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The propagation of elastic plane waves in a 2D model
of a weakly cohesive powder is numerically simulated
by the discrete element method (DEM). Isotropic
samples of disks interacting by elasticity, friction
and cohesion in their contacts are first assembled
in equilibrium states under isotropic pressure. Con-
tact laws are linearized in elastic form, with fixed
normal (KN ) and tangential (KT ) stiffness constants,
to model the reponse to a sine-shaped impulse (main
frequency ω) imparted to the sample boundary. The
shape of this disturbance depends on the value of ω,
relative to basic frequency ω∗ ≡

√
KN/m (m denot-

ing the grain mass). Longitudinal and transverse
waves triggered at low ω/ω∗ propagate with a coher-
ent wavefront followed by an incoherent tail, with
the classical velocity deduced from static moduli.
Higher values of ω/ω∗ result in much smaller coher-
ent signals and a strong localization of the energy
near the source. Longitudinal waves are accompa-
nied by disordered rotations, travelling with another
velocity, induced at all times during propagation.
Transverse waves contain both rotational and trans-
lational components. It is speculated that reduced
Cosserat theories could be relevant for such materi-
als on the continuum scale.

1 Introduction

While the application of discrete element modeling
(DEM) to granular materials is now widespread,
the control of a reproducible packing states, and
the characterization of their microstructure are still
being studied. Cohesive materials exhibit a con-
siderably wider variety of internal structures, and
therefore open a larger field of investigation. Ex-
amples of such materials include powders used in
copying equipments, fine flour, wet sand, and large
classes of colloidal aggregates. The propagation of
small amplitude elastic waves, as in the experiments
of Refs. [1, 2] is an interesting method to probe
their microstructure-dependent mechanical proper-
ties. The dispersion observed in these experiments,
apparently, cannot be described in terms of clas-

sical dissipative continua. One of the possibilities
is that some other degrees of freedom influence the
powder dynamics, leading to an “optical branch”.
DEM simulations of wave propagation in disordered
packings [6, 7] are also relatively scarce.

The DEM-based study, which the present pub-
lication reports on, is still at a rather early stage.
We address the issue of the nature of wave prop-
agation (dealt with in s Sec. 3)and its relation to
material properties, in a deliberately simplified two-
dimensional (2D) model of a cohesive power. The
DEM ingredients and the sample preparation (as
briefly presented in Sec. 2) are the same as used in
Refs. [3, 4]. Although the present report deals with
rather dense states, it is planned to investigate the
loose structures, akin to colloidal gels, observed in
those references.

2 Discrete model

2.1 DEM parameters

All simulations are carried out in the absence of
gravity. The model material is an assembly of
disks, with a uniform distribution of diameters be-
tween dmin and dmax = 2dmin, the latter being cho-
sen as the unit of length, while its mass m is the
unit of mass (the 2D mass density in the disks
is thus equal to 4/π). The model material and
the DEM ingredients are the same as in Ref. [3],
which may be consulted for more details. Contact-
ing disks are pressed against each other by (radius-
independent) adhesive force F0, set to 1. Contact
deflection is opposed by a repulsive elastic force F e

n

computed with (radius-independent) normal stiff-
ness Kn, while sliding relative displacements give
rise to a tangential elastic force Ft involving stiff-
ness Kt (we choose Kt = Kn). The adopted
value Kn = 105F0/dmax ensures that contact de-
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flections remain very small. The Coulomb condi-
tion, |Ft| ≤ µF e

n, applies with friction coefficient
µ = 0.3. In the assembling dynamical stage, some
viscous dissipation is also introduced (we discard
it on simulating elastic waves). The characteristic
frequency defined in the abstract, using the largest
grain mass, is thus ω∗ =

√
Kn = 105/2 in the cho-

sen units. We also use notation t0 = 1/ω∗.

2.2 Packing procedure

Rectangular samples (as shown in Fig. 1) with as-
pect ratio close to 2 are prepared under isotropic
pressure P by the procedure of. Ref. [3], which
we very quickly summarize here. First, the grains,

Figure 1: Rectangular isotropic sample of
6300 grains, in equilibrium under P ∗ = 1.
Normal force intensity encoded as line thick-
ness, sign as colour: red = compressive, green
= tensile, blue = 0.

randomly placed in a periodic cell at low density,
are assembled by ballistic aggregation, with random
initial velocities and dissipative collisions. Once a
static loose structure connecting all grains, stuck
together by the adhesive force, it is quasistatically
compressed at growing pressure P , reducing the
cell size and increasing solid fraction Φ. This pro-
cess is governed by dimensionless reduced pressure
P ∗ = Pdmax/F0. Here we first study the rather
dense states (Fig. 1) obtained at P ∗ = 1. The
samples have solid fraction Φ ' 0.80 and coordi-
nation number ζ ' 3.5. Compared to Ref. [6],
dealing with a maximally dense and highly coor-
dinated state, the material states we investigate
are more appropriate for (preconsolidated) cohe-
sive granular assemblies. The longitudinal elas-
tic modulus C11 = λ + 2µ = 0.46 ± 0.02KN (λ
being the Lamé coefficient), and the shear mod-
ulus, µ ' 0.16KN are measured as in Ref. [4].
The elastic stiffness responsible for the resistance

