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It is shown that the distribution of the estimated canonical correlation coefficients between the past and the future of a high-dimensional multivariate white noise sequence converges almost surely towards a limit distribution whose density is given in closed form. A sketch of proof, based on free probability technics, is provided. Finally, it is briefly explained how this result can be used to produce consistent uncorrelatedness tests in the high-dimensional context.

INTRODUCTION

The canonical correlation coefficients between two linear subspaces Y1 and Y2 contained in some ambient Hilbert space are defined as the singular values of the projection operator from Y1 onto Y2. If (ωi,1)i∈I and (ωj,2)j∈J represent any orthonormal bases of Y1 and Y2 respectively, the canonical correlation coefficients coincide with the singular values of the matrix with entries ( ωi,1, ωj,2 )i∈I,j∈J where , represents the scalar product of the ambient space. This concept was introduced in multivariate analysis by Hotelling (see e.g. [START_REF] Hotelling | Relations between two sets of variables[END_REF]) when Y1 and Y2 represent the spaces generated by the components of two Gaussian zero mean random vectors y 1 and y2. In this context, the canonical correlation coefficients allow in some sense to quantify the information that can be obtained on the linear combinations of the components of yi by observing yj for i = j. This led to the introduction of the very popular canonical correlation analysis between two sets of random variables. The canonical correlation coefficients can also be defined in time series analysis in order to evaluate the relationships between the past and the future of a given Gaussian zero mean multivariate time series (yn) n∈Z (see e.g. [START_REF] Jewell | Canonical correlations of past and future for time series: definitions and theory[END_REF]). In this context, the two subspaces, denoted here Yp (the past) and Y f (the future), are defined respectively as the spaces generated by the components of yn for n ≤ 0 and the components of yn for n > 0. The canonical correlation coefficients between the past and the future of (yn) n∈Z are of fundamental interest if y has a rational spectrum because the number r of non zero canonical correlation coefficients is finite, and coincides with the minimal dimension of the state-space representations of y. We refer the reader to [START_REF] Lindquist | Linear Stochastic Systems[END_REF] for an exhaustive presentation of the related results and their important implications on questions such as the identification of state space models or reduction model technics. See also the concise monography [START_REF] Van Overschee | Subspace Identification for Linear Systems: Theory, Implementation, Applications[END_REF]. In a number of practical procedures, Yp and Y f are replaced by the finite dimensional spaces Yp,L and Y f,L generated respectively by the components of yn, n = -(L -1), . . . , 0 Authors supported by Bézout Labex, funded by ANR, reference ANR-10-LABX-58, and by the ANR Project HIDITSA, reference ANR-17-CE40-0003. and yn, n = 1, . . . , L for a certain integer L ≥ r, a condition that implies that the number of non zero coefficients between Yp,L and Y f,L is still equal to r. We refer again to [START_REF] Lindquist | Linear Stochastic Systems[END_REF] for more details on the effects of the truncation. As the second order statistics of y are very often unknown, the correlation coefficients between Yp,L and Y f,L have to be estimated from N avalaible samples y1, . . . , yN . If Yp,L and Y f,L are the two block Hankel M L × N matrices defined by 

Yp,L =         y1 y2 . . . yN-
        (1) 
and 

Y f,L =         yL+1 yL+2 . . . yN
       
(2) the correlation coefficients between Yp,L and Y f,L are usually estimated by the canonical correlation coefficients between the row spaces of Yp,L and Y f,L (see e.g. [START_REF] Van Overschee | Subspace Identification for Linear Systems: Theory, Implementation, Applications[END_REF]). We remark that matrices Yp,L and Y f,L depend on the non available samples yn, N + 1 ≤ n ≤ N + 2L -1. As these end effects have no implication in the following, we prefer to use the definitions [START_REF] Bai | Spectral Analysis of Large Dimensional Random Matrices[END_REF][START_REF] Bao | Canonical correlation coefficients of high-dimensional Gaussian vectors: Finite rank case[END_REF] in order to simplify the notations. The above estimation procedure produces reasonably accurate results when the ratio cN = M L/N is small enough. However, if y is high-dimensional, i.e. if M is large, the condition cN 1 will not be verified as soon as the number of observations is not unlimited. It is therefore important to evaluate the behaviour of the above estimators when cN is not negligible. In this paper, we address this problem by studying the behaviour of the above estimators in the high-dimensional regime where L is a fixed integer and where M and N both converge towards infinity in such a way that the ratio cN = M L/N converges towards a non zero constant c < 1.

