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This study presents a comprehensive approach to rubber hyperelasticity modeling using the Lion model. Stress tensors, specifically the first and second Piola-Kirchhoff stress tensors (P and S), were derived from the Lion model's free energy function (Eq. 7). Leveraging the deformation gradient F, Cauchy (σ), and Kirchhoff (τ) stress tensors were subsequently obtained. To bridge theory with experimentation, a MATLAB code was meticulously developed, employing optimization techniques to reconcile experimental and analytical data for the precise determination of material parameters. The culmination of this effort resulted in the acquisition of stress-stretch curves, providing a thorough evaluation of the Lion model's performance in representing rubber hyperelasticity.

Introduction 1.1 Continuum Mechanics

The mechanical behavior of materials that are treated as a continuous mass rather than as discrete particles is the focus of the branch of mechanics known as continuum mechanics. The first to develop such models in the 19th century was the French mathematician Augustin-Louis Cauchy.

The mathematical foundation for analyzing large-scale forces and deformations in materials is based on the idea of a continuum. Despite the fact that materials are made up of discrete atoms and molecules that are separated from one another by void space, microscopic cracks, and crystallographic flaws, physical phenomena are frequently modeled by taking into account a substance that is dispersed throughout a particular region of space. A continuum is a body that can continuously be divided into infinitesimal elements with locally specified physical characteristics at any given position. Therefore, continuous functions can be used to characterize the bulk material's properties, and calculus can be used to study how these properties change over time [START_REF]Continuum mechanics[END_REF]. Two additional independent assumptions are frequently used in the study of continuum mechanics in addition to the continuity assumption. These are isotropy and homogeneity (identical properties at all locations) and isotropy (properties invariant about direction).

Hyperelasticity

A type of constitutive model for optimally elastic material for which the stress-strain relationship is obtained from a strain energy function is known as a hyperelastic material [START_REF]Continuum mechanics[END_REF]. The observed behavior of many materials is not adequately captured by linear elastic models; rubber, for instance, has a non-linearly elastic, isotropic, and incompressible stress-strain relationship. It is possible to simulate the stress-strain behavior of such materials using hyperelasticity [START_REF] Muhr | Modeling the stress-strain behavior of rubber[END_REF].

Hyperelastic Material Models

The techniques to model rubber as a hyperelastic material can be categorized into two primary groups: (i) phenomenological approaches and (ii) micromechanical-based models. The stressstrain curves obtained from uniaxial, equibiaxial, and pure shear experiments serve as the foundation for the phenomenological models and are fit by invariant or principle stretch-based mathematical formulas for the free energy function to describe the mechanical characterization of rubber-like materials. Contrary to phenomenological models, micromechanical models use the physical and geometrical features at the molecular level of the material microstructure [START_REF] Dal | On the performance of isotropic hyperelastic constitutive models for rubber-like materials: A state of the art review[END_REF].

Preliminaries

The following equations from [START_REF] Dal | A Quasi-Incompressible and Quasi-Inextensible Element Formulation for Transversely Isotropic Materials: A Mixed Element Formulation for Anisotropic Materials[END_REF] and [START_REF] Dal | On the performance of isotropic hyperelastic constitutive models for rubber-like materials: A state of the art review[END_REF] show the mechanical response of an elastic body is characterized by the deformation map φ(X,t) which describes the transformation of the material points X onto spatial points x= φt(X) at time t. The deformation gradient F is given by: is considered as the mapping between the tangent spaces in Lagrangian (TxB0) and Eulerian (TxB) configurations. Subsequently, F -T characterizes the mapping between the cotangent spaces in Lagrangian (T*xB0) and Eulerian (T*xB) configurations.

Where N and n denote unit normal vectors of Lagrangian and Eulerian configurations, respectively.

The right and inverse of left Cauchy-Green tensors are defined as:

C=F T gF and 𝑭 = 𝑭 -𝑇 𝑮𝑭 -1 (3) 
where G and g denote the covariant reference and current metric tensors [START_REF] Dal | On the performance of isotropic hyperelastic constitutive models for rubber-like materials: A state of the art review[END_REF][START_REF] Dal | A Quasi-Incompressible and Quasi-Inextensible Element Formulation for Transversely Isotropic Materials: A Mixed Element Formulation for Anisotropic Materials[END_REF]. The energy stored in an isotropic material is governed by principle stretches or invariants by the principles of material objectivity and material frame indifference. The right Cauchy-Green tensor C has the following eigenvalue decompositions:

𝟑 𝑪 ≔ ∑ 𝜆 2 𝑵 𝑎 ⦻𝑵 𝑎 𝑖 𝑖=1 (4)
where λi and N a represent the principal stretches and directions, respectively [START_REF] Dal | On the performance of isotropic hyperelastic constitutive models for rubber-like materials: A state of the art review[END_REF]. Three isotropic invariants of the right Cauchy Green tensor can then be written as:

𝐼1 = 𝜆 2 + 𝜆 2 + 𝜆 2 , 1 2 3 𝐼2 = 𝜆 2 𝜆 2 + 𝜆 2 𝜆 2 + 𝜆 2 𝜆 2 , 1 2 2 3 3 1 𝐼1 = 𝜆 2 𝜆 2 𝜆 2 1 2 3
(5)

The above-mentioned tensors can also be geometrically interpreted from Figure 1[4].

