 has a particularly simple form in this context.
Lemma 4.7. Fixe € (0,27Y2] and £ > 0. Then ifx > o4 (y),
O(x,y) <O(x+£,y) <, eO(x, y). (4.17)
In particular, ©® grows subexponentially in x where x > o, (y).

Proof. We first observe that Proposition 4.3 implies that 9,0 > 0. Thus we need
only show the right inequality.

We claim that ¥(z + 04(y), y) — 0 as z — oo uniformly in y. To see this, fix
é > 0. By Lemma 4.5, there exists y’ > 0 such that

sup |‘I’(z +0(y),y) —we, (z+ w;l(l/Z))| <
Rx[y’,00)

N>

Since w,, (+o0) = 0, there exists L > 0 such that
¥Y¥(z+o0(y),y) <o

forall z > L and y > y’. On the other hand, Corollary 4.4 states that ¥ — 0 as
x — oo uniformly in y € [0, y’], which proves the claim.

Now fix £ € (0,27/?] and ¢ > 0. Let k, denote the implicit constant in (4.14), so
that

¥(x,y) > k, min {e(‘/é_f)f‘lf(x +14,y), 1}
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for y > 1. By the uniform decay shown above, there exists L, > 0 such that
¥(x,y) < k. when x > L, + 0, (y). In this case we must have

¥(x,y) > kge(\@_g)(‘lf(x +¢,y).

X

Multiplying by eV** and rearranging, we obtain (4.17) for all x > L. + o4(y) and
y > 1. Using interior Harnack, we can extend the bound to all x > o, (y).

It remains to treat y € (0,1]. Here, boundary Harnack estimates imply that
¥(x,y) < ¥(x,1)y, where f < gindicates that C™'f < g < Cf for some C € [1, ).
Using our result at y = 1 and multiplying by y, we obtain (4.17) for y € (0,1) as
well. O

Now, the tilted wave © solves

1
—5A®:—fw:—54ﬁ®? (4.18)

3]

The essential point is that F decays exponentially in x, so © is “almost harmonic.
We use this property repeatedly to constrain ® in the quarter-plane Q := R2.

Define the region Y := {x > 60, (y)}. This is somewhat larger than {x > o,(y)}
for the following reason. When x > ¢;, Lemma 4.7 implies that

O(x.y) % € 0(0s,y) % exp [e(x ~ 02) + Vo |

Hence
e Vg2 <, exp |2¢(x — 04)+2V20, — \/gx]
= exp [—(\/5 —28)x+2(V2 - €)0+] i
On X, we have x > x/2 + 30y, so for ¢ < 1, we have
F=e V@2 < e, (4.19)

In the following, let G5*(x) denote the Dirichlet Green function of —2A on a domain
Q, so that —%AGZQ =, and GS'&QU{OO} =0 for all z = (u,v) € Q. We claim that

Or(x) = /ZF(Z)GZZ(X) dz < 0.

To see this, note that > ¢ Ry X R, so by comparison G < G R Moreover, we

can check that /]R GJ(E:Z)]R(X, y)dv = GR+(x). Hence (4.19) yields

O (x) = / F(2)G>(x) dz < / e U2GR>R (%) dz = / e 2GR+ (x) du.
> R

+xR Ry

We can explicitly compute GR+(x) = 2(x A u) < 2u, which is clearly integrable
against a decaying exponential. Thus O is finite and, in fact, uniformly bounded.
Now —%A@F = F, so by (4.18), © := © + Op satisfies

A®=0 inJ,
®=0 onad.
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Note that ©,0F > 0in 3,500 > 0is a positive harmonic function in ¥. We now
recall that ¥ = {x > 604(y),y > 0} and ¢’(c0) = 0. Hence at a large scale, >
resembles the quarter-plane Q := R%. We thus expect © to share its large-scale
behavior with positive harmonic functions on the quarter-space.

Lemma 4.8. There exists a conformal bijection f: Q — X such that for all ¢ > 0,

e o IF I
117 e X Se lIxII°.

Proof. We view ¥ and Q as subsets of the complex plane C, on which we use
coordinates z = u + . Then log is a conformal bijection from Q to the straight
strip {0 < v < x/2}. We likewise apply log to 2. Given u > 0, define

60’+(Yu) )

u

¢(u) = arccot (

where y, > 0 satisfies
2u

[604(yu)* + i = e
The height y, exists uniquely for each u € R because ¢’ > 0. Thus ¢(u) < 7/2 is
the argument of the unique point on the curve {x = 60, } whose radial coordinate
is e*. It follows that log is a conformal bijection from X to the curvilinear strip
S :={0 <v < ¢(u)}. Because o, = 0 for y < ¢7'(1/2), we have ¢ = /2 when
u < log ¢~1(1/2). In the other direction, 0 = 0(y) as y — 0, so y, ~ e* and

4
i c(u) ~6e“a(e) > 0 asu — +oo.

Thus S resembles the straight strip {0 < v < 7/2} when |u| > 1. It is therefore
reasonable to expect that there is a conformal bijection g: {0 <v < 7/2} — S
with low distortion at infinity. This is a well-studied problem in potential the-
ory. Warschawski, for instance, constructs g such that g(z) ~ u at infinity; see
Theorem X in [27]. In particular,

|Re g(z) — u| = o(u). (4.20)

We now define the conformal bijection f = expog olog: Q — . Then (4.20)
becomes (4.8). O

Employing this conformal map, © o f becomes a positive harmonic function on

the quarter-plane. This allows us to constrain the growth of ©. In the following,
let (x) = (||x]|> + )Y/

Lemma 4.9. Leth € C(H) be a positive harmonic function on H that is nondecreasing
in |x| on dH. Then h(x) < (x) on H.

Proof. We rely on a representation theorem of Herglotz (due independently to
Herglotz [14] and F. Riesz [25]): there exists a constant A > 0 such that

h(t,0) dt
h(x, y) = Ay + % A m (421)
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/ h(t,0) dt < oo. (4.22)
R

Asa consequence,

t2+1
Since h( -, 0) is nondecreasing on R, we have

2xht0 2x dt h(x,0
/ ti;fdch(x’O)/ _>M forall x > 1.