As this problem appears difficult in general contexts, we specifically consider the simple case where (yn) n∈Z is an uncorrelated complex Gaussian time series, i.e. E(yny * m ) = Rδn-m for some positive definite matrix R. In this context, the true canonical correlation coefficients between the past and the future of y are of course all equal to 0, i.e. r = 0. Using large random matrix methods, more specifically free probability technics, we show that the estimated canonical correlation coefficients have a limit deterministic distribution that is given in closed form. In practice, this means that for each realization of sequence y1, . . . , yN , the histogram of the estimated coefficients is close to the graph of the probability density of the above mentioned limit distribution. If c ≤ 1/2, the limit distribution is absolutely continuous and its support is the interval [0, 2 c(1 -c)], and if c > 1/2, a Dirac mass at point 1 appears. While this new result is valid in the specific case of a white noise sequence y, we believe it is useful for the following reasons: First, when the observation is the sum of a white noise with a useful signal with a low rank rational spectral density, the use of perturbation technics (see e.g. [START_REF] Benaych-Georges | The singular values and vectors of low rank perturbations of large rectangular random matrices[END_REF] in the context of simpler random matrix models) should allow to derive the conditions under which the largest estimated canonical correlation coefficients escape from the interval [0, 2 c(1 -c)], thus revealing the presence of the useful signal. Second, our results provide various tests, consistent in the high-dimensional context, to verify that the samples (yn)n=1,...,N come from an uncorrelated sequence or not.

We finally mention that a number of previous works addressed the behaviour of canonical correlation coefficients in the highdimensional case. However, the underlying random matrix models are simpler than in the present paper. More specifically, the random matrices Yp,L and Y f,L defined by (1, 2) are replaced by independent matrices Y1 and Y2 with i.i.d. elements, a property that is not verified by Yp,L and Y f,L . In 1980, [START_REF] Wachter | The limiting empirical measure of multiple discriminant ratios[END_REF] addressed the case of Gaussian i.i.d. entries and derived the limit distribution of the canonical correlation coefficients between the row spaces of Y1 and Y2. More recently, [START_REF] Yang | The convergence of the empirical distribution of canonical correlation coefficients[END_REF] extended this result to the case where Y1 and Y2 are independent matrices with non Gaussian i.i.d. entries. We also note that [START_REF] Yang | Independence test for high dimensional data based on regularized canonical correlation coefficients[END_REF] took benefit of this result to propose independence tests between 2 sets of i.i.d. high-dimensional samples, a question which is not the same than the derivation of high-dimensional whiteness tests. We finally mention that [START_REF] Bao | Canonical correlation coefficients of high-dimensional Gaussian vectors: Finite rank case[END_REF] extended the result of [START_REF] Wachter | The limiting empirical measure of multiple discriminant ratios[END_REF] to the case where Y1 and Y2 have Gaussian i.i.d. entries, but E

Y 1 Y * 2 N
is a non zero low rank matrix.

THE MAIN RESULT

For each n, yn can be written as yn = R 1/2 y n,iid where (y n,iid ) n∈Z is an i.i.d. sequence of Nc(0, I) distributed random vectors. It is clear that the row spaces of Yp,L and Y f,L coincide with the row spaces of the block Hankel matrices Y p,L,iid and Y f,L,iid defined from vectors (y n,iid )n=1,...,N+2L-1. Therefore, the correlations coefficients between the two pairs of subspaces coincide, and there is no restriction to assume that R = I in the following. From now on, we thus assume that (yn) n≥1 is an independent sequence of Nc(0, I) distributed random vectors. In order to simplify the notations, we denote by W, Wp, W f the matrices defined by

W = 1 √ N (y1, . . . , yN ), Wp = 1 √ N Yp,L and W f = 1 √ N Y f,L .
The estimated canonical correlation coefficients therefore coincide with the singular values of matrix

Σ = (W f W * f ) -1/2 W f W * p (WpW * p ) -1/2 because the rows of (W f W * f ) -1/2 W f and (WpW * p ) -1/2
Wp represent orthonormal bases. In the following, we rather study the singular values to the square, or equivalently the eigenvalues of the M L × M L matrix ΣΣ * , in the asymptotic regime where cN = M L/N converges towards c < 1, L being supposed to remain fixed. This regime will be referred to as N → +∞ in order to simplify the notations. In the following, we denote by (λ k ) k=1,...,M L the eigenvalues of ΣΣ * . The main result of this paper is the following Theorem. 

