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A B S T R A C T

This paper details a comprehensive study of deterministic real-time wave forecasting in directional seas.
By using wave models on the basis of a Lagrangian description, a good balance was achieved between
computational efficiency and model accuracy. Nevertheless, due to the highly non-uniform spatial distribution
of data and the relatively small size of data in time inherent to remote optical measurements, the initial
conditions are determined through an optimization process, which is computationally demanding, especially
in multidirectional sea states. Accordingly, in order to offer a real-time system of wave prediction in the
case of multidirectional waves, we propose a simplified and succinct assimilation method for the process of
wave reconstruction. We also develop a three-dimensional spatio-temporal prediction zone where the future
evolution of wave fields can be estimated based on wave measurements. Lastly, we outline a tank-scale
experimental campaign conducted to mimic the measurements of a LIDAR in a real configuration. A comparison
of model performances with the experimental observations shows that in a multidirectional approach, it is
necessary to consider wave components in direction as well as in frequency to achieve nearly the same accuracy
as for unidirectional seas.
1. Introduction

One of the central problems in the study of marine science and
ocean engineering is the real-time prediction of the ocean wave surface.
It is of great importance concerning the operations of surface vessels
(Grilli et al. 2011, Nouguier et al. 2013, Kusters et al. 2016,?, Dan-
nenberg et al. 2010), ocean wave energy harvesting systems (Li et al.
2012, Previsic et al. 2021), and the design of marine structures such
as floating wind turbines (Ma et al., 2018). In particular, the optimal
control of issues such as load mitigation on offshore floating wind
turbines requires sufficiently accurate real-time forecasting of the ocean
wave surface. This is the framework of the European H2020 FLOATECH
and French ANR CREATIF projects, that funded the present study.

Phase-averaged models based on an energy balance equation (e.g.,
SWAN, Booij et al. 1999) provide ocean wave prediction in terms of
wave energy density. Since the models describe the average proper-
ties of the ocean wave field without phase information (or a history
of phase correlations) and implement a crude and overly-simplified
parameterization for nonlinear wave–wave interactions, they have in-
herent difficulties in capturing more accurate and detailed nonlinear
processes. As an alternative, phase-resolved models can describe the
instantaneous state of ocean wave motion and the statistical properties

∗ Corresponding author.
E-mail address: inchul.kim@ec-nantes.fr (I.-C. Kim).

(i.e., higher-order moments) in relation to nonlinear surface wave
dynamics.

In an attempt to predict the ocean surface wave elevation from
spatio-temporal measurements, a number of authors have used data sets
obtained by LIDAR (Light Detection and Ranging) cameras (e.g., Grilli
et al. 2011, Nouguier et al. 2013, Kabel et al. 2019, Desmars et al.
2020). We note that there are currently no commercial operating
solutions for this technology. Similar effort toward the representation of
the ocean wave field has been made with X-band radars (or microwave
radars): examples include Hilmer and Thornhill (2015), Kusters et al.
(2016), Naaijen et al. (2018), Klein et al. (2020), and Zhang et al.
(2022). When the LIDAR camera or X-band radar operating at grazing
angles is mounted upon the structure or vessel, both are subject to
a spatially uneven distribution of measurement points. Namely, the
density of points becomes sparse with increasing distance from the
vessel-mounted instrument. In addition, shadowing effects caused by
spatial gaps behind the illuminated wavefronts lead to a randomly
non-uniform spatial grid over the domain. In order to circumvent the
shadowing effects, the spatio-temporal data sets can be used to yield
the ocean surface surrounding the camera in order to rapidly detect the
points under shadows. However, it is more computationally demanding
029-8018/© 2023 Elsevier Ltd. All rights reserved.
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to reconstruct phase-resolved random wave fields based on spatio-
temporal data (Grilli et al. 2011, Nouguier et al. 2013, Desmars et al.
2018, 2020). On the other hand, for X-band radars, one can avoid
shadowing effects by employing a ‘shadowing mask’ in the process
of inversion. In addition to the highly non-uniform gaps between
measurements in space, a relatively small number of aperiodic obser-
vations in time require a post-processing technique (e.g., remapping
method, Belmont et al. 2007) to Fourier transform the wave field into
the frequency domain.

In many marine engineering applications, it is often sufficient to use
linear wave propagation models for a phase-resolved wave prediction
(Hilmer and Thornhill 2015, Wijaya et al. 2015, Naaijen et al. 2018,
Al-Ani et al. 2020). However, for a long-term forecast or nonlinear
irregular sea states with a non-negligible wave steepness, nonlinear
wave effects (particularly the nonlinear dispersion relation) are fairly
significant; nonlinear models should become more appropriate to pro-
vide accurate real-time wave predictions (Guérin et al., 2019). Hence,
in order to achieve proper representations of nonlinear wave fields,
several attempts have been made to employ High-Order Spectral (HOS)
models in the reconstruction and propagation algorithms (Wu 2004,
Blondel et al. 2010, Köllisch et al. 2018, Qi et al. 2018a). Despite
highly accurate phase-resolved descriptions of wave fields, the ap-
proaches based on the HOS method suffer from a much more de-
manding computational cost, particularly in the step of higher-order
assimilation/reconstruction.

Since Nouguier et al. (2009) formulated the Choppy Wave Model
(CWM) on the basis of Lagrangian analysis, CWM has been imple-
mented to ease the computational demands while maintaining the
model accuracy somewhat resulting from the inclusion of nonlinear-
ity (Grilli et al. 2011, Nouguier et al. 2013). In comparison to the
Eulerian approach, the Lagrangian model at the equivalent order ap-
pears to be particularly attractive for the study of waves in severe
sea states and higher-order wave properties such as surface slope
and skewness (Pierson, 1961). This is because the Lagrangian wave
model involves higher-order nonlinear properties than its counterpart
based on Eulerian expansion. Later, Nouguier et al. (2015) developed
a second-order CWM (CWM2) to incorporate the higher nonlinear
wave properties, and Guérin et al. (2019) subsequently proposed the
Improved Choppy Wave Model (ICWM), which extended CWM2 by
introducing a modified nonlinear dispersion relation with corrected ref-
erence particle location. More recently, Desmars et al. (2020) demon-
strated that using ICWM in the data assimilation (or reconstruction;
‘nowcast’) and wave propagation (or prediction; ‘forecast’) provides an
improvement as ICWM accounts for nonlinear wave properties when it
comes to phase shift (or wave celerity).

In the present study, we extend the approach of Desmars et al.
(2020), which investigated the case of unidirectional waves (or long-
crested waves), to the case of multidirectional waves (or short-crested
waves). In the case of multidirectional waves, the computational bur-
den is obviously expected to be even higher because of the many
additional wave components and measurements required to incorporate
directional spreading in the model and data sets, respectively. Accord-
ingly, we suggest an enhanced assimilation procedure in the process of
reconstruction, which is anticipated to lead to a significant reduction
in the calculation effort. Besides the increasing computational load,
the inclusion of directional components in the wave field renders
the nonlinear wave–wave interactions more complex and richer as it
accounts for all the combinations between aligned and non-aligned
wave vectors in the two-dimensional wave field in space, which is likely
to be responsible for redistributing the energy over a wide range of
directions (Janssen et al. 2006, Nouguier et al. 2015). Therefore, we
examine the effects of nonlinearity included in ICWM on solving the
propagation of multidirectional waves.

The process of phase-resolved real-time wave prediction involves
determining the prediction zone in the spatio-temporal domain based
2

on the prescribed wave field in terms of frequency and direction (Wu 𝐤
2004, Naaijen et al. 2014, Qi et al. 2018b). Recently, Qi et al. (2018b)
generalized the theoretical prediction zone by considering a variety
of scenarios such as a single measurement or multiple measurements
which are fixed or moving for either unidirectional or multidirectional
cases. Similarly, we address problems of determining the prediction
zone for the given situation where the measured points are acquired
by a vessel-mounted sensor.

In the following, Section 2 presents an explanation of the wave mod-
els for nowcasting and forecasting. In particular, a simplified and more
efficient assimilation method during nowcast is proposed in Section 2.2.
The analysis of experimental data and the study of the prediction
zone are given in Sections 3 and 4, respectively. The wave predic-
tion algorithms are validated against dedicated tank-scale experiments.
Multi-directional sea-states are generated, which are measured thanks
to a network of wave gauges mimicking the measurements of a LIDAR
in a full-scale real configuration. Section 5 describes the numerical
modeling setups selected in our simulations. Section 6 presents the
comparison between models as well as the comparison with reference
experimental data. Finally, conclusions are given in Section 7.

2. Methods

The algorithms for real-time phase-resolved ocean wave prediction
are composed of two steps: (1) data assimilation to reconstruct the
initial wave conditions or wave amplitude parameters on the basis of
observations; (2) wave propagation to simulate wave surfaces over a
certain zone in the space–time domain (or prediction zone).

2.1. Wave models

Following the approach of Desmars et al. (2020), we chose ICWM
to achieve a good compromise between numerical stability, efficiency,
and model accuracy in terms of higher-order wave properties for the
three-dimensional descriptions of sea surfaces in space and time. In
addition to ICWM, two models are considered to evaluate the effect
of nonlinearity in ICWM: one based on linear wave theory (LWT); the
other based on linear wave theory, but with a corrected dispersion
relationship (LWT-CDR).