2?+1~  x
By (4.22), the left side tends to 0 as x — oo. It follows that h(x, 0) < x as x — oo,
though we will only use the weaker bound h(x, 0) < x. By symmetry,

h(x) < (x) ondH. (4.23)
Now suppose |x| < my for fixed m > 0. Then

t? + y? 3 (t/y)?+1
(x-0)2+y?  (x/y—t/y?+1~"

1 h
_/ (t,0) dt < / h(t,0) dr
T Jr (x—1)2+y2 7 Jrt?+y?

By (4.22) and dominated convergence, the integral on the right tends to 0 as y — oo.
Thus the integral term in (4.21) is negligible as we approach infinity in H from a
direction that is not tangent to dH. That is:

It follows that

h(x,y) ~m Ay asy — oo if |x| < my. (4.24)
In particular,
B Sm (%) in {Jx] < my}. (4.25)

We now consider h on Q. Let {: Q — H denote the square map {(z) := z%. We
define g := h o {71, which is a positive harmonic function on H. By (4.23) and
(4.25), h(x) < (x) on dQ and on the ray {x = y}. It follows that

g(x) < (x)Y* onoH (4.26)

and on the ray {x = 0}, which is the image of {x = y} under {. Now g must also
admit a Herglotz representation, but we know that g < y on the y-axis. By (4.24),
we see that

g(t,0) dt

SRS Arar s

Using (4.26), we find

1++/]t] dt

g, y) Sy

<1+\/_/ VNS VR TS @ a2

Transferring this bound to h = g o {, we find h(x) < (x) on Q. A symmetric
argument on the left quadrant R_ X R, shows that this holds on the entire half-
plane H. O
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Corollary 4.10. Foralle > 0,
0(x) <, (x)* in3. (4.28)
Moreover, as y — o0, o(y) < [\/§+ O(l)] log y.

Proof. Using the square map {(z) := z? from above, h := © o f o {""is a positive
harmonic function on H that is continuous on H. Recall that © is increasing in x
and y. Since o’ > 0, it follows that y — ©(60(y), y) is increasing. Now 0=06
where x = 604 (y), so © is decreasing on 0% when its boundary is traversed in the
counterclockwise direction. The conformal maps f and { preserve the orientation
of the boundary, so h(x,0) is decreasing in x. Also, h(x,0) = 0 for x > 0, as
this portion of the boundary corresponds to {y = 0} C 9%, where ® = © = 0.
Together, these facts imply that h(x, 0) is nondecreasing in |x|. Thus by Lemma 4.9,
h(x) < (x) in H. It follows that ® o f = h o { < (x)?. Finally, Lemma 4.8 yields
(4.28).
We now turn to ¢. By the definition of o, Lemma 4.7, and (4.28), we have

1 _
Ee%(” =0(c(y).y) <0(60(»).y) < 0(604(¥), y) Se ¥**

for y sufficiently large. It follows that o(y) < (\/5 +e)logy+0O.(1) asy >
for all e > 0. O

Soft arguments implied that o is sublinear. Using potential theory, we have now
improved this to a logarithmic upper bound. In turn, this quantitative sublinearity
allows us to refine Corollary 4.10.

Lemma 4.11. We have O(x) < (x)% on Q.

Proof. Let Q := {x > 10log, y}. By Corollary 4.10, > \ Q is a bounded, and thus
compact, region. Thus (4.19) yields F < e /2 on Q. We define Q? = fQ F(z)G2,
which is positive and uniformly bounded on Q by the reasoning following (4.19).
Let @9 = © + @?, which is a positive harmonic function on Q.

Following the proof of Lemma 4.8, the logarithm maps Q to a curvilinear strip
S ={0 <v < 0(u)}, where 0(u) is the argument of the unique point on the curve
{x = 10log, y} of radius e“. Now, the logarithmic boundary of Q allows us to
conclude that

g —0(u) ~10ue™ and 6'(u) ~10ue™ asu—
while 6(u) = n/2 and 0’(u) = 0 for sufficiently negative u. Then Theorem IX
of [27] provides a conformal bijection g: {0 <v < 7/2} — S such that
g(z) =z+logl+0(1) asu— o
for some A € R,. It follows that f¥: Q — Q given by f := exp og o log satisfies
If GO~ Allx]l as [[x]| — co. (4.29)

Now let h := ©2 o f© 0 {™!. Following the proof of Corollary 4.10, we see that
h satisfies the hypotheses of Lemma 4.9. Hence h(x) < (x). It again follows that
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0% 0 f? = ho! < (x)% Then (4.29) implies that ® < 09 < (x)? on Q. Using
Lemma 4.7, we further have

0(x,y) <©(10log, y,y) < (»)°
onQ\ Q= {0 < x <10log, y}. The lemma follows. O

We can finally establish the main result of the section.

Proof of Proposition 4.1. The first parts of the proposition follow from Lemma 4.2,
Proposition 4.3, and Corollary 4.4. Thus it remains only to verify (4.1).
Lemma 4.11 and the C! regularity of ¥ near 9H imply that for all x, y > 0,

O(x,x) < (x+1)x, (4.30)
0(0,y) SyAL (4.31)
O(x,0) = 0. (4.32)

We divide Q into two sectors I} := {x > y > 0} and I}, := {0 < x < y} each of
opening angle Z. Using (4.30)—(4.32), there exists C > 0 such that

O(x,y) <C(x+1)y onaljUal,.

Let O(x, y) = O(x, y)—C(x+1)y, 50 © < 0 on dI;UAL}. By (4.18), © is subharmonic
on Q. Moreover, Lemma 4.11 implies that O < (x)% Now, there exist positive
harmonic functions h; on I such that h;(x) > (x)? on T;. For instance, we can
use a suitable rotation of Re z* for any « € (2, 4). Thus by the Phragmén-Lindelof
principle [23] for subharmonic functions, ® < 0 on I} for each i € {1,2}. That is,

O(x,y) <C(x+1)y onQ.

Recalling that ¥ = e~ Vx@, we obtain (4.1) on Q. On the other hand, boundary

Schauder estimates imply that ¥ < y A1on R_ X R, Hence ¥(x, y) < ye“&x on
R_ X R,. This completes the proof of the proposition. O

5. UNIQIJENESS OF MINIMAL-SPEED TRAVELING-WAVES

We can now establish the uniqueness portion of Theorem 1.1.