dµ(λ) = 1 c λ (4c(1 -c) -λ) 2πλ(1 -λ) 1 [0,4c(1-c)] dλ + 2 - 1 c + δ λ-1 (3) 
where (x)+ represents max(x, 0). Interestingly, measure µ coincides with the limit eigenvalue distribution derived in [START_REF] Wachter | The limiting empirical measure of multiple discriminant ratios[END_REF] when matrices Yp,L, Y f,L are replaced by two independent M L × N random matrices with Nc(0, 1) i.i.d. entries. We note that a similar phenomenon holds for the limit eigenvalue distribution of

Y i Y * i N
, which, for i = p, f , converges towards the Marcenko-Pastur distribution, i.e. the limit eigenvalue distribution of the above matrices if Yp,L, Y f,L were replaced by a M L × N random matrix with Nc(0, 1) i.i.d. entries (see e.g. [START_REF] Loubaton | On the almost sure location of the singular values of certain Gaussian block-Hankel large random matrices[END_REF]). We also remark that the support of µ is equal [0, 4c(1 -c)] ∪ {1}1 c>1/2 . Therefore, while the true canonical correlation coefficients betweeen the finite dimensional past and future Yp,L and Yp,L are all zero, the highdimensionality of the observation produces a spreading of the distribution of the estimated coefficients. We however remark that the density of µ converges towards +∞ when λ → 0. In practice, this means that a number of eigenvalues of the matrix ΣΣ * are concentrated around 0. We also notice that if c > 1/2, a mass at λ = 1 appears. If c > 1/2, cN = M L/N is also strictly larger than 1/2 for M and N large enough, and the intersection of the row spaces of Yp,L and Y f,L is a non zero subspace whose dimension is at least equal to 2M L -N = N (2cN -1). Therefore, 1 is eigenvalue of matrix ΣΣ * with multiplicity at least equal to N (2cN -1). This in accordance with Theorem 1. Due to the lack of space, we of course cannot provide the proof of Theorem 1. However, we present in the next section a sketch of the main arguments.

SKETCH OF PROOF

Background on free probability theory

The proof uses free probability technics. We thus provide some background on the corresponding theory in order to make this paper reasonably self-contained for non expert readers. Due to the lack of space, some concepts are presented in a rather unformal way. We refer the reader to the short summary provided in [START_REF] Debbah | MMSE analysis of certain large isometric random precoded systems[END_REF] (see section V) in which the necessary concepts are introduced rigourously. Section 2.4 in [START_REF] Tulino | Random Matrix Theory and Wireless Communications[END_REF] is also recommended. For a deeper view of the theory, we refer to [START_REF] Hiai | The Semi-Circle Law, Free Random Variables and Entropy[END_REF] and [START_REF] Mingo | Free Probability and Random Matrices[END_REF]. A non commutative probability space is a couple (A, φ) where A is a non commutative algebra having a unit denoted 1 and φ is a linear functional such that φ(1) = 1. We also assume that φ verifies φ(ab) = φ(ba). An element a ∈ A is called a non commutative random variable, and the distribution of a is defined as the linear functional ρa defined on the algebra of complex polynomials in one variable C(X) by ρa(P ) = φ(P (a)). For each integer k ≥ 1, φ(a k ) is called the order k moment of ρa. In a number of useful contexts, ρa is associated to a probability measure µa defined on R by φ(a k ) = R λ k dµa(λ) for each k ≥ 1. If a1, . . . , ap are p elements of A, the joint distribution of a1, . . . , ap is this time the linear functional defined on the algebra of complex polynomials in p variables by ρa(Xi 1 . . . Xi q ) = φ(ai 1 . . . ai q ) where the indices i1, i2, . . . , iq belong to {1, 2, . . . , p}.

A typical example of non commutative probability space is (HP , φtr) where HP represents the set of all P × P Hermitian matrices and where φtr(H) = 1 P TrH for each Hermitian matrix H. In this context, the distribution of H is associated to the probability distribution µ H = 1 P P k=1 δ λ-λ k (H) where (λ k (H)) k=1,...,P represent the eigenvalues of H. In other words, µ H coincides with the empirical eigenvalue distribution H.

