
HAL Id: hal-04328058
https://hal.science/hal-04328058

Submitted on 6 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Automatic Transformations of Coq Proof
Scripts

Nicolas Magaud

To cite this version:
Nicolas Magaud. Towards Automatic Transformations of Coq Proof Scripts. 14th International Con-
ference on Automated Deduction in Geometry Belgrade, Serbia, September 20-22, 2023, Nov 2023,
Belgrade, Serbia. �hal-04328058�

https://hal.science/hal-04328058
https://hal.archives-ouvertes.fr

Towards Automatic Transformations of Coq
Proof Scripts

Nicolas Magaud1[0000−0002−9477−4394]

Lab. ICube UMR 7357 CNRS Université de Strasbourg, France
magaud@unistra.fr

Abstract. Proof assistants like Coq are increasingly popular to help
mathematicians carry out proofs of the results they conjecture. However,
formal proofs remain highly technical and are especially difficult to reuse.
In this paper, we present a framework to carry out a posteriori script
transformations. These transformations are meant to be applied as an
automated post-processing step, once the proof has been completed. As
an example, we present a transformation which takes an arbitrary large
proof script and produces an equivalent single-line proof script, which
can be executed by Coq in one single step. Other applications, such as
fully expanding a proof script (for debugging purposes), removing all
named hypotheses, etc. could be developed within this framework. We
apply our tool to various Coq proof scripts, including some from the
GeoCoq library.

Keywords: Coq, proof transformation, GeoCoq

1 Motivations

Proof assistants like Coq [1, 4] are increasingly popular to help mathematicians
carry out proofs of the results they conjecture. However, formal proofs remain
highly technical and are especially difficult to reuse. Once the proof effort is
done, the proof scripts are left as they are and they often break when upgrading
to a more recent version of the prover. To reduce the burden of maintaining
the proof scripts of Coq, we propose a tool to post-process the proof scripts
to make them cleaner and easier to reuse. The first transformation that we
focused on consists in compacting a several-step proof script into a single-step
proof script. Even though our framework can be used to implement other proof
script transformations, this one is of special interest to us. Indeed, we recently
designed a prover for projective incidence geometry [3, 12] which relies on the
concept of rank to carry out proofs of geometric theorems such as Desargues
or Dandelin-Gallucci automatically. This prover produces a trace (a large Coq
proof script containing several statements and their proofs). We hope to use the
proof transformation tool to shape up the automatically generated proofs and
make them easier to reuse and integrate in larger proof repositories.

More generally, proof maintenance and reuse tools have been studied exten-
sively by Talia Ringer et al. [11, 10]. Contrary to our approach, their tools aim

2 N. Magaud

at fixing the issues when they occur. In our setting, we think it is better to try
and improve the proof scripts so that they are less likely to break, even after
several years and numerous updates of the components.

Outline of the paper The paper is organized as follows. In Sect. 2, we present
a simple example of a proof script transformation. In Sect. 3, we describe the
implementation of our tool as well as the future extensions we currently develop.
In Sect. 4, we present some concluding remarks and the perspectives of this work.

2 Transforming Large Proof Scripts into One-line Scripts

The Coq tactic language [5] features some tacticals to execute some tactics in a
sequence tac1;tac2;tac3 or try and execute different tactics on the same goal
solve [tac1 | tac2 | tac3]. Moreover these tacticals can be combined. E.g.
tac0 ; [tac1 | tac2 | tac3] runs the first tactic tac0 which should yield 3
subgoals. The first one is solved using tac1, the second one using tac2 and the
third one using tac3. Once a proof script is written (as several steps) by the
user, we can use these tacticals to build an equivalent proof script, which can be
executed in a single step.

Let us consider a simple example, proving the distributivity of the connective
or (\/) over the connective and (/\) as shown in the statement of Fig. 1.

Lemma foo : forall A B C : Prop, A \/ (B /\ C) -> (A\/B)/\(A\/C).

Proof.
intros; destruct H.
split.
left; assumption.
left; assumption.
destruct H.
split.
right; assumption.
right; assumption.
Qed.

Proof.
intros; destruct H;
[split;
[left; assumption
| left; assumption]

| destruct H ;
split;
[right; assumption
| right; assumption]].

Qed.

Fig. 1. A user-written script (left) and the equivalent single-step script (right)

The left-hand side presents the proof script that one may expect from a
master student, factorizing some parts but still decomposing the reasoning in
several steps. On the right-hand side, we propose a one-line script to carry out
exactly the same proof.

In Coq, writing directly the right-hand side is almost impossible, whereas it
is fairly easy to generate it automatically from the left-hand side. In the Coq
standard library, several lemmas are proved using a single one-line tactic. The

Towards Automatic Transformations of Coq Proof Scripts 3

main advantage is that it provides concise and structured proofs but it has the
drawback that, when something goes wrong, it is hard to debug and fix it.