2.1.1. LWT
A Cartesian coordinate system (𝑥, 𝑦, 𝑧) = (𝐫, 𝑧) is selected, with

taken positive vertically upwards from the still water level. For
nviscid, incompressible, and irrotational fluid, the linearized water
ave boundary problem with respect to wave steepness yields the free

urface elevation:

LWT(𝑥, 𝑦, 𝑡) =
𝑁
∑

𝑛=1
[𝑎𝑛 cos𝜓𝑛 + 𝑏𝑛 sin𝜓𝑛]

=
𝑁𝜔
∑

𝑛𝜔=1

𝑁𝜃
∑

𝑛𝜃=1
[𝑎(𝑛𝜔 ,𝑛𝜃 ) cos𝜓(𝑛𝜔 ,𝑛𝜃 ) + 𝑏(𝑛𝜔 ,𝑛𝜃 ) sin𝜓(𝑛𝜔 ,𝑛𝜃 )]

(1)

here subscript 𝑛 indicates the 𝑛th wave component, which is defined
s a pair of 𝑛 = (𝑛𝜔, 𝑛𝜃); 𝑛𝜔 and 𝑛𝜃 denote the 𝑛𝜔th wavenumber
omponent (or quasi-frequency component) and the 𝑛𝜃th direction
omponent, respectively. The total number of wave components is 𝑁 =
𝜔 × 𝑁𝜃 and the wave amplitude parameters (𝑎𝑛, 𝑏𝑛) are given by a

ombination of the complex amplitude 𝐴𝑛 and the phase 𝜑𝑛:

𝑎𝑛, 𝑏𝑛) = (𝐴𝑛 cos𝜑𝑛, 𝐴𝑛 sin𝜑𝑛) (2)

nd the linear phase function in space and time is given:

𝑛 = 𝐤𝑛 ⋅ 𝐫 − 𝜔𝑛𝑡 = 𝑘𝑛𝜔 cos 𝜃𝑛𝜃𝑥 + 𝑘𝑛𝜔 sin 𝜃𝑛𝜃 𝑦 − 𝜔𝑛𝜔 𝑡 (3)

n which the wavenumber vector 𝐤𝑛 consists of the wavenumber 𝑘𝑛𝜔
nd the propagating direction 𝜃𝑛𝜃 with respect to the +𝑥-direction
where the unit wave vector is �̂�𝑛𝜃 = 𝐤𝑛∕𝑘𝑛𝜔 = (cos 𝜃𝑛𝜃 , sin 𝜃𝑛𝜃 )):

̂

𝑛 = 𝑘𝑛𝜔𝐤𝑛𝜃 = (𝑘𝑛𝜔 cos 𝜃𝑛𝜃 , 𝑘𝑛𝜔 sin 𝜃𝑛𝜔 ) (4)
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where the wavenumber 𝑘𝑛𝜔 and the wave angular frequency 𝜔𝑛𝜔 satisfy
he linear dispersion relation in deep water 𝜔2

𝑛𝜔
= 𝑔𝑘𝑛𝜔 , where 𝑔 is

he gravitational acceleration. Here, we assumed deep water to develop
he models for conciseness and simplicity, but the extension to a finite
ater depth is readily obtainable.

.1.2. ICWM
Based on the Lagrangian expansion on the ocean surface, Nouguier

t al. (2009) developed CWM, which allows for efficient simulation of
onlinear ocean surfaces. However, a significant drawback of CWM due
o the lack of nonlinearity in its celerity is its limited applicability to sea
tates with weak nonlinearity. Therefore, we here apply ICWM derived
rom the second-order Lagrangian expression, retaining some higher-
rder features (third-order Stokes theory) at the same numerical cost
s CWM (Guérin et al., 2019).

The Lagrangian dynamical formulation is not suitable for most
pplications, since wave information is usually taken in the form of
ime series from stationary gauges or at irregularly distributed locations
n an Eulerian coordinate system. To utilize the wave information based
n the Eulerian system in Lagrangian-based models, it is desirable to
ransform the Lagrangian model into an approximate Eulerian model
y formulating the particle displacement with respect to the instan-
aneous location. This approximation is based on the assumption that
he second-order moment of wave power spectral density is negligible
ompared to the other quantities in the process of wave prediction
lgorithm (Grilli et al. 2011, Nouguier et al. 2013, Desmars et al.
020). The reader is referred to Guérin et al. (2019) and Desmars et al.
2020) for the full derivation of surface elevation at its instantaneous
lane (i.e., 𝐫) from water particle functions in time and the reference
ocations. The explicit form of free surface elevation by ICWM is

ICWM(𝑥, 𝑦, 𝑡) =
𝑁
∑

𝑛=1
[𝑎𝑛 cos𝛹𝑛 + 𝑏𝑛 sin𝛹𝑛 +

1
2
(𝑎𝑛2 + 𝑏𝑛2)𝑘𝑛] (5)

where the nonlinear phase function 𝛹𝑛 involves the nonlinear phase
shift (i.e., summation in Eq. (6)) and Stokes drift 𝐔𝑠0:

𝛹𝑛 = 𝐤𝑛 ⋅ [𝐫 −
𝑁
∑

𝑖=1
�̂�𝑖(−𝑎𝑖 sin �̃�𝑖 + 𝑏𝑖 cos �̃�𝑖)] − �̃�𝑛𝑡 (6)

𝑠0 =
𝑁
∑

𝑛=1
(𝑎𝑛2 + 𝑏𝑛2)𝜔𝑛𝐤𝑛 (7)

n which the corrected wave angular frequency with Stokes drift is �̃�𝑛 =
𝜔𝑛 +

1
2𝐤𝑛 ⋅ 𝐔𝑠0 where a tilde superscript denotes any function modified

ith Stokes drift. Hence, the modified nonlinear phase function �̃�𝑛
ncludes only Stokes drift 𝐔𝑠0:

�̃�𝑛 = 𝐤𝑛 ⋅ 𝐫 − �̃�𝑛𝑡 (8)

e note that the last term in Eq. (5) is introduced to have the zero-
ean sea level.

.1.3. LWT-CDR
As in Desmars et al. (2020), we also consider the resulting ocean

ave surfaces simulated by the linear wave theory with the corrected
ispersion relation (LWT-CDR):

LWT-CDR(𝑥, 𝑦, 𝑡) =
𝑁
∑

𝑛=1
[𝑎𝑛 cos �̃�𝑛 + 𝑏𝑛 sin �̃�𝑛] (9)

hich quantifies separately the effect of the nonlinear phase shift and
tokes drift in the nonlinear phase function 𝛹𝑛 for the multidirectional
ases. For the unidirectional cases reported in Desmars et al. (2020), the
mprovement of ICWM in the prediction of surface elevation is mainly
ttributed to Stokes drift rather than the nonlinear phase shift although
CWM better accounts for some properties related to the wave shape
han LWT-CDR for moderate or severe wave conditions.
3

.2. Data assimilation

Assuming that the amplitudes and wave phases (i.e., 𝑎𝑛 and 𝑏𝑛) over
he prespecified spectrum are unchanged in time and space, we are
ble to estimate the optimal wave amplitude parameters through the
odel-based inversion from the ocean surface measurements �̄�. As in
revious studies such as Blondel et al. (2010), we here choose a varia-
ional assimilation, which uses all the spatio-temporal observations to
inimize a quadratic cost function examining the discrepancy between

he observed (�̄�𝑙) and calculated (𝜂𝑙) wave surface elevations:

(𝐩) = 1
2

𝐿
∑

𝑙=1
[𝜂𝑙(𝐩) − �̄�𝑙]2 =

1
2

𝐽
∑

𝑗=1

𝐾
∑

𝑘=1
[𝜂(𝑗,𝑘)(𝐩) − �̄�(𝑗,𝑘)]2 (10)

where 𝐩 = [𝑎1,… , 𝑎𝑁 , 𝑏1,… , 𝑏𝑁 ]𝑇 is the model coefficient vector to be
btained, and subscript 𝑙 denotes the 𝑙th spatio-temporal measurement
oint, which is defined as a pair of 𝑙 = (𝑗, 𝑘); 𝑗 and 𝑘 refer to the
easured data at the spatial point 𝑟𝑗 = (𝑥𝑗 , 𝑦𝑗 ) and the time 𝑡𝑘,

espectively. The total number of spatio-temporal data points 𝐿 is given
y the amount of data in space 𝐽 at each time and the number of
easured points in time 𝐾 (i.e., 𝐿 = 𝐽×𝐾). Next, the derivatives of

he cost function with respect to the parameters yield the system of
quations with matrix operation 𝐀𝐩 = 𝐁:

𝜕𝐹
𝜕𝑎𝑚

= 0 ⇒
𝐿
∑

𝑙=1
𝜂𝑙
𝜕𝜂𝑙
𝜕𝑎𝑚

=
𝐿
∑

𝑙=1
�̄�𝑙
𝜕𝜂𝑙
𝜕𝑎𝑚

⇒ 𝐴(𝑚,𝑛)𝑝𝑛 = 𝐵𝑚

𝜕𝐹
𝜕𝑏𝑚

= 0 ⇒
𝐿
∑

𝑙=1
𝜂𝑙
𝜕𝜂𝑙
𝜕𝑏𝑚

=
𝐿
∑

𝑙=1
�̄�𝑙
𝜕𝜂𝑙
𝜕𝑏𝑚

⇒ 𝐴(𝑁+𝑚,𝑛)𝑝𝑛 = 𝐵𝑁+𝑚

(11)

where 𝑛, 𝑚 ∈ {1,… , 𝑁}2, and it is notable that the greater size of
data sets 𝐿 in this assimilation process leads to a more accurate
forecast based on the initial wave coefficients since the optimal initial
conditions are determined by an optimization process rather than by
the standard Fourier transform method.

2.2.1. Linear assimilation
The assimilation process is dependent on the wave propagation

model and we here detail the linear assimilation method specifying the
optimal parameters from wave observations:

𝐴𝐿𝑊 𝑇
(𝑚,𝑛) =

𝐿
∑

𝑙=1
cos𝜓𝑛𝑙𝑃𝐿𝑊 𝑇

𝑚𝑙 , 𝐴𝐿𝑊 𝑇
(𝑚,𝑁+𝑛) =

𝐿
∑

𝑙=1
sin𝜓𝑛𝑙𝑃𝐿𝑊 𝑇

𝑚𝑙

𝐴𝐿𝑊 𝑇
(𝑁+𝑚,𝑛) =

𝐿
∑

𝑙=1
cos𝜓𝑛𝑙𝑄𝐿𝑊 𝑇

𝑚𝑙 , 𝐴𝐿𝑊 𝑇
(𝑁+𝑚,𝑁+𝑛) =

𝐿
∑

𝑙=1
sin𝜓𝑛𝑙𝑄𝐿𝑊 𝑇

𝑚𝑙

𝐵𝐿𝑊 𝑇
𝑚 =

𝐿
∑

𝑙=1
�̄�𝑙𝑃

𝐿𝑊 𝑇
𝑚𝑙 , 𝐵𝐿𝑊 𝑇

𝑁+𝑚 =
𝐿
∑

𝑙=1
�̄�𝑙𝑄

𝐿𝑊 𝑇
𝑚𝑙

(12)

ith
𝐿𝑊 𝑇
𝑚𝑙 = cos𝜓𝑚𝑙 , 𝑄𝐿𝑊 𝑇

𝑚𝑙 = sin𝜓𝑚𝑙 (13)

here 𝜓𝑚𝑙 = 𝐤𝑚𝑙 ⋅ 𝐫𝑙 − 𝜔𝑚𝑡𝑙.