A central notion of the theory is the concept of freeness, which, in some sense, plays the role of the independence in classical probability theory. As the formal definition may not be very informative, we omit to introduce it, and rather mention that if two elements a1 and a2 are free, then, the joint distribution of (a1, a2) can be retrieved from the individual distributions of a1 and a2. In this case, if ρa 1 and ρa 2 are associated to 2 compactly supported probability distributions µa 1 and µa 2 , then the distribution of a1 + a2 is associated to a certain probability measure µa 1 µa 2 called the free additive convolution product of µa 1 and µa 2 . If moreover µa 1 and µa 2 are carried by R + , the probability distribution associated to a1a2 is a certain probability measure µa 1 µa 2 called the free multiplicative convolution product of µa 1 and µa 2 . These convolution products can in practive be evaluated using some relevant analytic tools. It is also possible to define the freeness of two sets of non commutative random variables as well as the mutual freeness of a1, . . . , ap.

The connection between free probability theory and large random matrices is based on the observation that certain mutually independent large random Hermitian P × P matrices, considered as elements of the non commutative probability space (HP , φtr), behave almost surely as free non commutative random variables when their dimension converges towards +∞. In this case, the corresponding random matrices are said to be asymptotically free almost surely. We refer the reader to [START_REF] Hiai | The Semi-Circle Law, Free Random Variables and Entropy[END_REF], p. 147, for a formal definition. In particular, if (H1,P ) P ≥1 and (H2,P ) P ≥1 are two sequences of independent Hermitian unitarily invariant 1 P × P random matrices whose empirical eigenvalue distributions converge almost surely towards two compactly supported probability measures µ1 and µ2, then (H1,P ) P ≥1 and (H2,P ) P ≥1 are asymptotically free almost everywhere. Therefore, H1 + H2 has a limit eigenvalue distribution equal to µ1 µ2. If moreover H1 and H2 are positive matrices, µ1 and µ2 are carried by R + , and the limit eigenvalue distribution of H1H2 is µ1 µ2 (see also [START_REF] Pastur | On the law of addition of random matrices[END_REF] and [START_REF] Vasilchuk | On the law of multiplication of random matrices[END_REF] for direct approaches that do not use free probability theory). Another useful result states that 1 in the sense that for each unitary matrix U, the probability distributions of H i and U * H i U coincide if (HP ) P ≥1 is a sequence of Hermitian unitarily invariant P × P random matrices whose empirical eigenvalue distribution converges almost surely, and if (Di,P )i=1,...,I are I P ×P deterministic matrices whose joint distribution defined in (HP , φtr) is convergent (i.e. the joint moments of (Di,P )i=1,...,I converge when P → +∞), then, (HP ) P ≥1 and ((Di,P )i=1,...,I ) P ≥1 are almost surely asymptotically free. Both results are consequences of Corollary 4.3.6, p. 156 in [START_REF] Hiai | The Semi-Circle Law, Free Random Variables and Entropy[END_REF].

The main steps of the proof of the Theorem

The first step consists in remarking that if Wp and W f are replaced by finite rank perturbations, matrix ΣΣ * will be affected by a finite rank perturbation which has no influence of its limit eigenvalue distribution. We therefore modify Wp and W f by replacing samples yN+1, yN+2, . . . , yN+2L-1 by the samples y1, y2, . . . , y2L-1. As L remains finite, this modification induces a finite rank perturbation of both matrices. In order to simplify the notations, the new matrices will be still denoted Wp, W f , and Σ. We denote by Π the N × N permutation matrix defined by Πen = en+1 for n = 1, . . . , N -1 and ΠeN = e1 where e1, . . . , eN represents the canonical basis of C N . Then, it is easily seen that the new matrices Wp and W f are given by Wp = (W T , (WΠ) T , . . . , (WΠ L-1 ) T ) T and W f = ((WΠ L ) T , (WΠ L+1 ) T , . . . , (WΠ 2L-1 ) T ) T , where we recall that W = 1 √ N (y1, . . . , yN ). We also introduce the N × M L orthogonal matrices Θp and Θ f given by Θi

= W * i (WiW * i ) -1/2 for i = p, f . Matrix ΣΣ * coincides with ΣΣ * = Θ * f ΘpΘ * p Θ f
As for the second step, we notice that up to the eigenvalue 0, the