Proposition 5.1. If ¥ is a traveling wave in H of speed c. = 2, then there exists
x > 0 such that ¥(x,y) =1-E, exp (—Ke_ﬁxZoo). In particular,

¥(x,y) = P(x - \%2 logk,y) onH.

That is, up to x-translation, ® is the unique traveling wave of speed c..

The proof of Proposition 5.1 follows the method described in [1] to identify the
fixed points of the smoothing transform. We use the arbitrary traveling wave ¥
to construct a product martingale, sometimes called the disintegration martingale.
The tameness bound (4.1) allows us to associate this multiplicative martingale with
a harmonic function in the quadrant with Dirichlet conditions. Such functions are
unique up to a multiplicative constant; this allows us to identify ¥ as a shift of ®.
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Proof. Let ¥ be a traveling wave in H of speed V2. Using the McKean representa-
tion (Proposition 3.1), we observe that for all (x, y) € Hand t > 0,

1-¥(x,y) = E, ]_[ [1-W(V2t +x - X, (), Y, ()] |. (5.1)

ueNy
Hence the branching property of the BBM implies that
T(xy) = [ ]| [1-¥(V2t+x - X, (w), Ve(w)]
ueN}

is a bounded martingale under law P,.. We denote by T(x, y) its almost sure limit.
This is sometimes called the disintegration of the function V.

We now introduce a shaved version of this martingale. Given ¢ > 0 and x € R,
let

N (x) = {ue N} Xs(u) < V2s+x+aforalls < t}.
It is a straightforward consequence of (5.1) that
T%(x) = ]_[ [1-W(V2t +x — X, (u), Y, ()]
ueN % (x)

is a bounded submartingale. Indeed, we take the multiplicative martingale T and
delete terms when the corresponding particle reaches the line V2s + x + a. At such
times T jumps up, and is thus a submartingale. As a result, this process converges
IP-a.s. and in L' to a nondegenerate limit that we denote by T%(x).

Using the branching property, one can check that T satisfies the following
almost sure recursion:

T%(x) = ]_[ T [u] (V2t +x — X, (w), Y, (). (5.2)

ueN} % (x)

The random variables (T*[u] ; u € N;*%(x)) are conditionally independent given
F: and T%[u] shares the law of T* under Py, ().

Now, Proposition 4.1 states that ¥ < (x4 + 1) ye_\rzx . We use this to argue that
forallx > —¢and y > 0,

—logT%(x) < 2Ce_‘/5"Z§‘O a.s. (5.3)
In the following, let
B, = {ue NP(x) - ¥(V2t +x - X, (u), V() > 1}
Noting that —log(1 —a) < 2a for all a < 1/2, (4.1) yields
—log T/ (x) = - Z log [1 - ‘I’(\/Et +x — X; (u), Yt(u))]

ueN} % (x)
< 20 V[ 29 4 (14 x,)W;]

- Z log [1 - ‘P(\/Et +x — X; (), Yt(u))].

ueBb;
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Then (5.3) follows from Propositions 2.3 and 2.5, provided B; = 0 for sufficiently
large ¢.

To show that B; is eventually empty, we observe that Z is Cauchy in time
because it converges (almost surely). It follows that the contribution of every
individual particle becomes negligible as t — oco. Otherwise, branching events
would cause Z to jump non-negligibly at arbitrarily large times. Therefore

sup [\/Et —Xt(u)]+Yt(u)e\F2X’(”)_2t — 0 a.s. on survival. (5.4)
ueN}

In more detail, if (5.4) did not hold, then there would exist € > 0 such that with
positive probability, the stopping times defined by 7y = 0 and
Tpep = Inf {t >T,+1: [\/5 t —Xt(u)]+Yt(u)e\/§Xf(”)_2t > 2¢ for some u € N;’}

are all finite. By Borel-Cantelli, with positive probability there exists a (random)
subsequence (n)ken such that a particle alive at some time ¢ € [7p,, 7,,,,] and
located at some position (x, y) satisfying

(V21 - x)+ye\/§x_2t > ¢

splits into two children. In particular, at all such branching times, Z; > Z;_ + ¢.
This contradicts the Cauchy property of Z.

Now recall that W; — 0 by Proposition 2.3, so sup,, Yt(u)e‘/éxf(”)_m — 0as. as
t — oo. Thus (4.1) and (5.4) yield

sup ‘I’(\/Et +x = X (u),Y: (v))

uE./\/'tJr < su \/— _ \/EXt(u)—Zt
< sup |[1+x+ [ 2t Xt(u)]+ Y (u)e —0
ue./\/'t+

almost surely on survival. It follows that B; is empty a.s. for sufficiently large t.
Now, (5.3) implies that — log T has a first moment. We let F*: H — R, denote
its expectation:
F¥(x,y) = ]Ey[ —log T“(x)].
Fix t > 0. Using the almost sure recursion (5.2) and the many-to-one lemma, we
observe that F* satisfies

F%(x,y) = E, Z FE(V2t + x - X, (u), Vi (u))
ueN*(x)
=¢'E, [F“(\/Et +x+ X, Yf)l{—Xssxfz.s+x+a, YSZO;SSt}] ’

where (X, Y) is a Brownian motion in IR? started from (0, y) under P,. Applying
the Girsanov transform for the Brownian motion, we obtain

eﬁxFa(X, y) = ]Ey [eﬁ(XtH)Fa(x + X1, Yt)l{x+XSZ—a, YSZO;SSt}] .

Writing G*(x, y) = eVex pa (x, y), we see that for all t > 0 and (x, y) € H,
G*(x,y) = E, [Ga(x + X, Yt)l{Yszo,x+st—a;sst}] .
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Using It6’s formula, we conclude that G* is a nonnegative harmonic function
in the quarter-plane {x > —a,y > 0} with Dirichlet boundary data. Define
{a(z) = (z + @)?, which biholomorphically maps this quarter-plane to the half-
place H. Then G o {' is a harmonic function on H that is continuous on H and
vanishes on dH. By Herglotz’s representation formula (4.21), there exists k, € Ry
such that G* o ! = k,y/2. Composing with {,, we find G*(x, y) = ka(x + )y
and hence
F¥(x,y) = ko(x + a)ye_‘ﬁx.