.2.2. Previous nonlinear assimilation
Desmars et al. (2020) derived the nonlinear assimilation problem

o determine estimates of wave amplitude parameters in ICWM from
ave measurements:

𝐴𝐼𝐶𝑊𝑀
(𝑚,𝑛) =

𝐿
∑

𝑙=1
(cos𝛹𝑛𝑙 +

1
2
𝑎𝑛𝑘𝑛)𝑃 𝐼𝐶𝑊𝑀

𝑚𝑙

𝐴𝐼𝐶𝑊𝑀
(𝑚,𝑁+𝑛) =

𝐿
∑

𝑙=1
(sin𝛹𝑛𝑙 +

1
2
𝑏𝑛𝑘𝑛)𝑃 𝐼𝐶𝑊𝑀

𝑚𝑙

𝐼𝐶𝑊𝑀
(𝑁+𝑚,𝑛) =

𝐿
∑

(cos𝛹𝑛𝑙 +
1𝑎𝑛𝑘𝑛)𝑄𝐼𝐶𝑊𝑀

𝑚𝑙

𝑙=1 2
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𝐴𝐼𝐶𝑊𝑀
(𝑁+𝑚,𝑁+𝑛) =

𝐿
∑

𝑙=1
(sin𝛹𝑛𝑙 +

1
2
𝑏𝑛𝑘𝑛)𝑄𝐼𝐶𝑊𝑀

𝑚𝑙

𝐼𝐶𝑊𝑀
𝑚 =

𝐿
∑

𝑙=1
�̄�𝑙𝑃

𝐼𝐶𝑊𝑀
𝑚𝑙 , 𝐵𝐼𝐶𝑊𝑀

𝑁+𝑚 =
𝐿
∑

𝑙=1
�̄�𝑙𝑄

𝐼𝐶𝑊𝑀
𝑚𝑙

(14)

ith
𝐼𝐶𝑊𝑀
𝑚𝑙 = cos𝛹𝑚𝑙 − [𝑘𝑚(𝑎𝑚 sin𝛹𝑚𝑙 − 𝑏𝑚 cos𝛹𝑚𝑙)

× {sin �̃�𝑚𝑙 − [𝑘𝑚(𝑎𝑚 cos �̃�𝑚𝑙 + 𝑏𝑚 sin �̃�𝑚𝑙) + 1]

× 𝑎𝑚𝜔𝑚𝑘𝑚𝑡𝑙}] + 𝑎𝑚𝑘𝑚
𝑄𝐼𝐶𝑊𝑀
𝑚𝑙 = sin𝛹𝑚𝑙 − [𝑘𝑚(𝑎𝑚 sin𝛹𝑚𝑙 − 𝑏𝑚 cos𝛹𝑚𝑙)

× {− cos �̃�𝑚𝑙 − [𝑘𝑚(𝑎𝑚 cos �̃�𝑚𝑙 + 𝑏𝑚 sin �̃�𝑚𝑙) + 1]

× 𝑏𝑚𝜔𝑚𝑘𝑚𝑡𝑙}] + 𝑏𝑚𝑘𝑚

(15)

where 𝛹𝑚𝑙 = 𝐤𝑚𝑙 ⋅ [𝐫𝑙 −
∑𝑁
𝑖=1 (−𝑎𝑖 sin �̃�𝑖𝑙 + 𝑏𝑖 cos �̃�𝑖𝑙)] − �̃�𝑚𝑡𝑙 and �̃�𝑖𝑙 =

𝐤𝑖 ⋅ 𝐫𝑙 − �̃�𝑖𝑡𝑙. Here, because the nonlinear phase function and thus
𝐀 and 𝐁 include the amplitude parameters, an iterative process is
necessary. The solution at the iteration number 𝑞 can be written 𝐩𝑞 .
The initial guess for the model parameter vector 𝐩0 is obtained directly
from the linear solution and the model parameter vector 𝐩𝑞+1 at the
current iteration 𝑞 + 1 is obtained based on the wave parameters 𝐩𝑞
at the previous iteration q. The iterations are performed until the
relative error between two successive iteration solutions is less than
the prescribed tolerance of 10−3. The maximum iteration number is set
to 100 to consider the case that converges too slowly and/or diverges.

When we reconstruct the ocean surface over some prespecified
domain with frequency and direction cutoffs, especially for multidi-
rectional waves (or short-crested waves), the severely ill-conditioned
coefficient matrix 𝐀 could lead to an ill-posed nonlinear assimilation
problem. In order to overcome this difficulty, we apply Tikhonov
regularization which yields consistent solutions by minimizing the
approximated error function:

min{‖𝐀𝐩 − 𝐁‖2 + 𝑟2‖𝐩‖2} (16)

where 𝑟 is the regularization parameter and ‖ ⋅ ‖ denotes the Eu-
clidean norm. By employing the ‘‘L-curve’’ method, the regularization
parameter is determined (Calvetti et al. 2004, Hansen 2000).

2.2.3. Simplified nonlinear assimilation
As shown in Eqs. (11) through (15), the coefficients matrix 𝐀 is for-

mulated as a multiplication of two factors: the first factor corresponds
to the coefficient of 𝑎𝑛 or 𝑏𝑛 in the equation of wave surface elevation
(i.e., 𝜂𝑙), the second factor represents the derivative of the surface
elevation with respect to the amplitude parameter (i.e., 𝑃𝑚𝑙 =

𝜕𝜂𝑙
𝜕𝑎𝑚

or 𝑄𝑚𝑙 =
𝜕𝜂𝑙
𝜕𝑏𝑚

). The derivation of wave model inversion is given by
minimizing the sum of squares of the errors between observations and
calculations of each model, therefore, the two factors rely on the wave
propagating models (i.e., LWT, LWT-CDR, and ICWM). In comparison
to the first factors, the second factors (𝑃 and 𝑄) retaining the derivative
of the nonlinear phase function with respect to the amplitude coeffi-
cients are thus more complicated and sensitive to 𝑎𝑛 and 𝑏𝑛. In the
present study, in order to gain numerical stability and efficiency in
the process of nonlinear assimilation, the nonlinear formulation can be
simplified by truncating 𝑃 and 𝑄 up to 𝑂(1). The simplified assimilation
nonlinear method for ICWM (ICWM-S) is equivalent to that constructed
with the first parts of ICWM and the second parts of LWT:

𝐴𝐼𝐶𝑊𝑀−𝑆
(𝑚,𝑛) =

𝐿
∑

𝑙=1
(cos𝛹𝑛𝑙 +

1
2
𝑎𝑛𝑘𝑛)𝑃𝐿𝑊 𝑇

𝑚𝑙

𝐴𝐼𝐶𝑊𝑀−𝑆
(𝑚,𝑁+𝑛) =

𝐿
∑

(sin𝛹𝑛𝑙 +
1 𝑏𝑛𝑘𝑛)𝑃𝐿𝑊 𝑇

𝑚𝑙
4

𝑙=1 2
𝐴𝐼𝐶𝑊𝑀−𝑆
(𝑁+𝑚,𝑛) =

𝐿
∑

𝑙=1
(cos𝛹𝑛𝑙 +

1
2
𝑎𝑛𝑘𝑛)𝑄𝐿𝑊 𝑇

𝑚𝑙

𝐴𝐼𝐶𝑊𝑀−𝑆
(𝑁+𝑚,𝑁+𝑛) =

𝐿
∑

𝑙=1
(sin𝛹𝑛𝑙 +

1
2
𝑏𝑛𝑘𝑛)𝑄𝐿𝑊 𝑇

𝑚𝑙

𝐵𝐼𝐶𝑊𝑀−𝑆
𝑚 =

𝐿
∑

𝑙=1
�̄�𝑙𝑃

𝐿𝑊 𝑇
𝑚𝑙 , 𝐵𝐼𝐶𝑊𝑀−𝑆

𝑁+𝑚 =
𝐿
∑

𝑙=1
�̄�𝑙𝑄

𝐿𝑊 𝑇
𝑚𝑙

(17)

This simplification can be justified on the grounds that the wave
teepness is sufficiently small (𝑎𝑘, 𝑏𝑘 ≪ 1). As mentioned above, the
terative process is required to find the estimates of wave amplitude
arameters in ICWM, which was with the maximum iteration number
f 100 as well as an error tolerance of 10−3. This modified assimila-
ion approach would likely enhance nonlinear model stability while
aintaining model accuracy if it could reduce the number of iterations

equired for numerical convergence while achieving consistent results.
ence, this approach is likely to allow for real-time use, especially for
ultidirectional cases where nonlinear models become far more numer-

cally challenging. We also developed a simplified model inversion for
WT-CDR since the coefficient matrix 𝐀 for LWT-CDR also involves the
mplitude coefficients and thus iterations are required. The previous
nd simplified formulations for LWT-CDR are provided in Appendix.

. Experimental data

The experimental data were obtained during one of the campaigns
f the FLOATECH project conducted in the hydrodynamic and ocean
ngineering tank at École Centrale de Nantes (ECN) (Bonnefoy et al.,
023). The tank is a 30-m wide, 50-m long, and 5-m deep water testing
olume. Irregular sea states were generated using a Pierson–Moskowitz
pectrum (Pierson and Moskowitz, 1964) with a peak period 𝑇𝑝 = 12
and a significant wave height 𝐻𝑠 = 7 m at full scale. The test
as performed at the geometric scale of 1:40 (1:

√

40 Froude scaling
for time). This wave field corresponds to moderate nonlinear waves
(𝐻𝑠∕𝐿𝑝 = 3.1%) in deep water (𝑘𝑝𝑑 ≈ 5.6), with a peak wavelength
𝐿𝑝 = 225 m (5.62 m in tank scale). Unidirectional and multidirectional
waves are generated by a wavemaker at one end of the tank, composed
of 48 individual hinged flaps, and absorbed by a 7-m long passive
stainless steel beach at the other end.