M L × M L matrix Θ * f ΘpΘ * p Θ f has the same eigenvalues than the N × N matrix Θ f Θ * f ΘpΘ * p . Therefore, it is sufficient to evaluate the limit eigenvalue distribution of Θ f Θ * f ΘpΘ * p . Matrices Θ f Θ * f
and ΘpΘ * p are the orthogonal projection matrices on the row spaces of W f and Wp respectively. Therefore, their empirical eigenvalue distribution both coincide with cN δ λ-1 + (1 -cN )δ λ , and converge towards the same limit dν(λ)

= cδ λ-1 + (1 -c)δ λ . If Θ f Θ *
f and ΘpΘ * p were almost surely asymptotically free, the limit eigenvalue distribution of Θ f Θ * f ΘpΘ * p would be equal to ν ν, and easy calculations would imply that the limit distribution of Θ * f ΘpΘ * p Θ f is the measure µ defined by [START_REF] Benaych-Georges | The singular values and vectors of low rank perturbations of large rectangular random matrices[END_REF].

Theorem 1 will thus be proved if we establish that Θ f Θ * f and ΘpΘ * p are almost surely asymptotically free. This is the third step of the proof. In order to establish this fundamental property, we state the following adaptation of Lemma 6 in [START_REF] Evans | Large System Performance of Linear Multiuser Receivers in Multipath Fading Channels[END_REF].

Lemma 1 We consider a sequence of N × N Hermitian ran- dom matrices (X N ) N ≥1 and N × N deterministic matrices (U N l , V N l ) l=1,...m such that X N and {(U N l , V N l ) l=1,...m } are al- most surely asymptotically free. Then, if (U N l , V N l ) l=1,...m satisfy U N l V N l = V N l U N l = IN for each l = 1, . . . , m as well as 1 N Tr(U N k V N l ) = δ k-l for all k, l = 1 . . . m, then the random matrices U N 1 X N V N 1 , . . . , U N m X N V N m
are almost surely asymptotically mutually free.

We first verify that it is possible to apply Lemma 1 when m = 2L, X = W * W, and U l = Π * (l-1) , V l = U -1 l = Π l-1 . It is clear that {(Π * (l-1) , Π l-1 ) l=1,...,2L } verify the conditions of the Lemma. Moreover, matrix W * W is unitarily invariant. Hence, as recalled in paragraph 3.1, W * W and {(Π * (l-1) , Π l-1 ) l=1,...,2L } are almost surely asymptotically free. Lemma 1 thus leads to the conclusion that W * W, Π * W * WΠ, . . . , Π * (2L-1) W * WΠ 2L-1 are almost surely asymptotically mutually free. This immediately 

APPLICATION TO UNCORRELATEDNESS TESTING

In order to test that the high-dimensional time series y verifies E(y n+l y * n ) = 0 for l = 1, . . . , 2L -1, to be referred to as the hypothesis H0, it is possible to compare the empirical eigenvalue distribution μ of matrix ΣΣ * with its limit µ under H0. If the two measures are close enough, the decision is that H0 holds, and vice and versa. There are a number of ways to compare μ and µ. It is possible to consider the Kolmogorov-Smirnov statistics η = sup λ | F (λ) -F (λ)| where F and F represent the cumulative distribution functions of μ and µ, and to compare η to a threshold. Other kind of distance can also be considered, such as the Wasserstein distance. If f is a test function, another approach is to compare f (λ)dμ(λ) to its limit f (λ)dµ(λ) (see e.g. [START_REF] Yang | Independence test for high dimensional data based on regularized canonical correlation coefficients[END_REF] when Yp,L and Y f,L are replaced by independent i.i.d. non Gaussian matrices). In particular, it is easily seen that the first moment of µ, i.e. λdµ(λ) coincides with c. Therefore, it is relevant to compare the test statistics γ = 1 M L TrΣΣ * -c to 0.