3 Experiments, Limitations and Results

3.1 Implementation

We choose to implement our tool in OCaml, using the serialisation mechanism
serapi [6] developed by Emilio Gallego Arias for communication with the Coq
proof assistant. Our tool uses anonymous pipes to communicate with serapi,
which itself sends requests to Coq and retrieves the answers. Commands are
kept as in the input file. Tactics are aggregated using tacticals such as ;, [and
]. At each step of the proof, we compare the current number of subgoals to the
number of subgoals right before the execution of the current tactic. If it is the
same, we simply concatenate the tactics with a ; between them. If the number of
goals increases, we open a square bracket [and push into the stack the previous
number of goals. Each time a goal is solved, we check whether some goals remain
to be proved at this level. If yes, we add another ; and then focus on the next
subgoal. If there are no more subgoals at this level, we pop the 0 from the top
of the stack, thus closing the current level with a] and carry on with subgoals
of the previous level.

The source code1 as well as some examples are freely available online. It is de-
velopped using Coq 8.17.0 and the corresponding serapi version 8.17.0+0.17.0.

3.2 Limitations

So far, commands and tactics are told apart simply by assuming commands start
with a capital letter [A-Z] and tactics with a small letter [a-z]. This convention
is well-known in Coq, however in some developments (e.g. GeoCoq), some ad-
hoc user tactics may start with a capital letter. Handling this properly requires
additional developments and is currently under way.

To make the transformation easier, a first phase could be added to our proof
script transformer to remove all commands which lay among the proof steps
(e.g. Check, Print or Locate) and make sure all tactics names start with a
small letter.

Finally, Coq proof scripts can be structured using bullets (+, -, *) as well as
curly brackets to identify some subproofs. In addition, one can direct work on a
goal which is not the current one using the 2:tac. notation which performs the
tactic tac on the second goal of the subgoals. We still need to devise a way to
deal properly with such partially-structured proof script.

1 https://github.com/magaud/coq-lint

4 N. Magaud

3.3 Successful Transformations

In addition to our test suite examples, we consider more challenging proof scripts.
We successfully transformed a library file from the Standard Library of Coq:
Cantor.v2 from the Arith library as well as some large files from the GeoCoq
library [2, 8] (e.g. orthocenter.v3). As the tool gets more mature, we plan to
transform more files, and we shall especially focus on the GeoCoq library which
features several different proof styles and thus shall allow us to evaluate the
robustness of our tool.

3.4 Refactoring Proof Scripts Automatically Generated by our
Prover for Projective Incidence Geometry

We recently developed a new way [3, 12], based on ranks, to automatically prove
statements in projective incidence geometry. Our approach works well but pro-
duces proof scripts which are very large and often feature several auxiliary lem-
mas. Fig. 2 presents a very simple example LABC, which is formally proven by
our tool but yields a fairly verbose proof script using one intermediate lemma
LABCD (see appendix A for details).

A

D

B

C

– Informal statement
Assume that ABD is a triangle,
Assume that C is a point on AD, such that C6= A and C 6= D,
Then ABC is a triangle.

– Expressed using ranks

∀A,B,C,D : Point,
rk{A,D,B} = 3 → rk{A,C,D} = 2 →
rk{C,A} = 2 → rk{C,D} = 2 →
rk{A,C,B} = 3.

Fig. 2. An example of a statement in projective geometry, formalized using ranks

We plan to use our script transformation tool to refactor automatically gen-
erated proof scripts, inlining auxiliary lemmas and thus making proof scripts
more concise and hopefully more readable for humans.

3.5 Next steps

To fully evaluate the tool, we need to handle larger examples, outside of the stan-
dard library of Coq. The next step consists in improving Coq options handling
(e.g. -R) to our script transformation tool to tackle other formal proof libraries.

2 https://github.com/coq/coq/blob/master/theories/Arith/Cantor.v
3 https://github.com/GeoCoq/GeoCoq/blob/master/Highschool/orthocenter.v

Towards Automatic Transformations of Coq Proof Scripts 5

We also plan to propose the reciprocal script transformation, turning a single-
step proof script into a more detailed (easier to debug) proof script. This could
especially be useful when porting formal proofs from one version of Coq to the
next one.

Other applications of interest could be to remove the names of all variables or
hypotheses from the scripts, or at least to force them to be explicitly introduced.
The script snippet intros; apply H could be replaced by a more precise one
intros n p H; apply H. This way, we could ensure that the proofs are not
broken when the names of automatic variables change. From a reliability point
of view, it would be even better to use the tactic intros; assumption. Although
its cost is higher (because we need to search the correct hypothesis among all
of them every time we run the tactic), it does not depend on some arbitrary
variable names.