In order to investigate the effects of directional spreading on the
performances of wave models for multidirectional wave fields toward
the location of a floating wind turbine, three sea states with a different
directional spreading factor 𝑠 were selected as shown in Table 1 and
Fig. 1. For completeness, we also considered a unidirectional case
with the same values of 𝐻𝑠 and 𝑇𝑝 where 𝑠 = ∞ denotes the long-
rested waves in Table 1. Wave directionality is taken into account
ith a complex angular spreading function proposed by Mitsuyasu et al.

1975):

(𝜃) = 22𝑠−1
180

(𝑠!)2

(2𝑠)!
cos2𝑠

( 𝜃
2

)

for 𝜃 ∈ [−180◦, 180◦] (18)

where the average direction of propagation is 0◦. The analysis of the
measured wave elevation starts at around 𝑡𝑎∕𝑇𝑝 = 158, the time at
which we consider that all the wave components generated by the
wavemaker have reached the end of the wave measurement zone and
have evolved in a sufficiently long period of time by nonlinear effects.
The wave elevation was recorded until the wavemaker was stopped;
therefore, the end of the time series measured in experiments is that
used for the prediction study 𝑡𝑏∕𝑇𝑝 ≈ 664, with 𝑡𝑏 − 𝑡𝑎 ≈ 506𝑇𝑝.

Fig. 2 presents a synthetic optical remote sensing system mounted
on an offshore structure model at a location of (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 ) =
19.86 m, 15 m, 30 m) and the distribution of the wave measurements.

This network of wave measurements has been chosen to have a pre-
diction horizon suitable for the control strategies of the wind turbines

tested during another experimental campaign, where it should require
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Fig. 1. Directional spreading for multidirectional cases ( : Case A; : Case B; : Case C).
Fig. 2. Spatial sampling of wave field by an optical system (∙: wave observations; ▴: location of turbine, WG21; ■: three additional downstream WG22, WG23, and WG24).
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Table 1
Directional information of experimental data and numerical simulations.

Case 𝑠 𝐽𝜃 𝑁𝜃

A 15 11 9
B 25 9 7
C 60 7 5
D ∞ 1 1

a relatively short time horizon in wave prediction. Pointing at some
distance (𝛼 = 76◦) with vertical and horizontal aperture angles (𝛼𝑎 =
20◦ and 𝛽𝑎 = 48◦ to 76◦) and using a matrix of 𝐽𝑟×𝐽𝜃 rays with 𝐽𝑟 = 20
eams perpendicular to the 𝑥-axis at 𝑦 = 𝑦𝑐 , measurement points are

thus configured in the shape of a radial segment (red shading in Fig. 2).
In this experiment, the actual variations in probe location that would
be induced by the actual intersection of an optical ray with an irregular
evolving free surface were neglected.

The 20 wave gauges installed on a straight structure are allowed to
rotate with the following angles in the 𝑥𝑦-plane: {−38◦, −32◦, −24◦,
16◦, −8◦, 0◦, 8◦, 16◦, 24◦, 32◦, 38◦} where 0◦ corresponds to the
tructure parallel to the 𝑥-axis. The sea state had to be repeated
everal times to make the measurements with different positions of
his structure carrying the wave gauges. A total of 47 realizations of
he same wave field was performed to assess the repeatability of the
xperiments; the significant wave height has been estimated for each
ealization and we found a variation of 6 mm at tank scale (0.24 m at
ull scale), which indicates the setup shows satisfactory repeatability.
y using the rotating structure, we repeated 𝐽 times with the different
5

𝜃 𝑆
ngles so that it was possible to construct the network of wave gauges
epicted in Fig. 3(a) which mimics the observations by an optical sensor
ith a horizontal aperture angle.

The spacing between the wave gauges varies with the distance
rom the center of rotation in order to replicate the distance between
eam optical measurements, at varying distances from a remote sensor
ounted on the turbine (as shown in Fig. 3). The range of the angular
ositions of the wave gauges was chosen depending on the directional
preading such that Case A with the greatest spreading used all the
ange of positions while in Case C, with the smallest directionality,
he wave surface elevations were recorded along the range from −24◦
o 24◦. The data of water surface variations were recorded at four
dditional downstream wave gauges, including the location of the wind
urbine (referred to as WG21) and WG24 for the gauge 0.12𝐿𝑝 far away
rom WG21.

. Prediction zone

.1. Cutoff frequencies and directions

In order to provide the spatio-temporal prediction zone in which
he process of reconstruction and prediction of the phase-resolved wave
ield is valid, we here prescribe the wave field in terms of frequency and
irection, namely, frequency and direction bandwidths. Following the
ethod in Desmars et al. (2020), the upper and lower cutoff limits in

requencies are set by using a small fraction 𝜇 = 0.05 of the spectral
nergy density at peak frequency:

(19)
𝜂(𝜔min) = 𝑆𝜂(𝜔max) = 𝜇𝑆𝜂(𝜔𝑝)
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Fig. 3. (a) Location of wave gauges; (b, c) wave gauges mounted on rotating structure (∙: wave observations; ▴: location of turbine, WG21; ■: three additional downstream WG22,
WG23, and WG24).
where 𝑆𝜂(𝜔) denotes the wave spectrum at the angular frequency 𝜔 and
the group velocities 𝑐𝑔,max and 𝑐𝑔,min are related to 𝜔min and 𝜔max by the
deep water approximation of the linear dispersion relation, respectively
(i.e., 𝑐𝑔,max = 𝑔∕2𝜔min and 𝑐𝑔,min = 𝑔∕2𝜔max). Further, the directional
cutoff limits [𝜃min, 𝜃max] are determined as 𝜃min = −45◦ and 𝜃max = 45◦

since the direction range retains a significant percentage of the spectral
energy for all the cases of the present study (e.g., 97.3% in Case A with
the greatest directional spread, 𝑠 = 15).

4.2. Multidirectional prediction zone

We defined the finite frequency and direction bandwidths to de-
velop the spatio-temporal prediction zone in which the analysis of
wave kinematics and dynamics can be reconstructed and predicted.
In this section, we therefore provide the multidirectional prediction
zone for the prescribed wave field on the basis of the multidirectional
measurements by an optical system mounted on the offshore structure
over an assimilation time 𝑇𝑎. The prediction zone for the currently
sampled observations in space and time can be obtained by applying
the algorithm of developing the prediction zone for multidirectional
waves proposed by Qi et al. (2018b) to the present condition. The
unidirectional boundary of the predictable spatio-temporal domain is
illustrated by an infinite strip perpendicular to the wave propagation
direction 𝜃, and thus the multidirectional prediction zone is given by
the intersection of the unidirectional prediction zone over all the wave
propagating directions, which is limited to 𝜃 ∈ [−45◦, 45◦] in the present
study. The direction may have to be restricted within a narrower range
in reality since the optical system has a more limited finite range of
direction arriving at the floating offshore wind turbines. Further, the
prediction zone is governed by the group velocity, which was confirmed
by several numerical investigations (Wu 2004, Naaijen et al. 2014)
and by mathematical analysis (Qi et al., 2018b). For simplicity, we
here assume linearized wave theory in determining the prediction zone.
Readers may refer to Qi et al. (2018a) for the nonlinear prediction zone
incorporating the second-order nonlinear dispersion effects.

Fig. 4 shows the observation or prediction zone, in which red and
gray shadings illustrate the process of nowcast and forecast, respec-
tively. With 𝐽𝑟×𝐽𝜃 measurement points shown in Fig. 4(a), the obser-
vation area is bounded as a shape of radial segment 𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻𝐼
in Fig. 4(b), where points 𝐵 to 𝐹 are measurements located on the
left boundary of the observation zone, points 𝐼 and 𝐻 are the farthest
6

points from the wavemaker and on the right boundary of the observa-
tion zone, point 𝐴 is the point of intersection between the left boundary
of 𝜃min = −45◦ and the right boundary of 𝜃max = 45◦ (i.e., 𝑥 = 𝑦′+𝑥𝐵−𝑦′𝐵
and 𝑥 = −𝑦′+𝑥𝐼+𝑦′𝐼 in Fig. 4(b), respectively), and point 𝐺 is a reflected
point of point 𝐴 over 𝑦′ = 0 (or 𝑦 = 𝑦𝑐). Due to the small distances in
the 𝑥-direction between points in the first column, we can approximate
the left boundary of the observation and prediction zones by the ones
with three measurements 𝐵, 𝐷, and 𝐹 . A similar approximation for the
right boundary with a single point 𝐻 can also be made from Fig. 4(c).
As in the unidirectional case from Desmars et al. (2020), when the
spatio-temporal data sets are considered for an assimilation procedure
with an assimilation time 𝑇𝑎, we have the extended prediction zone
due to the right boundary of the prediction zone that propagates with
the minimum group velocity 𝑐𝑔,min over the assimilation time 𝑇𝑎 (see
Fig. 4(d)).

4.3. Temporal evolution of the prediction zone

From the latest time of wave reconstruction 𝑡 = 𝑡𝑟 (or by the index
for time 𝑘 = 𝐾) or when one starts to forecast the wave field by the
assimilated wave information, the left boundary propagates with 𝑐𝑔,max
or the speed related to 𝑐𝑔,max whereas the right boundary is determined
by the values with 𝑐𝑔,min. Accordingly, the predictable domain begins
to shrink and finally disappears as the left boundary moves ahead of
the right boundary.