To complete the proof, we observe that for all ¢ > 0, almost surely

~log T*(x) = lim E[ - log T%(x) | 7]

= lim Z F“(\/§t+x - X;(u), Y (u)) = Kae_‘/éfoo.

r—00
ueN}%(x)
Using once again (2.10), for all (x, y) € H there exists a random ¢, € R, such that
for all « > ap we have T(x) = T%(x) and Z., = Z under P,,. This shows that x,
(which is deterministic) is constant for sufficiently large a. Writing x := limg_,c0 kg,
we obtain

T(x) = lim T%(x) = exp (—Ke‘ﬁxzw) P,-a.s.
Finally, (5.1) yields
_ _ —V2x
Y(x,y) =1-E,T(x) =1-E,exp (—Ke Zm) . O

6. TRAVELING WAVE ASYMPTOTICS

In this section, we study the behavior at infinity of the traveling waves ® and
®, ,, constructed in Section 3. In particular, we prove Theorems 1.4 and 1.5.

In Section 6.1, we consider the asymptotic behavior of the law of Z,, as the
initial height y tends to infinity. This determines the large-y asymptotics of ®. We
take up the same question for @, , in Section 6.2; this allows us to complete the
proofs of Theorems 1.1 and 1.4. Finally, in Section 6.3 we use potential theory and
Theorem 1.4 to study the behavior of ® as x — oo and thereby prove Theorem 1.5.

6.1. The minimal-speed wave far from the horizontal axis. In this subsection, we
relate the minimal-speed half-space wave ® to the corresponding one-dimensional
wave w,, defined (1.11).

Proposition 6.1. We have

lim ® (x + \/% log y, y) =we, (x)

y—)OO

uniformly inx € R.

By the definition (1.6) of ®, we can equivalently determine the asymptotic
properties of Z, under IP,, as y — oo. For this purpose, it is convenient to define
a consistent family (Z(y); y > 0) of martingales on a single probability space
(Q, F,P) such that for all y > 0, Z(y) has the law of Z under P,,. In the remainder
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of this subsection, let (X;(u), Y;(u) ; u € N;) be a branching Brownian motion in
R? started from (0, 0). Given ¢t > 0 and y > 0, we set

N = {u €N;:Ys(u) > -y forall s < t}.
We then define

Zi(y) = D) [Vat = X ()] (Ye(u) + y)e VX2

uENty
and Zy(y) = tlim Z: ().
Since ((X;(u), Y, (u) +y);ue€ N7 ) has the law of a branching Brownian motion
in H starting from (0, y), we conclude that for all y > 0, Z.,(y) has the same law
as Z, under P,.
Recall from Section 2.1 that D, is the a.s. limit as t — oo of the derivative

martingale of the one-dimensional BBM (X;(u) ; u € N;). We prove the following
asymptotic for Z.,(y) as y — oo, which implies Proposition 6.1.

Zo
Proposition 6.2. We have lim )
y—00 y

= Do, in probability.

Recall that H = o(Xs(u),u € Ny;s > 0) is the sigma-field associated to the
horizontal movement of the BBM. We prove Proposition 6.2 by controlling the
first two moments of Z,,(y) conditionally on H.

Lemma 6.3. Forall y > 0, we have E[Zs(y) | H] = yDw a.s.

Proof. For y > 0, we compute E[Z.(y) | H] using the approximation of Z by
shaved martingales introduced earlier. Given a > 0, we define

Zt(‘x(y) = Z [\/Et ta-— Xt(u)] (Yt(u) + y)e\/iXt(u)_%l{Xs(u)S\/§s+a;s§t}
ueNy

and ZZ (y) = lim;« Z{(y). Using the independence of the horizontal and the
vertical displacement in the BBM, we see that for all t, y > 0,

EIZf(y) | H] = ) [Vat+a =X ()]eVX 021 0 peset By (Binty)
MGNt

almost surely, where B is a Brownian motion with By = y and Tj is its hitting time
with the origin. As (B;a7, ; t > 0) is a martingale, we obtain

EIZE(y) | H =y ), [Vat+a—X ] W20 0oy 2.
uE/\/[
The sum is simply the one-dimensional shaved derivative martingale D defined
in (2.3), so
E[Z8(y) | H] = yDf as. (6.1)
Now, Lemma 2.7 implies that Z%(y) is uniformly integrable with an almost sure
L' limit Z%(y). Since D* converges in the same manner, (6.1) yields

E[Z(y) | H] = lim E[Z{(y) | H] = lim yDf = yDg,  P,-as.
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Finally, @ — ZZ(y) is a.s. increasing and converges to Z. (). Hence by monotone
convergence,

ElZs(y) | H] = lim D% = yDes  as. -

We now turn to the second moment of Z,(y) conditioned on the horizontal
motion.

Lemma 6.4. There exists an a.s. finite H-measurable random variable Yo, such that
forall y > 0,

E [Zo(y)® | H] < y*DZ% + Yo as.

Proof. Fix y > 0. In contrast to the expectation, the second moment of Z reflects
the correlation, and thus shared history, of particles in ;. Given ¢t > 0 and
u,v € Ny, let TL’U be the age of the most recent common ancestor of u and v, with
the convention that Tliu =t. Also,for 0 <r <t,let

Gy(r) = E, (BL ).

where B is a Brownian motion beginning at y and Tj is its hitting time at the origin.
As in the previous proof, the independence between horizontal and vertical motion
in the BBM and the martingale property of B yield

E [Zt(y)z | 7'[]

= Z [\/Et—Xt(u)][\/Et—Xt(v)]e\/i[xf(”)+X’(”)]_4tGy(rziv) a.s.
u,uEJ\/}

Using the martingale property of (B —t,t > 0) and the Brownian scaling, we have
Gy(r) = Y2 + Ey(r A Ty) = y2 [1 +E (ﬁ A TO)] .