Finally, regarding our current implementation, it would be interesting to
benchmark the transformation to see whether transforming the whole standard
library of Coq into single-step proof scripts could improve the compilation time
of this library.

4 Conclusions and perspectives

We build a proof script transformation tool, which transforms an arbitrary large
proof script into a single-step one-Coq-tactic proof script. This tool has been
successfully experimented on some significant library files from the Coq ecosys-
tem.

This first example shows that the approach is sound and we plan to extend
it to integrate tactic languages such as ssreflect [7], Ltac2 [9] or Mtac [13] in
our framework. In the longer term, we expect to design some new proof script
transformations and combine them in order to build more reliable proof devel-
opments which can last longer and would be easier to maintain. Among these
transformations, we shall start with a mechanism to transform a proof script
into a sequence of atomic proof steps (to make debugging easier when the proof
breaks). We may also study how to transform proofs carried out automatically
by their actual traces, avoiding recomputing the proof search each time the proof
is re-runned.

References

1. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development,
Coq’Art : The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science, An EATCS Series, Springer-Verlag, Berlin/Heidelberg (May 2004), 469
pages

2. Boutry, P., Gries, C., Narboux, J., Schreck, P.: Parallel postulates and continuity
axioms: a mechanized study in intuitionistic logic using Coq. Journal of Automated
Reasoning p. 68 (2017). https://doi.org/10.1007/s10817-017-9422-8

6 N. Magaud

3. Braun, D., Magaud, N., Schreck, P.: Two new ways to formally prove dandelin-
gallucci’s theorem. In: Chyzak, F., Labahn, G. (eds.) ISSAC ’21: International
Symposium on Symbolic and Algebraic Computation, Virtual Event, Russia, July
18-23, 2021. pp. 59–66. ACM (2021). https://doi.org/10.1145/3452143.3465550

4. Coq development team: The Coq Proof Assistant Reference Manual, Version 8.13.2.
INRIA (2021), http://coq.inria.fr

5. Delahaye, D.: A Tactic Language for the System Coq. In: Parigot, M., Voronkov,
A. (eds.) Logic for Programming and Automated Reasoning, 7th International
Conference, LPAR 2000, Reunion Island, France, November 11-12, 2000, Proceed-
ings. Lecture Notes in Computer Science, vol. 1955, pp. 85–95. Springer (2000).
https://doi.org/10.1007/3-540-44404-1_7

6. Gallego Arias, E.J.: SerAPI: Machine-Friendly, Data-Centric Serialization for
Coq. Tech. rep., MINES ParisTech (Oct 2016), https://hal-mines-paristech.
archives-ouvertes.fr/hal-01384408

7. Gonthier, G., Mahboubi, A.: An introduction to small scale reflection in Coq.
J. Formaliz. Reason. 3(2), 95–152 (2010). https://doi.org/10.6092/issn.1972-
5787/1979

8. Narboux, J.: Mechanical Theorem Proving in Tarski’s geometry. In: Eugenio
Roanes Lozano, F.B. (ed.) Automated Deduction in Geometry 2006. LNCS,
vol. 4869, pp. 139–156. Francisco Botana, Springer, Pontevedra, Spain (Aug 2006).
https://doi.org/10.1007/978-3-540-77356-6

9. Pédrot, P.M.: Ltac2: Tactical Warfare. In: Krebbers, R., Sergey, I. (eds.) Proceed-
ings of the CoqPL workshop 2019 (2019)

10. Ringer, T., Palmskog, K., Sergey, I., Gligoric, M., Tatlock, Z.: QED at large: A
survey of engineering of formally verified software. Found. Trends Program. Lang.
5(2-3), 102–281 (2019). https://doi.org/10.1561/2500000045

11. Ringer, T., Yazdani, N., Leo, J., Grossman, D.: Adapting proof automation to
adapt proofs. In: Andronick, J., Felty, A.P. (eds.) Proceedings of the 7th ACM
SIGPLAN International Conference on Certified Programs and Proofs, CPP
2018, Los Angeles, CA, USA, January 8-9, 2018. pp. 115–129. ACM (2018).
https://doi.org/10.1145/3167094

12. Schreck, P., Magaud, N., Braun, D.: Mechanization of incidence projective ge-
ometry in higher dimensions, a combinatorial approach. In: Janicic, P., Kovács,
Z. (eds.) Proceedings of the 13th International Conference on Automated Deduc-
tion in Geometry, ADG 2021, Hagenberg, Austria/virtual, September 15-17, 2021.
EPTCS, vol. 352, pp. 77–90 (2021). https://doi.org/10.4204/EPTCS.352.8

13. Ziliani, B., Dreyer, D., Krishnaswami, N.R., Nanevski, A., Vafeiadis, V.: Mtac:
A monad for typed tactic programming in coq. J. Funct. Program. 25 (2015).
https://doi.org/10.1017/S0956796815000118