Fig. 5 illustrates the temporal evolution of the prediction zone over
the time duration 𝑡′ = 𝑡− 𝑡𝑟 ∈ [0, 𝑡′3+] (where 𝑡′3+ is when the prediction
zone disappears). Since the 𝑥-component of the group velocity of 𝜃
(i.e., 𝑐𝑔∕cos 𝜃) increases with the propagating direction 𝜃, the lines with
the greatest 𝜃 that pass through the measurement points (i.e., 𝐵, 𝐷, and
𝐹 ) determine the left boundary of the prediction zone. Therefore, the
prediction zone around point 𝐷 is bounded by the segments 𝐵𝐷 and
𝐷𝐹 propagating with 𝑐𝑔,max

cos(𝜃𝐵∕2)
, where half of the horizontal aperture

angle is 𝜃𝐵 = 𝛽𝑎
2 . Also, the area outside of points 𝐵 and 𝐹 is defined by

the lines of 𝜃𝑚𝑖𝑛−45◦ and 𝜃𝑚𝑎𝑥 = 45◦, which propagate fastest in the +𝑥-
direction and thus the left boundary is eventually determined by these
two lines. On the other hand, given the single fixed probes 𝐻 , the right
boundary is given by the intersection of the prediction zone over all the
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Fig. 4. Observation and prediction zones: (a) measurement points; (b) observation zone; (c) (𝑡 − 𝑡𝑟) = −𝑇𝑎; (d) (𝑡 − 𝑡𝑟) = 0 ( : left boundary; : right boundary; red shading:
nowcast; gray shading: forecast).

Fig. 5. Temporal evolution of prediction zone: (a) 0 < (𝑡 − 𝑡𝑟) < 𝑡′1; (b) 𝑡′1 < (𝑡 − 𝑡𝑟) < 𝑡′2; (c) 𝑡′2 < (𝑡 − 𝑡𝑟) < 𝑡′3; (d) 𝑡′3 < (𝑡 − 𝑡𝑟).
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wave propagating directions, corresponding to the fan-shaped line (Qi
et al., 2018b):

max

⎡

⎢

⎢

⎢

⎣

𝑦′ + 𝑥𝐵 − 𝑦′𝐵 + 𝑐𝑔,max
cos 45◦ 𝑡

′,
−𝑦′ + 𝑥𝐹 + 𝑦′𝐹 + 𝑐𝑔,max

cos 45◦ 𝑡
′,

± tan 𝜃𝐵
2 𝑦

′ + 𝑥𝐷 + 𝑐𝑔,max
cos(𝜃𝐵∕2)

𝑡′

⎤

⎥

⎥

⎥

⎦

≤ 𝑥 ≤ min
𝜃∈[−45◦ ,45◦]

[

− tan 𝜃𝑦′ + 𝑥𝐻
+ 𝑐𝑔,min(𝑇𝑎+𝑡′)

cos 𝜃

]

(20)

where 𝑦′ = 𝑦 − 𝑦𝑐 and 𝑡′ = 𝑡 − 𝑡𝑟≥ − 𝑇𝑎. The temporal prediction zone
𝑡′ ∈ [𝑡′min, 𝑡

′
max] at any location along the centerline 𝑦 = 𝑦𝑐 can be

btained by manipulating Eq. (20) with respect to time:

′
min = max[−𝑇𝑎,−𝑇𝑎 +

𝑥 − 𝑥𝐻
𝑐𝑔min

]

𝑡′max = min[
𝑥 − 𝑥𝐷
𝑐𝑔max

cos(𝜃𝐵∕2),
𝑥 − 𝑥𝐵 + 𝑦′𝐵

𝑐𝑔max
cos 45◦]

(21)

which can be reduced to the temporal prediction zone of the unidirec-
tional case by substituting 𝜃𝐵 = 0. In addition, because the segments

ith the different propagating speeds in the +𝑥-direction compose the
oundaries of the prediction zone, as time increases, the prediction
one evolves with four different shapes including the last stage with
o prediction zone in Fig. 5(d):

′
1 =

𝑥𝐷 + 𝑦′𝐵 − 𝑥𝐵
𝑐𝑔max∕ cos 45◦ − 𝑐𝑔max∕ cos(𝜃𝐵∕2)

′
2 =

𝑥𝐻 − 𝑥𝐵 + 𝑦′𝐵
𝑐𝑔max∕ cos 45◦

′
3 =

𝑥𝐻 − 𝑥𝐵 + 𝑦′𝐵 + 𝑐𝑔min𝑇𝑎
𝑐𝑔max∕ cos 45◦ − 𝑐𝑔min∕ cos 45◦

(22)

. Numerical simulations

.1. Normalized misfit error

In previous studies (Naaijen et al. 2014, Desmars et al. 2020), to
ccurately evaluate the performance of numerical models, an ensemble
verage of prediction error was employed by using partly overlapping
urface samples, shifted in time by 𝛥𝑡. The size of the time shift of
he surface sample 𝛥𝑡 is directly related to the total number of surface
amples 𝑁𝑠 required to yield the convergence. Desmars et al. (2020)
howed that a smaller 𝛥𝑡 results in faster convergence for the prediction
rror and thus leads to a reduction in the total time duration during
he assimilation procedure over 𝑁𝑠 samples (i.e., 𝑇𝑐 = 𝑇𝑎 + (𝑁𝑠 −
)𝛥𝑡) although the value of the convergence error is independent of
𝑡. Accordingly, we used 𝛥𝑡∕𝑇𝑝 = 0.053 which is close to the value
n Desmars et al. (2020).

The ensemble average of the normalized misfit error is calculated to
uantify the model performances over the predictable domain. It ranges
rom 0 to ∞, with 0 corresponding to the ideal model:

(𝑥, 𝑦, 𝑡) = 1
𝑁𝑠

𝑁𝑠
∑

𝑖=1

|

|

|

𝜂𝑝𝑟𝑒𝑑,𝑖 (𝑥, 𝑦, 𝑡) − 𝜂𝑟𝑒𝑓 ,𝑖 (𝑥, 𝑦, 𝑡)
|

|

|

𝐻𝑠
(23)

where 𝜂𝑝𝑟𝑒𝑑,𝑖 and 𝜂𝑟𝑒𝑓 ,𝑖 are the predicted and observed surface elevation
of the 𝑖th surface sample, respectively. In order to assess the overall
prediction error over the prediction zone in time at a specific point
(𝑥, 𝑦), the misfit error is further averaged over the time prediction zone
[𝑡min, 𝑡max]:

𝜀𝑝 (𝑥, 𝑦) = 1
𝑡max − 𝑡min ∫

𝑡max

𝑡min

𝜀 (𝑥, 𝑦, 𝑡) 𝑑𝑡 (24)

Fig. 6 illustrates the averaged prediction error between the surface
predicted by ICWM and the reference surface against 𝑇𝑐∕𝑇𝑝. Here,
𝑇𝑎∕𝑇𝑝 ≈ 5.2 was used, and the study of the assimilation time 𝑇𝑎 will be
etailed in the next section. For all the cases, the prediction errors are
8

onverged for 𝑇𝑐∕𝑇𝑝 ≈ 25 corresponding to 𝑁𝑠 = 400. Further, in order
to examine the effect of directional spreading on the rate of prediction
error convergence, we calculated the coefficients of variance of the
misfit error (COV, the ratio of the standard deviation to the mean)
over 𝑁𝑠 samples. While the value of COV for multidirectional cases was
around 10%, the unidirectional case D yielded a COV value of about
17%. These results are expected since the numbers of wave parameters
and measurements increase significantly when addressing directional
spreading in multidirectional cases. Nevertheless, the convergence of
the prediction error with respect to 𝑇𝑐∕𝑇𝑝 (or 𝑁𝑠) is quite acceptable
for all the cases in this study.

5.2. Parameters of the prediction algorithm

Nouguier et al. (2013) employed a single snapshot of the ocean
surface made by a LIDAR camera at grazing incidence in the assim-
ilation procedure and showed that the model prediction from the
reconstructed wave field depends on the footprint area size by the
optical system. Recently, Desmars et al. (2020) defined the bandwidths
of the reconstructed wave field based on the largest gap between two
gauges and the distance that the upper boundary travels with the
slowest group velocity within the frequency bandwidth 𝑐𝑔,𝑁𝜔 over the
assimilation time 𝑇𝑎 leading to the extended reconstructed wave field.

The number of measurement points in time 𝐾 relies on the assimi-
lation time 𝑇𝑎, which is thus strongly related to the model accuracy as

ell as to numerical cost. As a result of sensitivity analysis with respect
o the assimilation time 𝑇𝑎 and to provide a good compromise between
omputational efficiency and numerical accuracy, we use 𝑇𝑎∕𝑇𝑝 ≈ 5.2

(or 𝐾 = 100) which yields the convergence error as shown in Fig. 7. It
is notable that the required numbers of peak wave periods for the total
time window and the assimilation time (i.e., 𝑇𝑐∕𝑇𝑝 and 𝑇𝑎∕𝑇𝑝) yielding
the convergence error in the present cases are less than that in the case
from Desmars et al. (2020), which were 𝑇𝑐∕𝑇𝑝 ≈ 60 and 𝑇𝑎∕𝑇𝑝 ≈ 7.
This is an expected result since the propagating distance from the
observation zone to the location of the turbine (i.e., from WG20 to
WG21, about 0.15𝐿𝑝) was smaller than the condition in Desmars et al.
(2020), where the distance was about 0.4𝐿𝑝.