Using the explicit density for the hitting time T, we obtain the following bound:

® du
Ei(sATy) = / —— e Vs Ay
o Vomul

\/_

el e

For sufficiently large random t, (2.4) implies that max,cn;, X:(u) < V2t. Combin-
ing the previous displays, for all such ¢ we have

E [Z:(y)* | H]| - y*D}

= L(W)+X, (v t
<Eul}z€;\[ [\/_t—Xt(u)][\/_t_X(v)] V21X, (1) +X, (v) ] -4

Define the H-measurable random variable

Y, = hminfi Z \/ﬁ[\/_t Xt(u)][\/_t—Xt(v)] V2[Xe (w)+Xe (v)] -4t

fmeo 2 u,veN;
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Then Fatou’s lemma yields
E [Zo(y)? | 1] < ¥°D + yYeo.

To complete the proof, we must show that Yo, < co almost surely. Given o > 0,
we define the event

Gy = { max X;(u) < V2r - 1log, t+a forall t > 0}.

ueN;
It follows from the results of [15] that for all A < ﬁ&
lim max [Xt(u) — Va2t + Alog t] =—00 as.

t—ooyeN;

Hence P(G,) > 0 for all @ > 0 and lim,_,0o P(G,) = 1. It therefore suffices to
show that Y, < o0 a.s. on G,.
By Fatou, we have

Var
4

<liminf E Z [\/Et +oa— Xt(u)]e\/ixt(u)—ul

t—o00
uENt

E(Yeolg,)

{Xs (u) S\/is—i log, s+a; sst} L],
where T, == X, ez, VTuo [\/Et -X;(v) + a]eﬁxf(”)_z"l{xg(v)ﬁ\@m;Sgt}.

We now employ a spine decomposition corresponding to the shaved derivative
martingale D*. Let Q% denote the law of a one-dimensional BBM with spine in
which R, == V2t + a — X; (&) is a Bessel process of dimension 3 started from «,

the spine branches at rate 2, and non-spine particles perform standard BBMs. For
all t > 0, the spine decomposition theorem allows us to write

E Z [\/5t+a—Xt(u)]e\/§X‘(“)_2t1

SR {Xs(u)sﬁs—%log+s+a;sSt}ru)

_ o
= o r'ftl{xs(é’s)sﬁs—ilo& s+a;sst}) ’

We decompose Ty, as \/f[\/zt - X (&) + a] eV2Xe(E)=2t | T Let Y denote the
filtration associated to the spine trajectory and branching times {7} } xen-. Using
the branching property and the martingale property of D%, we have

E“T |Y) < Z \/ﬁl{rkq}[\/zrk +a —XTk(§Tk)]e‘/gxfk(gfk)_zﬂC =T as.
keN

Combining the above displays, we obtain

Z [\/Et +a-— Xt(u)]e‘ﬁxf(”)_ml

ue/\/t

< aViE® ([\/Et +a- Xt(ft)]e\/éxf(’f’)_m) + aB* (1{

E

{Xs (u) S\ﬁs—% log, s+a;s§t}ru)

Xs(&s) S\/Es—i log, S+a;s$t}r) :
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As (7 )kenN are the atoms of a Poisson process of intensity 2 independent of R, it
follows that

V2 .
—ﬂ]E(leGa) < lim inf Ve V2 E* (Rte_‘/ERt)
4o t—o00

(6.2)
t—oo

t
+liminf2/ \/Eeﬁalﬁa (Rse_ﬁRsl{Rszilongs}) ds.
0

Using the density of the Bessel process and dominated convergence, we can check
that

. 1 © (r-a)? (y+e)?
lim \/Z]Ea (Rte_ﬁRt) = lim / e_ﬁy |:€_ y2t —e yzz ] dy =0.
t—o00 t—o0 20{‘/27[ 0

For the second term in (6.2), we note that Q%(R; € [n,n+1]) <o (n+1)3s73/2 for
alln € N and s > 1. It follows that

A V2
E* (Rse_\/ERsl{RsZilOngS}) <a s Z (n+ 1)4e_ﬁ” < s_(%+72) log} s.

n>1log, s
Because this is integrable against the weight +/s, the second term in (6.2) is finite.

Together, these bounds show that E(Y.15,) < 0. Hence Yo, < 00 a.s. on Gy, as
desired. O

We can now complete the proofs of Propositions 6.2 and 6.1.

Proof of Proposition 6.2. Using Lemma 6.3 and 6.4, we observe that for all y > 0,

we have
Zeo ? Yoo
[N P

y y

Thus conditioned on H, Z(y)/y converges in L? to Do, as y — oo. This implies
convergence in probability, completing the proof. O

Proof of Proposition 6.1. By Proposition 6.2, Z.(y)/y — D in probability and
hence in distribution as y — co. In turn, this implies convergence of the Laplace
transforms. Recalling (1.6), we find

_Vax Zeo(Y)
y

1-9 (x + ‘/% log y, y) = Eexp [—e — Eexp (—e_\/éxDoo)
as y — oo. Given the definition of w,, in (1.11), we conclude that ®(x + \/% log y, y)
converges pointwise to w, (x) as y — oo. Applying Dini’s second theorem on the

compactification [—oo, co] as in the proof of Lemma 4.5, we see that the convergence
is in fact uniform. o
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6.2. The higher-speed waves far from the boundary. In Section 3.2, we con-
structed supercritical traveling waves via Laplace transforms of limits of the
additive martingales

Wt'l’” = Z e (W) sinh[,uYt(u)]e_(’lz/zﬂlz/z“)t.

ueN}
More precisely, for all A, u > 0 with A2 + y? < 2, this martingale converges almost
surely to a nondegenerate limit Wo/},’” , and the function

Dy ,(x,y) =1-Eyexp (- e_AxWo/},’“)
. . . _ ARt
is a traveling wave with speed ¢ = =—
In this subsection, we study the asymptotic behavior of this traveling wave as
y — 0. As above, we focus on the martingale W*#. To begin, we construct a

consistent family (WO/},’” (¥); ¥ > 0) of random variables on a single probability
space. Let

A . )
W, /’(y) = Z Xt (W) Ginh ('u[Yt(u) + J/])e (A2 )2+p2 [24+1)
ueNy
lim W, ().

—o0

and W2 () :

We relate Wi’” (y) to the following additive martingale associated to the BBM
in R?:
A;Lp — Z oAXe (W)Y ()= (A2 [2442% [241)1

ueN;

A, . A,
and A2V = lim At”.