We illustrate the performance of the Kolmogorov-Smirnov (KS) test (Fig. 2) and of the test associated to the statistics γ (Fig. 3). We plot 3 ROC curves obtained by Monte-Carlo simulations. The signal generated under hypothesis H1 is a M -dimensional signal (zn) n∈Z whose M components ((zm,n) n∈Z )m=1,...,M are mutually independent autoregressive sequences of order 1 with coefficients (am)m=1,...,M uniformly distributed between 0.35 and 0.45. The number of observations N is equal to N = 1200, the ratio cN = M L/N is equal to 1 4 , and the integer L take the values L = 2, L = 4, and L = 8. Therefore, M is equal to M = 150, M = 75 and M = 37 respectively. It is observed that the performance of the tests depends on L, or equivalently of M : the larger M , the better the performance. This is because under H0, the M L × M L random matrices W f and Wp depend on M N independent scalar random variables. Intuitively, the convergence towards 0 of η and γ depends on M N , so that the observed loss of performance when L increases was expected. We also notice the test statistics γ provides better results than the KS test. While we have not yet evaluated the asymptotic distribution of η and γ under H0, the better performance of γ is probably due to the fact that γ converges faster towards 0 than η: in the context of simpler models, statistics such as γ and η are OP ( 1 N ) and OP ( 1 N 2/5 ) terms respectively (see e.g. [START_REF] Bai | Spectral Analysis of Large Dimensional Random Matrices[END_REF] and the references therein). We finally remark that the ROC curves of course also depend on the (am)m=1,...,M which control the speed of convergence towards 0 of the autocovariance sequences of the components of (zn) n∈Z . 

CONCLUDING REMARKS

We conclude by indicating some directions for future research. An interesting problem would be to study the largest canonical correlation coefficients when the observation contains a "useful signal" having low dimensional state-space representations, and to evaluate the conditions under which some coefficients escape from the interval [0, 2 c(1 -c)]. This kind of result could be used to detect such a signal. Finally, the applications to uncorrelatedness testing, briefly mentioned in the present paper, pose a number of open questions: among others, consider the case where L → +∞ in order to be able to test that the observation is an i.i.d. sequence, establish some CLT on the above mentioned test statistics, make the appropriate connections with traditional tests used in standard asymptotic regimes such as the multivariate Portmanteau tests (see e.g. [START_REF] Hoskins | The multivariate Portmanteau test[END_REF]).

Theorem 1

 1 The empirical eigenvalue distribution dμ(λ) of ΣΣ * defined as dμ(λ) = 1 M L M L k=1 δ λ-λ k converges weakly almost surely towards the probability distribution dµ(λ) given by

Fig. 1 illustrates

 1 Theorem 1. In the corresponding numerical experiment, N = 1200, M = 75, L = 4 so that cN = 1 4 . The histogram of the eigenvalues of a realization of matrix ΣΣ * is represented as well the graph of the corresponding limit probability density. As expected, the two plots are close one from each other, and a number of eigenvalues are close from 0.
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 1 Fig. 1. Histogram of the eigenvalues, N = 1200, M = 75, L = 4, c = 1 4

  implies that W * p Wp = L-1 l=0 Π * l W * WΠ l and W * f W f = 2L-1 l=L Π * l W * WΠ l are also almost surely asymptotically free. In order to complete the proof, we mention that it is possible to show that the empirical eigenvalue distributions of W * p Wp and W * f W f converge a.s. towards cµMP + (1 -c)δ λ where µMP is the Marcenko-Pastur distribution with parameter c. Moreover, for each > 0, almost surely, for each N large enough, all the non zero eigenvalues of W * p Wp and W * f W f are located into [(1 -√ c) 2 -, (1 + √ c) 2 + ]. As c < 1, we choose in such a way that (1 -√ c) 2 -2 > 0 and consider a smooth function f (λ) which is equal to 1 on [(1 -√ c) 2 -, (1 + √ c) 2 + ] and which vanishes outside [(1 -√ c) 2 -2 , (1 + √ c) 2 + 2 ]. Then, we claim that almost surely, ΘiΘ * i = f (W * i Wi) for i = p, f for each N large enough. To check this, we express W * i Wi, as W * i Wi = M L k=1 γ i,k θ i,k θ * i,k where the (γ i,k , θ i,k ) k=1,...,M L are the non zero eigenvalues and eigenvectors of W * i Wi. Almost surely, for N large enough, γ i,k belongs to [(1 -√ c) 2 -, (1 + √ c) 2 + ] and f (γ i,k ) = 1 for each k = 1, . . . , M L. Therefore, f (W * i Wi) is equal to M L k=1 θ i,k θ * i,k , which, of course, coincides with ΘiΘ * i . Approximating uniformly function f on [0, (1 + √ c) 2 + 2 ] by a sequence of polynomials, and using the a.s. asymptotic freeness of W * p Wp and W * f W f eventually lead to the conclusion that Θ f Θ * f and ΘpΘ * p are almost surely asymptotically free.
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 2 Fig. 2. ROC curves for the KS test
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 3 Fig. 3. ROC curves for the test statistics γ