Figure 1. Geometrical representation of metric and stress tensors [4]

Geometrical representation of the Cauchy (σ), Kirchhoff (τ), first (P), and second Piola-Kirchhoff stress tensors (S) are also depicted in Figure 2 [START_REF] Dal | A Quasi-Incompressible and Quasi-Inextensible Element Formulation for Transversely Isotropic Materials: A Mixed Element Formulation for Anisotropic Materials[END_REF]. Push forward and pull back of these tensors will be used in the derivation section. 

Free Energy Function and Lion Model

The finite elasticity of a particular class of materials is determined by the free energy function ψ.

A category of phenomenological hyperelastic material models is based on principal invariants.

The generalized Rivlin model is the cornerstone of many invariant-based models, the closedform representation of which is:

𝑀1 𝑀2 𝜓(𝑭) = ∑ ∑ 𝐶𝑖𝑗(𝐼1 -3) 𝑖 (𝐼2 -3) 𝑗 𝑖=0 𝑗=0 (6)
Lion model, a special case of the Rivlin model, considers linear and fifth-order terms for I1 and one linear term for I2 such that:

𝜓(𝑭) = 𝐶10(𝐼1 -3) + 𝐶01(𝐼2 -3) + 𝐶03(𝐼1 -3) 5 (7)
Material parameters C10, C01, and C03 are determined by optimization using experimental data.

Biaxial Tension Experiments

The homogeneous deformation state for uniaxial tension and biaxial tension of a unit-cube element can be depicted in Figure 2 where the incompressibility assumption is imposed on the deformation gradient. 

Objectives

Stress tensors including P and S, first and second Piola Kirchhoff stress tensors were first driven from the free energy function of the Lion model (Eq. 7). Then by using the deformation gradient F, σ and τ, Cauchy, and Kirchhoff stress tensors were driven. In the next step, MATLAB code was developed, and optimization was used to fit the experimental to analytical data to determine material parameters. Finally, the stress-stretch curves were obtained for evaluation.

Derivations

The general equation for the second Piola-Kirchhoff stress can be directly driven by the free energy function:

Where: Substitution of Eq.10 into Eq. 9 and rearranging the terms gives the invariant-based representation of the second Piola-Kirchhoff stress for isotropic hyperelastic solid:

𝑺 = 2(𝑐1 + 𝐼1𝑐2)𝟏 -2𝑐𝟐𝑪 -𝑝𝑪 -1 (11)
where Using the deformation gradient, and 𝑷 = 𝑭𝑺, the first Piola-Kirchhoff stress tensor components can be driven:

Using Eq.7 and Eq. 12:

a) Biaxial Tension

The first step, which was described in the objectives, is to derive an analytical formulation of the first Piola-Kirchhoff stress tensor. The deformation gradient and the first Piola-Kirchhoff stress tensors are given as: Substitution of Eq. 13 into Eq. 12 gives the components of the first Piola-Kirchhoff stress tensor in terms of material parameters:

where the first and the second invariants are:

The next step is to determine the analytical formulation of the second Piola Kirchhoff stress tensor. The second Piola-Kirchhoff stress tensor is defined as 𝑺 = 𝑭 -1 𝑷, where:

So, the components of the second Piola-Kirchhoff stress tensor will read:

The Kirchhoff stress tensor is given by 𝝉 = 𝑷𝑭 𝑻 where:

So, the components of the Kirchhoff stress tensor will read:

𝜏1 = 𝑃1𝜆1 , 𝜏2 = 𝑃2𝜆2 (21)
Since J =1 (the jacobian of the deformation gradient = 1 because the material is incompressible and the deformation is volume preserving which is also confirmed from the components of the deformation gradient) and 𝝉 = 𝐽𝝈, the Kirchhoff stress and the Cauchy stress have the same value.

b) Biaxial Tension

Now we will do the same steps for the uniaxial case. The deformation gradient and the first Piola-Kirchhoff stress tensors are given as: Substitution of Eq. 13 into Eq. 12 gives the component of the first Piola-Kirchhoff stress tensor in terms of material parameters:

where the first and the second invariants are:

Determining the analytical formulation of the second Piola Kirchhoff stress tensor using 𝑺 = 𝑭 -1 𝑷

Where:

It gives the component of the second Piola-Kirchhoff stress tensor:

𝑃1 𝑆1 = 𝜆 (26)
And using 𝝉 = 𝑷𝑭 𝑻 , the component of the Kirchhoff stress is: The general simultaneously fitted constants were obtained: C10 = 0.194, C03 = 0, C01 = -0.0049

𝜏1 = 𝑃1𝜆 ( 

Results & Discussion

In this section, results including stress-stretch curves and errors are presented.