—o00

We intend to show that ®; , asymptotically resembles a one-dimensional wave
rotated by angle 0(A, y) := arctan(y/A). As in the introduction, let R, , denote

clockwise rotation by angle 6(A, p). In a certain sense, A?’” is related to a one-
dimensional additive martingale by the rotation Ry, Given p € (0, \/5), let

A= Y Xtz
uENt

denote said martingale, which has a nondegenerate limit A.. For each ¢ > ¢, = V2,
2
there is a unique p € (0, V2) such that ¢ = pz_;rz. Taking this value of p, we define

we(x) =1-Eexp (—e"*A%). (6.3)

This is a one-dimensional traveling wave of speed c. By the rotational invariance

in law of BBM in R?, A" 9 AP for p(A, ) = A% + 4. Tt follows that

weap (x) =1-Eexp (—e_p(’l’“)fo}g“) (6.4)

for c(A, ) given by (1.9).
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In this subsection, we prove the following analogue of Propositions 6.1 and 6.2.
Recall Q := {(A,u) € R% : A2 + yi? < 2}.

Proposition 6.5. Forall A, 1 € Q, we have e_“yWo/},’”(y) - Ai’,’l in probability as
y — oo. Moreover,

(I)/l,,u o R/l,,u(x, Y) — We(Ap) (x) (6.5)
uniformly inx € Ras y — oo.

Proof. For all ¢, y > 0, we have
_ 2, , (32 2 _ a
e PYW(y) = Z AXe W+RY ()= (A2 (24142 [241)1t (1_e Zu[Y(u)+y]).
ue./\/t(y)

Therefore, y +— e™#Y Wtﬂ’” (y) is nondecreasing in y and bounded by A?’” almost
surely. As a consequence, y — e #Y W‘i’” (y) is a.s. nondecreasing in y and

lim e_“yW(i’”(y) < Ai;” a.s.

y—)DO

By uniform integrability and monotone convergence, we have

]E[ lim e_”yWO/};”(y)] = lim e # sinh(py) = 1.
y—00

y—)OO

Therefore ]E[Ai’,” - limy_w0 e HY WO/},’” (y)] < 0, and we conclude that

lim e_“yWo/},’”(y) = Af};” a.s. (6.6)

y—)OO

Turning to the asymptotic behavior of ®, ,, we compute
Ruyu(x,y) = ((Ax +py)/p, (—px + Ay) [ p) = (%, 7).

Note in particular that AX = py + px, where p = p(A, ) = \JA? + 2. Now take
(x,y) € RZL]H. It follows that

@) 0Ryu(x,y) =1-Ejexp (—e_MWO’},’“) =1-Ejexp (—e‘ﬂxe‘“fwi;”) .
If we fix x € R and take y — oo, we also have y — oo. Thus (6.6) and (6.4) yield
@) 0 Ryu(x,y) = 1-Eexp (—e_pri’,”) =wep(x) asy— oo, (6.7)

We extend @, by 0 to the entire plane IR?. Because @, is decreasing in x and
increasing in y, one can check that ®, , o R) ,( -, y) is a nonincreasing function
for each y > 0 fixed. Moreover, for all y > 0,

@) 0Ry (=00, y) =1=wep(=o0) and @) ,0R) ,(+00,y) =0 =wc(yy (+00).

Applying Dini’s second theorem on the compactification [—oo, 0], we see that the
limit (6.7) in fact holds uniformly in x. O

We can now describe the limits of our waves in every direction.
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Proof of Theorem 1.4. Take ®* € {®,®, ,} (1 eq. Our traveling-wave construc-
tions automatically imply that 0 < ®* < 1, 9,®* < 0, and 9,®" > 0. Combining
the bounded convergence theorem with (the proof of) Corollary 3.3 and (3.8), we
find

Q" (—00,y) =P, (N #0forallt >0) =¢(y) and @"(+c0,y)=0 (6.8)

for all y > 0. Uniform continuity implies that this convergence is locally uniform
in y. Moreover, joint monotonicity implies that ®*(x, +c0) — 1 = ¢(+0) as
x — —oo. (Alternatively, Propositions 6.1 and 6.5 imply that ®*(x, +o0) = 1 for all
x € R)) Applying Dini’s theorem on the compactification [0, o], we see that the
first limit in (6.8) holds uniformly in y. Because the left and right limits are distinct,
the strong maximum principle implies that 9, ®* < 0. Similarly, because ®* > 0 in
H but ®* = 0 on dH, we have 9,,®* > 0. Finally, (1.10) combines Propositions 6.1
and 6.5. O

According to (6.5), the level sets of ®, , are asymptotically inclined at angle
arctan(yu/A) relative to vertical. For a given speed ¢ > c,, this angle varies strictly
monotonically along P.. It follows that the waves in P, are distinct modulo
translation. Using Proposition 5.1 and the above observation, we can now complete
the proof of Theorem 1.1 and thus bridge the gap in the proof of Theorem 1.3.

Proof of Theorem 1.1. By Proposition 4.3, any KPP traveling wave on H¢ with
minimal speed is a function of (x, y) alone. Thus it suffices to prove uniqueness in
two dimensions, i.e., on H. Given a minimal-speed wave ® on H, Proposition 5.1
provides a constant n € R such that ¥(x, y) = ®(x — 1, y), where ® is the wave
defined by (1.6). Hence there is precisely one traveling wave on H¢, modulo
translation.

Now fix ¢ > c. and recall the set P, from (1.8). For all (4, ) € P, ®, , defined in
(1.7) is a traveling wave of speed c (Proposition 3.5). Moreover, Proposition 6.5 im-
plies that distinct values of (A, 1) produce distinct waves. Thus there are infinitely
many traveling waves of speed c that are distinct modulo translation. O

6.3. Minimal-speed tail asymptotics. We now examine the asymptotic behavior
of ® as x — oco. Let w(y) := ==log y. From Proposition 6.1, we know that the

V2
level sets of ¥ follow the curve x = w(y) as y — co. Thus ® decays to the right of
this curve. The following result controls this decay.