to the rotation of the grain relatively to its neigh-
bourhood is known as the Cosserat couple modulus
in the micropolar theory. We measure it as a co-
efficient of proportionality of an applied uniform
body moment to mass-averaged particle rotation
(note that the macroscopic displacement gradient
vanishes due to periodic boundary conditions in a
fixed cell), with value α = 0.158KN . We also calcu-
late another specific frequency (in micropolar con-
tinuum it will be an approximation for the cut-off
frequency) ω0 = 4.7ω∗. This is the frequency of
free rotational oscillations, when all the particles
are initially given the same angular displacement.

2.3 Wave propagation: methods

Figure 2: Wave propagation through the sam-
ple. Wall grains in black. Codes of Fig. 1 now
apply to force increments.

To simulate the propagation of a wave along the
sample length (along the axis of coordinate x), we
first replace periodic conditions in direction x by
a pair of walls, made of grains moving together
like a single rigid body. Computations are carried
out on linearizing the force laws for small incre-
ments about the initial prestressed state described
above. We assume that the contact network does
not change, and that all contact forces remain in
the elastic regime (no frictional sliding). Constants
Kn, Kt and grain inertia are the only parameters
in the computations. Specifically, the elastic force
increment Fe

ji between grains i and j of radii Ri,j ,
relates to their displacements ui,j and rotations θi,j
in their contact, nij and tij denoting the normal
and tangential unit vectors, reads

Fe
ji = Kn [(uj − ui) · nij ]nij

+Kt [(uj − ui) · tij − (Rjθj +Riθi)] tij . (1)

Masses mi and moments of inertia Ii enter the
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equations of motion,

miüi =
∑
j

Fe
ji, Iiθ̈i =

∑
j

Rinij × Fe
ji. (2)

We apply a sine-shaped impulse (only one period
long) with frequency ω at the left wall, which is re-
quested to move in direction x (longitudinal wave)
or y (transverse wave). We restrict our attention
to times for which the wave front has not reached
the fixed right wall (Fig. 2). Displacements, rota-
tions and energy are averaged in slices parallel to
transverse direction y with width dmax.

3 Wave propagation: results

3.1 Longitudinal wave

At low frequencies a longitudinal perturbation be-
haves as a travelling decaying wave (Fig. 3), but at
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Figure 3: Longitudinal wave. Displacements
(left) and rotations (right) at frequency 0.05ω∗

vs. x. Different graphs correspond to different
times.

high frequencies it either moves at a very slow ve-
locity, or stays localized near the left wall (Fig. 4).
We also observe disordered incoherent rotational

0 20 40 60 80
x/dmax

0.010

0.005

0.000

0.005

0.010

u/
u_

0

displacement vs Coordinate

displacement time=1
displacement time=41
displacement time=81
displacement time=121
displacement time=161
displacement time=201
displacement time=241
displacement time=281
displacement time=321
displacement time=361
displacement time=401

0 20 40 60 80
x/dmax

0.04

0.02

0.00

0.02

0.04

0.06

Ro
t/R

ot
_0

Rotation vs Coordinate

Rotation time=1
Rotation time=41
Rotation time=81
Rotation time=121
Rotation time=161
Rotation time=201
Rotation time=241
Rotation time=281
Rotation time=321
Rotation time=361
Rotation time=401

Figure 4: Longitudinal wave. Displacements
(left) and rotations (right) at frequency 8ω∗

vs. x. Different graphs for different times.

perturbations, which at the same velocity as dis-
placements, for different frequencies. Apparently,
these rotational perturbations are produced in the
focii of local anisotropy, heterogeneously oriented
and distributed in the sample. In these focii the
wave becomes mixed. In the simplest model of the
homogeneous anisotropic reduced Cosserat medium
this coupling grows with frequency, until it reaches
a certain threshold of the order of ω0 [5]. Here
we also observe that rotations are more present at
larger frequencies. However, this continuum model
cannot be directly applied to our case, since our
sample is locally anisotropic. The propagation of
energy at low and high frequencies looks similar
(Fig. 5).

0 20 40 60 80
x/dmax

0.00

0.05

0.10

0.15

0.20

0.25

0.30
E/

E_
0

Total Energy vs Coordinate
Total Energy time=1
Total Energy time=41
Total Energy time=81
Total Energy time=121
Total Energy time=161
Total Energy time=201
Total Energy time=241
Total Energy time=281
Total Energy time=321
Total Energy time=361
Total Energy time=401

0 20 40 60 80
x/dmax

0

1

2

3

4

E/
E_

0

Total Energy vs Coordinate
Total Energy time=1
Total Energy time=41
Total Energy time=81
Total Energy time=121
Total Energy time=161
Total Energy time=201
Total Energy time=241
Total Energy time=281
Total Energy time=321
Total Energy time=361
Total Energy time=401

Figure 5: Longitudinal wave. Energy at a fre-
quency 0.05ω∗ (left, travelling) and 8ω∗ (right,
localized near the wall) vs coordinate x. Dif-
ferent graphs for different times.