Stress-Stretch Curves a) Biaxial

Figure 4 shows the comparison between the experimental data and the data obtained from the analytical model for the case of n = 1, where P11 = P22. 

Concluding Remarks

Biaxial experimental data were used to mechanically characterize hyperelastic material using the Lion model. A non-linear least squares regression approach was taken to optimize and fit the experimental and analytically obtained data to determine material parameters. According to the results obtained, although the Lion model accurately models the hyperelastic material behavior in non-Gaussian regime, there are errors in the small-stretch region.
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 2 Figure 2. Geometrical representation of stress tensors[START_REF] Dal | A Quasi-Incompressible and Quasi-Inextensible Element Formulation for Transversely Isotropic Materials: A Mixed Element Formulation for Anisotropic Materials[END_REF] 

Figure 3 .

 3 Figure 3. Homogeneous deformation state for uniaxial and biaxial tensions of a unit-cube element[START_REF] Badienia | A comparative study of the fitting performance of hyperelastic constitutive models[END_REF] 

Figure 4 .

 4 Figure 4. The biaxial test dataset for different biaxiality ratios (n), [red] n = 1, [green] n = 1.5, [blue] n = 2, and [magenta] n = 2.5respectively. The uniaxial tension behavior is also shown in the figure (black curve) for comparison with the biaxial test results[START_REF] Badienia | A comparative study of the fitting performance of hyperelastic constitutive models[END_REF] 

  27) % Now determine the ratios of these errors w.r.t. Err_tot Perecent_P11_1 = Err_tot1/Err_tot; Perecent_P11_2 = Err_tot2_P11/Err_tot; % Now find the overall constants by the weighted method below: C_10 = (Perecent_P11_2 * phi(1)) + (Perecent_P11_1 * C_10_2); C_03 = (Perecent_P11_2 * phi(2)) + (Perecent_P11_1 * C_03_2); C_01 = (Perecent_P11_2 * phi(3)) + (Perecent_P11_1 * C_01_2);
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 5 Figure 5. Comparative stress-stretch curve for n=1 between the experimental and analytical data

Figure 5

 5 Figure 5 shows the comparison between the experimental data and the data obtained from the analytical model for the case of n = 2.
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 6 Figure 6. Comparative stress-stretch curve for n=2 between the experimental and analytical data

Figure 7 .

 7 Figure 7. Values of different types of stresses obtained from the analytical model for the case of n=1

Figure 7

 7 Figure 7 shows the values of different types of stresses obtained from the analytical model for the case of n = 2. Notice that P11 ≠ P22, S11 ≠ S22, τ11 ≠ τ22, and σ11 ≠ σ22.
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 8 Figure 8. Values of different types of stresses obtained from the analytical model for the case of n=2
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 9 Figure 9. Comparative stress-stretch curve between the experimental and analytical data
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 102 Figure 10. Values of different types of stresses obtained from the analytical model
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 11 Figure 11. Individual fitting for the case of n = 1
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 12 Figure 12. Individual fitting for the case of n = 2
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 13 Figure 13. Errors associated with the individual fitting

Figure 14 .

 14 Figure 14. Simultaneous fitting for n=2

Figure 15 .

 15 Figure 15. Errors associated with the simultaneous fitting

Table 1

 1 summarizes the errors associated with the fitting of experimental data and analytical data using optimization.

	Biaxial Tension	Error
	Simultaneous fit for n=2	
	P11	0.8338
	P22	0.2444
	Simultaneous fit for n=1 and n=2	
	P11	3.333

Table 1 .

 1 Biaxial tension results for the Lion model

Again, since J =1 and 𝝉 = 𝐽𝝈, the Kirchhoff stress and the Cauchy stress have the same value.

MATLAB Code & Optimization

All the equations driven in the previous section were implemented in the MATLAB. Non-linear least squares regression is employed for the optimization. For the case of n =1 where P11 = P22 the code was developed as written below: And to determine the material parameters C10, C01, and C03 alpha0 = [1.9,1.9,1.9]; %Initial guess for C_10, C_03 and C_01 alpha = lsqnonlin(@(a) n2_1LSQfun(a), alpha0)

The code to optimize for P22 was written as: % For n = 2 case, and P_22 function err = n2_2LSQfun(beta) n = 2; P_22_2 = xlsread('C:\Rubber Lion\d20.xlsx', 'n2', 'C1:C100'); lam_1 = xlsread('C:\Rubber Lion\d20.xlsx', 'n2', 'A1:A100'); lam_2 = n * lam_1; I1 = (lam_1).^2 + (lam_2).^2 + 1./((lam_1).^2 .* (lam_2).^2); I2 = ((lam_1).^2 .* (lam_2).^2) + 1./((lam_1).^2) + 1./((lam_2). The overall constant values for n = 2 cases were then computed using the weighted contribution of P11 and P22. The code below shows the method of approach. The constants obtained from here were then used to compute the values of P11 and P22. Then for the last step, simultaneous fits were employed by again using the separate weighted contributions between n = 1, and n = 2 cases. Only the comparisons between the P11 for each case were used in the below code.