Recall the constant K. > 0 from (1.13), which governs the tail of the one-

dimensional wave. We can state Theorem 1.5 as

Proposition 6.6. There exists E € L*(H) such that if x > w4(y),
(x, y) = K. [x = L log, [Ixl| + E(x, y) | ye >, (6.9)

To prove this, we return to conformal mappings and potential theory. We focus
on the function © = e‘/ixd), which is nearly harmonic in {x > w,(y)}. We begin
by constructing an explicit holomorphism mapping a domain similar to {x > w4}
to the quarter-plane Q. This allows us to use various explicit formulee on the
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quarter-plane. The distortion induces by this holomorphism leads to the log ||x||
term in (6.9).

As a first application, we use the Phragmén-Lindeldf principle to improve our
tail bound from ® < (x+1)yto ©® < (x — w4 +1)y on {x > w4 }. This allows us to
argue that the “anharmonic” part of © is negligible—it can be absorbed in the error
E in (6.9). We are thus left with the analysis of a positive harmonic function on
the quarter-plane. From this point, the Herglotz representation formula is strong
enough to complete the proof of Proposition 6.6.

Conformal map to quarter-plane. To begin, we construct a conformal map 1 from
Q to a domain similar to {x > «w,}. We define 5 through its inverse

n N z) =z - x/ii log(z +1).

Throughout this section, we frequently identify z = x +iy € C with (x, y) € R
Solving the equation Re 771(z) = 0, we can readily check that 7 maps Q to the
region

A= {(x,y)e]H:0<y< Vez‘ﬁx—l—xz}c{x>w+(y)}.

Note that

1
() (@) =1- =
1 V2(z+1)
satisfies 1 — \/% <l <1+ \/% on Q. It follows that : Q — A is a biholomor-

phism.
Next, we can write {x > w,} = {x >0,0<y< e‘/ix}. Because

\/m = e\/EX + O(l) on ]R+,

the difference {x > «w;(y)} \ A lies a bounded distance from A. Thus by the
Harnack inequality, it suffices to prove (6.9) on A.

Although 7 itself has no simple explicit expression, we can easily construct an
approximation

o(z) =z+ % log(z +1)

Indeed,
_ 1 log(z +1)
Lo o(z =z——[1+— =z+0(Q).
n (2) NI (1)

V2

Since 7 is uniformly Lipschitz, this yields
n(z) = @(z) + O(1).

Using this approximation, we establish two bounds that will be useful in subsequent
calculations.

1(0,y) = (0+(¥), ») + O(1) (6.10)
and

e V2Ren(2) |5 4 1) lemV2x, (6.11)
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Now recall O(x, y) = e‘/éxcb(x, ¥), which satisfies
—%A@ = 0%V = _F.
We define

7 :=0o0n: Q - R,.

This function satisfies
1
_EAGU =—|p|*Fon = —F".

We have shown that ®(w(y), y) < 1when y > 1. Hence ©(w(y), y) < y there.
Using (6.10), Harnack estimates up to the boundary imply that

©"7(0,y) <y forall y > 0.
Moreover, the tameness bound in Proposition 4.1 and the boundedness of 1’ imply
that
0" <1+x*+y* onQ
as well as
0"(x,x) <1+x* and ©7(0,x) = 0.

Note that ©7 is subharmonic. We can thus apply the Phragmén-Lindel6f prin-
ciple on the sectors {0 < 6 < n/4} and {n/4 < 0 < n/2} as in the proof of
Proposition 4.1 to conclude that

07 <(x+1)y onQ. (6.12)
We further use this to bound F”. Noting that |5’|* < 1, (6.11) and (6.12) yield

+1)%y?
F7 < (x+1)2y2e V2Ren < —(x|z +)1|y e V= < (x +1)2yn VX, (6.13)

Anharmonic estimates. We now control the “anharmonic” component of ©” gener-
ated by F. Let G, denote the Dirichlet Green function of —%A on Q centered at
z € Q. We formally define

07(x) = / F(2)G,(x) dz, (6.14)
Q

which satisfies —%A@Z = F"7. We refer to @Z as the “anharmonic component” of
©7 because O7 + @Z is harmonic. To make this decomposition rigorous, we must
show that the integral in (6.14) is finite.

Let 7 and 7;, denote reflection in {x = 0} and {y = 0}, respectively, in [0, c0).
Then the method of images yields an explicit formula for G:

lIx — zezll lIx — 7,2

1
Z =—1
Ga(®) = log |\ ekl

We make use of the following asymptotics:
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Lemma 6.7. Fixz = (u,v) € Q. Then forallx € Q,

uAnv

log o in Buav)j10(2),

xy .
Go(%) = { TP Tea?. 1 Ballzll \ Baunoy j10(2),
uvxy . e
el in By
Proof. Define
_ Ix = ezl Bz lIx — 7yz|l y i lIx + z| _ =l
' 2u ' v o2zl " 2uVvo)’

Then the identity 2= = u Vv yields
uUAv 1 apf

+—log —=. (6.15)
=2l "7 B ys
Let B = B(uav)/10(z) and suppose x € B. Then «, B,y € [19/20,21/20] and
5 € [1/2,V2/2]. Hence

uAnv

1
G,(x) = - log

> 10 while a_ﬁ € [1.2,2.4],
lIx — 2] yo

so the first term in (6.15) dominates the second.
Now suppose ||x — z|| > (u Av)/10. A brief algebraic computation yields

Gy(x) = ilog lIx — sz||z lIx — Tyjll2 _ 1 0g 15 (6.16)
2 lx =zl l|x +z|| 2m T qtr
for
q= (x —ut) + (¥ —v?)?,
si= (x+u)i(y+0)* + (x —u)?(y —v)4
ri=(x—wi(y+v)*+ (x +u)*(y —v)>.
Note that
s—r=[(x+u)?’ - (x-w?|[(y+v)* - (y —v)?] = 16xyw0 > 0. (6.17)

We claim that the ratio (q + s)/(q + r) is uniformly bounded on B€. By (6.17), it
suffices to show that

s—r
Xyuv = TS Sqg4r=|x- z||2 Ix + z||2 ) (6.18)

This always holds when ||x|| > 2 ||z||, for then the right side is of order ||x||* while
the left side is at most of order ||x||* ||z||%. So we can assume that ||x|| < 2 ||z|| and
without loss of generality that u < v. Then ||x + z|| < v and y S v, so it suffices to
show that

xu < |x—z||* on BZ/w(Z)' (6.19)
We break this into two cases. If x < 2u, then indeed

xu < 2u? < 200(u?/100) < 200 ||x — z||*.
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Otherwise if x > 2u, we have (x — u)? > x?/4, so
xu < x%/2 <2(x%/4) <2|x—z|)°.