3.2 Transverse wave

For the transverse wave, unlike in the previous case,
displacements and coherent rotations move at the
same velocity but with a phase shift of π/2 (Fig. 6),
i.e. the transverse wave has both translational and
rotational componnents. This is characteristic for
isotropic Cosserat media. At high frequencies the
transverse wave, as well as the longitudinal one, is
also localized near the wall (or moves at a very slow
velocity), see Fig. 7. We see that only a small part
of the total energy travels at low frequencies, the
larger part staying in the vicinity of the left wall,
even as some perturbations arrive at the right wall
(Fig. 8). We see the evolution of the energy dis-
tribution in the sample for different frequencies in
(Figs. 9–12). Comparison of the fraction of en-
ergy, contained in the left 1/8 part of the sample, as
a function of time, is shown in Fig. 13 for different
frequencies. Note that these very slow or localized
waves are observed below the cut-off frequency ω0,
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Figure 6: Transverse waves. Displacements
(left) and rotations (right) vs x, at frequency
0.05ω∗. Different graphs for different times.
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Figure 7: Displacements (left) and rotations
(right) at frequency 8ω∗, versus x in transverse
wave. Different lines for different times.
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Figure 8: Transverse wave, ω = 0.05ω∗ (left)
and 8ω∗ (right). Energy vs x-coordinate. Dif-
ferent graphs for different times.

which corresponds to one of eigen modes of the dis-
crete system. Therefore it is not related to the dis-
crete structure of the medium, which does not react
to a too short impulse. This phenomenon is typical
for the reduced Cosserat medium. However, in an
isotropic reduced Cosserat medium there is no such
effect for a longitudinal wave, which we have in our
experiment.
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Figure 9: Transverse wave at relatively low
frequencies. Energy vs x-coordinate at differ-
ent times.
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Figure 10: Transverse wave at intermediate
frequencies. Energy vs. x-coordinate at dif-
ferent times.

3.3 Wave velocity

If we measure by the time of flight method the ve-
locity of displacement waves, e.g. register the first
signal arriving to the given co-ordinate, and cal-
culate the speed as the slope of the distance ver-
sus time curve, we obtain that displacements travel
with the same velocity independently of the fre-
quency of the sinusoidal impulse we send (Fig. 14).
This seems to be in contradiction with the highly
dispersive character if the waves at high frequen-
cies. The reason of this behaviour is, apparently,
the following: we induce various frequencies (or ex-
cite various eigenmodes of the discrete system) by
a sinusoidal impulse, and register those that arrive
first. They do not necessary correspond to the fre-
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Figure 14: Displacement wave velocity, nor-
malized by dmaxω

∗, versus frequency for lon-
gitudinal (left) and transverse (right) waves.

quency of the impulse.
The same procedure for the energy gives us a dif-

ferent picture for the longitudinal and transverse
waves (Fig. 15). Here we see a jump in velocity
near ω∗/4 for transverse waves and near ω∗ for lon-
gitudinal waves. Then the energy propagates very
slowly (as we have seen it in the previous section).
This is not completely clear if this corresponds to
the optical branch, or localization in the band gap
that reduced continua have, or, perhaps, some ef-
fect of the scattering by heterogeneities, resulting
in the effective dissipation.

These data are compared to the longitudinal (Cp)
and transverse (Cs) low frequency wave velocities
deduced from the static moduli:

Cp =
√

(λ+ 2µ)/ρ, Cs =
√
µ/ρ (3)

ρ being the mass density of the medium. In our
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Figure 15: Energy propagation for the lon-
gitudinal (left) and transverse (right) waves.
Wave velocity, normalized by dmaxω

∗, versus
frequency.

system, formulae (3) yield Cp = 0.640 dmaxω
∗ and

Cs = 0.385 dmaxω
∗, in very good agreement with

the observations at low frequency.

Conclusion

We prepare in a reproducible way a 2D packing
imitating isotropic and slightly heterogeneous sam-
ple of a weakly cohesive powder made from elas-
tic spherical particles with varying radii. We in-
vestigate linear waves near a nonlinear equilibrium
in such samples. Both longitudinal and transverse
waves at high frequencies are strongly attenuated
and slow or do not propagate. A transverse wave
is a shear-rotational wave: the rotations propagate
at the same speed, the phase difference is π/2. It is
possible that reduced models, analogous to reduced
Cosserat models, are appropriate for description of
this medium. However, they need a modification,
since the longitudinal wave is purely translational,
but at all times causes incoherent rotations, propa-
gating at a different speed and taking part of the en-
ergy of the longitudinal wave. This is probably due
to heterogeneously oriented and distributed focii of
local anisotropy. The transverse wave is more sen-
sitive to the specific realization of the sample than
the longitudinal one. The rotational perturbation
accompanying it, on the contrary, is more coherent
for a transverse wave than for a longitudinal one.
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