From the numerical point of view, we should use the extensive
andwidth which is independently determined from the one for the
rediction zone (Eq. (19)). This is because the wave information used
n the assimilation and prediction procedure directly depends on the
istance in the 𝑥-direction between the beginning and end of the wave
auges for each case (𝑥𝑏 and 𝑥𝑒) and the advection of wave information
uring 𝑇𝑎. On the one hand, 𝑥𝑏 is set to the same location, the first point
n the structure of 0◦ (WG1) for all the cases because the structure
otating about the location of the turbine provides the measurement
one. On the other hand, 𝑥𝑒 varies depending on the case due to
he decreasing distance in the 𝑥-direction between WG21 and the last
oint of the structure with rotating angles. Thus, we have the greatest
istance between 𝑥𝑏 and 𝑥𝑒 in Case A including all the angles from −38◦

o 38◦ in the observations of ocean surface despite the minor differences
etween cases. The minimum wavenumber 𝑘1 is then given by:

1 =
2𝜋

𝑥𝑒 − 𝑥𝑏 + 𝑐𝑔,𝑁𝜔𝑇𝑎
(25)

where the slowest group velocity 𝑐𝑔,𝑁𝜔 corresponds to the group veloc-
ity of the 𝑁𝜔th wave component (𝑐𝑔,𝑁𝜔 = 1

2

√

𝑔∕𝑘𝑁𝜔 ). Therefore, it is
necessary to specify the last frequency component’s wavenumber 𝑘𝑁𝜔
in advance above which the description of the wave field is negligible
and can thus be discarded. In the previous study (Desmars et al., 2020),
𝑘𝑁𝜔 = 20𝑘𝑝 with 𝑁𝜔 = 50 was used, which satisfies the Nyquist–
Shannon sampling theorem 20𝑘𝑝 < min

𝛥𝑥
2𝜋
2𝛥𝑥 . In order to achieve a

good balance between computational cost and model accuracy, we
conducted the sensitivity analysis with respect to 𝑘𝑁𝜔 , which is omitted
here for brevity. As a result, we use 𝑘𝑁𝜔 = 12𝑘𝑝 with 𝑁𝜔 = 30, which

maintains practically the same accuracy (i.e., at WG21) but requires
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Fig. 6. Prediction error of ICWM at WG21 against 𝑇𝑐∕𝑇𝑝 ( : Case A; : Case B; : Case C; : Case D).
Fig. 7. Prediction error of ICWM at WG21 against 𝑇𝑎∕𝑇𝑝 ( : Case A; : Case B; : Case C; : Case D).
Fig. 8. Prediction error of ICWM at WG21 against 𝑁𝜃 ( : Case A; : Case B; : Case C; : Case D).
s

significantly less computational effort (about 30%) compared to 𝑘𝑁𝜔 =
20𝑘𝑝 with 𝑁𝜔 = 50 for all the directional cases.

We note that the same directional cutoff limits as for the prediction
zone [𝜃min = −45◦, 𝜃max = 45◦] are used to describe the ocean surface
as well. To optimize the number of directional components 𝑁𝜃 , we also
studied the convergence of the averaged prediction error at WG21 in
the temporal prediction zone. Fig. 8 shows the results of sensitivity
9

c

analysis with respect to the optimal size of wave component in direction
for each case yielding the converged error (see Table 1). The dash–
dot line indicates the converged error for the unidirectional case D as
a reference error. As expected, the greater 𝑁𝜃 gives a smaller error,
particularly in comparison with the unidirectional approach (𝑁𝜃 = 1),
ince the multidirectional approach reduces the misfit error 𝜀𝑝 signifi-
antly. Two features are apparent with increasing directional spreading:
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Fig. 9. Comparison of prediction error between the previous assimilation from Desmars et al. (2020) and the simplified assimilation at WG21 ( : ICWM; : LWT-CDR).
1) a larger reduction in the prediction error for the directional cases
hanks to the consideration of the directional component compared
o the unidirectional approach with 𝑁𝜃 = 1; (2) an increase in the
ptimized number of 𝑁𝜃 (despite minor differences between using 𝑁𝜃
arger or equal to 5 for each case). The determined values of 𝑁𝜃 meet

the condition for the unique solution in reconstruction for all the cases
(𝑁𝜃 < 𝐽 = 𝐽𝑟×𝐽𝜃 , Qi et al. 2018a). Owing to the small number
of directional components 𝑁𝜃 , we use a linear distribution of the
wavenumbers in direction, while a logarithmically spaced wavenumber
in frequency is used to allow a better focus on the part of the spectrum
around the peak wavenumber.

5.3. Effect of simplified assimilation

In addition to the wave frequency component, the directional com-
ponent is considered to reconstruct the initial wave conditions for
multidirectional waves from the two-dimensional wave measurements
on the 𝑥𝑦-plane. Since the numbers of wave components and mea-
surements are multiplied by a factor of 𝑁𝜃 and 𝐽𝜃 compared to the
unidirectional case, respectively, the computation time increases signif-
icantly during the real-time wave prediction. Thus, as the numbers of
wave components and observation points increase with the directional
spreading, real-time wave prediction becomes more prohibitive, in
particular for the advanced nonlinear model (i.e., ICWM). To over-
come this real-time constraint, we developed a simplified nonlinear
assimilation for ICWM and LWT-CDR (see Section 2.2.3 and Appendix,
respectively) by simplifying part of the coefficients matrix 𝐀. In this
section, in order to justify the simplified approach for nonlinear assim-
ilation, we investigate the effect of the simplified assimilation in terms
of computational efficiency and stability as well as model accuracy.

The real-time system generally has a total numerical time 𝑇𝑡𝑜𝑡𝑎𝑙,
composed of times for nowcast 𝑇𝑛𝑜𝑤𝑐𝑎𝑠𝑡 and forecasts 𝑇𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡, which
must be smaller than the length of the practical prediction zone in time
at the location of the turbine (i.e., 𝑇𝑡𝑜𝑡𝑎𝑙 < 𝑡′max = 𝑡max − 𝑡𝑟, see Eq. (21)).
The length of the practical prediction zone from the latest time of
nowcast 𝑡𝑟 until WG21 falls outside the prediction zone 𝑡max is about
1.8𝑇𝑝 = 21.6 s at full scale. Fig. 9 compares the averaged prediction
error by both assimilation methods for each model at WG21. All the
computations were run on an Intel(R) Core(TM) i7-8700 CPU 3.20 GHz.
Table 2 compares the numerical efficiency (time duration) and stability
(iteration number and convergence probability) between the previous
assimilation from Desmars et al. (2020) (hereinafter Previous in figures
and tables) and the present assimilation (hereinafter Simplified in
figures and tables) of each wave model for one surface sample in Case
A, the most demanding case for real-time prediction with the greatest
𝐽 and 𝑁 .
10

𝜃 𝜃
Table 2
Comparison of numerical cost and stability between the assimilation methods for Case
A at WG21 where the practical prediction zone in time 𝑡max − 𝑡𝑟 ≈ 21.6 s at full scale.

Model LWT ICWM LWT-CDR

Previous Simplified Previous Simplified

𝑇𝑛𝑜𝑤𝑐𝑎𝑠𝑡 (s) 1.1 95.7 7.6 52.1 3.0

𝑇𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 (s) < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

𝑇𝑡𝑜𝑡𝑎𝑙 (s) 1.7 95.7 7.6 52.1 3.0

Iteration number
(max = 100)

– 22.7 5.8 15.9 3.0

Convergence
probability
(𝑁𝑠 = 400)

– 83.5%
(334)

98.5%
(394)

88%
(352)

100%
(400)

It is confirmed that the time duration for the forecast appears
to be negligible in comparison to the time duration for the nowcast
as well as the practical time prediction zone. As expected, the most
mature models with more nonlinearity (i.e., ICWM) and the previous
assimilation are computationally more expensive and unstable than
other wave models and simplified ones, respectively. In addition, com-
pared to the previous assimilation, the simplified method provides
almost the same results for both ICWM and LWT-CDR as shown in
Fig. 9. It is notable that the difference between the two assimilation
methods is negligible with respect to the initial errors. Therefore, the
simplified one is even more advantageous for the real-time system of
these multidirectional cases with greater spreading. More specifically,
with the previous assimilation, LWT-CDR cannot satisfy the real-time
constraints, while the simplified one renders not only LWT-CDR but
also ICWM to accomplish the real-time prediction in time.

6. Results

6.1. Evolution of surface elevation and prediction error

Fig. 10 compares the time evolution of wave surface elevation at
the location of the turbine (i.e., WG21) by all the models including
LWT, LWT-CDR, and ICWM to that of experimental reference data for
all the cases in Table 1. All the model predictions match well with the
experimental data regardless of the directional spreading and whether
the case is unidirectional or multidirectional. However, the predictions
of all the models demonstrate minor but consistent deviations from
the measured surface elevation. One likely reason for the deviations
involves experimental noise: By comparing the experimental and nu-
merical surface elevation data to the simulated results in the equivalent
experimental setup, but with a somewhat shorter peak period (𝑇 = 10
𝑝



Ocean Engineering 276 (2023) 114212I.-C. Kim et al.

y
i
t
5
4

t
s

Fig. 10. Time series of surface elevation at WG21: (a) Case A; (b) Case B; (c) Case C; (d) Case D ( : Data; : ICWM; : LWT-CDR; : LWT).
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s), Desmars et al. (2020) confirmed that experimental noise causes
the relatively constant prediction error regardless of the wave models.
Despite the fact that the effect of nonlinearity by ICWM is not visually
apparent, we will demonstrate in the following sections that the non-
linear model not only achieves better accuracy in describing the ocean
wave surface but also grasps the essential properties in the evolution
of the wave spectrum with various quantities such as cross-correlation,
wave spectral density as well as the estimate of surface shape.

Fig. 11(a) shows the evolution of the ensemble average of the
normalized misfit error 𝜀 at WG21 for Case B, in which directional
spreading of the wave is intermediate among all the directional cases
in the present study. Two-dimensional spatio-temporal evolution of the
prediction error along the centerline at 𝑦 = 𝑦𝑐 (see Fig. 2) and three-
dimensional spatio-temporal evolution of the prediction error over the
entire domain in the 𝑥𝑦-plane are illustrated in Figs. 11(b) and 12,
respectively. As shown in Fig. 11, the prediction zone denoted by two
black dash–dot lines (Eq. (21)) coincides with the area where the pre-
diction errors decrease significantly decreased. The value of minimum
error is 3.67% by ICWM, while it is 3.99% by LWT and 3.81% by LWT-
CDR, i.e. about 4% and 9% larger compared to ICWM, respectively.
One can observe at both boundaries of the prediction zone that the
error rises steeply toward the outside of the prediction zone because
the wave field which is a priori analyzed and to be predicted has not
et arrived or has already passed through WG21. Consequently, ICWM
s in a relatively more advantageous position at the upper boundary of
he time prediction zone 𝑡 = 𝑡max with the maximum misfit error of
.93%, while it is 6.74% by LWT and 6.17% by LWT-CDR, i.e. about
% and 14% larger compared to ICWM, respectively.