Having confirmed (6.19) in each case, we have verified (6.18). Therefore
q+s

1< <1 onB".
q+r
Then (6.16) and (6.17) yield
+s s— X yuv
G,(x) < 170 1= - = 3} 2
q+r q+r lx—z|” [Ix +z|l
Now ||x + z|| < [|z]| on By, while ||x — z|| < [|x + z|| < [|x]| on BSIIZII’ The lemma
follows. O

We combine this with (6.13) to bound @Z.
Lemma 6.8. The integral in (6.14) is well-defined and 0 < @Z(x, y) SyonQ.

Proof. Because F > 0 in H, we automatically have @Z > 0. Recall that the Green
function is symmetric: G,(x) = Gx(z). Here, it is convenient to use the symmetric
formulation

@Z(x) = '/QGX(Z)F(Z) dz.
Writing z = (u,v), (6.13) yields
0%(x) < / Gy (2) (u + 1)%ve V2 dz. (6.20)
Q

In the following, define m := x A y, B := Bp,j10(x), and D := Byx|. We divide
the right side of (6.20) into three integrals I, I, I5 over the regions B, D \ B, D€,
respectively. We bound these contributions separately.

Using Lemma 6.7 on B, we have

m m
I 5/10 (—) (u+1)2ve_\r2” dz < e_\@x/z‘/lo ( )dz
1~ [ % = xli Y s e\ llz=xl]

mzye_\@‘/2 < y. (6.21)

S
Xy <

lIx? ~

Next, on D \ B, we use Lemma 6.7 and % to write

L < XY / u(u+ 1)2e_‘&“v2 llz — x| dz
D\B

2 2
=)

< my/ e_\/i”/z( Iz —x|| v m)_z dz. (6.22)
D

Making a “rectangular” approximation,
- dv 1
/e_‘ﬁ”/z(ﬂz—xﬂ\/m) 2dz < e~ Vu/l2 du-/—S—.
D R, R(=-y)?+m* ' m
Thus (6.22) yields
L<y. (6.23)
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Finally, on D¢, Lemma 6.7 yields

v? N
L <x — e V24,
3~ y‘/Dc (u? +v2)2

Integrating first in v, we find

e—\/iu/z
L < xy/ du < y. (6.24)
R

Lu Vil

Using (6.21), (6.23), and (6.24) in (6.20), we obtain

@Z(X) < / Gy (z)(u + 1)2ve_\/§” dz=hL+L+L5 < y. O
Q

Boundary estimates. We now analyze the “harmonic component” of ®”7, namely
0 =0+ ®7. This is a positive harmonic function on the quarter-plane. Because
@Z = 0 on dQ, (6.12) yields the following estimate on the boundary:

0"(0,y) <y and ©’(x,0)=0. (6.25)
Lemma 6.9. There exists A > 0 such that
@U(x, y) = [Ax + O(l)]y on Q.

Proof. Recall the square map { := Q — H and define g = 0o {71, which is
a positive harmonic function on the half-plane. By the Herglotz representation
theorem, there exists A > 0 such that

_Y g(t,0) dt
9(x.y) = Ay+go(x.y) for go(x,y) == =022

Composing (6.25) with the square-root (™!, we have
g(x,0) < vx—.
In (4.27), we showed that this implies that g5 < (x)l/ 2. Hence gy o { < (x) while
gaog:@” <y onaQ.

By the Phragmén-Lindelof principle, we obtain g5 o { < y on Q. On the other
hand, yo ¢ =xy, so

@’7:gogV:Axy+gaogV:A[x+(’)(l)]y on Q. O
Combining Lemmas 6.8 and 6.9, we have shown that
0"(x,y) = A[x + (9(1)] y onQ (6.26)
for some A > 0. We now translate this bound back to the region A = (Q).

Lemma 6.10. Ifx > w4(y), we have O(x, y) = A[x - % log, [Ix|| + O(l)]y.
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Proof. Asnoted earlier, {x > w.(y)}\Alies abounded distance from A, so Harnack
allows us to reduce the problem to A.
Recall that n7(z) = z — Lz log(z +1). Mixing real and complex notation, we

‘/’

write this as
(6 9) = (x— Lloglz+1],y — L arg(z +1))
for z = x + iy. Thus (6.26) becomes
O(x,y) = (0" o) (x,y) = A[x - % log |z +1| + O(l)] [y - % arg(z + 1)].
Now log |z + 1| = log, |z| + O(1) and
xarg(z +1) = x arctan R Y.
x+1
Therefore
O(x,y) = A[x - \/% log, |Ix|| + O(l)]y. O
Matching. It remains only to identify the nonnegative constant A.

Proof of Proposition 6.6 and Theorem 1.5. By Lemma 6.10, there exist A > 0, M > 0,
and E: H — R such that |E| < M and

O(x,y) = A[x - \/% log ||x|| + E(x, y)]ye_‘/éx on {x > \/% log, y}. (6.27)

On the other hand, we recall from Theorem 1.4 and (1.13) that
(x + \/% logy,y) D we(x) asy— oo (6.28)
locally uniformly in x and
we, (x) ~ Koxe V?* a5 x — oo (6.29)
for some K, > 0. Fix ¢ > 0. Then by (6.29), there exists x(¢) > % such that
K.(1- g)xe_‘/ix <w(x) <K+ e)xe_‘/éx for all x > x,. (6.30)

1
V2
that log ||x|| — log y — 0 along this sequence. Combining (6.27) and (6.28), we

therefore find
A(xg - M)e_\@xo < we, (x0) = lim ®(x, + Lz logy,y) < A(xo + M)e_\/gx‘).
y—)o()

We evaluate ® at x = xy + == log y and take y — oo. Before doing so, we note

\/‘

Dividing by er—\/Exo and using xy > M/e and (6.30), we obtain
A(l—¢) < K.(1+¢) and K.(1—-¢) < A(1+e¢).

That is,
1-¢ A 1+¢
— << —.
1+ K, 1—¢
Since ¢ > 0 is arbitrary, we have A = K, as desired. O
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