A Proof Script for our basic example

Lemma LABCD : forall A B C D ,
rk(A:: C::nil) = 2 -> rk(A:: B:: D::nil) = 3 ->
rk(C:: D::nil) = 2 -> rk(A:: C:: D::nil) = 2 ->
rk(A:: B:: C:: D::nil) = 3.
Proof.
intros A B C D

Towards Automatic Transformations of Coq Proof Scripts 7

HACeq HABDeq HCDeq HACDeq .
assert(HABCDm2 : rk(A:: B:: C:: D:: nil) >= 2).
{
assert(HACmtmp : rk(A:: C:: nil) >= 2)

by (solve_hyps_min HACeq HACm2).
assert(Hcomp : 2 <= 2) by (repeat constructor).
assert(Hincl : incl (A:: C:: nil) (A:: B:: C:: D:: nil))

by (repeat clear_all_rk;my_inO).
apply (rule_5 (A:: C:: nil) (A:: B:: C:: D:: nil) 2 2 HACmtmp Hcomp Hincl).
}
assert(HABCDm3 : rk(A:: B:: C:: D:: nil) >= 3).
{
assert(HABDmtmp : rk(A:: B:: D:: nil) >= 3)

by (solve_hyps_min HABDeq HABDm3).
assert(Hcomp : 3 <= 3)

by (repeat constructor).
assert(Hincl : incl (A:: B:: D:: nil) (A:: B:: C:: D:: nil))

by (repeat clear_all_rk;my_inO).
apply (

rule_5 (A:: B:: D:: nil) (A:: B:: C:: D:: nil) 3 3 HABDmtmp Hcomp Hincl
).

}
assert(HABCDM : rk(A:: B:: C:: D::nil) <= 3)

by (solve_hyps_max HABCDeq HABCDM3).
assert(HABCDm : rk(A:: B:: C:: D::nil) >= 1)

by (solve_hyps_min HABCDeq HABCDm1).
intuition.
Qed.

Lemma LABC : forall A B C D ,
rk(A:: C::nil) = 2 -> rk(A:: B:: D::nil) = 3 ->
rk(C:: D::nil) = 2 -> rk(A:: C:: D::nil) = 2 ->
rk(A:: B:: C::nil) = 3.
Proof.
intros A B C D
HACeq HABDeq HCDeq HACDeq .

assert(HABCm2 : rk(A:: B:: C:: nil) >= 2).
{
assert(HACmtmp : rk(A:: C:: nil) >= 2)

by (solve_hyps_min HACeq HACm2).
assert(Hcomp : 2 <= 2)

by (repeat constructor).
assert(Hincl : incl (A:: C:: nil) (A:: B:: C:: nil))

by (repeat clear_all_rk;my_inO).

8 N. Magaud

apply (
rule_5 (A:: C:: nil) (A:: B:: C:: nil) 2 2 HACmtmp Hcomp Hincl

).
}
assert(HABCm3 : rk(A:: B:: C:: nil) >= 3).
{
assert(HACDMtmp : rk(A:: C:: D:: nil) <= 2)

by (solve_hyps_max HACDeq HACDM2).
assert(HABCDeq : rk(A:: B:: C:: D:: nil) = 3)

by
(apply LABCD with (A := A) (B := B) (C := C) (D := D) ; assumption).

assert(HABCDmtmp : rk(A:: B:: C:: D:: nil) >= 3)
by (solve_hyps_min HABCDeq HABCDm3).

assert(HACmtmp : rk(A:: C:: nil) >= 2)
by (solve_hyps_min HACeq HACm2).

assert(Hincl :
incl (A:: C:: nil)
(list_inter (A:: B:: C:: nil) (A:: C:: D:: nil)))

by (repeat clear_all_rk;my_inO).
assert(HT1 :

equivlist (A:: B:: C:: D:: nil)
(A:: B:: C:: A:: C:: D:: nil))

by (clear_all_rk;my_inO).
assert(HT2 :

equivlist (A:: B:: C:: A:: C:: D:: nil)
((A:: B:: C:: nil) ++ (A:: C:: D:: nil))

) by (clear_all_rk;my_inO).
rewrite HT1 in HABCDmtmp;rewrite HT2 in HABCDmtmp.
apply (

rule_2
(A:: B:: C:: nil) (A:: C:: D:: nil) (A:: C:: nil)
3 2 2 HABCDmtmp HACmtmp HACDMtmp Hincl
).

}
assert(HABCM : rk(A:: B:: C::nil) <= 3)

by (solve_hyps_max HABCeq HABCM3).
assert(HABCm : rk(A:: B:: C::nil) >= 1)

by (solve_hyps_min HABCeq HABCm1).
intuition.
Qed.