From both two- and three-dimensional spatio-temporal visualiza-
ions for the evolution of the prediction error, the spatio-temporal data
ets for the assimilation procedure with assimilation time 𝑇𝑎 yield an

extension to the prediction zone: (1) the observation zone at (𝑡−𝑡 )∕𝑇 =
11

𝑟 𝑝
−𝑇𝑎∕𝑇𝑝 explains the spatial prediction zone when only the data in space
re used, namely, the bottom line of the black rectangle in Fig. 11(b)
hich is a horizontal projection of the red shading in Fig. 12(a); (2)

he extended prediction zone is encompassed by two dash–dot lines
t (𝑡 − 𝑡𝑟)∕𝑇𝑝 = 0 in Fig. 11(b), corresponding to the gray shading in

Fig. 12(b). Note that the right boundary of the spatial prediction zone is
not shown here in Figs. 11(b) and 12(b) since it is beyond the axis limit.
As illustrated with the filled circles at the location of WGs including the
additional downstream WGs in Fig. 12, the two-dimensional prediction
zone in the 𝑥𝑦-plane is valid where the prediction error is consistently
low within the prediction zone in the same manner as Fig. 11.

6.2. Comparison between wave models

In wave scattering modeling from sea surfaces for remote sensing,
the free surface slope plays an important role in providing a realistic de-
scription of the ocean sea surface, especially in the more severe sea state
which can no longer remain Gaussian throughout the wave evolution
and where nonlinearity thus becomes more necessary (e.g., Nouguier
et al. 2010, 2013). Owing to the small distance (≈ 0.02𝐿𝑝) between
the last two wave observations along 𝑦 = 𝑦𝑐 used in the assimilation
(referred to as WG19 and WG20), a gradient of wave surface elevation
between WG19 and WG20 gives an estimate of the surface slope 𝑠𝑠(𝑡):

𝑠(𝑡) =
𝜂(𝑥20, 𝑦𝑐 , 𝑡) − 𝜂(𝑥19, 𝑦𝑐 , 𝑡)

𝑥20 − 𝑥19
(26)

where 𝑥19 and 𝑥20 denote the 𝑥-coordinates of WG19 and WG20,
respectively. Also, in order to separately assess the effects of the non-
linear phase shift (i.e., wave geometry or wave shape) and Stokes
drift (i.e., time shift in phase), the maximum cross-correlation and
corresponding time-lag are examined, respectively:

𝐶(𝜏) = 1 𝑡max
�̂�𝑝𝑟𝑒𝑑 (𝑡)×�̂�𝑟𝑒𝑓 (𝑡 + 𝜏)𝑑𝑡 (27)
𝑡max − 𝑡min ∫𝑡min
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Fig. 11. Evolution of prediction error for Case B: (a) using all models at WG21; (b) using ICWM at all WGs along centerline at 𝑦 = 𝑦𝑐 ( : ICWM; : LWT-CDR; : LWT;
: boundaries of prediction zone; red shading: nowcast; gray shading: forecast; vertical white lines: 𝑥-location of WGs along centerline at 𝑦 = 𝑦𝑐 ; black rectangle: assimilated

data set).
Fig. 12. Spatio-temporal evolution of prediction error for Case B using ICWM: (a) (𝑡 − 𝑡𝑟)∕𝑇𝑝 = −𝑇𝑎∕𝑇𝑝; (b) (𝑡 − 𝑡𝑟)∕𝑇𝑝 = 0; (c) (𝑡 − 𝑡𝑟)∕𝑇𝑝 = 0.9; (d) (𝑡 − 𝑡𝑟)∕𝑇𝑝 = 1.8 (filled circles:
prediction error at WGs; red shading: nowcast; gray shading: forecast).
where the dimensionless free surface elevation �̂� = 𝜂∕𝜎𝜂𝑟𝑒𝑓 is normalized
by the standard deviation of the reference surface for both prediction
and reference values. We note that by normalizing the elevations
with respect to the reference data, the cross-correlation can provide a
measure of the similarity of two series in terms of shape and magnitude,
with max(𝐶) = 1 corresponding to the ideal match.

Fig. 13 shows the ratio of prediction error by ICWM to that of LWT-
CDR and of LWT not only for the surface elevation but also for the sur-
face slope at WG20. Fig. 14 compares the maximum cross-correlation
and corresponding normalized time lag between the numerical wave
models at WG21. Error bars are added based on the time resolution
of the measurements in Fig. 14(b). For the multidirectional cases, the
trend in the prediction misfit error and correlation is very similar
for each case, in other words, the directional spreading is not likely
to affect the performances of wave models for multidirectional wave
fields. This may be due, even in Case A with the greatest spreading
of the directional cases in this study, to the fact that the spectral
energy is fairly well concentrated around the mean propagating direc-
tion (i.e., 0◦) and the angular spreading is so moderate that most of
the energy is contained in the not-wide angle range of [−45◦, 45◦]. It
12

coincides with the finding that there is little difference not only in the
converged prediction error between the directional cases but also in the
results between using𝑁𝜃 larger or equal to 5 for each case in optimizing
the number of directional wave components (see Fig. 8).

As shown in Fig. 13, the relative errors of ICWM for the surface
elevation compared to LWT as well as LWT-CDR are greater than about
96% in the multidirectional cases, while only LWT exhibits a relatively
strong deviation from the reference data for the surface elevation
in the unidirectional case D. This implies that, if the wave field is
directionally spread, the effect of Stokes drift, which is not included
in LWT, becomes negligible in comparison to the unidirectional case.
Since the nonlinearity of Stokes drift is at third order in wave steepness
(or second order in the expression of elevation), the summation of the
directional wave components becomes less dominant than that in the
unidirectional condition, the larger the wave steepness. This fact can
explain the results in Fig. 14(b) showing that the time-lags of all the
models are close to zero and have overlapping error bars for all the
cases whereas the time-lag of LWT is about a few percent of the peak
period in Case D.

Unlike the effect of Stokes drift in the wave celerity, the nonlinear
phase shift (i.e., summation in Eq. (6)) is expected to be similarly
crucial whether or not the wave field spreads directionally because the
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Fig. 13. Comparison of prediction error between ICWM and LWT-CDR (∙); ICWM and LWT (■) at WG20 ( : surface elevation 𝜂; : surface slope 𝑠𝑠).
Fig. 14. Cross-correlation between predicted and measured surface elevations at WG21: (a) maximum value; (b) corresponding normalized time-lag ( : ICWM; : LWT-CDR;
: LWT).
eometrical correction in the celerity of ICWM is at second order in
ave steepness (or first order in the expression of elevation). It is found

rom the ratio of ICWM to LWT-CDR and LWT for the 𝑠𝑠 prediction error
hich reaches approximately 0.9 in Fig. 13 and the relatively constant

mprovement by ICWM for max(𝐶) compared to the other models for all
he cases in Fig. 14(a). The only exception is observed between ICWM
nd LWT-CDR prediction errors of the surface slope for Case D shown
n Fig. 13. This can probably be attributed to the experimental noise
esulting from perturbations by the wavemaker.

In order to investigate how the model performances change as
13

aves propagate in space (or downstream), we compared the results
of ICWM for the maximum cross-correlation, corresponding time lag,
and prediction error at WG21, 22, 23, and 24 (for which the propa-
gating distances from WG20 are 0.15𝐿𝑝, 0.21𝐿𝑝, 0.24𝐿𝑝, and 0.28𝐿𝑝,
respectively, see Fig. 15). Except for the time lag where the error bars
overlap, the comparison of the model results at the downstream wave
gauges shows that as the waves propagate in space, the deviation of
the nonlinear model from the data becomes more pronounced. This
is consistent with the finding of Desmars et al. (2020) that the max-
imum cross-correlation tends to decrease with the increasing distance
downstream when the steepness exceeds 2.5% (𝐻𝑠∕𝐿𝑝 = 3.11% here).

Note that due to the normalized model prediction by the reference
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Fig. 15. Spatial evolution of model performances by ICWM along downstream WGs: (a) maximum cross-correlation; (b) corresponding normalized time-lag; (c) prediction error
or surface elevation (∙: WG21; ■: WG22; ▴: WG23; +: WG24).
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ata, the maximum cross-correlation above unity (max(𝐶) > 1) indi-
ates overprediction, namely, deviation from the reference data. This
s expected as we chose a less strict frequency range to explain the
rediction zone, the reconstructed wave components are increasingly
imited to achieving the physical representation of the wave field as
he location moves farther from the observation zone.

.3. Continuous wave prediction

To have a reliable estimate of the wave spectrum, we extracted the
ave spectrum from the continuous time series of surface elevation for

he whole experimental duration up to 𝑡𝑏 (where 𝑡𝑏∕𝑇𝑝 ≈ 664). Fig. 16
epicts the evolution of the normalized spectral energy density of the
ree surface elevation 𝑆∗

𝜂 = 𝑆𝜂𝑓𝑝∕(𝐻2
𝑠 ∕16) obtained by the time series

t WG21 for Cases B and D. Overall, comparing the model results to
he experimental data in both unidirectional and multidirectional cases,
wo features are apparent: (1) every model works reasonably well for
he lower frequency range waves shown in Fig. 16(a) and (c); (2) ICWM
xhibits a significant improvement in resolving the higher frequencies
hown in Fig. 16(b) and (d). The advantage of ICWM for the higher
14

requency range can be explained by the fact that ICWM accounts for
he bound waves as a result of including the nonlinear phase shift in the
onlinear phase function (i.e., 𝛹 ), which is directly related to the better
erformance by ICWM for the measures pertaining to the wave shape
uch as surface slope predictions and maximum cross-correlation value.
n addition, the generation of wave energy over the higher wave energy
here the energy is not initially assigned (𝑓∕𝑓𝑝 > 3.46 or 𝑘∕𝑘𝑝 > 12) is
typical manifestation of bound waves by ICWM.

In order to quantitatively evaluate the accuracy of the sea surface
rediction, the surface similarity parameter (SSP), which is zero for an
deal wave model, was proposed by Perlin and Bustamante (2016). In
his study, we used an improved surface similarity parameter (ISSP) for
he surface elevation with reference to Willmott (1982) to include the
eviation of the predicted value from the averaged reference value:

𝑆𝑆𝑃 =

(

∫ |

|

|

𝐹𝜂,𝑝𝑟𝑒𝑑 (𝑓 ) − 𝐹𝜂,𝑟𝑒𝑓 (𝑓 )
|

|

|

2
𝑑𝑓

)1∕2

(

∫
[

|

|

|

𝐹𝜂,𝑝𝑟𝑒𝑑 (𝑓 ) − 𝐹 𝜂,𝑟𝑒𝑓
|

|

|

+ |

|

|

𝐹𝜂,𝑟𝑒𝑓 (𝑓 ) − 𝐹 𝜂,𝑟𝑒𝑓
|

|

|

]2
𝑑𝑓

)1∕2
(28)

where 𝐹𝜂,𝑝𝑟𝑒𝑑 and 𝐹𝜂,𝑝𝑟𝑒𝑑 are Fourier transforms of surface elevation time
series for prediction and reference values, respectively. The overbar

denotes the averaged value over the entire frequency range.
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Fig. 16. Normalized wave spectra of surface elevation at WG21: (a, b) Case B; (c, d) Case D ( : Data; : ICWM; : LWT-CDR; : LWT).
Fig. 17. Improved surface similarity parameter between predicted and measured surface elevations at WG21 ( : ICWM; : ratio of ICWM to LWT; : ratio of ICWM to
LWT-CDR).
Fig. 17 shows the value of ISSP by ICWM and the ratio of ISSP
between models for the continuous time series of surface elevation as
in the analysis of the wave spectrum. Unlike the results in Figs. 13 and
14 where the linear wave model would be adequate, the improvements
by ICWM become more obvious. Additionally, ICWM provides better
model performances compared to LWT and LWT-CDR with decreasing
directional spreading, while similar patterns in the value of ISSP by
ICWM itself are observed for most of the cases reaching a value of about
0.12. The better improvement by ICWM in the case with the smaller
directional spreading is believed to be due to the fewer directional
components 𝑁𝜃 that were used in the numerical simulation. The more
directional wave components the wave field consists of, the smaller the
sum of the higher-order of decomposed directional components.

7. Conclusions

This paper has presented the development of real-time phase-
resolved wave forecasting by LWT, LWT-CDR, and a Lagrangian model
(i.e., ICWM) with unidirectional and multidirectional seas measured by
a vessel-mounted instrument. Multidirectional cases require consider-
ing the aspects in direction as well as in frequency in order to reach the
same model accuracy as in the unidirectional case. Due to the greatly
15

increased computational cost that this involves in multidirectional
sea states, real-time prediction in a multidirectional ocean surface
becomes a more computationally challenging task compared to in the
unidirectional case.

Accordingly, we developed and validated a numerically efficient
method in the algorithms for real-time phase-resolved ocean wave
prediction. This efficient and simplified approach was derived by ne-
glecting the higher-order terms resulting from the derivative of surface
elevation but keeping the other higher-order terms related to the rep-
resentation of wave surface elevation. The method ensured numerical
stability and efficiency in the process of nonlinear assimilation. By
using the ensemble-averaged prediction error over the partly overlap-
ping surface samples, we found that the newly-developed method of
nonlinear assimilation provides nearly the same model accuracy as the
previous one but in a nowcast process that is about more than ten
times faster for each wave model. Therefore, the use of numerically
efficient assimilation ensures the implementation of all the nonlinear
wave models (i.e., ICWM, LWT-CDR) in the real-time system.

We also provided a three-dimensional spatio-temporal prediction
zone, in which the measured wave field can be used to describe the
future ocean surface prediction, by defining in advance the wave band-
widths in frequency and direction. Because the measurement points
are irregularly distributed in space, various boundaries determine the

prediction zone. Since they propagate with the maximum or minimum
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group velocity in the wave propagating angles of each boundary inde-
pendently, the prediction zone evolves with different shapes and finally
disappears when the assimilated information is no longer valid in a
prediction. Further, we proved that this prediction zone coincides well
with the region where the prediction errors between the predicted and
observed wave surfaces remain very small.

Finally, in order to assess the influence of nonlinear properties
in Lagrangian surface wave models (i.e., nonlinear phase shift and
Stokes drift) for unidirectional sea states as well as multidirectional sea
states with different angular spreading, we conducted an experimental
campaign designed to construct the multidirectional measurements
recorded by an optical system. We showed from the validation of the
prediction against the experimental data that the nonlinear phase shift,
accounting for wave shape representation and bound waves, is similarly
significant in all the cases regardless of the directional spreading. On
the other hand, in multidirectional waves, Stokes drift, leading to the
nonlinear dispersion relation or nonlinear wave celerity, is probably not
as pronounced as in unidirectional waves. This is primarily due to the
order of Stokes drift which is higher than that of the nonlinear phase
shift. Nevertheless, when it comes to the feed-forward wave-based
control strategies for floating offshore wind turbines in the context
of the FLOATECH project which require a short time horizon, all the
wave models are adequate for real-time prediction. In other words,
the algorithms for wave prediction in the present study are found to
provide sufficient model accuracy and time horizon in the context of
optimal control for floating wind turbines by reference to the previous
study (e.g., Ma et al. 2018). However, in the problem of ocean engi-
neering where one necessarily constructs the instantaneous nonlinear
wave shape or long-term wave prediction, ICWM, which involves the
nonlinear terms, appears to be more attractive for the study of wave
propagation whether the case is unidirectional or multidirectional.
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Appendix. Assimilation for LWT-CDR

As we illustrated the assimilation methods for ICWM, we present
the two assimilation formulations (i.e., previous and simplified ones)
for LWT-CDR in this appendix. The previous assimilation equations
of Desmars et al. (2020) are given:

𝐴𝐿𝑊 𝑇−𝐶𝐷𝑅
(𝑚,𝑛) =

𝐿
∑

𝑙=1
cos �̃�𝑛𝑙𝑃𝐿𝑊 𝑇−𝐶𝐷𝑅

𝑚𝑙 , 𝐴𝐿𝑊 𝑇−𝐶𝐷𝑅
(𝑚,𝑁+𝑛) =

𝐿
∑

𝑙=1
sin �̃�𝑛𝑙𝑃𝐿𝑊 𝑇−𝐶𝐷𝑅

𝑚𝑙

𝐿𝑊 𝑇−𝐶𝐷𝑅
(𝑁+𝑚,𝑛) =

𝐿
∑

𝑙=1
cos �̃�𝑛𝑙𝑄𝐿𝑊 𝑇−𝐶𝐷𝑅

𝑚𝑙 , 𝐴𝐿𝑊 𝑇−𝐶𝐷𝑅
(𝑁+𝑚,𝑁+𝑛) =

𝐿
∑

𝑙=1
sin �̃�𝑛𝑙𝑄𝐿𝑊 𝑇−𝐶𝐷𝑅

𝑚𝑙

𝐵𝐿𝑊 𝑇−𝐶𝐷𝑅
𝑚 =

𝐿
∑

𝑙=1
�̄�𝑙𝑃

𝐿𝑊 𝑇−𝐶𝐷𝑅
𝑚𝑙 , 𝐵𝐿𝑊 𝑇−𝐶𝐷𝑅

𝑁+𝑚 =
𝐿
∑

𝑙=1
�̄�𝑙𝑄

𝐿𝑊 𝑇−𝐶𝐷𝑅
𝑚𝑙

(A.1)

ith
𝐿𝑊 𝑇−𝐶𝐷𝑅
𝑚𝑙 = cos �̃�𝑚𝑙 + (𝑎𝑚 sin �̃� − 𝑏 cos �̃�)𝑘2𝑚𝑎𝑚𝜔𝑚𝑡𝑙
𝑄𝐿𝑊 𝑇−𝐶𝐷𝑅
𝑚𝑙 = sin �̃�𝑚𝑙 + (𝑎𝑚 sin �̃� − 𝑏 cos �̃�)𝑘2𝑚𝑏𝑚𝜔𝑚𝑡𝑙

(A.2)

Eq. (A.1) are simplified into Eq. (A.3) to derive the simplified
ssimilation for LWT-CDR (referred to as LWT-CDR-S) by discarding
he terms which are at a higher order than 𝑂(1) in 𝑃 and 𝑄:

𝐴𝐿𝑊 𝑇−𝐶𝐷𝑅−𝑆
(𝑚,𝑛) =

𝐿
∑

𝑙=1
cos �̃�𝑛𝑙𝑃𝐿𝑊 𝑇

𝑚𝑙 , 𝐴𝐿𝑊 𝑇−𝐶𝐷𝑅−𝑆
(𝑚,𝑁+𝑛) =

𝐿
∑

𝑙=1
sin �̃�𝑛𝑙𝑃𝐿𝑊 𝑇

𝑚𝑙

𝐿𝑊 𝑇−𝐶𝐷𝑅−𝑆
(𝑁+𝑚,𝑛) =

𝐿
∑

𝑙=1
cos �̃�𝑛𝑙𝑄𝐿𝑊 𝑇

𝑚𝑙 , 𝐴𝐿𝑊 𝑇−𝐶𝐷𝑅−𝑆
(𝑁+𝑚,𝑁+𝑛) =

𝐿
∑

𝑙=1
sin �̃�𝑛𝑙𝑄𝐿𝑊 𝑇

𝑚𝑙

𝐵𝐿𝑊 𝑇−𝐶𝐷𝑅−𝑆
𝑚 =

𝐿
∑

𝑙=1
�̄�𝑙𝑃

𝐿𝑊 𝑇
𝑚𝑙 , 𝐵𝐿𝑊 𝑇−𝐶𝐷𝑅−𝑆

𝑁+𝑚 =
𝐿
∑

𝑙=1
�̄�𝑙𝑄

𝐿𝑊 𝑇
𝑚𝑙

(A.3)
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